
Under review as a conference paper at ICLR 2024

ENABLING MODEL PARALLELISM FOR NEURAL NET-
WORKS BASED ON DECOUPLED SUPERVISED CON-
TRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

End-to-end backpropagation (BP) is the current standard for training deep neural
networks. However, as networks become deeper, BP becomes inefficient for
various reasons. This paper introduces a new methodology that decouples BP,
transforming a long gradient flow into multiple short ones. This design enables the
simultaneous computation of parameter gradients in different layers so as to realize
better model parallelism. Thorough experiments are presented to demonstrate
the efficiency and effectiveness of our model compared to BP, Early Exit, GPipe,
and associated learning (AL), a state-of-the-art methodology for backpropagation
decoupling. The experimental code is released for reproducibility at https:
//anonymous.4open.science/r/SCPL-802C/

1 INTRODUCTION

Large neural networks have become prominent. However, training large neural networks poses
several challenges, with one of the difficulties being the issue of backward locking: when dividing
a large neural network into segments processed across multiple GPUs, the chain rule restricts each
GPU’s layers to wait for gradient information from layers in other GPUs closer to the target before
proceeding with their gradient computations. Backward locking severely limits the potential speedup
that parallel processing could offer, as the sequential nature of gradient calculations becomes a
bottleneck of the training process.

This paper proposes a simple yet innovative methodology, Supervised Contrastive Parallel Learning
(SCPL), to address the issue of backward locking. As a result, SCPL realizes model parallelism,
which not only partitions a large neural network into segments processed across multiple computing
units (e.g., GPUs) but also enables parallel processing on these devices. This is similar but different
from most of today’s model parallelism tools or packages (e.g., the definitions used by Amazon
SageMaker1), which allocates different model components to different GPUs but not necessarily
running these GPUs simultaneously.

SCPL decouples the long gradient flow of a deep neural network by leveraging supervised contrastive
learning (SCL). The forward path transforms an input x into the corresponding prediction ŷ as a usual
neural network in this design. However, the gradient flow on the backward path is blocked between
different components. Instead of using a global objective, SCPL assigns a local objective to each
component and forces each gradient flow to remain within one component. When allocating these
local objectives to different GPUs, SCPL can compute the local gradients without waiting for the
gradients in the neighboring layers.

We conduct experiments on multiple open datasets, including computer vision and natural language
processing tasks, using famous network structures such as the vanilla convolutional neural network,
VGG, ResNet, LSTM, and Transformer. Our results show that SCPL increases training throughput
while maintaining comparable test accuracy compared to models trained via backpropagation (BP),
Early Exit, and Associated Learning (AL) (Wu et al., 2022; Kao & Chen, 2021), a state-of-the-art

1https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-intro.
html

1

https://anonymous.4open.science/r/SCPL-802C/
https://anonymous.4open.science/r/SCPL-802C/
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-intro.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-intro.html

Under review as a conference paper at ICLR 2024

Table 1: A comparison of the properties of the representative related models (H: number of layers/-
components)

Method Supervised? Parallel model training? Length of gradient flows

BP (Rumelhart et al., 1986) Y N O(H)
AL (Wu et al., 2022) Y Y (but not implemented) O(1)

GPipe (Huang et al., 2019) Y Y O(H)
LoCo (Xiong et al., 2020) N Y (but not implemented) O(1)
GIM (Löwe et al., 2019) N Y (but not implemented) O(1)

SCPL (ours) Y Y O(1)

methodology for decoupling BP. We released the code and Docker images with a step-by-step guide
for reproducibility.

The rest of the paper is organized as follows. In Section 2, we review previous works on model
parallelism. In Section 3, we introduce SCPL and its properties. Section 4 compares SCPL with
BP, Early Exit, and AL with respect to their training time and test accuracies. We conclude our
contribution in Section 5.

2 RELATED WORK

2.1 DATA PARALLELISM VS. MODEL PARALLELISM

Data parallelism (DP) and model parallelism (MP) are two strategies employed in distributed deep
learning to mitigate the considerable training time required for neural network models. DP involves
distributing batches of training data across multiple devices or processors; each device computes
the gradients independently. Devices usually synchronize gradients at the end of every iteration or
multiple iterations (Shallue et al., 2018; Li et al., 2020). DP is well-suited for scenarios where the
model can fit within the memory of each device.

On the other hand, MP tackles the issue of training models that are too large to fit into the memory of
a single device. MP divides the model into segments that are processed on different devices. However,
the interdependence of gradient calculations across layers complicates the parallelization process.
Each device needs the gradients from other devices to proceed with its gradient calculations, creating
a synchronization bottleneck that limits the potential parallelism. As a result, naïve model parallelism
(which will be called “NMP” below) results in poor training efficiency.

2.2 MODEL PARALLELISM STRATEGIES

A core challenge in model parallelism, backward locking, stems from the inherent characteristics of
backpropagation (BP). Therefore, the various methods that attempt to find alternative BP methods
could potentially achieve model parallelism. Studies in this line include target propagation (TP) (Lee
et al., 2015; Meulemans et al., 2020; Manchev & Spratling, 2020; Bengio, 2014), gradient predic-
tion (Jaderberg et al., 2017), and local objective assignments (Wu et al., 2022; Kao & Chen, 2021).
Although many of these methods do not require gradient computation in training, most still need to
update the parameters layer-by-layer, so it is challenging to realize model parallelism. Associated
learning (AL) is one of the very few methods capable of simultaneously updating parameters in
different layers. However, the authors of BP only released a sequential implementation, making it
hard to experiment and verify AL’s parallelization capacity.

NMP has a low training efficiency, but MP’s training efficiency can be improved by pipelining,
which overlaps GPU computations and minimizes idle time between different stages of computation.
The most representative model in this line is Google’s GPipe (Huang et al., 2019), which separates
mini-batches into micro-batches to pipeline the forward and backward pass. However, GPipe still
relies on the chain rule for gradient computation, so bubbles are inevitable, and the length of a
gradient flow is O(H), identical to BP. Some following works, e.g., PipeDream Narayanan et al.
(2019), further overlap forward and backward passes, thereby reducing synchronization overhead.

2

Under review as a conference paper at ICLR 2024

𝒙!

𝒙

𝒙"

𝒓! 𝒓"

𝑇𝑇

𝑓 𝑓

𝒛! 𝒛"𝑔 𝑔

similar

𝒙#

𝒙!#

𝒓!#
𝑓

𝒛!# 𝑔

𝑇

dissimilar

𝒙!

𝒙
dog

𝒓!

𝑇

𝑓

𝒛! 𝑔

𝒙#
dog

𝒙!#

𝒓!#
𝑓

𝒛!# 𝑔

𝑇

similar

𝒙′′
rabbit

𝒙!## 𝑇

𝒓!## 𝑓

𝒛!## 𝑔

dissimilar

Figure 1: An illustration of contrastive learning (CL) and supervised contrastive learning (SCL). CL
regards an anchor image’s augmented images as positive pairs (e.g., x1 and x2 above) and regards
the anchor image’s augmented image to all non-augmented images as negative pairs (e.g., x1 and x′

1
on the left). SCL regards augmented images as positive pairs if they have the same label (e.g., x1 and
x′
1 on the right); a pair of augmented images is a negative pair if their labels are different (e.g., x1

and x′′
1).

