
Published as a conference paper at ICLR 2021

TRANSIENT NON-STATIONARITY AND GENERALISA-
TION IN DEEP REINFORCEMENT LEARNING

Maximilian Igl ∗ Gregory Farquhar ∗ ,† Jelena Luketina ∗ Wendelin Böhmer ‡

Shimon Whiteson ∗

ABSTRACT

Non-stationarity can arise in Reinforcement Learning (RL) even in stationary
environments. For example, most RL algorithms collect new data throughout
training, using a non-stationary behaviour policy. Due to the transience of this
non-stationarity, it is often not explicitly addressed in deep RL and a single neural
network is continually updated. However, we find evidence that neural networks
exhibit a memory effect where these transient non-stationarities can permanently
impact the latent representation and adversely affect generalisation performance.
Consequently, to improve generalisation of deep RL agents, we propose Iterated
Relearning (ITER). ITER augments standard RL training by repeated knowledge
transfer of the current policy into a freshly initialised network, which thereby
experiences less non-stationarity during training. Experimentally, we show that
ITER improves performance on the challenging generalisation benchmarks ProcGen
and Multiroom.

1 INTRODUCTION

In RL, as an agent explores more of its environment and updates its policy and value function, the
data distribution it uses for training changes. In deep RL, this non-stationarity is often not addressed
explicitly. Typically, a single neural network model is initialised and continually updated during
training. Conventional wisdom about catastrophic forgetting (Kemker et al., 2018) implies that old
updates from a different data-distribution will simply be forgotten. However, we provide evidence for
an alternative hypothesis: networks exhibit a memory effect in their learned representations which
can harm generalisation permanently if the data-distribution changed over the course of training.

To build intuition, we first study this phenomenon in a supervised setting on the CIFAR-10 dataset. We
artificially introduce transient non-stationarity into the training data and investigate how this affects the
asymptotic performance under the final, stationary data in the later epochs of training. Interestingly,
we find that while asymptotic training performance is nearly unaffected, test performance degrades
considerably, even after the data-distribution has converged. In other words, we find that latent
representations in deep networks learned under certain types of non-stationary data can be inadequate
for good generalisation and might not be improved by later training on stationary data.

Such transient non-stationarity is typical in RL. Consequently, we argue that this observed degradation
of generalisation might contribute to the inferior generalisation properties recently attributed to
many RL agents evaluated on held out test environments (Zhang et al., 2018a;b; Zhao et al., 2019).
Furthermore, in contrast to Supervised Learning (SL), simply re-training the agent from scratch once
the data-distribution has changed is infeasible in RL as current state of the art algorithms require data
close to the on-policy distribution, even for off-policy algorithms like Q-learning (Fedus et al., 2020).

To improve generalisation of RL agents despite this restriction, we propose Iterated Relearning
(ITER). In this paradigm for deep RL training, the agent’s policy and value are periodically distilled
into a freshly initialised student, which subsequently replaces the teacher for further optimisation.
While this occasional distillation step simply aims to re-learn and replace the current policy and
∗University of Oxford. Corresponding author: Maximilian Igl (maximilian.igl@gmail.com)
†Now at DeepMind, London
‡Delft University of Technology

1

mailto:maximilian.igl@gmail.com

Published as a conference paper at ICLR 2021

value outputs for the training data, it allows the student to learn a better latent representation with
improved performance for unseen inputs because it eliminates non-stationarity during distillation.
We propose a practical implementation of ITER which performs the distillation in parallel to the
training process without requiring additional training data. While this introduces a small amount of
non-stationarity into the distillation step, it greatly improves sample efficiency without noticeably
impacting performance.

Experimentally, we evaluate ITER on the Multiroom environment, as well as several environments
from the recently proposed ProcGen benchmark and find that it improves generalisation. This
provides further support to our hypothesis and indicates that the non-stationarity inherent to many
RL algorithms, even when training on stationary environments, should not be ignored when aiming
to learn robust agents. Lastly, to further support this claim and provide more insight into possible
causes of the discovered effect, we perform additional ablation studies on the CIFAR-10 dataset.

2 BACKGROUND

We describe an RL problem as a Markov decision process (MDP) (S,A, T, r, p0, γ) (Puterman, 2014)
with actions a∈A, states s∈S , initial state s0∼p0, transition dynamics s′∼T (s, a), reward function
r(s, a)∈R and discount factor γ. The unnormalised discounted state distribution induced by a policy
π is defined as dπ(s) =

∑∞
t=0 γ

tPr
(
St=s|S0∼p0, At∼π(·|St), St+1∼T (St, At)

)
. In ITER, we

learn a sequence of policies and value functions, which we denote with π(k)(a|s) and V (k)(s) at the
kth iteration (k ∈ {0, 1, 2, . . . }), parameterized by θk.

We briefly discuss some forms of non-stationarity which can arise in RL, even when the envi-
ronment is stationary. For simplicity, we focus the exposition on actor-critic methods which
use samples from interaction with the environment to estimate the policy gradient given by
g = E[∇θ log πθ(a|s)Aπ(s, a, s′)|s, a, s′ ∼ dπ(s)π(a|s)T (s′|s, a)]. The advantage is often esti-
mated as Aπ(s, a, s′) = r(s, a) + γV π(s′) − V π(s). Typically, we also use neural networks to
approximate the baseline V πφ (s) and for bootstrapping from the future value V πφ (s′). φ can be learned
by minimising E[Aπ(s, a, s′)2] by stochastic semi-gradient descent, treating V πφ (s′) as a constant.

There are at least three main types of non-stationarity in deep RL. First, we update the policy
πθ, which leads to changes in the state distribution dπθ (s). Early on in training, a random policy
πθ only explores states close to initial states s0. As πθ improves, new states further from s0 are
encountered. Second, changes to the policy also change the true value function V π(s) which V πφ (s)
is approximating. Lastly, due to the use of bootstrap targets in temporal difference learning, the
learned value V πφ (s) is not regressed directly towards V π(s). Instead V πφ fits a gradually evolving
target sequence even under a fixed policy π, thereby also changing the policy gradient estimator g.

