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Abstract

Scaling language models unlocks impressive capabilities, but the accompanying
computational and memory demands make both training and deployment expen-
sive. Existing efficiency efforts typically target either parameter sharing or adaptive
computation, leaving open the question of how to attain both simultaneously. We in-
troduce Mixture-of-Recursions (MoR), a unified framework that combines the two
axes of efficiency inside a single Recursive Transformer. MoR reuses a shared stack
of layers across recursion steps to achieve parameter efficiency, while lightweight
routers enable adaptive token-level thinking by dynamically assigning different
recursion depths to individual tokens. This allows MoR to focus quadratic attention
computation only among tokens still active at a given recursion depth, further im-
proving memory access efficiency by selectively caching only their key-value pairs.
Beyond these core mechanisms, we also propose a KV sharing variant that reuses
KV pairs from the first recursion, specifically designed to further decrease memory
footprint. Across model scales ranging from 135M to 1.7B parameters, MoR
forms a new Pareto frontier: at equal training FLOPs and smaller model sizes, it
significantly lowers validation perplexity and improves few-shot accuracy, while de-
livering higher throughput compared with vanilla and existing recursive baselines.

1 Introduction

Scaling Transformer networks to hundreds of billions of parameters has unlocked impressive few-
shot generalization and reasoning abilities [10, 14, 19, 30, 31, 65, 71]. However, the accompanying
memory footprint and computational requirements make both training and deployment outside
hyperscale data centers challenging [68, 74]. This has motivated researchers to seek alternative
“efficient” designs [89, 92]. Among the different axes of efficiency, parameter efficiency [6, 20, 24,
55, 83]—reducing or sharing model weights—and adaptive computation [24, 57, 79, 81]—spending
more compute only when it is needed—are promising, actively studied research directions.

One proven route to parameter efficiency is layer tying, in which a shared set of weights is reused
across multiple layers [6, 20, 32, 54, 87]. For adaptive computation, a common approach is early-
exiting, which dynamically allocates compute by exiting earlier in the network when predicting
simpler tokens [5, 21, 22, 81]. Despite the progress achieved along each of these individual efficiency
axes, an architecture that effectively unifies both parameter efficiency and adaptive computation
is still missing. Recursive Transformers [3, 6, 23, 29, 33, 80, 100], models that repeatedly apply
the same set of shared layers multiple times, offer a strong foundation due to their built-in weight
sharing. However, prior attempts at dynamic recursion have often been constrained by practical
hurdles, such as requiring additional specialized training procedures or facing challenges in efficient
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Figure 1: Overview of Mixture-of-Recursions (MoR). (Left) Each recursion step consists of a fixed
stack of layers and a router that determines whether each token should pass through or exit. This
recursion block corresponds to the gray box in the middle. (Middle) The full model structure, where
the shared recursion step is applied up to Nr times for each token depending on the router decision.
(Right) An example routing pattern showing token-wise recursion depth, where darker cells indicate
active computation through the recursion block. Below shows the number of recursion steps that each
subword token undergoes to predict the next token, shown in colors: 1 , 2 , and 3 .

deployment. This has led most approaches to still default to a simpler fixed-depth recursion, which
applies the same amount of computation to every token and is thus incapable of delivering truly
adaptive token-level compute allocation.

In this work, we introduce Mixture-of-Recursions (MoR), a unified framework that fully leverages
the potential of Recursive Transformers (see Figure 1). MoR trains lightweight routers end-to-end
to assign token-specific recursion depths: it decides how many times a shared parameter block is
applied to each token according to its required depth of “thinking”, thereby directing computation to
where it is most needed. This dynamic, token-level recursion inherently facilitates recursion-wise
key–value (KV) caching, selectively storing and retrieving key–value pairs corresponding to each
token’s assigned recursion depth. This targeted caching strategy reduces memory traffic, thereby
improving throughput without relying on post-hoc modifications. Therefore, MoR simultaneously (i)
ties weights to cut parameters, (ii) routes tokens to cut redundant FLOPs, and (iii) caches key-values
recursion-wise to cut memory traffic—all inside a single architecture.

Conceptually, MoR provides a pre-training framework for latent space reasoning—performing
non-verbal thinking by iteratively applying a single parameter block [29, 34, 38]. However, unlike
approaches that deliberate on augmented continuous prompts before generation [34, 38, 60, 84], MoR
enables this latent thinking directly during the decoding of each token [102]. Furthermore, the routing
mechanism facilitates adaptive reasoning along the model’s vertical axis , moving beyond the uniform,
fixed thinking depth common in prior work [29, 86]. In essence, MoR enables models to efficiently ad-
just their thinking depth on a per-token basis, unifying parameter efficiency with adaptive computation.

Contributions. In summary, our key contributions in this paper are as follows.

• Unified framework for efficient language modeling: We present Mixture-of-Recursions (MoR),
the first architecture to unify efficiency paradigms—parameter sharing (§2.1), token-level adaptive
thinking depth (§2.2.1), and memory-efficient KV caching (§2.2.2)—within a single framework.

• Dynamic recursion routing: We introduce a router trained from scratch to assign dynamic per-
token recursion depths. This aligns training with inference-time behavior and eliminates the need
for costly, performance-degrading post-hoc routing stages used in conventional early-exit methods.

• Extensive empirical validation: Across models from 135M to 1.7B parameters under equal
compute budgets, MoR establishes a new Pareto frontier by improving validation loss and few-shot
accuracy relative to vanilla and recursive baselines (§3.1, §3.2).

• Efficient architecture: MoR dramatically reduces training FLOPs by selectively engaging only
essential sequences in attention operations. Simultaneously, reduction in KV cache sizes leads to
enhanced inference throughput itself, further boosted by continuous depth-wise batching (§3.3).
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Table 1: Parameter-sharing strategies in Recursive Transformers. This table shows Cycle and Middle-
Cycle schemes with cyclic layer reuse, where Middle-Cycle retains unique first and last layers.
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2 Method

2.1 Preliminary

Recursive Transformers. The standard Transformer [91] constructs token representations through
a stack of L unique layers, each with a self-attention and a feed-forward network. At time step t,
the hidden state h evolves as: hℓ+1

t = f
(
hℓ
t; Φℓ

)
, where ℓ = 0, . . . , L−1 and Φℓ represents the

parameters of the ℓ-th layer. Recursive Transformers [6, 23, 33, 80, 100] aim to reduce parameter
count by reusing layers across depth. Instead of having L distinct sets of weights, they partition
the model into Nr recursion blocks, where each block uses a shared pool of parameters Φ′. This
design allows for more computation (by increasing the effective network depth) without increasing
parameter size.

Parameter-sharing strategies. We examine four parameter-sharing strategies: Cycle, Sequence,
and their variants Middle-Cycle and Middle-Sequence. Table 1 summarizes two main designs,
and the full list is provided in Table 5 in the Appendix. In Cycle sharing, recursion blocks are
reused cyclically. For example, consider an original non-recursive model with L=9 layers and its
recursive counterpart using Nr=3 recursions. Under the “Cycle” strategy, the layers are shared
and unrolled as [(0, 1, 2), (0, 1, 2), (0, 1, 2)]. In “Sequence” sharing, each recursion block reuses the
same layer consecutively before moving to the next, resulting in [(0, 0, 0), (1, 1, 1), (2, 2, 2)] for the
same configuration. Both have the same effective number of layers when unrolled (L=9), but with a
different order. Furthermore, the “Middle” variants preserve full-capacity parameters at the first and
last layers (Φ0 and ΦL−1), while sharing weights among the intermediate layers.

Enhanced training and inference efficiency in recursive models. Parameter sharing strategies
can reduce the number of unique trainable parameters by a factor of the recursion number, effectively
amortizing the memory footprint of the model. From a distributed training perspective, this becomes
highly efficient when using Fully Sharded Data Parallel (FSDP) [108]. While a single all-gather
operation would only support one iteration previously (i.e., 1 iter/gather), a recursive model reuses
the same gathered parameters across all recursive steps (i.e., Nr iter/gather). Furthermore, recursive
architectures enable a novel inference paradigm, continuous depth-wise batching [6, 39]. This
technique allows tokens at different stages to be grouped into a single batch, as they all utilize the
same block of parameters. This can eliminate the bubbles—idle periods spent waiting for other
samples to complete—thereby leading to significant throughput gains.