However, the lack of global gradient synchronization leads to challenges in maintaining accurate
gradient updates, and thus, the final model tends to be underfitting.

Some studies used self-supervised learning to decouple BP, e.g., Greedy InfoMax (GIM) (Löwe et al.,
2019) and LoCo (Xiong et al., 2020). While these studies localize the losses, they mainly focus on
improving model accuracy and modularity but pay little attention to model parallelism. Additionally,
these works are primarily unsupervised (self-supervised), so their results are not directly comparable
to those of our work.

Our proposed SCPL is motivated by studies in pipeline model parallelism (e.g., AL and GPipe) and
BP decoupling using self-supervised learning (e.g., GIM and LoCo). However, they are different in
several ways. Referring to Table 1, GIM and LoCo are unsupervised, and their released implementa-
tion does not support model parallelism. Therefore, although these methods decouple gradient flows
and the length of each gradient flow is O(1) (i.e., its length is irrelevant to the number of layers), they
cannot be directly compared to SCPL. BP, AL, and GPipe are supervised. However, BP does not
support model parallelism due to backward locking, and the length of BP’s gradient flow is linearly
proportional to the number of layers, O(H). Although AL’s design addresses backward locking, thus
enabling model parallelism, the released implementation is sequential. Converting AL’s sequential
implementation to support model parallelism still requires significant engineering effort. GPipe
remains suffering from backward locking, so the bubbles are unavoidable. Integration of GPipe and
SCPL is possible (see Appendix A.5 for details). However, we leave this part for future work.

3 METHODOLOGY

3.1 PRELIMINARIES: CONTRASTIVE LEARNING AND SUPERVISED CONTRASTIVE LEARNING

Contrastive learning (CL) is a self-supervised technique for learning the representations of objects.
Referring to the left of Figure 1, given an image x, CL involves generating different views (i.e., x1

and x2) through the same family of data augmentations T . The generated views (x1 and x2) are
further transformed using an encoder f and a projection head g to minimize the contrastive loss
between the output vectors (i.e., z1 and z2). After training, the projection head g is disregarded, and
only the encoder f is used to generate the representations of the images (Chen et al., 2020). In other
words, given an anchor image x, CL regards x’s augmented images as positive instances and all other
images as negative instances, and positive pairs should be similar after encoding and projection.

SCL extends CL from a self-supervised setting to a fully supervised setting. Therefore, the training
data for SCL consist of not only the training features but also the labels. Referring to the right of

3

Under review as a conference paper at ICLR 2024

𝑟!
(#)

Encoder
𝑓!

𝑟!
(%)

Encoder
𝑓!

𝑧!
(#) ℒ!&'

Projection Head
𝑔!

𝑧!
(%) Projection Head

𝑔!

𝒙 # 𝒙 %

𝑟(
(#)

Encoder
𝑓(

𝑟(
(%)

Encoder
𝑓(Component 1

𝑧(
(#) ℒ(&'

Projection Head
𝑔(

𝑧(
(%) Projection Head

𝑔(

𝑟)
(#)

Encoder
𝑓)

𝑟)
(%)

Encoder
𝑓)

𝑧)
(#) ℒ)&'

Projection Head
𝑔)

𝑧)
(%) Projection Head

𝑔)

Classifier
𝑓*

'𝑦 # ℒ#+,-

grad

grad grad

grad grad

grad grad

stop -grad

stop -grad stop -grad

stop -grad stop -grad

stop -grad stop -grad

𝑦 #

𝑟!
(#)

𝑓!

𝒙 #

𝑟(
(#)

𝑓(

𝑟)
(#)

𝑓)

𝑓*

'𝑦 # ℒ#+,- 𝑦 #

grad

Component 2

Component 3

Component 4

Figure 2: An example neural network with 3 hidden layers and its corresponding SCPL network.
Solid blue arrows correspond to forward paths, red dashed arrows correspond to backward paths,
green boxes denote the parameters (functions), and orange boxes represent the loss functions. The
gradient flows are blocked between neighboring blocks for SCPL.

Figure 1, given an anchor image x with label c, the positive instances include the augmented images
of x and other images (along with their augmented images) of label c in the same batch, whereas all
other images in the same batch are regarded as negative instances (Khosla et al., 2020).

3.2 DECOUPLING END-TO-END BACKPROPAGATION VIA SUPERVISED CONTRASTIVE
LEARNING

This section presents SCPL, which leverages the supervised contrastive loss to split one long gradient
flow in a deep neural network into multiple shorter ones.

Let us first consider a standard neural network with 3 hidden layers as an example. As shown in the
left of Figure 2, x(i) refers to an input image i, and the function fℓ (ℓ = 1, . . . , 4) transforms r(i)ℓ−1

into r
(i)
ℓ (under the assumptions that x(i) = r

(i)
0 and the predicted class ŷ(i) = r

(i)
4). Depending

on the network architecture, the functions fℓ could be various neural network layers, such as fully
connected layers, convolutional layers, pooling layers, or residual blocks. The objective LOUT is
determined by the task type. For example, a classification task typically uses the cross-entropy loss
between the predicted ŷ(i) and the ground-truth class y(i) as LOUT . We use backpropagation to
obtain ∂LOUT /∂θfℓ for each layer ℓ, where θfℓ represents the parameters of function fℓ. Once the
gradients are obtained, we can use gradient-based optimization strategies, e.g., gradient descent, to
update the parameter values. Given a neural network with H hidden layers, the longest gradient flow
is constructed as a product of H +2 local gradients. For example, to obtain ∂LOUT /θf1 in a network
with 3 hidden layers (as shown in the left of Figure 2), we need the following:

∂LOUT

∂θf1
=

∂LOUT

∂ŷ(i)
× ∂ŷ(i)

∂r
(i)
3

× ∂r
(i)
3

∂r
(i)
2

× ∂r
(i)
2

∂r
(i)
1

× ∂r
(i)
1

∂θf1
. (1)

The number of terms of this product grows linearly with the depth of the network. Therefore, as a
network becomes deeper, its long gradient flow may cause optimization and performance issues, as
discussed in Section 1.

4

Under review as a conference paper at ICLR 2024

We use Figure 2 to illustrate our strategy of cutting a long gradient flow into several local gradients
for a neural network with 3 hidden layers. Let r(i)0 (i.e., x(i)) and r

(j)
0 (i.e., x(j)) be two image views

in the same batch (r(i)0 and r
(j)
0 may or may not be augmented images, i.e., views, from the same

image). We use f1 to transform each of them, obtaining r
(i)
1 and r

(j)
1 , and further use the function g1

to convert them into z
(i)
1 and z

(j)
1 , respectively. The functions f1 and g1 can be considered as the

encoder and the projection head, respectively, in CL (refer to Figure 1). We repeat the same process
for each hidden layer ℓ to form the corresponding component ℓ. If x(i) and x(j) are two different
views of the same image or if y(i) (the label of x(i)) is the same as y(j) (the label of x(j)), then
we should ensure that z(i)

ℓ is close to z
(j)
ℓ for all ℓ. Otherwise, we should increase their distance.