3 THE IMPACT OF NON-STATIONARITY ON GENERALISATION

In this section we investigate how asymptotic performance is affected by changes to the data-
distribution during training. In particular, we assume an initial, transient phase of non-stationarity,
followed by an extended phase of training on a stationary data-distribution. This is similar to the
situation in RL where the data-distribution is affected by a policy which converges over time. We
show that this transient non-stationarity has a permanent effect on the learned representation and
negatively impacts generalisation. As interventions in RL training can lead to confounding factors
due to off-policy data or changed exploration behaviour, we utilise Supervised Learning (SL) here
to provide initial evidence in a more controlled setup. We use the CIFAR-10 dataset for image
classification (Krizhevsky et al., 2009) and artificially inject non-stationarity.

Our goal is to provide qualitative results on the impact of non-stationarity, not to obtain optimal
performance. We use a ResNet18 (He et al., 2016) architecture, similar to those used by Espeholt
et al. (2018) and Cobbe et al. (2019a). Parameters are updated using Stochastic Gradient Descent
(SGD) with momentum and, following standard practice in RL, we use a constant learning rate and do
not use batch normalisation. Weight decay is used for regularisation. Hyper-parameters and more
details can be found in appendix B.

We train for a total of 2500 epochs. While the last 1500 epochs are trained on the full, unaltered
dataset, we modify the training data in three different ways during the first 1000 epochs. Test data is

2

Published as a conference paper at ICLR 2021

left unmodified throughout training. While each modification is loosely motivated by the RL setting,
our goal is not to mimic it exactly (which would be infeasible), nor to disentangle the contributions
of different types of non-stationarity. Instead, we aim to show that these effects reliably occur in the
presence to various types of non-stationarity, and provide intuitions that can be brought into the RL
setting in Section 4.

For the first modification, called Dataset Size, we initially train only on a small fraction of the
full dataset and gradually add more data points after each epoch, at a constant rate, until the full
dataset is available after epoch 1000. During the non-stationary phase, data points are reused multiple
times to ensure the same number of network updates are made in each epoch. For the modification
Wrong Labels we replace all training labels by randomly drawn incorrect ones. After each epoch,
a constant number of these labels are replaced by their correct values. Lastly, Noisy Labels is
similar to Wrong Labels, but the incorrect labels are sampled uniformly at the start of each epoch.
For both, all training labels are correct after epoch 1000. While Dataset Size is inspired by
the changing state distribution seen by an evolving policy, Wrong Labels and Noisy Labels
are motivated by the consistent bias or fluctuating errors a learned critic can introduce in the policy
gradient estimate.

0.0 0.5 1.0 1.5 2.0 2.5
Epochs 1e3

86

88

90

92

94

96

98

100

Tr
ai

ni
ng

 a
cc

ur
ac

y

Unmodified Dataset
Noisy Labels
Wrong Labels
Dataset Size

0.0 0.5 1.0 1.5 2.0 2.5
Epochs 1e3

72

74

76

78

80

82

84

86

Te
st

 a
cc

ur
ac

y

Figure 1: Accuracy on CIFAR-10 when the training data is non-stationary
over the first 1000 epochs (dashed line). The remaining epochs are trained
on the full, unaltered training data. Testing is performed on unaltered data
throughout. While final training performance (left) is almost unaffected, test
accuracy (right) is significantly reduced by initial, transient non-stationarity.

The results are shown in fig. 1.
While the final training accu-
racy (left) is almost unaffected
(see table 1 in the appendix
for exact results), all three non-
stationary modifications signif-
icantly reduce the test accu-
racy (right). The plateau in
accuracy shows that this ef-
fect persists even after the mod-
els are further trained using
the full dataset with correct la-
bels: non-stationarity early in
training has a permanent effect
on the learned representations
and quality of generalisation.
These results indicate that the
non-stationarity introduced by
the gradual convergence of the
policy in RL might similarly de-
teriorate the generalisation of the agent. To overcome this, we propose ITER in the next section. The
key insight enabling ITER is that the observed negative effect is restricted to the test data, whereas the
predictions on the training data are unaffected and of high quality.

4 ITER

In section 3, we have seen evidence that the non-stationarity which is present in many deep RL
algorithms might lead to impaired generalisation on held-out test environments. To mitigate this and
improve generalisation to previously unseen states, we propose Iterated Relearning (ITER): instead
of updating a single agent model throughout the entire training process, ITER learns a sequence
of models, each of which is exposed to less non-stationarity during its training. As we will show
in section 5, this improves generalisation. ITER can be applied on top of a wide range of base RL
training methods. For simplicity, we focus in the following exposition on actor-critic methods and
use Proximal Policy Optimization (PPO) (Schulman et al., 2017) for the experimental evaluation.

The underlying insight behind ITER is that at any point during RL training the latent representation
of our current agent network might be significantly damaged by non-stationarity, but its outputs on
the training data are comparatively unaffected (see fig. 1). Consequently, ITER aims to periodically
replace the current agent network, the ‘teacher’, by a ‘student’ network which was freshly initialised
and trained to mimic the teacher on the current training data. Because this re-learning and replacement
step can be performed on stationary data, it allows us to re-learn a policy that matches performance
on the training data but generalises better to novel test environments.

3

Published as a conference paper at ICLR 2021

ITER begins with an initial policy π(0) and value function V (0) and then repeats the following steps,
starting with iteration k = 0.

1. Use the base RL algorithm to train π(k) and V (k).
2. Initialise new student networks for π(k+1) and V (k+1). We refer to the current policy π(k)

and value function V (k) as the teacher.
3. Distill the teacher into the student. This phase is discussed in more detail in section 4.1.
4. The student replaces the teacher: π(k) and V (k) can be discarded.
5. Increment k and return to step 1. Repeat as many times as needed.