Limitations in prior works. Although model parameters are tied, the distinct KV caches are
typically used for each depth. This design fails to reduce the cache sizes, meaning the high retrieval
latency still remains a severe inference bottleneck. Moreover, most existing recursive models simply
apply a fixed recursion depth to all tokens, ignoring the varying complexity. While post-hoc methods
like early-exiting methods can introduce some adaptivity, they often require separate training phases
that can degrade performance [6, 22, 81]. Ideally, the recursion depth should be learned dynamically
during pretraining, allowing the model to adapt its computational path to each token’s difficulty in a
data-driven manner. However, such dynamic paths introduce a new challenge: exited tokens will have
missing KV pairs at subsequent recursion depths. Addressing this would require a parallel decoding
mechanism [5, 22, 51] to efficiently compute the actual KV pairs, but this requires separate, complex
engineering and complicates the system.
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Figure 2: Architectural components of Mixture-of-Recursions (MoR). (a) Expert-choice routing:
At each recursion step, a router selects top-k tokens to continue, progressively narrowing the set
of active tokens with depth. (b) Token-choice routing: Each token is assigned a fixed recursion step
at the outset via a single routing decision, defining its complete compute path through the model. (c)
KV caching strategies: Each square in the matrix represents whether a token (row) attends to another
token’s cached key (column). In “recursion-wise KV caching” (Top), only the keys of currently
selected (non-dropped) tokens at each recursion step are cached ( blue ), and attention is restricted
only to these entries. In “recursive KV sharing” (Bottom), all keys of previous tokens are cached at the
first recursion step ( purple ) and shared across subsequent recursion steps for attention operations.

2.2 Mixture-of-Recursions

We propose Mixture-of-Recursions (MoR)—a framework that dynamically adjusts recursion step
for each token during pretraining and inference. The core of MoR lies in two components: a routing
mechanism that assigns token-specific recursion steps to adaptively concentrate computation on more
challenging tokens, and a KV caching strategy that defines how KV pairs are stored and selectively
utilized for attention at each recursive step.

2.2.1 Routing Strategies: Expert-choice vs. Token-choice

Expert-choice routing. (Figure 2a) Inspired by top-k gating in MoD models [79], in expert-choice
routing, each recursion depth becomes an expert and selects their preferred top-k tokens (e.g.,
for Nr = 3, we have three experts: Expert 1 applies the first recursion step, Expert 2 applies the
second recursion step, and so on). At each recursion step r, the corresponding router uses the hidden
stateHr

t (input to the r-th recursion block) and its routing parameters θr to compute a scalar score
grt = G(θ⊤r Hr

t ) for token t. Here, G represents an activation function like sigmoid or tanh. Then,
the top-k tokens are selected to pass through the recursion block:

Hr+1
t =

{
grt f(Hr

t , Φ
′) +Hr

t , if grt > Pβ(G
r)

Hr
t , otherwise

(1)

where Pβ(G
r) is the β-percentile threshold over all scores at recursion step r.

To ensure coherent progression through steps, we adopt hierarchical filtering: only tokens selected at
recursion step r can be re-evaluated at r+1. This simulates early-exit behavior while learning from
scratch. As deeper layers tend to encode increasingly abstract and sparse information [58, 69, 99],
this mechanism prioritizes computation for only the most demanding tokens.
Token-choice routing. (Figure 2b) Unlike expert-choice, where token selection is made at each
recursion step, token-choice commits each token to a full sequence of recursion blocks from the
start. Formally, given the hidden stateH1

t (in Middle-Cycle strategy,H1
t = h1

t ), the router computes
a non-linear function (softmax or sigmoid) over experts: gt = G(θ⊤r H1

t ), where gjt denotes the
routing score for expert j ∈ {1, . . . , Nr}. The token is assigned to expert i = argmaxj g

j
t (top-1

gating), which corresponds to sequentially applying the recursion i times. The hidden state is then
updated recursively as:

Hr+1
t =

{
grt f(Hr

t , Φ
′) +H1

t , if r = i

grt f(Hr
t , Φ

′), otherwise
(2)

4



Table 2: Comparison of routing strategies and key-value caching strategies. (Left) Summary of
two routing strategies: expert-choice and token-choice, highlighting their pros, cons, and mitigating
solutions from previous works [79, 93, 111]. (Right) Relative cost efficiency of caching strategies
against a vanilla Transformer (normalized to 1). Here, Nr denotes the number of recursions, and
k (k < Nctx) denotes the number of selected tokens per layer. We compare only the recursion blocks,
excluding the non-shared layers. KV cache memory and IO are measured across the entire model,
whereas attention FLOPs are reported per layer.

Expert-choice Token-choice

Pros Static compute budget No leakage

Cons Causality violation Load imbalance
⌞ Sol Aux Rout, Aux Loss Bal Loss, Loss-free

Recursion-wise Caching Recursive Sharing

KV Memory (Nr + 1)/2Nr 1/Nr

KV Cache IO (Nr + 1)/2Nr 1

Attn FLOPs k2/N2
ctx k/Nctx

To compare routing strategies under equal compute, we align the token allocation budgets of
expert-choice with that of token-choice. Specifically, we calibrate token capacity (i.e., top-k) of
expert-choice to match the expected token distribution of token-choice routing with perfect load bal-
ancing. In perfectly balanced token-choice, each token is assigned to recursion depth i ∈ {1, . . . , Nr}
with equal probability 1/Nr. Thus, recursion step j processes a fraction (Nr − j + 1)/Nr of the
tokens. For example, when Nr = 3, recursion steps 1, 2, and 3 handle {3/3, 2/3, 1/3} of tokens,
respectively. Therefore, we apply this same fractional allocation in the top-k selection of the
expert-choice routing (i.e., k is sequenced like Nr/Nr, · · · , 1/Nr over Nr recursion steps).
Strengths and limitations. (Table 2–Left) Although expert-choice routing guarantees perfect load
balancing with static top-k selection, it suffers from information leakage [79, 93, 110]. This violation
of causality during training forces to exploit an auxiliary router or a regularization loss [79, 110],
aiming to precisely detect top-k tokens at inference without access to future token information.
Meanwhile, token-choice is free from such leakage, but typically requires a balancing loss or loss-free
algorithms [24, 93, 111] due to its inherent load balancing challenges. We explore each of these
components for MoR in further detail (§4.2).

2.2.2 KV Caching Strategies: Recursion-wise Caching vs. Recursive Sharing

Dynamic-depth models often struggle with KV cache consistency during autoregressive decoding.
When a token exits early, its corresponding keys and values in deeper layers will be missing, which
can be crucial information for subsequent tokens. Some methods attempt to reuse stale entries [81] or
run parallel decoding [5], but these solutions still introduce overhead and complexity. To this end, we
design and explore two KV cache strategies tailored to MoR models: recursion-wise caching and
recursive sharing.
Recursion-wise KV caching. (Figure 2c–Top) Inspired by Raposo et al. [79], we cache KV pairs
selectively: only tokens routed to a given recursion step store their key–value entries at that level.
Thereby, the KV cache size at each recursion depth is determined exactly by the capacity factor in
expert-choice, or according to actual balancing ratios in token-choice. Attention is then restricted to
those locally cached tokens. This design promotes block-local computation, which improves memory
efficiency and reduces IO demands.
Recursive KV sharing. (Figure 2c–Bottom) A key design choice for our MoR model is that all
tokens traverse at least the first recursion block2. We leverage this by caching KV pairs exclusively at
this initial step and reusing them across all subsequent recursions. Therefore, the query length might
get shorter at each recursion depth based on the selection capacity, but the key and value lengths
will consistently maintain the full sequence. This ensures that all tokens can access to past context
without recomputation, despite any distribution mismatch.
Strengths and limitations. (Table 2–Right) Recursion-wise caching cuts KV memory and IO to
approximately (Nr +1)/2Nr times across the entire model (when assuming capacity factors follow a
sequence like Nr/Nr, · · · , 1/Nr over Nr recursion steps). It also reduces per-layer attention FLOPs
to a factor of (k/Nctx)

2 of those in vanilla models, resulting in substantially improved efficiency
for both training and inference phases. Meanwhile, recursive sharing can yield maximal memory
savings by globally reusing context. Speedups can be further achieved by skipping KV projection
and prefill at shared depths (compatible only with Cycle strategy [85]). However, attention FLOPs
only decrease by k/Nctx, and high volume of KV IO still leads to a decoding bottleneck.