Eventually, we define the local supervised contrastive loss LSC
ℓ for batch B in layer ℓ as below.

LSC
ℓ (B) =

∑
∀i∈B

−1

|P (i)|
∑

∀p∈P (i)

log
exp

(
z
(i)
ℓ · z(p)

ℓ /τ
)

∑
∀j∈B
j ̸=i

exp
(
z
(i)
ℓ · z(j)

ℓ /τ
) , (2)

where B = {1, 2, . . . , b} represents a batch of multiview images (b = 2N if using data augmentation
and b = N otherwise), P (i) is the set of all positive samples for an image i, τ is a hyperparameter,
and I(j ̸= i) ∈ {0, 1} is an indicator function that returns 1 if j ̸= i and 0 otherwise.

Ultimately, the global objective function of a batch B is an accumulation of the local supervised
contrastive losses and the losses in the output layer (the distance between ŷ(i) and y(i)):

L(B) =

H∑
ℓ=1

LSC
ℓ (B) +

∑
∀i∈B

LOUT
i , (3)

where H is the number of hidden layers, and LOUT
i is the ith loss in the output layer (refer to right of

Figure 2).

Detailed structures and hyperparameters are given in Appendix A.1. The computation of LSC
ℓ and

the pseudocode of SCPL for a 3-layer vanilla ConvNet is given in Algorithm 1 and Algorithm 2,
respectively, in Appendix A.6.

3.3 FORWARD PATH, BACKWARD PATH, AND INFERENCE FUNCTION

For a regular neural network (e.g., left of Figure 2), the forward path and the inference function are
identical, and the backward path is simply obtained by inverting the direction of the forward path.
However, SCPL is different because we divide the objective into several local ones. Consequently,
we have multiple short local forward paths, multiple short local backward paths, and one global
inference path; the inference path and the forward paths are no longer identical in SCPL.

During training, each component ℓ has its own forward and backward paths. Taking the SCPL
network in Figure 2 as an example, the forward path of component ℓ transforms each r

(i)
ℓ−1 into r

(i)
ℓ

via the local encoder fℓ and further transforms each r
(i)
ℓ into z

(i)
ℓ via the local projection head gℓ. On

the backward path, each hidden layer computes ∂LSC
ℓ /∂θgℓ and ∂LSC

ℓ /∂θfℓ based on the chain rule
and updates the parameters by gradient-based optimization strategies. We block the gradient flow
between each component. As a result, each gradient flow remains within one component. Equation 4
and Equation 5 show these local gradient flows.

∂LSC
ℓ

∂θgℓ
=

∂LSC
ℓ

∂z
(i)
ℓ

×
∂z

(i)
ℓ

∂θgℓ
. (4)

∂LSC
ℓ

∂θfℓ
=

∂LSC
ℓ

∂z
(i)
ℓ

×
∂z

(i)
ℓ

∂r
(i)
ℓ

×
∂r

(i)
ℓ

∂θfℓ
. (5)

5

Under review as a conference paper at ICLR 2024

Device No. Stage

GPU0 FW1 BW1 UP

GPU1 FW2 BW2 UP

GPU2 FW3 BW3 UP

GPU3 FW4 LOSS BW4 UP

Time point t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

Device No. Stage

GPU0 FW1 LOSS BW1 UP

GPU1 FW2 LOSS BW2 UP

GPU2 FW3 LOSS BW3 UP

GPU3 FW4 LOSS BW4 UP

Time point t1 t2 t3 t4 t5 t6 t7 t8

FW𝑖: forward for layer 𝑖
LOSS: compute loss
BW𝑖 : backward for layer 𝑖
UP: update parameter values

Device No. Stage

GPU0 FW1 FW2 FW3 FW4 LOSS BW4 BW3 BW2 BW1 UP

Time point t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

Standard BP

NMP

SCPL

Figure 3: An illustrating example to compare the GPU usage of one iteration for standard BP, NMP,
and SCPL. The true GPU utilization is shown in Figure 4 in Appendix A.2

Eventually, even if we construct a deep neural network, the cost of computing each ∂LSC/∂θfℓ and
each ∂LSC/∂θgℓ remains constant (i.e., O(1)). Additionally, the gradient flow in the output layer is
also short: we simply compute ∂Lout

k /∂θfH+1
(where H is the number of hidden layers).

In the inference (prediction) phase, we need only the encoders fℓ but not the projection heads gℓ, as
shown by Equation 6:

ŷ(i) = fH+1 ◦ fH ◦ . . . ◦ f2 ◦ f1(x(i)), (6)

where ◦ is the function composition operator (H = 3 for the example illustrated in Figure 2).

Although our proposed method (e.g., right of Figure 2) involves more parameters than a standard
neural network structure (e.g., left of Figure 2) during training, they have the same number of
parameters during inference because both of them use only the functions fℓ. Therefore, they have the
same hypothesis space. The parameters that participate in the inference phase (θfℓ-s) are called the
effective parameters. The parameters used during training but not during inference (θgℓ -s) are called
the affiliated parameters. As a bonus effect, having affiliated (redundant) parameters sometimes helps
optimization (Arora et al., 2018; Chen & Chen, 2020).

3.4 PARALLELIZATION VIA PIPELINING

Since each component has its local objective, we can parallelize the training procedure via pipelining.
We use the network illustrated in Figure 2 as an example. Referring to Figure 3, the top subfigure
shows a standard learning iteration using a single GPU. The middle subfigure illustrates NMP by
segmenting the model into 4 components and assigning each part to 1 GPU (we ignore the com-
munication cost between GPUs). However, due to the dependencies between different components,
the GPUs cannot operate simultaneously, so bubbles exist. Finally, the bottom subfigure illustrates
SCPL: in time unit t1, the 1st GPU (Device No. 0) computes the forward path in component 1. At
t2, the 2nd GPU takes r

(i)
1 and r

(j)
1 as input to perform forward, and the 1st GPU computes the

local loss for component 1. At t3, the 3rd GPU takes r(i)2 and r
(j)
2 as input to perform forward, the

2nd GPU computes the local loss for component 2, and the 1st GPU computes the gradients for
the parameters in component 1 via backpropagation. Therefore, different GPUs may compute the
parameter gradients in different components simultaneously.

6

Under review as a conference paper at ICLR 2024

Table 2: The speedup of the training time for SCPL (1, 2, or 4 GPUs) and GPipe (1, 2, or 4 GPUs)
using BP of the same batch size as the reference. The actual running minutes of BP are shown in
parentheses. We use Transformer as the network and IMDB as the dataset.