This results in alternating RL training with distillation into a freshly initialised student. The RL
training phases continue to introduce non-stationarity until the models converge, so we want to iterate
the process, repeating steps 1-4. How often we do so depends on the environment and can be chosen
as a hyper-parameter. In practise we found the results to be quite robust to this choice and recommend,
as general rule, to iterate as often as possible within the limits outlined in section 4.2. There, we
introduce a practical implementation of ITER which re-uses data between steps 1 and 3 in order to
not require additional samples from the environment.

4.1 DISTILLATION LOSS

Our goal during the distillation phase (step 3) is to learn a new student policy π(k+1) and value
function V (k+1) that imitate the current teacher (π(k), V (k)). If the student and teacher share the same
network architecture, the student could of course imitate the teacher exactly by copying its parameters.
However, since the teacher was trained under non-stationarity, its generalisation performance is likely
degraded (see section 3). Consequently, we want to instead train a freshly initialised student network
to mimic the teacher’s outputs for the available data, but learn a better internal representation by
training on a stationary data distribution collected by the teacher π(k), i.e., s, a ∼ dπ(k)(s)π(k)(a|s).

The student, parameterised by θk+1, is trained using a linear combination of four loss terms:

L(θk+1) = απLπ + αVLV + LPG + λTDLTD (1)

where λTD is a fixed hyper-parameter and we linearly anneal απ and αV from some fixed initial
value to zero over the course of each distillation phase.

Lπ and LV are supervised losses minimising the disagreement between outputs of the student and
the teacher:

Lπ(θk+1) = Es∼d
π(k)

[
DKL

[
π(k)(·|s)

∥∥π(k+1)(·|s)
]]
,

LV(θk+1) = Es∼d
π(k)

[(
V (k)(s)− V (k+1)(s)

)2]
.

(2)

The additional terms LPG and LTD are off-policy RL objectives for updating the actor and critic:

LPG(θk+1) = −Es∼d
π(k) ,a∼π(k),s′∼T (s,a)

[
log π(k+1)(a|s) ⊥

(
π(k+1)(a|s)
π(k)(a|s) A(k+1)(s, a, s′)

)]
,

LTD(θk+1) = Es∼d
π(k) ,a∼π(k),s′∼T (s,a)

[(
A(k+1)(s, a, s′)

)2
⊥π

(k+1)(a|s)
π(k)(a|s)

]
,

(3)

where A(k+1)(s, a, s′) = r(s, a) + γ⊥V (k+1)(s′)− V (k+1)(s) denotes the estimated advantage of
choosing action a and ⊥ is a stop-gradient operator, its operand is treated as a constant when
taking derivatives of the objective. In practice, the losses in eq. (2) remain nonzero during distillation,
potentially causing a drop in performance once the student replaces the teacher. The off-policy RL
losses in eq. (3) allow the student to already take performance on the RL task into account, reducing
or eliminating this performance drop. We use PPO losses to optimise eq. (3) in our experiments.

4.2 COMBINING TRAINING AND DISTILLATION

To fully eliminate non-stationarity during the distillation step we need to collect additional data from
the environment using a fixed teacher policy. However, this would slow down training by increasing
the total number of samples required. Here, to improve sample efficiency, we propose two practical
implementations of ITER which reuse data between teacher and student:

4

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e8

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

R
et

ur
n

PPO+ITER
PPO

(a) Multiroom

1 room 2 rooms 3 rooms 4 rooms
0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

PPO+ITER
PPO

(b) Multiroom, by layout

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e9

20

15

10

5

0

5

10

R
et

ur
n

PPO+ITER
PPO

(c) Boxoban

Figure 2: Evaluation on Multiroom and Boxoban. Shown are mean and standard error over twelve seeds. Left:
Return for PPO with and without ITER on Multiroom. Dotted lines indicate when the network was replaced by
a new student. Middle: Evaluation on layouts with a fixed number of rooms; training is still with a random
number of rooms. ITER’s advantage is more pronounced for harder levels. Right: Return on Boxoban.

Sequential training: Store the last N transitions that were used to update the teacher in a dataset
D. During the distillation phase, draw batches from D instead of collecting new data from the
environment. While this does not introduce non-stationarity, it leads to evaluating the teacher on old,
off-policy data, for which the quality of its outputs may be degraded. Furthermore, some of the data
might be obsolete under the current state-distribution and we require additional memory to store D.

Parallel training: Whenever the teacher is updated on a batch of data B, also update the the student
on the same batch. This approach introduces some non-stationarity as distillation is performed
over multiple batches B while the teacher is changing. However, the teacher evolves much less
over the course of the distillation phase than does a policy trained from scratch to achieve the same
performance. In practise we found this to be a worthy trade-off. Advantages of this method are that
no additional memory D is required, the teacher is only evaluated on data on which it is currently
trained and updates to the student and teacher can be performed in parallel.

Both approaches perform similarly in our experimental validation. We use parallel training for
the main experiments due to the smaller memory requirements, the ability to efficiently perform
the student distillation in parallel and because tuning the hyper-parameter was significantly easier:
While tuning the size of D for sequential ITER involves trading off overfitting (for small D) against
off-policy data (for large D), in parallel ITER the results were robust to the choice of how many
batches B were used in the distillation phase as long as some minimum number was surpassed.
Consequently, hyper-parameter tuning for parallel ITER only involved increasing the length of the
distillation phase until no drop in student performance was observed when replacing the teacher. We
set απ = 1 and αV = 0.5 as initial values without further tuning as preliminary experiments showed
no impact within reasonable ranges.

5 EXPERIMENTS

In the following, we evaluate ITER on Multiroom (Chevalier-Boisvert & Willems, 2018) and on
several environments from the ProcGen (Cobbe et al., 2019a) benchmark which was specifically
designed to measure generalisation by introducing separate test- and training levels. We also provide
ablation studies showing that parallel and sequential training perform comparably, and that the loss
terms eq. (3) in eq. (1) are beneficial. We find that ITER improves generalisation, which also supports
our hypothesis about the negative impact of transient non-stationarity in RL. Lastly, we re-visit the SL
setting from section 3 and perform additional experiments leading us to the formulation of the legacy
feature hypothesis to explain the observed effects.