2Though this is not a strict requirement of the MoR framework itself.
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Table 3: Comparison of MoR, Recursive, and Vanilla Transformers under both fixed FLOPs (16.5e18)
and token (20B) settings. All models are trained on FineWeb-Edu and evaluated by validation
negative log-likelihood (NLL) and few-shot accuracy. For the isoFLOP rows, the number of training
tokens (Ntok) varies by model efficiency. For the fixed-token rows, we report the effective FLOPs
consumed. For the model sizes, we report non-embedding parameter counts. For the KV mechanisms,
we distinguish between Cache (recursion-wise caching) and Share (recursive sharing). †In recursive
models, all tokens go through fixed recursion depths (Nr), instead of adaptive depths.

MoR Recursion Pretrain NLL ↓ Few-shot Accuracy ↑
Models Type KV Share Nr Param FLOPs Ntok FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla - - - - 315M 16.5 20B 2.7824 32.0 37.8 65.6 50.5 39.6 28.0 42.3

Recursive†
- - M-Cyc 2 167M 16.5 20B 2.8079 31.0 37.1 66.7 52.3 40.8 27.5 42.6
- - M-Cyc 3 118M 16.5 20B 2.8466 29.8 35.9 65.0 52.3 39.0 27.2 41.5
- - M-Cyc 4 98M 16.5 19B 2.8781 28.2 35.4 65.5 52.5 38.0 26.8 41.0

Expert Cache M-Cyc 2 167M 16.5 27B 2.7511 34.4 39.3 65.7 51.2 39.6 28.1 43.1
Expert Cache M-Cyc 3 118M 16.5 30B 2.7925 33.1 37.9 66.9 52.1 38.3 27.4 42.6
Expert Cache M-Cyc 4 98M 16.5 30B 2.8204 30.1 37.3 65.0 51.1 38.9 27.4 41.6

Expert Cache M-Cyc 2 167M 12.3 20B 2.7749 33.2 38.3 65.2 52.6 40.1 28.1 42.9
Expert Cache M-Cyc 3 118M 11.0 20B 2.8246 31.9 37.0 65.7 50.5 38.3 27.4 41.8
Expert Cache M-Cyc 4 98M 11.0 20B 2.8519 30.2 36.5 64.3 52.3 38.6 27.2 41.5

Token Cache M-Cyc 3 118M 16.5 30B 2.9163 27.6 34.1 63.8 50.6 37.4 26.8 40.0

MoR (ours)

Expert Share M-Cyc 3 118M 16.5 31B 2.7983 31.7 37.2 65.1 51.0 39.0 27.1 41.9

3 Experiments

We pretrain our models from scratch using a Llama-based Transformer architecture3 [65], referring to
the configurations of SmolLM open-source models [4], on a deduplicated subset of the FineWeb-Edu
dataset [75] in SmolLM-Corpus [7]. We evaluate the models on validation set of FineWeb-edu and
six few-shot benchmarks [26]. Detailed training and evaluation procedures, as well as throughput
measurement protocols, are described in Appendix D.

3.1 Main Results

MoR outperforms baselines with fewer parameters under equal train compute. Under an equal
training budget of 16.5e18 FLOPs, we compared our Mixture-of-Recursions (MoR) model against
both Vanilla and Recursive Transformers. As shown in Table 3, the MoR model, using an expert-
choice router and two recursions, achieves a lower validation loss and surpasses the vanilla baseline
in average few-shot accuracy (43.1% vs. 42.3%). Remarkably, this superior performance is achieved
despite using nearly 50% fewer parameters. This is attributed to MoR’s higher computational effi-
ciency, which allows it to process more training tokens within the same FLOPs budget. Furthermore,
as Nr increases to 3 or 4, MoR maintains its competitive accuracy, consistently outperforming the
recursive baselines while remaining within a tight margin of the full-capacity vanilla model.
MoR outperforms baselines with less compute at equal data. To isolate architectural differences,
we analyze performance under a fixed number of training tokens (20B). Specifically, our MoR model
with Nr = 2 outperforms both vanilla and recursive baselines—achieving lower validation loss and
higher accuracy—despite using 25% fewer training FLOPs. This theoretical efficiency translates
into significant practical gains: compared to the vanilla baseline, our model reduces training time by
19% and cuts peak memory usage by 25%. These improvements stem from our hierarchical filtering
and recursion-wise attention mechanism, which shortens sequence lengths to achieve a superior
compute-accuracy trade-off, even during pretraining.
MoR performance varies with routing and caching strategies. We also evaluate a few design
variants within MoR framework, specifically with Nr = 3 that is lightweight and still comparable
with Vanilla. In this case, using token-choice routing yields lower performance (40.0%) compared
to expert-choice routing (42.6%), indicating that routing granularity plays a pivotal role in model
performance. Additionally, applying KV cache sharing slightly reduces performance compared to
independent caching, while providing improved memory efficiency. This trade-off remains favorable
for practical deployment when memory usage is a key concern.

3Experiments on Llama are conducted without direction or involvement from Google advisors.
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Figure 3: Validation loss across different compute budgets across four model sizes: 135M, 360M,
730M, and 1.7B parameters. For MoR models, we use expert-choice routing and recursion-wise
caching. MoR consistently outperforms recursive baselines and matches or exceeds the standard
Transformers at larger scales, despite using significantly fewer parameters (approximately one-third
due to layer tying with NR = 3).

3.2 IsoFLOP Analysis

A core criterion for evaluating a new model architectural design is whether performance continues to
improve as model and compute scales grow [49]. Therefore, we evaluate MoR against both Vanilla
and Recursive Transformers across a wide range of model sizes and computational budgets to show
that it maintains competitive or superior predictive performance as the scale increases.
Experimental Setup. We experiment with four scales—135M, 360M, 730M, and 1.7B param-
eters—fixing the number of recursions to three for both Recursive and MoR configurations, resulting
in roughly one-third the number of unique parameters. Each model is pretrained under three FLOPs
budgets: 2e18, 5e18, and 16.5e18.
MoR is a scalable and parameter-efficient architecture. As shown in Figure 3, MoR consistently
outperforms recursive baselines across all model sizes and compute budgets. While it underperforms
the vanilla model at the smallest model size (135M)—likely due to a recursive capacity bottle-
neck—this gap closes rapidly at scale. For >360M parameters, MoR not only matches but often
exceeds the Vanilla Transformer, particularly under low and mid-range budgets. Overall, these results
highlight that MoR is a scalable and efficient alternative to standard Transformers. It achieves strong
validation performance with significantly lower parameter counts, making it a strong candidate for
both pretraining and large-scale deployment. Further details are presented in Appendix F.

3.3 Inference Throughput Evaluation

As a parameter-shared architecture, MoR can leverage continuous depth-wise batching [6] to dramat-
ically boost inference throughput compared to Vanilla Transformers. This maintains high and con-
sistent GPU utilization by immediately replacing completed sequences with incoming tokens during
decoding. The early-exiting mechanism in MoR further eliminates bubbles in the computational batch.
Experimental Setup. We measure throughput for 360M scale-based MoR models with recursion
depths of 2, 3, and 4, trained under a 16.5e18 FLOPs budget. Throughput (tokens/second) is
measured based on the generation time for tokens per sample, where the number of tokens is sampled
from a normal distribution with a mean of 256, starting without any input prefix. We examine two
batching configurations: a fixed batch size of 32 and a (relative) maximum batch size derived by
multiplying 32 by the ratio of the maximum batch sizes of vanilla and MoR models. Further details
on the experimental setup are provided in Appendix G.
MoR boosts inference throughput with continuous depth-wise batching. In Figure 4a, across
both batch settings, all MoR variants outperform the vanilla baseline, which even leverages
continuous sequence-wise batching [53, 101]. Increasing recursion depth leads to more tokens
exiting early and a further reduction in KV cache usage. This, in turn, boosts throughput significantly
(e.g., MoR-4 achieves up to a 2.06× speedup with B = Max). While there’s a slight performance
degradation, it can be a favorable trade-off given the substantial throughput gain. These results
support that the integration of the depth-wise batching paradigm with early-exiting can significantly
accelerate MoR’s actual deployment throughput.
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Figure 4: (a) Pareto frontier of inference throughput and log-likehood for MoR and Vanilla
Transformer under fixed and maximum batching scenarios. Setting details are in Appendix G.
(b) Negative log-likelihood (NLL) of Recursive Transformers with Nr = 3 across four different
parameter-sharing strategies. We pretrained the models on 10 billion tokens. The dashed red
and black lines denote the full-size Vanilla Transformer and parameter-matched vanilla models
(approximately one-third scales), respectively. (c) NLL performance comparison across four different
architectures with KV sharing. For MoR, green (disabled) and blue (enabled) refer to recursion-wise
KV caching and recursive KV sharing strategies. MoR-E and MoR-T denotes expert-choice and
token-choice MoR, respectively. All models are based on 360M scale and trained on 10 billion tokens.