Batch size 32 64 128 256 512

BP 1x (196 min) 1x (173 min) 1x (156 min) 1x (149 min) 1x (147 min)
GPipe (1 GPU) 0.75x 0.72x 0.72x 0.71x 0.70x
GPipe (2 GPUs) 1.00x 0.92x 0.93x 0.93x 0.92x
GPipe (4 GPUs) 1.35x 1.25x 1.17x 1.16x 1.11x
SCPL (1 GPU) 1.12x 1.07x 1.03x 1.03x 1.05x
SCPL (2 GPUs) 1.43x 1.37x 1.32x 1.37x 1.38x
SCPL (4 GPUs) 1.92x 1.82x 1.66x 1.67x 1.66x

Table 3: The speedup of the training time for SCPL (1, 2, or 4 GPUs) and GPipe (1, 2, or 4 GPUs)
using BP of the same batch size as the reference. The actual running minutes of BP are shown in
parentheses. We use VGG as the network and Tiny-Imagenet as the dataset.

Batch size 32 64 128 256 512

BP 1x (204 min) 1x (215 min) 1x (220 min) 1x (224 min) 1x (244 min)
GPipe (1 GPU) 0.45x 0.54x 0.62x 0.63x 0.67x
GPipe (2 GPUs) 0.57x 0.66x 0.67x 0.82x 0.84x
GPipe (4 GPUs) 0.73x 0.92x 1.00x 1.05x 1.27x
SCPL (1 GPU) 0.66x 0.80x 0.89x 0.92x 0.98x
SCPL (2 GPUs) 0.82x 0.98x 0.97x 1.19x 1.24x
SCPL (4 GPUs) 1.04x 1.37x 1.44x 1.53x 1.92x

Referring to Figure 4 in Appendix A.2, we use a profiler to show the utilization of GPUs in a real
training job. The profiler shows the GPU usage footprint of NMP and SCPL, which is indeed close to
our illustration in Figure 3.

4 EXPERIMENTS

We compare SCPL with baselines using different neural networks on both image datasets (CIFAR-10,
CIFAR-100, and Tiny-ImageNet) and text datasets (AG’s news and IMDB). We test the VGG network
and the residual network (ResNet) for the image datasets. We tested LSTM and Transformer for
text datasets. Detailed hyperparameter settings are reported in Appendix A and can be found in our
released code.

4.1 SPEEDUP OF THE EMPIRICAL TRAINING TIME

We compare the training time of SCPL (with 1, 2, or 4 GPUs) with BP and GPipe, a representative
MP method. The speedup of a method m is defined as the practical training time of BP divided by
the training time of m. We do not compare the training time with AL because the released code of
AL does not include the implementation of model parallelism.

Using VGG as the network architecture and tiny-ImageNet as the experimental dataset, Table 3
compares the speedup of training time under different batch sizes for SCPL and GPipe (with 1, 2, or 4
GPUs). Similarly, Table 2 shows the speedup when using Transformer as the network architecture and
IMDB as the experimental datasets. We use VGG and Transformer because they are representative
models for vision tasks and natural language processing tasks.

Here are our observations. First, SCPL indeed accelerates the training time as we have more GPUs.
However, probably due to the communication and synchronization overheads, the speedup improves
sub-linearly with the number of GPUs. Second, although the training efficiency of GPipe improves
when we use more GPUs, the improved ratio is worse than that of SCPL. This is likely because
GPipe still suffers from the issue of backward locking, so the bubbles are unavoidable. Additionally,

7

Under review as a conference paper at ICLR 2024

Table 4: A comparison of the test accuracies (mean ± standard deviation) of different methodologies
when using different neural network architectures on IMDB. We highlight the winner among the
non-BP methodologies and all models that are non-significantly different from the best models in
boldface. We mark a † symbol if the test accuracy of this methodology is higher than that of BP.

LSTM Transformer

BP 89.68± 0.20 87.54± 0.44

Early Exit 84.34± 0.31 80.24± 0.24
AL 86.41± 0.61 85.65± 0.77

SCPL 89.84± 0.10 † 89.03± 0.12 †

Table 5: A comparison of the test accuracies of different methodologies when using different neural
network architectures on Tiny-ImageNet. We follow the same notations used in Table 4.

VGG ResNet

BP 48.30± 0.14 49.71± 0.18

Early Exit 46± 0.18 40± 0.34
AL 49.06± 0.14 † 44.83± 0.15

SCPL 48.95± 0.17 † 46.87± 0.26

although the original GPipe paper (Huang et al., 2019) reported a speedup from 1.7x to 1.8x when
using 4 GPUs, these speedups were obtained by setting the number of micro-batches to an extreme
number (32). Later experiments have revealed that when using GPipe with multiple GPUs, the training
time can sometimes be longer, compared to traditional BP with a single GPU (Zhang et al., 2023).
This observation is consistent with our results. Third, despite involving more parameters during
training, SCPL with a single GPU has a training time similar to, and sometimes faster than, BP. It
may seem counter-intuitive at first glance because SCPL involves more operations, and a single GPU
does not seem to parallelize the computation loading. However, the execution of various computation
parts on a GPU is asynchronous, so a larger GPU has the capability to execute multiple kernels
simultaneously. Due to the asynchronous property, decoupling the computation means that the update
of the first component can initiate while the forward propagation of the remaining network occurs,
potentially leading to improved utilization of GPU compute units. However, this favorable scenario
is not always guaranteed and relies heavily on factors such as tensor sizes and GPU specifications,
which might explain why it is not consistently observed. That being said, this interesting discovery
makes SCPL an attractive option even in a single-GPU environment.

Experiments for the training time of SCPL and BP on other networks and other datasets show similar
results; see Appendix A.3 for details.

4.2 ACCURACY COMPARISON

This section reports comparisons of the test accuracies of models trained by BP, the Early Exit,
and AL, a state-of-the-art method for BP decoupling in terms of test accuracy. Early Exit refers
to the strategy of assigning a local objective to a component by adding a local auxiliary classifier
that outputs a predicted ŷ and updating local parameters based on the difference between ŷ and the
ground-truth target y. We don’t include GPipe because its accuracy would be the same as BP when
the GPipe’s micro-batch size equals BP’s mini-batch size. We extensively search for the appropriate
hyperparameters for each model to ensure fair comparisons. Additionally, we repeat each experiment
5 times and report the average and standard deviation.

Table 4 shows the results on the IMDB, a text classification dataset. We use pre-trained Glove word
embeddings (Pennington et al., 2014) of dimensionality 300 in the first layer of the model for both
LSTM and Transformer. The simple Early Exit mechanism can be used to learn the relationship
between an image and its class. However, the test accuracies of Early Exit are much worse than
those of BP. This is likely because Early Exit loses too much information about the input by reducing
the representation to fit the labels in each layer. Such greedy behavior may obtain less-optimal

8

Under review as a conference paper at ICLR 2024

representations. AL yields test accuracies better than Early Exit on both LSTM and Transformer.
SCPL performs best among methodologies using local objectives for training. The test accuracies are
comparable to and sometimes better than BP. The experimental results on AG’s news, another text
classification task, are presented in Table 6 in Appendix A.4. The results are similar: Early Exit is the
worst, and SCPL produces the best results among local-objective-based learning strategies.