5.1 EXPERIMENTAL RESULTS ON MULTIROOM

First, we evaluate ITER on the Multiroom environment. The agent’s task is to traverse a sequence of
rooms to reach the goal (see fig. 6 for example layout) as quickly as possible. It can take discrete
actions to rotate 90° in either direction, move forward, and open or close the doors between rooms.

5

Published as a conference paper at ICLR 2021

0 1 2 3 4 5 6 7 8
Steps 1e8

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

is
ed

 T
es

t P
er

fo
rm

an
ce

PPO+ITER
PPO
IBAC+ITER
IBAC

0 1 2 3 4 5 6 7 8
Steps 1e8

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Te
st

 P
er

fo
rm

an
ce

Evaluation on
Test levels
Training levels

0 1 2 3 4 5 6 7 8
Steps 1e8

5

10

15

20

25

Te
st

 P
er

fo
rm

an
ce

Figure 3: Evaluation on ProcGen. Dashed lines indicate replacing the teacher. Left: Test performance averaged
over six environments (StarPilot, Dodgeball, Climber, Ninja, Fruitbot and BigFish). Shown are mean and
standard error over all 30 runs (five per environment). Results are normalised by the final test-performance of the
PPO baseline on each respective environment to make them comparable. We also compare against the previous
state of the art method IBAC-SNI (Igl et al., 2019). Middle: Evaluation on Climber. ITER improves test
performance without improving training, supporting our claim that ITER improves the latent representation of the
agent. Right: Evaluation on BigFish. On some environments, ITER improves both train- and test- performance.

The observation contains the full grid, one pixel per square. Object type, including empty space and
walls, as well as any object status, like direction, are encoded in the three ‘colour’ channels. For each
episode, a new layout is generated by randomly placing between one and four connected rooms on
the grid. The agent is always initialised in the room furthest from the goal. This randomness favours
agents that are better at generalising between layouts as memorisation is impossible due to the high
number of feasible layouts. The results are shown in fig. 2: Using ITER on top of PPO increases
performance. The performance difference is more pronounced for layouts with more rooms, possibly
because such layouts are harder and likely only solved later in training, at which point negative effects
due to prior non-stationarity in training are more pronounced.

5.2 EXPERIMENTAL RESULTS ON BOXOBAN

We also evaluate ITER on Boxoban (Guez et al., 2018; Schrader, 2018)1. See fig. 8 for an example.
Similarly to Multiroom the observation contains the full grid, one pixel per square. Object types are
encoded by colour. Again, a new layout is generated at the beginning of each new episode, favouring
agents that can generalise well between states. Actions allow to push, pull or move in all four cardinal
directions, or do nothing. The goal of the agent is to position the four boxes, which can be pushed
or pulled, on the four available targets. Walls prevent movement for both the agent and the boxes.
Positive rewards are provided for positioning a box on a target (rb = 1) and successfully solving each
level (rl = 10). A small negative reward per time-step (rs = −0.1) encourages fast solutions. As
shown in fig. 2, ITER learns much faster. We provide additional results and examples for wrongly
chosen distillation lengths in fig. 8. Note that both for Multiroom and Boxoban we train and test on
the same (very large) set of possible layout configurations, so the main expected advantage of ITER is
a more sample efficient training due to better generalisation. In the next section, we will evaluate the
agent on previously unseen environments, directly measuring its generalisation performance.

5.3 EXPERIMENTAL RESULTS ON PROCGEN

Next, we evaluate ITER on several environments from the ProcGen benchmark. We follow the
evaluation protocol proposed in (Cobbe et al., 2019a): for each environment, we train on 500 randomly
generated level layouts and test on additional, previously unseen levels. Due to computational
constraints, we consider a subset of five environments. We chose StarPilot, Dodgeball, Climber, Ninja,
Fruitbot and BigFish based on the results presented in (Cobbe et al., 2019a) as they showed baseline
generalisation performance better than a random policy, but with a large enough generalisation gap.
ITER improves performance for both PPO and Information Bottleneck Actor Critic (IBAC) with
selective noise injection (Igl et al., 2019). Results are presented in fig. 3 and more individual plots,
including performance on training levels, can be found in the appendix. In fig. 4 we show in ablations

1Our simplified Boxoban-Train-v0 also allows pulling boxes to reduce computational costs

6

Published as a conference paper at ICLR 2021

0 1 2 3 4 5 6 7 8
Steps 1e8

0.7

0.8

0.9

1.0

1.1

1.2

Te
st

 P
er

fo
rm

an
ce

PPO+ITER
ITER-Sequential
ITER-noRL

Figure 4: Left: Ablation studies with sequential ITER and ITER without terms LPG and LTD (eq. (3)).
Right: Schematic depiction of training setup for fig. 5 (middle and right). More details are given
in section 5.4. D is the unmodified CIFAR-10 training data while for Df,m modification m ∈
{Noisy Labels,Wrong Labels,Dataset Size} is applied to the fraction (1− f) of all data-points.
In this two phase training setup, we first train on Df,m during phase 1 and continue on D during phase 2. A
linear predictor parameterised by (W f,m

i , bf,mi) is trained on D after each phase i, while holding the encoder
φf,m
i (x) fixed. Evaluation of the resulting classifiers is performed on the original test data. Classifier i = 1

measures the relevance of the legacy features while classifier i = 2 measure the final generalisation performance.

that both the parallel and sequential implementations of ITER perform comparably, while not using
the off-policy RL terms LPG and LTD in eq. (1) decreases performance.

Similarly to previous literature (Cobbe et al., 2019b; Igl et al., 2019), we found that weight decay
improves performance and apply it to all algorithms evaluated on ProcGen. Our results show that the
negative effects of non-stationarity cannot easily be avoided through standard network regularisation:
we can improve test returns through ITER despite regularisation with weight decay and IBAC, both
shown to be among the most effective regularisation methods on this benchmark (Igl et al., 2019).