4 Ablation Studies

4.1 Parameter Sharing Strategies

Middle-Cycle is the most effective parameter sharing strategy. As discussed in §2.1, parameter
sharing is a key component of Recursive Transformers and MoR. To identify the most effective
sharing configuration, we empirically compare four aforementioned strategies: Cycle, Sequence,
Middle-Cycle, and Middle-Sequence. We evaluate each strategy on Recursive Transformers based
on 135M and 360M model sizes. As shown in Figure 4b, “Middle-Cycle” consistently achieves the
lowest validation loss, and its superiority is further confirmed by the detailed results in Appendix H.
Based on these findings, we adopt the “Middle-Cycle” configuration for all subsequent MoR and
Recursive Transformers presented in this paper.

4.2 Routing Strategies

We conduct an extensive ablation study to understand the impact of various design choices for
routing schemes in our MoR framework. Detailed results are summarized in Appendix I.
In expert-choice routing, auxiliary loss and linear router yield the best performance. For
the expert-choice routing setup (Left of Table 4), we evaluate several design aspects: solution to
mitigate causality violation (auxiliary router vs. auxiliary loss), normalization functions (sigmoid vs.
tanh), router architectures (MLP, Linear, or Wide-MLP), and the impact of an auxiliary z-loss [111].
To assess how well the router performs dynamic allocation, we measure the proportion of “dead”
tokens—those never selected by the final recursion in a batch—on the validation dataset. Our key
findings are as follows: First, using an auxiliary loss is more effective for inference-time behavior
than training a separate auxiliary router. Second, a sigmoid normalization function and a simple
linear router architecture yield the best performance. Finally, the auxiliary z-loss has a negligible
impact on accuracy, though it does slightly reduce the proportion of dead tokens.
In token-choice routing, balancing loss yields stable and accurate routing. For token-choice
routing (Right of Table 4), we follow common MoE practices and enable z-loss by default. We
compare two balancing strategies: using a balancing loss and training in a loss-free manner using
router bias. While both approaches achieve similar log-probability and few-shot accuracy, the explicit
balancing loss yields a significantly lower MaxVio [93] in our MoR architectures, making it the
preferable choice for stable routing. However, despite this, the model often struggles to balance
loads among its heterogeneous experts, even for nearly half of the training steps. Softmax activation
with an MLP router performs best, and removing z-loss—though we add back with a very small
coefficient in the final design—results in higher performance and routing stability.
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Table 4: Ablation results for expert-choice (Left) and token-choice (Right) routers with various design
choices. We use MoR models that apply three recursions to a 360M model with recursion-wise
caching. Model performance is measured by NLL and average few-shot accuracy. We evaluate router
metrics—dead token ratio (for expert-choice) and MaxVio (for token-choice)—on the validation
set. The dead token ratio denotes the proportion of tokens that remain unselected during the last
recursion step, measured on 500 samples, each with 2K sequence length. The selected design choice
is highlighted in gray.

Expert-choice Router Performance (↓ / ↓ / ↑)

Sampling Func Arch z-loss Dead NLL Few-shot

Aux Rout σ MLP ✗ 0.0 2.8893 39.4
Aux Rout tanh MLP ✗ 66.7 2.8720 36.2

Aux Loss σ MLP ✗ 0.0 2.8816 40.0
Aux Loss tanh MLP ✗ 0.0 2.9933 38.8

Aux Loss σ Linear ✗ 0.1 2.8667 40.1
Aux Loss σ W-MLP ✗ 0.4 2.8716 39.4

Aux Loss σ Linear ✓ 0.0 2.8824 40.0

Token-choice Router Performance (↓ / ↓ / ↑)

Balancing Func Arch z-loss M-Vio NLL Few-shot

Loss (0.1) soft MLP ✓ 0.200 3.0239 38.5
Loss (0.01) soft MLP ✓ 0.682 2.9118 39.4

Loss-free soft MLP ✓ 0.852 2.9081 39.4
Loss-free σ MLP ✓ 1.281 3.0188 37.6

Loss (0.1) soft Linear ✓ 0.492 2.9974 38.4
Loss (0.1) soft W-MLP ✓ 0.384 3.0293 38.8

Loss (0.1) soft Linear ✗ 0.266 2.9358 39.1

4.3 KV Caching Strategies

KV sharing robustly works even in parameter-shared architectures. In Figure 4c, we first
investigate the effect of KV sharing in Vanilla and Recursive Transformers. As consistent with prior
works [9, 85, 94], if we pretrain models from the scratch, KV sharing does not often compromise
performance due to the greater parameter flexibility. Surprisingly, the Recursive Transformer remains
relatively robust to KV sharing, despite its reduced degrees of freedom. We found evidence for
this by decomposing the KV pairs at each recursion depth into their magnitude and direction. As
detailed in Appendix J, depths that share parameters exhibit highly consistent magnitude patterns
and high cosine similarity, providing a clear justification for why KV sharing results in only a slight
performance drop.
KV sharing degrades expert-choice but benefits token-choice routing in MoR. We compare
recursion-wise KV caching and recursive KV sharing mechanisms in our MoR framework. We
observe that while recursive KV sharing offers the advantages of reduced memory footprint and
overall FLOPs4, it leads to quite large performance degradation in expert-choice routing under a
fixed token setting. This suggest that exclusively updating and attending to the tokens active in
that recursion depth may be more beneficial. Conversely, MoR with token-choice routing could
benefit from KV sharing, where its weaker, inaccurate routing decisions can be complemented by the
additional contextual information provided by shared KV pairs.

5 Analysis

5.1 Compute-optimal Scaling Analysis

MoR scaling favors model size over training length under isoFLOPs. As illustrated in Figure 5a,
MoR exhibits a distinct compute-optimal scaling behavior compared to baselines under isoFLOPs
constraints. The flatter slope of MoR’s optimal path (a line connecting stars) indicates that it benefits
more significantly from increases in parameter count (i.e., less data-hungry). This is likely because
the performance of the shared parameter block itself becomes important, even more than feeding
in additional data. Therefore, the optimal scaling policy for MoR models favors allocating resources
to increasing model capacity by using larger models trained for shorter steps.

5.2 Routing Analysis

The allocation of recursion depth reflects contextual predictability of the subsequent token.
In the Right of Figure 1, we illustrate each token’s recursion depth, which directly indicates how
easily the next token can be predicted within the given context. For example, the second subword

4Although attention FLOPs increase by Nctx/k than recursion-wise KV caching, reduced KV projection
FLOPs lead to an overall reduction.
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Figure 5: (a) Compute-optimal scaling analysis for three model architectures. Each star indicates
the optimal model size for a given compute budget. We visualize the results in §3.2 by fitting
polynomial functions for each architecture and FLOPs budget, and derive the optimal points from
these fits. (b) Distribution of router outputs for selected and unselected tokens at each recursion step.
As an example, a 360M size-based MoR model with Nr = 3, expert-choice router with auxiliary
loss, and recursion-wise caching, is used. (c) Test-time scaling analysis illustrating the cumulative
log-likelihood improvement with increasing recursion depth, measured over 500 samples. As we
increase Nr based on a 360M model size, the number of unique parameters in MoR decreases,
resulting in a gradual decline in overall performance (i.e., a decrease in log-likelihood). All models
are trained by an expert-choice router with auxiliary loss and a recursion-wise caching mechanism.

part (e.g., “-ensively”) of a word is often straightforward to predict, thus needing fewer steps. As also
shown in Table 17, while the initial generation (opening) of function words like “---”, “(”, “.”, and
“,” appears easy for models, predicting their closing parts or the first token immediately following
their opening might be more challenging.