Table 5 gives the results on an image classification dataset, Tiny-ImageNet. Both AL and our proposed
SCPL yield test accuracies that are better than those of BP based on the VGG architectures. However,
when ResNet is used, BP yields the highest test accuracy. If we compare only the methods that
involve BP decomposition, SCPL still performs the best among them when using ResNet as the
network architecture. We also tested BP, Early Exit, AL, and SCPL on CIFAR-10 and CIFAR-100.
The results, as shown in Table 7 and Table 8, respectively, in Appendix A.4. The results are similar to
those on Tiny-ImageNet: SCPL performs best among local objective-based training strategies in all
network architectures, but SCPL performs worse than BP when ResNet is used. These results are
also consistent with those reported in (Kao & Chen, 2021; Wu et al., 2022).

4.2.1 DISCUSSION ON ACCURACY COMPARISON

When BP is used, all parameters are updated to minimize a global objective – the residual between
ŷ and y. On the other hand, methods to decouple end-to-end backpropagation, such as SCPL and
AL, are composed of many local objectives, which may differ from the global objective. Therefore,
it is surprising that SCPL and AL outperform BP for some network structures. The authors of AL
proposed several conjectures to explain this remarkable result. First, projecting the feature vector x
and the target y into the same latent space may be helpful. Second, the autoencoder component used
in AL may implicitly perform feature extraction and regularization. Third, overparameterization may
be helpful for optimization (Arora et al., 2018; Chen & Chen, 2020). However, the first and second
conjectures only apply to AL but not to SCPL, but SCPL still yields better accuracies than BP and
AL in many cases. Therefore, the above conjectures may not fully explain the success of SCPL. We
surmise that, in SCPL, each local component ℓ learns to map its input r(i)ℓ−1 to a better representation

r
(i)
ℓ , which probably removes noise and outliers. This is similar to the use cases where contrastive

learning is applied to learn better representations of input features in an unsupervised manner.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

This paper presents SCPL, an innovative yet simple methodology for decoupling the components
of the BP process in a neural network. SCPL is applicable to all supervised discriminative models,
potentially benefiting the training of various large models. Our experiments on multiple open datasets
and popular network architectures demonstrate that SCPL can significantly reduce training time
while achieving test accuracies comparable or superior to the traditional backpropagation algorithm.
Moreover, SCPL can potentially address issues arising from long-gradient flows in deep neural
networks. Compared with AL, a state-of-the-art alternative to backpropagation, SCPL is more
flexible because it does not require additional fully connected layers near the output layers. This
flexibility makes SCPL a promising substitute for AL and an attractive alternative to backpropagation.
We believe that SCPL has the potential to advance the field of deep learning and contribute to the
development of model parallelism and more efficient alternatives for end-to-end backpropagation.

SCPL has the following limitations that may deserve further study. First, SCPL involves auxiliary
parameters, which can lengthen the training time due to their participation in training and require
a larger memory footprint. This issue is particularly prominent in the visual domain of SCPL. It is
possible to reduce the size of the feature map of each block by pooling. Second, forward locking still
exists in SCPL, so exploring the possibility of further subdividing forward tasks into smaller micro-
batches, similar to GPipe, could be a worthwhile direction; details are discussed in the Appendix A.5.
Third, while data parallelism does not usually need any changes to the network architecture, model
parallelism typically requires some alterations to the network structure, and SCPL is no exception.
This limitation may hinder practitioners from using SCPL. Careful packaging may lower the barrier.
For example, the torchpipe library2 simplifies the implementation of GPipe. So, another future
work is to implement a library for SCPL to provide a better user interface for developers.

2https://github.com/kakaobrain/torchgpipe

9

https://github.com/kakaobrain/torchgpipe

Under review as a conference paper at ICLR 2024

REFERENCES

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pp.
244–253. PMLR, 2018.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv preprint arXiv:1407.7906, 2014.

Pu Chen and Hung-Hsuan Chen. Accelerating matrix factorization by overparameterization. In
International Conference on Deep Learning Theory and Applications, pp. 89–97, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
International conference on machine learning, pp. 1627–1635. PMLR, 2017.

Yu-Wei Kao and Hung-Hsuan Chen. Associated learning: Decomposing end-to-end backpropagation
based on autoencoders and target propagation. Neural Computation, 33(1):174–193, 2021.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661–18673, 2020.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Joint european conference on machine learning and knowledge discovery in databases, pp.
498–515. Springer, 2015.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated
learning of representations. Advances in neural information processing systems, 32, 2019.

Nikolay Manchev and Michael W Spratling. Target propagation in recurrent neural networks. J.
Mach. Learn. Res., 21(7):1–33, 2020.

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F
Grewe. A theoretical framework for target propagation. Advances in Neural Information Processing
Systems, 33:20024–20036, 2020.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur, Gregory R
Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp.
1–15, 2019.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv
preprint arXiv:1811.03600, 2018.

10

Under review as a conference paper at ICLR 2024

Dennis YH Wu, Dinan Lin, Vincent Chen, and Hung-Hsuan Chen. Associated learning: an alternative
to end-to-end backpropagation that works on cnn, rnn, and transformer. In International Conference
on Learning Representations, 2022.

Yuwen Xiong, Mengye Ren, and Raquel Urtasun. Loco: Local contrastive representation learning.
Advances in neural information processing systems, 33:11142–11153, 2020.

Peng Zhang, Brian Lee, and Yuansong Qiao. Experimental evaluation of the performance of gpipe
parallelism. Future Generation Computer Systems, 147:107–118, 2023.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DETAILS OF EXPERIMENTAL SETTINGS

In our vision tasks, both BP and SCPL adopt a cosine learning rate scheduler, starting from an
initial learning rate of 10e-3 and decaying to 10e-5. We use Adam as the optimizer. For data
augmentation, we refer to the settings in Khosla et al. (2020) on CIFAR-10 and CIFAR-100, where
each image undergoes resizing, random cropping, random horizontal flipping, jittering, and random
grayscaling to generate two augmented views as inputs. Consequently, the batch size increases
from the original N to 2N . Regarding the batch size, in the accuracy experiments, BP is set
to 128, while SCPL is set to 1024. However, in training time measurement experiments, both
are tested under 32, 64, 128, 256, and 512. The training epochs are set to 200. In the SCPL
configuration, all models use an MLP (multi-layer perceptron) as the projection head, with a structure
of Linear(dim, 512)−ReLU()− Linear(512, 1024). Here, dim represents the dimension after
flattening the feature map. The temperature parameter τ is set to 0.1 for all models. Furthermore, in the
training time experiments, each component is placed on a separate GPU. The detailed configurations
for VGG and ResNet are as follows.