In the previous two sections we have shown the effectiveness of ITER in improving generalisation of
RL agents. Because the main mechanism of ITER is in reducing the non-stationarity in the training
data which is used to train the agent, this result further supports that such transient non-stationarity is
detrimental to generalisation in RL.

5.4 SUPERVISED LEARNING ON CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
Epochs 1e3

72

74

76

78

80

82

84

86

Te
st

 a
cc

ur
ac

y

Unmodified Dataset
Noisy Labels
Wrong Labels
Dataset Size

10 20 30 40 50 60 70 80 90
Accuracy of Intermediate Repr.

76

78

80

82

84

86

88

A
cc

ur
ac

y
of

 F
in

al
 R

ep
r.

Noisy Labels
Wrong Labels
Dataset Size

3.0

2.7

2.4

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0.0

Lo
g

da
ta

 fr
ac

tio
n

0 25 50 75 100
Index

10 1

100

N
or

m
al

iz
ed

 E
ig

en
va

lu
e

Unmodified Dataset
Noisy Labels
Wrong Labels
Dataset Size

Figure 5: Left: Test accuracy of students (solid lines) that only learn to mimic the behaviour of poorly
generalising teachers in fig. 1 (dashed lines). Middle: Final test accuracy of networks trained consecutively on
two different datasets. The x-axis shows the accuracy of using encoders trained on the first dataset, retraining
only the last layer on the second: nearly useless earlier representations impact future learning much less than
slightly sub-optimal ones. Markers indicate modifications to first dataset; colours indicate the fraction of
unmodified data points f . Dashed line shows accuracy for f = 1. Right: Singular values of feature matrix Φ,
normalised by the largest SV. Solid lines show intermediate values of f with low test accuracy, dashed lines
small values of f with higher accuracy. More plots can be found in the appendix.

In this section, we aim to further understand the mechanism by which non-stationarity impacts
generalisation by revisiting the easily controlled SL setting presented in section 3.

7

Published as a conference paper at ICLR 2021

First, we confirm that, like with ITER for RL, we can improve generalisation while only learning to
mimic the outputs of a poorly generalising teacher for the training data. We train the teacher using
the same setup as in section 3. In a second step, we train a freshly initialised student for 1000 epochs
to fit the argmax predictions of this teacher on the training data, i.e., the true labels in the training
data are unused. Test accuracy is still measured using the true labels. The results of this distillation
phase are shown in fig. 5 (left). The student (solid lines) recovers the test accuracy achieved by
stationary training, compared to the poor asymptotic teacher performance (dashed lines) from fig. 1.
This confirms that the teacher’s outputs on the training data are suitable targets for distillation.

Second, we aim to better understand why non-stationarity affects the generalisation performance.
To do so, we investigate the latent representation of the network. We view all but the last layer as
the encoder, producing the latent representation φ(x) ∈ Rp for input x, on which the classification
is linear: y = softmax(Wφ(x) + b) with W ∈ R|C|×p denoting a weight matrix and b ∈ R|C|
denoting a bias vector. By features we refer not to the representation φ(x) as a whole, but to aspects
of the input to which the encoder learned to pay attention and which therefore can impact the latent
representation (Kriegeskorte & Kievit, 2013). More quantitatively, we can define the representation
matrix Φ ∈ RN×p, consisting of the latent representations of all N = 10000 test data points.
Performing Singular Value Decomposition (SVD) on Φ yields mutually orthogonal directions (the
right-singular vectors) in which the latent representations of the various inputs are different from one
another. We can see each such direction as corresponding to one feature, with the corresponding
singular value expressing its strength, i.e., how strongly it impacts the latent representation.

Our hypothesis is that under a non-stationary data distribution, the encoder is more likely to reuse
previously learned features (as these are already available) instead of learning new features from
scratch. If these old (or ‘legacy’) features generalise worse on the new data, for example because they
are overfit to a smaller or less diverse dataset, this in turn deteriorates generalisation permanently if
they are not replaced. This leads to two predictions: First, the observed drop in generalisation should
only occur if the previously learned features are relevant for the new task, but suboptimal. If they are
irrelevant, they will not be reused. If they are optimal, they do not negatively impact generalisation.
Second, we expect the final network to rely on more features in its latent representation if it is reusing
suboptimal features: because these are not as general, more features are required to discriminate
between all inputs.

To experimentally evaluate both predictions, we simplify the experimental setting to two
phases (see fig. 4 for a schematic depiction of the training setup). The first training phase
uses a stationary, but modified, dataset Df,m, and the second phase uses the full, unmodi-
fied, training dataset D. To generate Df,m, we use the same modifications as before, m ∈
{Noisy Labels,Wrong Labels,Dataset Size}, but instead of annealing the fraction of
correct data points f from 0 to 1 as in section 3, it is fixed at a certain value. Changing this value
f allows us to tune the relevance of the features learned on Df,m (also see fig. 6). In this setup the
only non-stationarity is the change in data from phase 1 to phase 2. We first train the network for 700
epochs on Df,m, which yields an intermediate representation φf,minter(x), followed by another 800
epochs on D yielding the final representation φf,mfinal(x) (see fig. 7 for training curves).

To test our first hypothesis, we want to measure how relevant the representation φf,minter(x) is for the
final data distribution and how well φf,mfinal(x) generalises. We train a linear predictor for each fixed

representation on the full dataset D.2 The test accuracy of the classifier based on φf,minter(x) measures
how well we can perform on D with features learned on Df,m, i.e., their relevance. The test accuracy
of the classifier based on φf,mfinal measures how well the final network was able to recover from the
initial bias and learn to generalise well despite non-stationarity.

In fig. 5 (middle), we plot the accuracy of the intermediate predictor (i.e., the relevance) on the
x-axis and of the final generalisation performance on the y-axis. Each point corresponds to one
value of f ∈ (0, 1], shown as colour, and one modification type m as indicated by the marker
shape. By changing f from 0 to 1 (i.e., from blue to dark red) we can increase the relevance of
the intermediate features from nearly irrelevant to optimal on D. Interestingly, an almost useless
intermediate representation (30% on the x-axis) does not impede the final performance much, while
relevant but suboptimal intermediate features (around 60% on the x-axis) lead to a marked drop in

2The linear predictor is y = σ(Wφf,m(x) + b), where σ is the softmax function and x the input image.