Expert-choice router with auxiliary loss perfectly separates selected from unselected tokens.
Figure 5b visualizes one example of the expert-choice router output distribution at each recursion step
in a MoR model with Nr = 3. For each recursion step, the normalized counts of routing scores are
plotted, distinguishing between tokens selected by the expert (blue) and those not selected (orange).
In all steps, auxiliary loss achieves a perfect separation in router outputs, with selected tokens sharply
concentrated near a routing score of 1.0 and unselected tokens clustering near 0.0. Router output distri-
butions for the two routing strategies and their associated design choices are detailed in Appendix K.

5.3 Test-time Scaling Analysis

MoR enables test-time scaling via deeper recursion. We visualize how log-likelihood evolves
across recursion steps in MoR models with Nr = {2, 3, 4} in Figure 5c. The overlaid bars illustrate
the performance of each model when the maximum thinking (recursion) depth of tokens gradually
increases. This suggests that deeper recursion not only provides additional compute but also enables
each subsequent step to specialize further in refining the token representation or “thought process” at
its particular depth, leading to better performance. Thereby, these results support the view that MoR
enables test-time scaling: allocating more recursion steps at inference can improve generation quality.

6 Conclusion

Mixture-of-Recursions (MoR) presents a unified Transformer architecture that simultaneously lever-
ages parameter sharing, adaptive recursion depth, and efficient KV caching without compromising
model quality. By dynamically assigning recursion depth to tokens via lightweight routers and
selectively caching key-value states for selected tokens, MoR reduces both quadratic attention com-
putation and redundant memory access costs. Extensive empirical evaluations show that MoR lowers
validation perplexity and improves average few-shot accuracy compared to both vanilla and previous
recursive baselines, even with higher inference throughput. These results demonstrate that MoR offers
an effective path towards achieving large-model capabilities with significantly reduced computational
and memory overhead.

10



Acknowledgements

We thank Jacob Eisenstein for valuable feedback on an earlier version of the paper. We also
acknowledge the support and helpful conversations from Seungyeon Kim, Mostafa Elhoushi, Pascal
Vincent, Irina Rish, Sangdoo Yun, and Baeseong Park. Finally, we thank the Google Cloud Platform
for awarding Google Cloud credits for this project, and Google’s research grant project for its support.

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) ([RS-2019-II190075, Artificial
Intelligence Graduate School Program (KAIST), 5%], [No. RS-2024-00457882, AI Research Hub
Project, 5%], and [No. 2022-0-00871, Development of AI Autonomy and Knowledge Enhancement
for AI Agent Collaboration, 90%]). This research was also enabled in part by computational
resources, software, and technical assistance provided by Mila, ULaval, Calcul Québec, and Digital
Research Alliance of Canada.

References
[1] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón,

and Sumit Sanghai. GQA: training generalized multi-query transformer models from multi-
head checkpoints. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 4895–4901,
2023. doi: 10.18653/V1/2023.EMNLP-MAIN.298.

[2] Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245, 2023.

[3] Preslav Aleksandrov, Meghdad Kurmanji, Fernando Garcia Redondo, David O’Shea, William
Shen, Alex Iacob, Lorenzo Sani, Xinchi Qiu, Nicola Cancedda, and Nicholas D Lane. Abbie:
Autoregressive block-based iterative encoder for efficient sequence modeling. arXiv preprint
arXiv:2507.08567, 2025.

[4] Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf.
Smollm - blazingly fast and remarkably powerful, 2024.

[5] Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding. In
Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 5910–5924, Singapore, dec 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.362. URL
https://aclanthology.org/2023.emnlp-main.362.

[6] Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster.
Relaxed recursive transformers: Effective parameter sharing with layer-wise lora. arXiv
preprint arXiv:2410.20672, 2024.

[7] Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Smollm-corpus, 2024. URL https://huggingface.co/datasets/HuggingFaceTB/
smollm-corpus.

[8] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computa-
tion in neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

[9] William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan
Ragan-Kelley. Reducing transformer key-value cache size with cross-layer attention. Neural
Information Processing Systems, 2024. doi: 10.48550/arXiv.2405.12981.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

11

https://mila.quebec/en
https://www.ulaval.ca/
https://www.calculquebec.ca/
https://alliancecan.ca/en
https://alliancecan.ca/en
https://aclanthology.org/2023.emnlp-main.362
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus


[11] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv: 2302.01318, 2023.

[12] Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuo-
huan Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging
dynamic depth scaling to foster adaptive internal thinking. arXiv preprint arXiv:2502.13842,
2025.

[13] Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning
through dense representations. arXiv preprint arXiv:2412.13171, 2024.

[14] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

[15] Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei.
Stablemoe: Stable routing strategy for mixture of experts. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
7085–7095, 2022.

[16] Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in
reasoning models. arXiv preprint arXiv:2505.07686, 2025.

[17] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[18] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. Advances in neural information
processing systems, 35:16344–16359, 2022.

[19] DeepSeek-AI. Deepseek-v3 technical report. arXiv preprint arXiv: 2412.19437, 2024.

[20] Mostafa Dehghani, Stephan Gouws, O. Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. International Conference on Learning Representations, 2018.

[21] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=SJg7KhVKPH.

[22] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling
early exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

[23] Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for
length generalization. arXiv preprint arXiv:2409.15647, 2024.

[24] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

[25] Advait Gadhikar, Souptik Kumar Majumdar, Niclas Popp, Piyapat Saranrittichai, Martin Rapp,
and Lukas Schott. Attention is all you need for mixture-of-depths routing. arXiv preprint
arXiv:2412.20875, 2024.

[26] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell,
Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya
Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou.
The language model evaluation harness, 07 2024. URL https://zenodo.org/records/
12608602.

12

https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602


[27] Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar.
Can looped transformers learn to implement multi-step gradient descent for in-context learning?
arXiv preprint arXiv:2410.08292, 2024.

[28] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. International Conference on
Learning Representations, 2023. doi: 10.48550/arXiv.2310.01801.

[29] Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R
Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time
compute with latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171,
2025.

[30] Google Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv: 2403.05530, 2024.

[31] Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, mul-
timodality, long context, and next generation agentic capabilities, 2025. URL https:
//arxiv.org/abs/2507.06261.

[32] Sia Gholami and Marwan Omar. Do generative large language models need billions of
parameters? arXiv preprint arXiv: 2309.06589, 2023.

[33] Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pages 11398–11442. PMLR, 2023.

[34] Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and
Vaishnavh Nagarajan. Think before you speak: Training language models with pause tokens.
arXiv preprint arXiv:2310.02226, 2023.

[35] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

[36] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[37] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. Advances in neural information processing systems, 28, 2015.

[38] Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

[39] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir
Gholami, and Sophia Shao. Speed: Speculative pipelined execution for efficient decoding.
arXiv preprint arXiv:2310.12072, 2023.

[40] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv: 2401.18079, 2024.

[41] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

[42] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1
(2):3, 2022.

13

https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261


[43] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks
with stochastic depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, volume 9908 of Lecture Notes in Computer
Science, pages 646–661. Springer, 2016. doi: 10.1007/978-3-319-46493-0\_39. URL https:
//doi.org/10.1007/978-3-319-46493-0_39.

[44] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[45] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao
Carreira. Perceiver: General perception with iterative attention. In International conference
on machine learning, pages 4651–4664. PMLR, 2021.

[46] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[47] Guochao Jiang, Guofeng Quan, Zepeng Ding, Ziqin Luo, Dixuan Wang, and Zheng Hu.
Flashthink: An early exit method for efficient reasoning. arXiv preprint arXiv:2505.13949,
2025.

[48] Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna,
and Tuo Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative
inference of llm. arXiv preprint arXiv: 2403.05527, 2024.

[49] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

[50] Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeon-
woo Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. Solar 10.7 b: Scaling large language
models with simple yet effective depth up-scaling. arXiv preprint arXiv:2312.15166, 2023.

[51] Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney,
Amir Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances in
Neural Information Processing Systems, 36:39236–39256, 2023.