• VGG: It consists of 4 max-pooling layers (MP) and 6 convolutional layers (Conv). Each con-
volutional layer uses ReLU as the activation function and employs batch normalization (BN).
The classifier consists of 2 fully connected layers (FC) with sigmoid as the activation func-
tion between the two layers. In our implementation, SCPL splits VGG into 4 components,
structured as component1−component2−component3−component4. The component1
and component2 are composed of [[Conv−BN −ReLU]× 2−MP]. The component3
and component4 are composed of [[Conv−BN−ReLU]−MP]. However, an additional
classifier is included in component4, resulting in [component4 − [FC − sigmoid−FC]].

• ResNet: It is an 18-layer residual neural network (ResNet-18) with a linear fully connected
layer as the classifier. In our implementation, SCPL splits ResNet into 4 components,
structured as component1−component2−component3−component4. The component1
is structured as [StemBlock − BasicBlock × 2]. The component2, component3, and
component4 are structured as [BasicBlock × 2]. However, an additional classifier is
included in the last component4, resulting in [component4 − [FC]]. The StemBlock
includes [Conv − BN − ReLU]. The StemBlock is composed of a convolutional layer
followed by batch normalization (BN) and Rectified Linear Unit (ReLU) activation. The
BasicBlock is constructed with a convolutional layer using the LeakyReLU activation
function, another convolutional layer, and a skip connection that adds a fully connected
transformation to the input of the BasicBlock module. Finally, the output passes through
another LeakyReLU activation.

In NLP tasks, both BP and SCPL use a fixed learning rate of 10e-3 and employ Adam as the optimizer.
All texts in the datasets undergo preprocessing steps such as creating word indices, removing stop
words, and limiting the maximum text word length T , which is a hyperparameter representing the
sentence length for each sample. Data augmentation is not utilized, and therefore, the batch size
remains at its original value N . For the AG’s news dataset, the maximum text word length per sample
is set to 60, while for IMDB, it is set to 350. The training epochs for both BP and SCPL models are
set to 50. Regarding the batch size, we experimented with 16, 32, 64, 128, 256, 384, 512, 768, 1024,
1280, 1536, 1792, 2048, and 4096, and we present the results with the best accuracy in this paper.
Additionally, both BP and SCPL models utilize pre-trained Glove word embeddings (Pennington
et al., 2014) of dimensionality 300 in the first layer of the model. In the configuration of SCPL,
all models by default use an identity function, f(x) = x, as the projection head in training. The
temperature parameter τ is set to 0.1 for all models.

Detailed architectures of LSTM and Transformer are as follows.

• LSTM: It consists of 3 bi-LSTM hidden layers (each with a dimensionality of 300) and 1
Glove embedding layer at the beginning of the model. At the end of the model, there are 2
fully connected layers serving as the classifier. The Tanh function is used as the activation
function between the two layers. SCPL splits the LSTM model into 4 components, structured
as component1 − component2 − component3 − component4. Component1 represents

12

Under review as a conference paper at ICLR 2024

435.362 ms

(a) Training LSTM on IMDB (using NMP).

265.110 ms

(b) Training LSTM on IMDB (using SCPL).

Figure 4: Visualizing the training job of each device.

the [GloveEmb] layer, while component2, component3, and component4 represent the
[LSTM] layers. However, an additional classifier is included in component4, resulting in
[component4 − [FC − tanh− FC]].

• Transformer: It consists of 3 Transformer encoders (each with a dimensionality of 300 and a
dropout rate of 0.1) and 1 Glove embedding layer at the beginning of the model. At the end
of the model, there are 2 fully connected layers serving as the classifier. The Tanh function is
used as the activation function between the two layers. SCPL splits the Transformer model
into 4 components, structured as component1−component2−component3−component4.
Component1 represents the [GloveEmb] layer, while component2, component3, and
component4 represent the [Transformer] layers. However, an additional classifier is
included in component4, resulting in [component4 − [FC − tanh− FC]].

A.2 PROFILING NMP AND SCPL

We used PyTorch’s profiler to observe the operating periods of the CPU and the GPUs of one iteration.
We used 4 GPUs to train an LSTM with 4 layers; each GPU is responsible for the training of one
layer.

Figure 4 shows the CPU’s working periods and each GPU’s working periods when training by NMP
and SCPL. The top row shows the CPU’s running periods. Since the CPU handles task scheduling,
data preprocessing, data management, and some non-parallel computation, the CPU is running
throughout the training periods.

When training by NMP (Figure 4(a)), the GPU0 performs forward for layer 1, then GPU1 performs
forward for layer 2, then GPU2 performs forward for layer 3, then GPU3 performs forward for layer
4. GPU3 continues to perform backward for layer 4, then GPU2 continues to perform backward for
layer 3, then GPU1 continues to perform backward for layer 2, then GPU0 continues to perform
backward for layer 1. Finally, the CPU asks all GPUs to update the parameters based on the computed
gradients (the red bars). As shown, all the GPUs perform operations sequentially, causing backward
locking, so many bubbles exist among the dependent tasks. The total training time for this iteration is
435.362 ms.

When training by SCPL (Figure 4(b)), the operations on different GPUs may overlap. In particular,
when GPU0 finishes the forward for layer 1, the following operations may occur simultaneously:
backward for layer 1 (on GPU0) and forward for layer 2 (on GPU1). Similarly, when GPU1 finishes
the forward for layer 2, backward for layer 2 (on GPU1) and forward for layer 3 (on GPU2) may
occur simultaneously. After GPU2 finishes the forward, backward for layer 3 (on GPU2) and forward
for layer 4 (on GPU3) may occur concurrently. Finally, GPU3 performs the backward for layer 4,
and then the CPU issues an update command for all GPUs (the red bars). Since many bubbles are
removed, the total training time for this iteration is reduced to 265.110 ms.

A.3 MORE COMPARISONS ON EMPIRICAL TRAINING TIME

This section shows the empirical training time per epoch for NLP and vision tasks using famous
network architectures.

13

Under review as a conference paper at ICLR 2024

64 128 512 1024
Batch Size

15

20

25

30

35

40

45

50

Tr
ai

ni
ng

 E
po

ch
 T

im
e

(s
ec

)

Training Time ResNet (cifar100)

1 GPU (BP)
2 GPUS (BP)
4 GPUS (BP)
1 GPU (SCPL)
2 GPUS (SCPL)
4 GPUS (SCPL)

Figure 5: Empirical training time per epoch using ResNet architecture on CIFAR-100.

64 128 512 1024
Batch Size

30

40

50

60

70

80

90

100

Tr
ai

ni
ng

 E
po

ch
 T

im
e

(s
ec

)
Training Time Exp. - ResNet (tinyImageNet)

1 GPU (BP)
2 GPUS (BP)
4 GPUS (BP)
1 GPU (SCPL)
2 GPUS (SCPL)
4 GPUS (SCPL)

Figure 6: Empirical training time per epoch using ResNet architecture on tiny-ImageNet.

For the NLP tasks, we apply the LSTM and Transformer networks; the experimental datasets include
AGNews and IMDB. Regarding vision tasks, we select the VGG network and ResNet, and the dataset
includes CIFAR-100 and tiny-ImageNet.