8

Published as a conference paper at ICLR 2021

performance. This supports our first hypothesis. The strong final performance for f → 0 (i.e., for low
relevance) also rules out decreased network flexibility, for example due to dead neurons (for ReLUs)
or saturation (for tanh), as the main driver of reduced generalisation.

Our second prediction is that relevant, but suboptimal features in φf,minter should lead to the usage
of more features in φf,mfinal compared to irrelevant or optimal features. To test this prediction, we
plot in Figure 5 (right) the singular values (SVs) of the representation matrix Φ ∈ RN×p as defined
above. We plot the values for the smallest values of f (dashed lines, “irrelevant features”) and for
intermediate values of f (solid lines, ‘relevant but sub-optimal features’). The blue line corresponds
to optimal features. The tails of the singular values are heavier for intermediate values of f , indicating
that the network is relying on more features in those cases, supporting our second prediction.

6 RELATED WORK

Knowledge distillation (Hinton et al., 2015) with identical teacher and student architectures has been
shown to improve test accuracy (Furlanello et al., 2018), even in the absence of non-stationarities in
the data. This improvement has been attributed to the ease of predicting the output distribution of the
teacher compared to the original ‘hard’ labels (Mobahi et al., 2020; Gotmare et al., 2019). While we
apply such ‘soft’ distillation for ITER on RL, we use ‘hard’ labels in our SL experiments.

Policy distillation has been applied to RL (Czarnecki et al., 2019), for example for multi-task learning
and compression (Teh et al., 2017; Rusu et al., 2015; Parisotto et al., 2016), imitation learning (Ross
et al., 2011), or faster training (Schmitt et al., 2018; Ghosh et al., 2018). Closer to ITER, Czarnecki
et al. (2018) use policy distillation to learn a sequence of agents. However, their Mix & Match
algorithm solves tasks of growing complexity, for example, to grow the action space of the agent, not
to tackle generalisation or non-stationarity.

While the topic of non-stationarity is central to the area of continual learning (see (Parisi et al.,
2019) for a recent review), the field is primarily concerned with preventing catastrophic forgetting
(French, 1999) when the environment or task changes during training (Li & Hoiem, 2017; Schwarz
et al., 2018). For non-stationary environments during agent deployment, the approach is typically to
detect such changes and respond accordingly (Choi et al., 2000; Da Silva et al., 2006; Doya et al.,
2002). By contrast, we assume a stationary environment and investigate the impact of transient
non-stationarity, for example induced by an improving policy. We also show that intentionally
forgetting the representation, but not the learned outputs, can improve generalisation in this case.

Neural networks are used in deep RL to allow generalisation across similar states (Sutton & Barto,
2018). Several possibilities have been proposed to further improve generalisation, including to provide
more diverse training environments (Tobin et al., 2017), inject noise into the environment (Stulp
et al., 2011; Lee et al., 2020), incorporate inductive biases in the architecture (Kansky et al., 2017), or
regularise the network (Cobbe et al., 2019b; Igl et al., 2019; Liu et al., 2019). While regularisation
reduces overfitting, we show in our experiments that this is insufficient to counter the negative effects
of non-stationarity, and that ITER can be complementary to other types of regularisation.

7 CONCLUSION

In this work, we investigate the impact of non-stationarity on the generalisation performance of trained
RL agents. First, in several SL experiments on the CIFAR-10 dataset, we confirm that non-stationarity
can considerably degrade test performance while leaving training performance nearly unchanged.
To explain this effect, we propose and experimentally support the legacy feature hypothesis that
networks exhibit a tendency to adopt, rather then forget, features learned earlier during training if
they are sufficiently relevant, though not necessarily optimal, for the new data. We also show that
self-distillation, even without using the true training labels, improves performance on the test-data.

Many deep RL algorithms induce similar transient non-stationarity, for example due to a gradually
converging policy. Consequently, to improve generalisation in deep RL, we propose ITER which
reduces the non-stationarity the agent networks experience during training. Our experimental results
on the Multiroom and ProcGen benchmarks empirically support the benefits of ITER, indicating that
transient non-stationarity has a negative impact in deep RL.

9

Published as a conference paper at ICLR 2021

REFERENCES

Maxime Chevalier-Boisvert and Lucas Willems. Minimalistic gridworld environment for openai gym.
https://github.com/maximecb/gym-minigrid, 2018.

Samuel PM Choi, Dit-Yan Yeung, and Nevin Lianwen Zhang. An environment model for nonstation-
ary reinforcement learning. In Advances in neural information processing systems, pp. 987–993,
2000.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019a.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In Proceedings of the 36th International Conference on Machine
Learning, 2019b.

Wojciech Czarnecki, Siddhant Jayakumar, Max Jaderberg, Leonard Hasenclever, Yee Whye Teh,
Nicolas Heess, Simon Osindero, and Razvan Pascanu. Mix & match agent curricula for reinforce-
ment learning. In International Conference on Machine Learning, pp. 1087–1095, 2018.

Wojciech Marian Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant M Jayakumar, Grzegorz
Swirszcz, and Max Jaderberg. Distilling policy distillation. arXiv preprint arXiv:1902.02186,
2019.

Bruno C Da Silva, Eduardo W Basso, Ana LC Bazzan, and Paulo M Engel. Dealing with non-
stationary environments using context detection. In Proceedings of the 23rd international confer-
ence on Machine learning, pp. 217–224, 2006.

Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato. Multiple model-based
reinforcement learning. Neural computation, 14(6):1347–1369, 2002.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. arXiv preprint
arXiv:2007.06700, 2020.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International Conference on Machine Learning, pp. 1607–1616,
2018.