[52] Deqian Kong, Minglu Zhao, Dehong Xu, Bo Pang, Shu Wang, Edouardo Honig, Zhangzhang
Si, Chuan Li, Jianwen Xie, Sirui Xie, et al. Latent thought models with variational bayes
inference-time computation. In Forty-second International Conference on Machine Learning.

[53] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th symposium on operating systems
principles, pages 611–626, 2023.

[54] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representations.
International Conference on Learning Representations, 2019.

[55] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural
information processing systems, 2, 1989.

[56] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with
conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

[57] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

14

https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1007/978-3-319-46493-0_39


[58] Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J
Reddi, Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On
emergence of activation sparsity in transformers. arXiv preprint arXiv:2210.06313, 2022.

[59] Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache:
Kv cache compression in depth dimension for large language models. Advances in Neural
Information Processing Systems, 37:139997–140031, 2024.

[60] Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in latent
space via differentiable cache augmentation. arXiv preprint arXiv:2412.17747, 2024.

[61] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In
Forty-first International Conference on Machine Learning, 2024.

[62] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and
tasks. arXiv preprint arXiv:2110.07602, 2021.

[63] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anas-
tasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of
importance hypothesis for llm kv cache compression at test time. Advances in Neural Informa-
tion Processing Systems, 36:52342–52364, 2023.

[64] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shri-
vastava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for
efficient llms at inference time. In International Conference on Machine Learning, pages
22137–22176. PMLR, 2023.

[65] AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv: 2407.21783,
2024.

[66] Yaxin Luo, Gen Luo, Jiayi Ji, Yiyi Zhou, Xiaoshuai Sun, Zhiqiang Shen, and Rongrong Ji.
γ-mod: Exploring mixture-of-depth adaptation for multimodal large language models. arXiv
preprint arXiv:2410.13859, 2024.

[67] Mehrnaz Mofakhami, Reza Bayat, Ioannis Mitliagkas, Joao Monteiro, and Valentina Zant-
edeschi. Performance control in early exiting to deploy large models at the same cost of
smaller ones. arXiv preprint arXiv:2412.19325, 2024.

[68] Ali Momeni, Babak Rahmani, Benjamin Scellier, Logan G. Wright, Peter L. McMahon,
Clara C. Wanjura, Yuhang Li, Anas Skalli, Natalia G. Berloff, Tatsuhiro Onodera, Ilker Oguz,
Francesco Morichetti, Philipp del Hougne, Manuel Le Gallo, Abu Sebastian, Azalia Mirhoseini,
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A Related Work

Recursive Transformers. Parameter sharing provides an orthogonal path to effi-
ciency [6, 20, 45, 54, 70, 87, 88, 95]. The Universal Transformer first showed that repeatedly
applying a single block can match the representational power of deep, non-shared stacks [20]. Looped
Transformers shown to be effective, can act as programmable computers [33], learn iterative data-
fitting algorithms [100], generalize to much longer inputs on algorithmic tasks [23], and illuminate
few-shot learning by mimicking multi-step optimizers [27]. Furthermore, Bae et al. [6] mitigate the
accuracy loss often associated with weight tying by adding low-rank adaptation (LoRA) adapters [42]
in each loop, yielding Relaxed Recursive Transformers. Recent work further demonstrates that Recur-
sive Transformers excel at latent reasoning via recurrent depth [29]. While most prior studies focus on
the efficiency gains from weight tying, the recursive architecture itself offers a second level: inspired
by early-exiting [81] and compute routing [79], one can vary the number of recursions per input (e.g.,
per token), allocating compute only where it is most beneficial during both training and inference.

Adaptive computation. Many works have shown that dynamic compute allocation can markedly
reduce the cost of training and inference, from traditional neural networks [8, 35, 43, 72, 90]
to large language models [5, 21, 22, 24, 41, 79]. Early exiting methods learn to halt processing
for “easy” samples (e.g., tokens or sequences in language modeling) by skipping the remaining
layers [20, 21, 67, 81]. Alternatively, early exits can be combined with speculative decoding
techniques [11, 57] during inference by leveraging lower layers for fast drafting [5, 22]. Recently,
Mixture-of-Depths (MoD) [79] reframed adaptive depth as a routing problem: a router at each layer
selects a subset of tokens to receive the full computation, while the rest bypass the layer, yielding
finer-grained conditional compute. This new form of adaptive allocation is well suited to Transformer
architectures and has already been extended to other modalities [66, 105], highlighting a promising
paradigm of dynamic compute at token-level granularity. MoR applies this routing idea to recursive
Transformers: tokens are dynamically sent through repeated calls of a single, weight-tied block
instead of through distinct layers. This shift keeps parameter count constant, allows arbitrarily deep
(adaptive) compute beyond the model’s physical depth.
Routing mechanism. LLMs have increasingly employed routers to enable adaptive computation,
primarily in sparse Mixture-of-Experts (MoE) frameworks [15, 56, 83, 111], i.e., each token is
processed by a subset of expert networks chosen by a learned router, dramatically increasing model
capacity without a computational overhead. Early MoE architectures [24, 46, 56] adopted a token-
choice routing strategy, wherein the router selects the top-k experts for each token based on its hidden
state. While effective, this approach often leads to load imbalance across experts, necessitating
auxiliary balancing losses. To address this, expert-choice routing [36, 110] has been proposed,
wherein each expert selects the tokens to serve, ensuring perfect load balancing and improved
efficiency. Building on this, a few works employed trainable routers to determine which layers to
skip [25, 79, 104]. Unlike traditional early-exit methods, these expert-choice routing mechanisms
enforce a static compute budget by capping the number of tokens processed per layer (or depth).
Key-value caching. Key–value (KV) caching stores the per-token key and value tensors produced
at each layer during autoregressive decoding; reusing them eliminates quadratic-time recomputation
and boosts throughput [9, 28, 48, 59, 77, 82, 96]. Unfortunately, retaining these tensors quickly
saturates GPU memory, especially for long contexts and large batches [9, 14]. Prior work tackles this
issue by quantizing KV activations to lower precision [40, 106], discarding entries that contribute
little to the final output [63, 107], and sharing keys and values across attention heads [2, 82]. Brandon
et al. [9] push this idea further, allowing adjacent layers to share the same key and value tensors
and achieving additional memory savings with negligible quality loss. Our Mixture-of-Recursions
offer a complementary avenue: KV caches generated in early recursions can be reused in later ones,
potentially reducing memory consumption even further. This also provides the advantage of only
needing to run the first recursion during prefill phase [85] (only with Cycle strategy), promising
significant speedups for prompt settings over 1 million tokens. Two caching strategies in MoR can
be optimized based on their distinct benefits to suit various deployment settings.
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Latent reasoning. An emerging line of work enables LLMs to perform reasoning internally within
hidden states rather than through explicit verbalization [13, 34, 52, 76, 86]. Many approaches adopt a
fixed latent reasoning depth: they insert special tokens or structured prompts (e.g., a learnable “pause”
token [34] or filler punctuation [76]) that allow the model to execute a predetermined number of
hidden reasoning passes before producing an answer. Others reuse the model’s hidden states in a
closed loop for a fixed number of iterations by feeding final hidden states back as input to simulate
chain-of-thought [38, 80, 84]. Another line of research enhances latent reasoning by augmenting
hidden states with intermediate semantic signals [86, 102]. However, these methods lack the flexibility
to allocate computation where it is most needed, leading to unnecessary overhead on easy inputs and
insufficient reasoning on complex ones. This motivates leveraging looping mechanisms for more
adaptive latent reasoning [12, 29, 80, 103].

