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ABSTRACT

There is a hit discussion on solving partial differential equation by neural network.
The famous PINN (physics-informed neural networks) has drawn worldwide at-
tention since it was put forward. Despite its success in solving nonlinear partial
differential equation, the difficulty in converging and the inefficiency in training
process are definitely huge concerns. Normally, data for PINN is randomly chosen
for a given distribution. Additionally, it’s fitted to a model in a meaningless way.
Curriculum Learning is a learning strategy that trains a model from easy samples
to hard ones, which represents the meaningful human learning order. Self-paced
Learning (SPL) is one of the significant branches of Automatic Curriculum Learn-
ing, which takes example-wise the training loss as Difficulty Measurer. SPL is
an efficient strategy in enhancing the convergence rate of numerous models. In
this paper, we propose a novel SPL-PINN learning framework, with SPL to ac-
celerate the convergence progress of PINN. We demonstrate the effectiveness of
SPL-PINN in a typical parabolic equation and Burgers equation.

1 INTRODUCTION

There is an increasing number of methods for solving partial differential equation. Weinan & Yu
(2018) proposed a deep learning-based method, the Deep Rize Method, for solving variational prob-
lems, which are derived form partial differential equations. Sirignano & Spiliopoulos (2018) pro-
posed a mesh-free method, the Deep Galerkin Method, to approximate the solution of a partial
differential equation by a neural network instead of a linear combination of bias functions. (RAI,
2019) aimed to approximate the solution by neural network as well as the inner physical informa-
tion. There is much profound research related to PINN, the research topics can be filed to three
fields: the application of PINN to a specific problem, the parallel PINN and the acceleration of
PINN. Papers related to PINN abound, suggesting that a great burst of creativity has occured since
the emergence of PINN. In this paper, we concentrate on how to accelerate the converging rate in
the training process. Xiang et al. (2021) proposed a self-adaptive loss function which automatically
assigns the weights of different objectives. LIU (2021) is also proposed to automatically adjust the
weights of different objectives. Thanasutives et al. (2021) treated it as a multi-task learning prob-
lem, they proposed adversarial learning to generate high-loss samples, similarly distributed to the
original training distribution. Kim et al. (2020) proposed a dynamic pulling method, enabling PINN
to learn dynamics of the governing equations. Yu et al. (2022) assumed that the solution of the
given partial differential equation is smooth, so they took the gradient of the PDE residual as part
of the loss function.Chiu et al. (2021) proposed a CAN-PINN framework, taking the advantage of
automatic differentiation and numerical differentiation, increase the accuracy of PINN. Bischof &
Kraus (2021) treated it as a multi-objective problem, proposed a novel self-adaptive loss balancing
of PINN with random lookback. Generally, the methods aiming at the inefficiency in training pro-
cess are treating the weights of different losses. In this paper, we concentrate on the training pattern,
fit model form easy samples to hard samples.
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2 RELATED WORK

2.1 PHYSICS-INFORMED NEURAL NETWORK

Physics-informed neural network(RAI, 2019) is a successful mesh-free method for solving partial
differential equations. Let’s start by focusing on a general partial differential equation with both
initial-value condition and boundary-value condition.

∂tu(t, x) + Lxu(t, x) = f(t, x) (x, t) ∈ Ω× (0, T )

u(0, x) = g(x) x ∈ Ω

u(t, x) = h(t, x) (x, t) ∈ ∂Ω× (0, T )

(1)

Here u(x, t) is the solution of this initial/boundary problem. L is the differential operator on the
variable x. Ω is a subset of Rn. PINN approximates u(x, t) by neural network with the physical
information instead of traditional finite differential method and finite element method. The loss
function can be divided into several parts.

L = LF + LI + LB (2)
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In PINN, (tFi , x
F
i ), x

I
j and (tBk , x

B
k ) are randomly sampled from a given distribution. Specially,

u(t, x) is derived from a back-propagation neural network by minimizing the proposed loss func-
tion 2

θ = argmin
θ

L (4)

2.2 SELF-PACED LEARNING

Self-paced Learning(Kumar et al., 2010) is one of the significant branches of Automatic Curriculum
Learning(Bengio et al., 2009), which devotes a readily computable example-wise the training loss
as Difficulty Measurer, alleviating the lack of how to efficiently identify easy samples.