The results are shown in Figures 5, 6, 8, 8, 9, 10, 11, and 12. When using 4 GPUs, SCPL is
approximately 2 times faster than BP on vision tasks and approximately 1.6 times faster on NLP
tasks.

A.4 MORE COMPARISONS ON TEST ACCURACIES

Table 6: A comparison of the test accuracies of different methodologies when using different neural
network architectures on AG’s news. We follow the same notations used in Table 4.

LSTM Transformer

BP 91.97± 0.19 91.27± 0.18

Early Exit 85.91± 0.11 85.79± 0.43
AL 91.53± 0.20 91.17± 0.43

SCPL 92.12± 0.04 † 91.64± 0.23 †

This section shows the test accuracies for NLP and vision tasks using famous network architectures.

Figure 6 shows the test accuracies of LSTM and Transformer on AG’s news when these models are
trained by BP, Early Exit, AL, and SCPL. We report the mean and standard deviation of 5 trials.

Similarly, we also report the results on CIFAR-10 and CIFAR-100, using the vanilla convolutional
neural network (Vanilla ConvNet), VGG, and ResNet as the network structures. The results are
shown in Table 7 and Table 8.

In general, SCPL consistently outperforms other local-objective-based learning strategies in the
experimented datasets and different network architectures.

A.5 SCPL VS. GPIPE

SCPL and GPipe share an architectural similarity: they both rely on pipelining to realize model
parallelism and enhance the training throughput. However, they adopt distinct strategies to address

14

Under review as a conference paper at ICLR 2024

64 128 512 1024
Batch Size

25

30

35

40

45

Tr
ai

ni
ng

 E
po

ch
 T

im
e

(s
ec

)

Training Time Exp. - VGG (cifar100)

1 GPU (BP)
2 GPUS (BP)
4 GPUS (BP)
1 GPU (SCPL)
2 GPUS (SCPL)
4 GPUS (SCPL)

Figure 7: Empirical training time per epoch using VGG architecture on CIFAR-100.

64 128 512 1024
Batch Size

50

60

70

80

90

Tr
ai

ni
ng

 E
po

ch
 T

im
e

(s
ec

)
Training Time Exp. - VGG (tinyImageNet)

1 GPU (BP)
2 GPUS (BP)
4 GPUS (BP)
1 GPU (SCPL)
2 GPUS (SCPL)
4 GPUS (SCPL)

Figure 8: Empirical training time per epoch using VGG architecture on tiny-ImageNet.

the challenges posed by forward and backward locking. SCPL and GPipe can be integrated to further
improve training throughput.

SCPL focuses on mitigating backward locking, where the sequential dependency of gradient calcula-
tions across layers impedes parallelism. SCPL introduces a local objective for each component. These
local objectives serve to disentangle the gradient computation process, allowing greater concurrency
and minimizing the impact of backward locking. Referring to Figure 3 and the top subfigure in
Figure 13, the backward pass in different components can be computed simultaneously in different
GPUs.

GPipe tackles forward locking, a phenomenon in which the forward operation of a layer must wait
for the completion of the forward operations in the earlier layers. GPipe alleviates the constraint by
subdividing traditional mini-batches into micro-batches, allowing for an overlap of computations
between the forward passes of different layers. This approach mitigates the impact of forward locking.
Referring to the middle subfigure in Figure 13, each mini-batch is further divided into 3 micro-batches.
Particularly, letting FWℓ refer to the forward operations of a mini-batch at layer ℓ, we use F 1

ℓ , F 2
ℓ ,

and F 3
ℓ to refer to the forward pass of the three micro-batches in this layer. In this setting, once a

GPUi finishes the computation of F 1
ℓ , the GPU(i+ 1) can continue to execute F 1

ℓ+1, and the GPUi

operates F 2
ℓ simultaneously. As a result, it is possible to execute the forward passes at different layers

simultaneously.

Given their complementary strengths in addressing forward and backward locking, it is possible
to integrate SCPL and GPipe. Such an integration could potentially yield a hybrid approach that
capitalizes on the benefits of both methodologies. By subdividing mini-batches and concurrently

Table 7: A comparison of the test accuracies of different methodologies when using different neural
network architectures on CIFAR-10. We follow the same notations used in Table 4.

Vanilla ConvNet VGG ResNet

BP 86.85± 0.57 93.02± 0.03 93.95± 0.11

Early Exit 83.16± 0.33 91.28± 0.15 89.63± 0.34
AL 86.98± 0.24 † 93.22± 0.12 † 91.33± 0.09

SCPL 86.98± 0.33 † 93.42± 0.11 † 92.78± 0.11

15

Under review as a conference paper at ICLR 2024

16 32 64 128 256 384 512 768 1024 1280 1536 1792 2048 4096
Batch Size

20

40

60

80

100

Tr
ai

ni
ng

 E
po

ch
 T

im
e

(s
ec

)

Training Time Exp. - LSTM (AG news)

1 GPU (BP)
2 GPUS (BP)
4 GPUS (BP)
1 GPU (SCPL)
2 GPUS (SCPL)
4 GPUS (SCPL)

Figure 9: Empirical training time per epoch using LSTM architecture on AGNews.

16 32 64 128 256 384 512 768
Batch Size

50

100

150

200

250

Tr
ai

ni
ng

 E
po

ch
 T

im
e

(s
ec

)

Training Time Exp. - LSTM (IMDB)

1 GPU (BP)
2 GPUS (BP)
4 GPUS (BP)
1 GPU (SCPL)
2 GPUS (SCPL)
4 GPUS (SCPL)

Figure 10: Empirical training time per epoch using LSTM architecture on IMDB.

designing local objectives, a harmonized pipeline structure may offer a solution to enhance training
efficiency for large-scale neural network models.

The bottom subfigure of Figure 13 illustrates the integration of both SCPL and GPipe. Each mini-
batch is divided into 3 micro-batches, so forward locking can be partially addressed, as demonstrated
in t1 to t6. Additionally, since we allocate the local objective for each component using SCPL, each
GPU can compute the local objective for each component and further compute the local gradients
without waiting for the gradient information computed by other GPUs. In this example, the integration
needs 22 time steps to complete one iteration of forward, backward, and parameter update, whereas
SCPL and GPipe need 24 time steps and 31 time steps, respectively.

A.6 PSEUDO CODE

To help understand the details of SCPL, here are pseudocodes for local supervised contrastive losses
(Algorithm 1) and SCPL without pipelining (Algorithm 2).

Table 8: A comparison of the test accuracies of different methodologies when using different neural
network architectures on CIFAR-100. We follow the same notations used in Table 4.

Vanilla ConvNet VGG ResNet

BP 58.68± 0.13 72.58± 0.39 73.59± 0.11

Early Exit 50.64± 0.44 71.11± 0.95 64.48± 0.41
AL 53.06± 0.15 72.43± 0.27 67.53± 0.32

SCPL 59.63± 0.37 † 73.14± 0.30 † 70.41± 0.27

16

Under review as a conference paper at ICLR 2024

16 32 64 128 256 384 512 768 1024 1280 1536 1792 2048 4096
Batch Size

20
40
60
80

100
120
140

Tr
ai

ni
ng

 E
po

ch
 T

im
e

(s
ec

)

Training Time Exp. - Transformer (AG news)

1 GPU (BP)
2 GPUS (BP)
4 GPUS (BP)
1 GPU (SCPL)
2 GPUS (SCPL)
4 GPUS (SCPL)

Figure 11: Empirical training time per epoch using Transformer architecture on AGNews.