B Limitations and Future Works

Reasoning MoR models. Recent studies have highlighted the redundancy within reasoning chains
and address it by applying token-level adaptive computation, like early-exit mechanisms [16, 47, 98].
Our MoR framework inherently enables latent reasoning by adaptively determining the necessary
recursion depth for individual tokens. Therefore, a crucial future work involves exploring how
the router can dynamically learn to adjust to the necessity of chain-of-thought (CoT) chains when
post-trained on actual reasoning datasets. Developing advanced routing strategies that explicitly
align recursion depth with reasoning complexity may enhance reasoning accuracy, computational
efficiency, and even interpretability for deliberative reasoning process.
Further scaling model family. Due to current compute constraints, our experiments have been
limited to models of up to 1.7 billion parameters. The next step is to train Mixture-of-Recursions
(MoR) models at a larger scale (over 3 billion parameters) on substantially larger corpora. To enhance
the scalability of the MoR architecture, we can first increase the size of the non-shared block. A
potential follow-up work could introduce depth-specific LoRA [6] or experts (i.e., incorporating
Mixture-of-Experts principles) and leverage expert parallelism [78] to efficiently compute the input
at each depth in parallel, which is expected to improve model quality without huge speed bottlenecks.
Furthermore, to reduce overall pre-training costs, we could also explore continued pre-training
(uptraining), starting from existing pre-trained vanilla LLM checkpoints. As future work, we plan to
investigate MoR performance using various initialization strategies for recursive models, as explored
in prior work [6].
Adaptive capacity control. Expert-choice routing offers the significant advantage of guaranteeing
perfect load balancing through pre-determined capacity factors [79, 110]. However, a limitation
arises when we want to allocate different capacities during inference. Specifically, in our MoR
models, we observe that when using an auxiliary loss, the router outputs for selected and unselected
tokens are almost perfectly separated. This makes it challenging to adjust top-k values after training.
Therefore, a more adaptive model design, which can leverage different capacities during both training
and inference phases, is needed to address this limitation.
Compatibility with sparse algorithms. Given MoR’s token-level adaptive recursion, we can
further optimize computation by integrating structured sparsity. This approach allows for the selective
activation of subnetworks or parameters [64], dynamically pruning unnecessary computations at both
the token and layer levels [22, 79]. This investigation into sparse model designs promises significant
efficiency improvements. We believe many sparsity-based techniques, such as pruning [37] or
quantization [44], are highly complementary to our MoR framework. This will provide deeper
insights into effective sparse architectures within recursive models, offering promising directions for
future research.
Expansion to multimodal and non-text domains. MoR’s recursion block is inherently modality-
agnostic, allowing its adaptive depth mechanism to extend beyond text processing. This crucial
property enables MoR to readily integrate into vision, speech, and unified multimodal transformer
architectures. Applying token-adaptive recursion to long-context video or audio streams holds the
potential for even greater memory efficiencies and substantial throughput gains, crucial for real-world
applications. By dynamically adjusting the processing depth for each token or segment, MoR could
unlock these significant benefits.
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C Details of Design Choices for Mixture-of-Recursions

In this section, we provide detailed descriptions of the design choices employed in Mixture-of-
Recursions, expanding upon the summary provided in the main pages.

C.1 Parameter-sharing Strategy

Table 5 shows formulation and visualization of four parameter-sharing strategies: Cycle, Middle-
Cycle, Sequence, and Middle-Sequence. These strategies determine how a shared pool of blocks Φ′

are reused across a total of L unrolled layers. The optimal strategy for parameter sharing in recursive
models remains an open question.

In the Cycle strategy, a fixed set of parameters is reused cyclically across all recursion steps. By
forcing the model to re-engage with the input through the same shared block, it encourages a deeper,
iterative refinement process, akin to “rethinking” the problem from the ground up at every stage.
However, because the same transformations are applied repeatedly regardless of input variation, it
may limit the model’s capacity to learn diverse or highly specialized features.

On the other hand, the Sequence strategy assigns distinct parameters to each recursion block in
sequential order. A potential drawback is that simply applying similar transformations twice in a row
may lead to redundant features with diminishing returns. Nevertheless, the use of a fixed, sequential
order of layers may provide a stable and predictable structure.

Building upon these strategies, the Middle sharing variant further refines parameter reuse by preserv-
ing unique parameters at the first and last layers while sharing weights only among the intermediate
layers. This approach aims to balance the trade-off between parameter efficiency and representational
flexibility, maintaining distinct entry and exit transformations while benefiting from reduced parame-
ter redundancy in the middle layers. In line with recent findings [29, 50], Middle sharing can capture
important input and output nuances more effectively than pure Cycle or Sequence sharing, without
significantly increasing model size.

Table 5: Parameter-sharing strategies in Recursive Transformers. This table shows Cycle, Middle-
Cycle, Sequence, and Middle-Sequence schemes with layer reuse, where Middle-* retains unique first
and last layers.
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C.2 Routing Strategy

In this section, we provide an in-depth explanation of the two routing strategies employed in Mixture-
of-Recursions: Expert-choice and Token-choice routers. Each approach has distinct advantages and
inherent limitations, which we first outline before discussing the mitigation techniques we utilized.
Expert-choice routing. The expert-choice router offers several advantages, including a fixed
compute budget that simplifies resource management. However, it suffers from a key issue: the top-k
selection operation, which requires information of tokens that appear later in the sequence, violates
causality in autoregressive inference. This non-causal dependency (i.e., information leakage) can
cause unexpected behavior during inference, potentially reducing model reliability.

To address these challenges, we explore two approaches: the auxiliary router and the auxiliary loss
[79]. The auxiliary router is an additional lightweight network trained jointly but used only during
inference; it predicts whether a token will be among the top-k selection. This additional router is
trained with a binary cross-entropy loss, where the top-k selections from the main router are defined
as the targets. Importantly, its training is isolated from the main objective through gradient blocking,
so it does not affect the primary model training. Meanwhile, the auxiliary loss applies the binary
cross-entropy loss to the main router itself, enabling it to simultaneously learn to push top-k tokens
towards one and others towards zero during training. This ensures the router can reliably predict
which tokens will be selected as top-k during inference.
Token-choice routing. In contrast, the token-choice router assigns recursion depths on a per-token
basis without enforcing a fixed compute budget, thus avoiding leakage of information across tokens
and preserving autoregressive properties. However, this introduces load imbalance across experts,
which results in uneven token distribution across experts (or recursion depths), potentially causing
inefficient compute allocation and unbalanced training.

To mitigate load imbalance, we employ two solutions from existing literature. Balancing Loss [24,
56] regularizes for a more uniform distribution of tokens across experts. For a sequence of length T ,
a balancing loss for MoR is calculated as follows:

LBalance = α

Nr∑
i=1

fiPi,

fi =
Nr

T

T∑
t=1

I(Token t selects Expert i),

Pi =
1

T

T∑
t=1

git,

where Nr is the total number of experts (which is also the number of recursion), git is the routing score
of expert i for token t, fi represents the fraction of tokens routed to expert i, Pi denotes the average
routing scores of expert i, and λ is a hyperparameter controlling the strength of the auxiliary loss.

Loss-free [93] utilizes router biasing without explicit regularization loss. Specifically, this method
adjusts per-expert bias terms bi to balance token assignments across experts. During each training
batch, routing scores are computed, and the number of tokens assigned to each expert (ci) is counted.
The load violation error is calculated as ei = c̄i − ci where c̄i is the average token count for expert i.
Biases are then updated via bi ← bi + u× sign(ei), where u is a bias update rate. The biased routing
scores for selecting top-k expert are calculated as

gti =

{
gti , if gti + bi ∈ topk

(
{gtj + bj | 1 ≤ j ≤ N}, k

)
0, otherwise

Note that the expert bias term is only utilized to adjust the routing strategy by influencing the top-k
selection.
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C.3 KV Caching Strategy

This work investigates two principal strategies for key-value (KV) caching to optimize memory usage
during Recursive Transformer computations: recursion-wise caching and recursive KV sharing.
Recursion-wise caching. This keeps separate KV caches for each recursion step, ensuring tokens
attend only to the KV pairs generated in their current recursion block. This prevents distribution
mismatches between recursion steps, helping to maintain model accuracy while reducing memory
and computational costs.
Recursive KV sharing. In contrast, recursive sharing reuses KV pairs computed in the first re-
cursion step for all subsequent steps. Although this approach further lowers memory usage and
eliminates the need to compute deeper recursion during the prefill phase, it introduces potential
mismatches as later recursion steps receive KV representations originally intended for earlier steps.
Such mismatch can negatively impact model performance when token routing is precise. Therefore,
recursion-wise caching is generally preferred in settings with selective token routing to avoid per-
formance degradation, while recursive KV sharing may be considered when memory efficiency is
prioritized and prefill time is main bottleneck in the system.