Let D = {xi,yi}Ni=1 be the training dataset where xi ∈ X represents the ith input variable and yi ∈
Y represents the correspondingly ith output variable. Given the training data, the parameters θ of a
special model are trained by minimizing the defined loss function L. Traditionally, the parameters
are trained as follows:

θ = min
θ
{

N∑
i=1

L(xi,yi; θ) +R(θ)} (5)

where R(·) is a Regularizer. SPL introduces SPL-Regularizer to the traditional learning pattern, thus
parameters are trained in a meaningful way.

θ = min
θ
{

N∑
i=1

viL(xi,yi; θ) + g(vi, λ) (6)
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The value of each vi is in the interval [0, 1], λ is a barrier which determines the number of easy
samples that are selected at each training epoch. There are numerous types of SP-Reqularizer
and the corresponding close-formed solutions v∗(L, λ) such as Hard-SP-Reqularizer, Linear-
SP-Reqularizer, Logarithmic-SP-Reqularizer, Mixture-SP-Reqularizer, Mixture2-SP-Reqularizer,
Logistic-SP-Reqularizer, Polynomial-SP-Reqularizer.Wang et al. (2022) We choose to use Hard-
SP-Reqularizer to illustrate the efficiency of our method in section 4.

3 THE SPL-PINN FRAMEWORK

While PINN has shown its remarkably success in solving a variety of forward and inverse partial
differential equations, it ignored the learning efficiency of the model itself, which resulting in a great
demand for an effective method to solve this defect. Enormous research output was devoted to this
topic, mainly motivated by the different weights of losses. Admittedly, the performance and the
weights of losses are inextricably interconnected. However, we try to approach the problem from a
different viewpoint. Strategies for the difficulty in converging are an important component of PINN,
to satisfy the demand, we propose the SPL-PINN framework, which can effectively alleviate the
inefficiency of convergence. Given the training data, instead of pull it into PINN in an meaningless
way, we choose to fit the model from easy one to hard one, which is eminently suitable for human
learning process.

3.1 SPL-PINN LOSS FUNCTION

In order to accelerate the learning process, we determinate the loss function with a SPL-Regularizer.
Samples whether are easy or not are determined by a scalar λ. In order to concisely exploit the
SPL-PINN structure, we choose to use the Hard-SP-Reqularizer and its corresponding v∗ to control
the portion of easy samples that are plugged into the model.

Loriginal = LF + LI + LB

L =
1

N

N∑
i=1

viLoriginal(zi; θ) + g(vi, λ)

g(vi, λ) = −λ
N∑
i=1

vi

v∗i (li;λ) =

{
1, li < λ

0, otherwise

(7)

The specific details are as follows:

• vi = 1 means that the ith sample is identified as the easy one, which should be used to train
the model.

• vi = 0 means that the ith sample is identified as the hard one, which should not be used to
train the model.

• λ is a threshold, the larger λ means more samples will be selected.

3.2 OVERVIEW OF SPL-PINN

Normally, the dataset is constructed by randomly sampled from a given distribution. Generally,
researchers regard all of the samples have equal contribution to their models. Considering that
our deep learning models are finally being used to make effective predictions that solve partial
differential equations, especially those equations have physical information, it seams meaningless
to some degree to just treat samples equally.

In consideration of a human learning habit, which usually starts from simple and general ones then
gradually transmits to more complex and specialized ones. For instance, college students normally
learn mathematical analysis and algebra at the first semester, later they are available to access real
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and complex analysis, functional analysis. Given the hypothesis that different samples play different
role in a model training process. Motivated by the habit of human learning behavior, we propose a
novel SPL-PINN framework, which seamlessly integrates PINN and Self-paced Learning.

We consider the partial differential equation with both inital-value condition and boundary-value
condition that proposed in section 2.1. For the ith sample, firstly we compute its loss function li.
Secondly, identifying whether it is an easy sample by v∗i (li, λ). Subdataset is constructed by selceted
samples. Thirdly, model parameters θ are renewed by minimizing the loss function L. Finally, after
converging in this subdataset, update the threshold λ. The complete procedures are as follows:

Algorithm 1 SPL-PINN
Input: Input dataset {(tFi , xF

i )}
nF
i=1, {xI

j}
nI
j=1 and {(tBk , xB

k )}
nB

k=1; pace parameter σ
Output: Model parameter θ

1: Initialize θ, λ;
2: while not converged do
3: while not converged do
4: Compute v∗i (li, λ)
5: Update θ = argmin

θ
L

6: end while
7: λ← σλ
8: end while

4 EXPERIMENTS

To illustrate the efficiency of our method in the converging process, we apply SPL-PINN to a typical
parabolic equation and Burgers equation. The dataset is constructed by randomly sampled from the
uniform distribution.