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-and-
conquer reinforcement learning. In International Conference on Learning Representations, 2018.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look at deep
learning heuristics: Learning rate restarts, warmup and distillation. In International Conference on
Learning Representations, 2019.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane We-
ber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,
Timothy Lillicrap, and Victor Valdes. An investigation of model-free planning: boxoban levels.
https://github.com/deepmind/boxoban-levels/, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

10

https://github.com/maximecb/gym-minigrid

Published as a conference paper at ICLR 2021

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. In Advances in Neural Information Processing Systems, pp. 13956–13968,
2019.

Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua
Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema networks:
Zero-shot transfer with a generative causal model of intuitive physics. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 1809–1818. JMLR. org, 2017.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christopher Kanan. Mea-
suring catastrophic forgetting in neural networks. In Thirty-second AAAI conference on artificial
intelligence, 2018.

Nikolaus Kriegeskorte and Rogier A Kievit. Representational geometry: integrating cognition,
computation, and the brain. Trends in cognitive sciences, 17(8):401–412, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
University of Toronto, 2009.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple technique
for generalization in deep reinforcement learning. In International Conference on Learning
Representations, 2020.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in policy optimiza-
tion. arXiv preprint arXiv:1910.09191, 2019.

Hossein Mobahi, Mehrdad Farajtabar, and Peter L Bartlett. Self-distillation amplifies regularization
in hilbert space. arXiv preprint arXiv:2002.05715, 2020.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

Emilio Parisotto, Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and transfer
reinforcement learning. In 5th International Conference on Learning Representations, ICLR 2016,
2016.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635, 2011.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstarting
deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/
gym-sokoban, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. arXiv preprint arXiv:1805.06370, 2018.

11

https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban

Published as a conference paper at ICLR 2021

Freek Stulp, Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Learning to grasp under
uncertainty. In 2011 IEEE International Conference on Robotics and Automation, pp. 5703–5708.
IEEE, 2011.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press, 2018.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 4496–4506, 2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE,
2017.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018a.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018b.

Chenyang Zhao, Olivier Siguad, Freek Stulp, and Timothy M Hospedales. Investigating generalisation
in continuous deep reinforcement learning. arXiv preprint arXiv:1902.07015, 2019.

12

Published as a conference paper at ICLR 2021

A PSEUDO CODE

Algorithm 1: Pseudo-Code for parallel ITER
1 Input Length of initial RL training phase tinit, length of distillation phase tdistill
2 Initialise k ← 0, policy π(k), value function V (k)

3 // Normal RL training at the beginning
4 for tinit steps do
5 B ← collect trajectory data using π(0)

6 Update π(0) and V (0) using standard RL method using B

7 // Combine further RL training of π(k), V (k) with distillation of π(k+1), V (k+1)

8 while not converged do
9 Initialise student policy π(k+1) and value function V (k+1)

10 for tdistill steps do
11 αV , απ ← linear annealing to 0 over tdistill steps
12 B ← collect trajectory data using π(k)

13 Update π(k) and V (k) with standard RL method using B
14 Update π(k+1) and V (k+1) with eq. (1) using B, αV , απ , π(k) and V (k)

15 // Housekeeping
16 Discard π(k) and V (k)

17 Set k ← k + 1

B SUPERVISED LEARNING

Table 1: Numerical values of results presented in fig. 1. The ‘Rel’
column shows the error normalised by the error of the unmodified
dataset. The error on the test-data deteriorates worse than on the training
data, not only in absolute, but also relativ terms.

Training Testing
Error in % Rel. Error in % Rel.

Unmodified 0.17± 0.09 1.0 14.8± 0.70 1.0
Noisy Labels 0.19± 0.09 1.13 16.8± 0.70 1.14
Wrong Labels 0.20± 0.08 1.22 19.2± 0.43 1.30
Dataset Size 0.18± 0.08 1.05 23.4± 0.83 1.58

Table 2: Hyper-parameters used in
the supervised learning experiment on
CIFAR-10

Hyper-parameter Value

SGD: Learning rate 3× 10−4

SGD: Momentum 0.9
SGD: Weight decay 5× 10−4

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of correct data f

76

78

80

82

84

86

88

A
cc

ur
ac

y
of

 F
in

al
 R

ep
r.

Noisy Labels
Wrong Labels
Dataset Size

3.0

2.7

2.4

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0.0

Lo
g

da
ta

 fr
ac

tio
n

Figure 6: Left: Same results as in fig. 5 (middle), but with the fraction of correct data points f on the x-Axis.
Right: Multiroom example layout. The red agent needs to reach the green square, avoiding walls (grey) and
passing through doors (blocks with coloured outline).

13

Published as a conference paper at ICLR 2021

Here we provide additional training details and results for the supervised learning experiments
performed on the CIFAR-10 dataset. We used a ResNet18 architecture without Batchnorm, hyper-
parameters for the SGD optimiser are given in table 2. In table 1 we provide exact numerical values
for the results in fig. 1. We also provide values for the relative change in error rate due to the
introduction of non-stationarities, for which the test-performance is also more affected than the train
performance.

In fig. 6, we show the same results as in fig. 5, but here showing the f values used to generate Df,m
on the x-Axis. The same ‘dips’ in performance are visible, however from this figure it is clear that
Dataset Size experiences it for much smaller values of f , which is unsurprising, giving the
missing influences of a diverse input-data distribution.

Lastly, in fig. 7, we provide the individual training runs used to generate fig. 5(middle) and fig. 6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Epochs 1e3

0

10

20

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y

Noisy Labels

log10(f)

3
2
1

0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Epochs 1e3

0

10

20

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y

Wrong Labels

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Epochs 1e3

10

20

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y

Dataset Size

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Epochs 1e3

70

75

80

85

90

Te
st

 a
cc

ur
ac

y

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Epochs 1e3

70

75

80

85

90

Te
st

 a
cc

ur
ac

y

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Epochs 1e3

70

75

80

85

90

Te
st

 a
cc

ur
ac

y

Figure 7: Individual training curves for the data used in fig. 5(middle) and fig. 6. The bottom row shows the
same data as the top row, just ‘zoomed in’.