16 32 64 128 256 384 512
Batch Size

30

40

50

60

70

Tr
ai

ni
ng

 E
po

ch
 T

im
e

(s
ec

)

Training Time Exp. - Transformer (IMDB)

1 GPU (BP)
2 GPUS (BP)
4 GPUS (BP)
1 GPU (SCPL)
2 GPUS (SCPL)
4 GPUS (SCPL)

Figure 12: Empirical training time per epoch using Transformer architecture on IMDB.

1 import torch
2 import torch.nn as nn
3

4 class SupConLoss(nn.Module):
5 def __init__(self, dim):
6 super.__init__()
7 self.linear = nn.Sequential(nn.Linear(dim, 512), nn.ReLU(), nn.

Linear(512, 1024))
8 self.temperature = 0.1
9

10 def forward(self, x, label):
11 x = self.linear(x)
12 x = nn.functional.normalize(x)
13 label = label.view(-1, 1)
14 bsz = label.shape[0]
15 mask = torch.eq(label, label.T).float()
16 anchor_mask = torch.scatter(torch.ones_like(mask), 1, torch.

arange(bsz).view(-1, 1), 0)
17 logits = torch.div(torch.mm(x, x.T), self.temperature) deno =

torch.exp(logits) * anchor_mask
18 prob = logits - torch.log(deno.sum(1, keepdim=True))
19 loss = -(anchor_mask * mask * prob).sum(1) / mask.sum()
20 return loss.view(1, bsz).mean()

Algorithm 1: PyTorch-like pseudocode for Lsc

17

Under review as a conference paper at ICLR 2024

GPipe

Device No. Stage

GPU0 FW1 LOSS BW1 UP

GPU1 FW2 LOSS BW2 UP

GPU2 FW3 LOSS BW3 UP

GPU3 FW4 LOSS BW4 UP

Time point 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡!" 𝑡!! 𝑡!# 𝑡!$ 𝑡!% 𝑡!& 𝑡16 𝑡!' 𝑡!(𝑡!) 𝑡#" 𝑡#! 𝑡## 𝑡#$ 𝑡#% 𝑡#& 𝑡#* 𝑡#' 𝑡#(𝑡#) 𝑡$" 𝑡$!

SCPL

Device No. Stage

GPU0 𝐹11 𝐹12 𝐹13 𝐵13 𝐵13 𝐵13 𝐵13 𝐵12 𝐵12 𝐵12 𝐵12 𝐵11 𝐵11 𝐵11 𝐵11 UP

GPU1 𝐹21 𝐹22 𝐹23 𝐵23 𝐵23 𝐵23 𝐵23 𝐵22 𝐵22 𝐵22 𝐵22 𝐵21 𝐵21 𝐵21 𝐵21 UP

GPU2 𝐹31 𝐹32 𝐹33 𝐵33 𝐵33 𝐵32 𝐵32 𝐵31 𝐵31 UP

GPU3 𝐹41 𝐹42 𝐹43 LOSS 𝐵43 𝐵42 𝐵41 UP

Time point 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡!" 𝑡!! 𝑡!# 𝑡!$ 𝑡!% 𝑡!& 𝑡16 𝑡!' 𝑡!(𝑡!) 𝑡#" 𝑡#! 𝑡## 𝑡#$ 𝑡#% 𝑡#& 𝑡#* 𝑡#' 𝑡#(𝑡#) 𝑡$" 𝑡$!

Device No. Stage

GPU0 𝐹11 𝐹12 𝐹13 LOSS 𝐵13 𝐵13 𝐵13 𝐵13 𝐵12 𝐵12 𝐵12 𝐵12 𝐵11 𝐵11 𝐵11 𝐵11 UP

GPU1 𝐹21 𝐹22 𝐹23 LOSS 𝐵23 𝐵23 𝐵23 𝐵23 𝐵22 𝐵22 𝐵22 𝐵22 𝐵21 𝐵21 𝐵21 𝐵21 UP

GPU2 𝐹31 𝐹32 𝐹33 LOSS 𝐵33 𝐵33 𝐵32 𝐵32 𝐵31 𝐵31 UP

GPU3 𝐹41 𝐹42 𝐹43 LOSS 𝐵43 𝐵42 𝐵41 UP

Time point 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡!" 𝑡!! 𝑡!# 𝑡!$ 𝑡!% 𝑡!& 𝑡16 𝑡!' 𝑡!(𝑡!) 𝑡#" 𝑡#! 𝑡## 𝑡#$ 𝑡#% 𝑡#& 𝑡#* 𝑡#' 𝑡#(𝑡#) 𝑡$" 𝑡$!

SCPL + GPipe

Figure 13: A comparison of SCPL, GPipe, and an integration of both.

1 import torch
2 import torch.nn as nn
3

4 # A simple 3-layer CNN example for SCPL architecture.
5 class CNN_SCPL(nn.Module):
6 def __init__(self, dim):
7 super.__init__()
8 CNNs = []
9 losses = []

10 channels = [3, 128, 256, 512] self.shape = 32
11 for i in range(3):
12 CNNs.append(nn.Sequential(nn.Conv2d(channels[i], channels[i

+1], padding=1), nn.ReLU())
13 losses.append(SupConLoss(self.shape*self.shape*channels[i+1])

)
14 self.CNN = nn.ModuleList(CNNs)
15 self.loss = nn.ModuleList(losses)
16 self.fc = nn.Sequential(flatten(), nn.Linear(self.shape*self.

shape*channels[-1], 10))
17 self.ce = nn.CrossEntropyLoss()
18

19 def forward(self, x, label): loss = 0
20 for i in range(3):
21 # .detach() prevents a gradient flows to neighboring layer
22 x = self.CNN[i](x.detach())
23 if self.training:
24 loss += self.loss[i](x, label)
25 y = self.fc(x.detach())
26 if self.training:
27 loss += self.ce(y, label)
28 return loss
29 return y

Algorithm 2: PyTorch-like pseudocode for SCPL without pipelining

18

	Introduction
	Related Work
	Data Parallelism vs. Model Parallelism
	Model Parallelism Strategies

	Methodology
	Preliminaries: contrastive learning and supervised contrastive learning
	Decoupling end-to-end backpropagation via supervised contrastive learning
	Forward path, backward path, and inference function
	Parallelization via Pipelining

	Experiments
	Speedup of the empirical training time
	Accuracy comparison
	Discussion on accuracy comparison

	Conclusion, limitation, and future work
	Appendix
	Details of experimental settings
	Profiling NMP and SCPL
	More comparisons on empirical training time
	More comparisons on test accuracies
	SCPL vs. GPipe
	Pseudo code