4.1 HEAT EQUATION

The heat equation, also known as diffusion equation, is one of typical parabolic equations. It is a
widely studied topic and foundational partial diffusion equation, which describes the evolution in
time of the density u of some quantity such as heat.

∂u

∂t
− ∂2u

∂x2
= 0 (x, t) ∈ (0, 1)× (0, 1)

u(x, 0) = sin(πx) x ∈ (0, 1)

u(0, t) = u(1, t) = 0 t ∈ (0, 1)

(8)

The problem stated above has its unique solution:

u(x, t) = sin(πx)e−π2t (9)

We choose the training dataset {(tFi , xF
i )}

nF
i=1, {xI

j}
nI
j=1 and {(tBk , xB

k )}
nB

k=1 which nF = nI =
nB = 2000. For a fixed iteration, the profermance of SPL-PINN is better than traditional PINN.
For a given training epoch, we compute mean squared error of u(x, t) in test dataset. Mean squared
errors of u(x, t) of given epochs are represented in Table 1. Moreover, the solution of 8 and the
train losses of PINN and SPL-PINN can be found in 12. We use δ to measure the residual, δ =
LSPL−PINN−LPINN. Typically, δ is almost everywhere negative, which is a compelling illustration
of the efficiency of our method.

4.2 BURGERS EQUATION

Burgers equation expresses the propagation and reflection of shock wave. Naturally, it plays a
significant role in many applications such as gas dynamics, fluid mechanics, nonlinear acoustics and
so on. The equations are as follows:
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Table 1: Mean squared error of u(x, t)

epochs PINN SPL-PINN

10 0.2016 0.1912
100 0.1322 0.1077
200 0.0421 0.0406
300 0.0388 0.0167

Figure 1: the solution u(x, t) of heat eqution by
SPL-PINN

Figure 2: train losses of PINN and SPL-PINN

∂u

∂t
+ u

∂u

∂x
− ω

∂2u

∂x2
= 0 (x, t) ∈ (−1, 1)× (0, 1)

u(0, x) = − sin(πx) x ∈ (−1, 1)
u(t,−1) = u(t, 1) = 0 t ∈ (0, 1)

ω =
0.01

π

(10)

We choose the training dataset {(tFi , xF
i )}

nF
i=1, {xI

j}
nI
j=1 and {(tBk , xB

k )}
nB

k=1 which nF = nI =
nB = 2000. Given the training epoch, the mean squared error is presented in Table 2 3 while the
solution of 10 solving by SPL-PINN is presented in Figure 3. In addition, the solution of 10 and the
train losses of PINN and SPL-PINN can be found in 34. Obviously, the great portion of δ is under
0.

Figure 3: the solution u(x, t) of Burders eqution
by SPL-PINN Figure 4: train losses of PINN and SPL-PINN
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Table 2: Mean squared error of the initial condition for given epochs

epochs PINN(initial) SPL-PINN(initial)

10 0.5592 0.5499
100 0.2564 0.2464
200 0.2363 0.2519
250 0.2290 0.2245

Table 3: Mean squared error of the boundary conditions for given epochs

epochs PINN(x = −1) SPL-PINN(x = −1) PINN(x = 1) SPL-PINN(x = 1)

10 0.1451 0.1317 0.1344 0.1274
100 0.0528 0.0339 0.0525 0.0458
200 0.0331 0.0416 0.0397 0.0408
250 0.0388 0.0237 0.0416 0.0205

5 CONCLUSION

Recently, PINN has gained high attention. There are many researchers devote their efforts on em-
bellishing it. Admittedly, The difficulty in converging is a huge concern. In an attempt to solve the
inefficiency of convergence, we propose a noval SPL-PINN framewrok. It is a new training pattern,
samples plugged into the model in a meaning way, from easy ones to hard ones. The performance
in hear equation and Burgers equation illustrate the effectiveness of this new pattern.

6 FUTURE WORK

Normally, the loss function of PINN is combined by three parts: the PDE residual, the initial con-
dition residual and the boundary condition residual. Considering the three parts maybe in different
magnitude, is it fair to put the equal weights to them? In future, we plan to propose a framework to
guarantee the fairness of the weights of different losses.
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