B.1 MULTIROOM

In table 3 we show the hyper-parameters used for the Multiroom experiments which are shared
between ‘PPO’ and ‘PPO+ITER’. We note that our Multiroom environment uses the same modifi-
cation that was used in (Igl et al., 2019) to make the environment fully observable. In the original
environment, the agent only observed its immediate surrounding from an ego-centric perspective,
thereby naturally generalising across various layouts. Instead, full observability introduces the need
to learn how to generalise. Our network consists of a three layer CNN With 16, 32 and 32 filters
respectively, followed by a fully connected layer of size 64. One max-pooling layer is used after the
first CNN layer. We use tinit = 4× 107 and tdistill = 4× 107 (see algorithm 1) for the duration of
the initial RL training phase and the following distillation phases.

B.2 BOXOBAN

For Boxoban, we re-use the same architecture and hyper-parameters as for Multiroom, but with a
reduced learning rate (1.0e− 04) in order to stabilise training.

14

Published as a conference paper at ICLR 2021

Table 3: Hyper-parameters used for Multiroom

Hyper-parameter Value

PPO: λEntropy Loss 0.01
PPO: λTD 0.5
PPO: εClip 0.2
PPO Epochs 4
PPO Minibatch Size 2048
Parallel Environments 32
Frames per Env per Update 256
λGAE 0.95
γ 0.99
Adam: Learning rate 7× 10−4

Adam: ε 1× 10−5

Table 4: Hyper-parameters used for ProcGen

Hyperparameter Value

PPO: λEntropy Loss 0.01
PPO: λTD 0.5
PPO: εClip 0.2
PPO Epochs 3
PPO Nr. Minibatches 8
Parallel Environments 64
Frames per Env per Update 256
λGAE 0.95
γ 0.999
Adam: Learning rate 5× 10−4

Adam: ε 1× 10−5

Adam: Weight decay 1× 10−4

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e9

20

15

10

5

0

5

10

R
et

ur
n

PPO+ITER Too short
PPO+ITER Too long
PPO

Figure 8: Left: Boxoban example layout. The green agent needs to push (or pull) yellow boxes on the red targets,
avoiding walls. Right: Additional Boxoban results showing consequences of choosing a wrong distillation
length, either too short or too long. Note that ITER Too short uses the same distillating length as the results
in fig. 2, but continues with distillation past 0.5e9 steps.

In fig. 8 we show results for wrongly chosen distillation lengths. Too short uses the same
distillation length as the main results in fig. 2, but continues distilling until the end of training.
Because after 0.5e9 steps the policy performance and complexity increase considerably, a longer
distillation period would be required. On the other hand, using a distillation period twice as long from
the start (Too long) leads to slower training. We did not experiment with increasing the distillation
length over the course of training, since in our experiments earlier stopping of ITER was sufficient for
optimal performance.

B.3 PROCGEN

In fig. 9 we show all results on the various ProcGen environment from which the summary plots
in the main text (figs. 3 and 4) are computed. We use the same (small) IMPALA architecture as
used by (Cobbe et al., 2019b). Training is done on 4 GPUs in parallel. One GPU is continuously
evaluating the test performance, the other three are used for training. Their gradients are averaged at
each update step. The hyper-parameters given in table 4 are per GPU. The x-Axis in fig. 9 shows
the total number of consumed frames, i.e. 250× 106 per training GPU. The distillation phase takes
tdistill = 70× 106 frames (again per GPU) and we linearly anneal απ from 1 to 0 and αV from 0.5
to 1. The values of απ and αV were chosen to reflect the relative weight between LPG and LTD in
eq. (1) and no further tuning was done. The initial RL training phase takes tinit = 50× 106 frames.
The distillation length was chosen based on preliminary experiments on BigFish by increasing its

15

Published as a conference paper at ICLR 2021

length in steps of 10× 106 frames until no drop in training performance was experienced when
switching to a new student.

Due to the high computation costs of running experiments on the ProcGen environment (4 GPUs for
about 24h for each run), we decided to exclude environments from the original benchmark based
on results presented by Cobbe et al. (2019a), figures 2 and 4. We excluded environments for two
different reasons, either because the generalisation gap was small (Chaser, Miner, Leaper, Boss Fight,
Fruitbot) or because generalisation did not improve at all during training after a very short initial
jump (CaveFlyer, Maze, Heist, Plunder, Coinrun), indicating that either it was too hard, or a very
simple policy already achieved reasonable performance.

0 1 2 3 4 5 6 7 8
Steps 1e8

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Te
st

 P
er

fo
rm

an
ce

Climber
Architecture
PPO+ITER
PPO
IBAC+ITER
IBAC
ITER-Sequential
ITER-noRL
Evaluation on
Test levels
Training levels

0 1 2 3 4 5 6 7 8
Steps 1e8

8

9

10

11

12

13

14

15

Te
st

 P
er

fo
rm

an
ce

Dodgeball

0 1 2 3 4 5 6 7 8
Steps 1e8

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Te
st

 P
er

fo
rm

an
ce

Ninja

0 1 2 3 4 5 6 7 8
Steps 1e8

4

6

8

10

12

14

16

18

Te
st

 P
er

fo
rm

an
ce

StarPilot

0 1 2 3 4 5 6 7 8
Steps 1e8

5

10

15

20

25

Te
st

 P
er

fo
rm

an
ce

BigFish

0 1 2 3 4 5 6 7 8
Steps 1e8

0

5

10

15

20

25

Te
st

 P
er

fo
rm

an
ce

FruitBot

Figure 9: All individual results on ProcGen. Shown is the mean and standard deviation across two random
seeds.

16

	Introduction
	Background
	The Impact of Non-stationarity on Generalisation
	ITER
	Distillation Loss
	Combining Training and Distillation

	Experiments
	Experimental Results on Multiroom
	Experimental Results on Boxoban
	Experimental Results on ProcGen
	Supervised Learning on CIFAR-10

	Related Work
	Conclusion
	Pseudo code
	Supervised Learning
	Multiroom
	Boxoban
	ProcGen