D Experimental Setup

Training settings. We utilized a Llama-based Transformer architecture [65], referring to the
configurations of the open-source SmolLM models [4]. All models were pretrained on a deduplicated
subset of the FineWeb-Edu dataset [75] in SmolLM-Corpus [7], which comprises 220 billion tokens
sourced from educational materials. Pretraining was conducted using four H100 or A100 GPUs. In
our main and isoFLOPs analysis experiments, we utilized a Trapezoid learning rate scheduler, which
consists of warmup (about 5%), stable, and cooldown (20%) phases. This approach allows us to
efficiently continue pretraining for scaling laws from intermediate checkpoints, eliminating the need
to train all models independently. In contrast, for all other experiments, we used a simple cosine
annealing scheduler.
Evaluation settings. To assess model performance, we evaluated few-shot accuracy on six bench-
marks using the Language Model Evaluation Harness: LAMBADA (LD), HellaSwag (HS), PIQA
(PQ), WinoGrande (WG), ARC (Easy and Challenge), and MMLU. For all few-shot datasets, exclud-
ing LAMBADA, WinoGrande, and MMLU, we normalized accuracy by the byte length of the target
string. We adhered to the standard number of shots for each dataset, and used the continuation task
specifically for MMLU for simplicity. All evaluation performance measurements were conducted
using a single H100 or A100 GPU.
Model architecture details. Table 6 summarizes the architectural specifications of the four Vanilla
Transformer models used as the base for our recursive models. Each model variant differs in
scale, ranging from 135M to 1.7B total parameters (including both non-embedding and embedding
components). For consistency and comparability, all models are trained using a vocabulary size of
49K and a maximum input sequence length of 2K tokens.

Table 6: Key parameters of four model size variants. A model’s size is defined by the total number
of its non-embedding and embedding parameters. Three small models utilize Grouped-Query
Attention [1], reducing the number of key-value heads. We refer to the base configurations of the
open-sourced SmolLM models [4].

Base Configuration Attention & Feed-Forward Input

Models N-emb Emb NL dmodel Nhead NKV dhead dinter Vocab Lctx

Vanilla 135M 106M 28M 30 576 9 3 64 1536 49K 2K
Vanilla 360M 315M 47M 32 960 15 5 64 2560 49K 2K
Vanilla 730M 654M 75M 26 1536 24 8 64 4096 49K 2K
Vanilla 1.7B 1.61B 101M 24 2048 32 32 64 8192 49K 2K
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E Expanded Results of Main Experiments

E.1 Performance Validation at 1.7B Scale

We validate our models by scaling up the size to 1.7B, all under the same FLOPs budget. As shown
in Table 7, the MoR model with expert-choice routing shows strong performance, but the vanilla
model performs slightly better. While this could be due to the differences in the optimal number
of tokens associated with each model’s optimal scaling policy, it might also signal that the current
architecture design of MoR is not suitable for scaling. Nevertheless, we may be able to further
improve performance by increasing the number of non-shared blocks (despite reduced efficiency),
applying depth-specific LoRA or MoE to each recursion [6], or uptraining with initialization from a
well-pretrained checkpoint. Further validation with larger sizes or training on more tokens is required.

Table 7: Comparison of MoR, Recursive, and Vanilla Transformers at 1.7B scale under both fixed
FLOPs (68.5e18) settings. All models are trained on FineWeb-Edu and evaluated by few-shot
accuracy. For the isoFLOP rows, the number of training tokens (Ntok) varies by model efficiency.
For the model sizes, we report non-embedding parameter counts. †In recursive models, all tokens
go through fixed recursion depths (Nr), instead of adaptive depths.

MoR Recursion Pretrain Few-shot Accuracy ↑
Models Type KV Share Nr Param FLOPs Ntok LD HS PQ WG ARC MMLU Avg

Vanilla - - - - 1.61B 68.5 20B 40.8 49.4 70.6 54.8 47.4 30.2 48.9

Recursive†
- - M-Cyc 2 0.87B 68.5 18B 37.3 46.5 68.9 52.6 44.2 29.6 46.5
- - M-Cyc 3 0.67B 68.5 20B 36.4 45.3 69.5 52.7 43.9 29.1 46.2

Expert Cache M-Cyc 2 0.87B 68.5 26B 41.1 47.5 70.0 55.6 46.0 30.3 48.4
Expert Cache M-Cyc 3 0.67B 68.5 27B 37.2 46.6 69.1 53.7 44.1 29.7 46.7MoR (ours)
Token Cache M-Cyc 3 0.67B 68.5 30B 35.6 43.2 68.1 53.0 43.4 29.0 45.4

E.2 Increasing Recursion Depth under Fixed Parameters

Table 8 illustrates the performance change when the number of recursions (Nr) is increased while the
number of unique parameters is fixed at 118M. As the number of recursions rises from 1 (Vanilla) to
2 and 3 (MoR), the negative log-likelihood decreases on both the train and validation sets, and the
average few-shot accuracy improves. This demonstrates that the MoR model can effectively scale
performance by merely increasing the recursion steps, even with a fixed model size.

Table 8: Comparison of MoR with different numbers of recursions under the same number of
parameters. Vanilla equals MoR with recursion 1. All models are trained on FineWeb-Edu with
10B tokens, and we apply the Middle-Cycle parameter sharing for MoR models. We report negative
log-likelihood (NLL) on the train and validation sets and few-shot accuracy across six benchmarks.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑
Models N-Emb NL Ntok Nr Share Train Valid LD HS PQ WG ARC MMLU Avg

Vanilla 118M 12 10B 1 - 2.9182 2.9678 25.81 33.08 61.81 51.46 38.10 26.64 39.48
MoR 118M 1+10+1 10B 2 M-Cyc 2.8767 2.9205 27.09 33.84 62.13 53.04 36.77 26.88 39.96
MoR 118M 1+10+1 10B 3 M-Cyc 2.8667 2.9111 27.38 34.60 63.17 51.46 37.15 26.83 40.10
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F Expanded Results of IsoFLOP Analysis

In the main paper (§3.2), we compared Vanilla, Recursive and our Mixture-of-Recursions (MoR)
models under matched training compute. Four base model capacities were studied—135M, 360M,
730M and 1.7B parameters. For recursive and MoR models, we fix the recursion count to Nr=3, so
the number of unique parameters is roughly one-third of the vanilla counterpart. Each architecture
is trained once for the largest compute budget (16.5EB)5 and the resulting checkpoint is re-used to
obtain the 5EB and 2EB variants, as detailed below.
FLOPs approximated calculation of Transformers. We follow the approximation for calculating
FLOPs as detailed in Kaplan et al. [49]. Our analysis solely focuses on forward pass FLOPs, since
the FLOPs involved in the backward pass are typically just double those of the forward pass. For
most operations within Transformers, which primarily consist of linear projections, the forward pass
FLOPs are calculated as two times the number of parameters, excluding the attention mechanism.

Regarding attention, we specifically account for the operations from the dot product between queries
and keys and the scaling of values with softmax values. We only calculate FLOPs that contribute to the
actual loss, excluding redundant computations in the upper triangular portion due to causality masking.
Furthermore, we omit any additional computational costs associated with FlashAttention [18],
normalization, and non-linearity operations from our overall FLOPs calculation.

As a result, Vanilla and Recursive Transformers have the same FLOPs. For MoR, the FLOPs
calculation varies based on the routing and KV caching strategy. Especially, we calculated FLOPs
based on the sequence length at each recursion depth, which is determined by the capacity factor and
caching mechanism. In the case of token-choice routing, since the actual token allocation changes at
every step, we approximated the FLOPs by assuming perfect balancing. Furthermore, we add extra
layers to a few MoR models to ensure their effective depth is divisible by the recursion number. For
example, in a 135M model with 30 layers, setting a base depth of 10 and applying recursion three
times (as in the Middle-Cycle strategy) results in a total of 32 layers. These additional layers introduce
extra FLOPs, so we reduce the number of training steps accordingly to maintain our predefined FLOP
budget.
Trapezoid learning-rate schedule with checkpoint reuse. To avoid retraining every model from
scratch for each FLOPs budget, we employ the trapezoid schedule [97]. The rule of this scheduler
is as follows:

η(t) =


t
w ηmax, 0 ≤ t < w (warm-up),

ηmax, w ≤ t < p (plateau),

ηmax

(
1− t−p

d

)
, p ≤ t < p+ d (cool-down),

where w denotes the warm-up interval, p− w is the constant-LR plateau, and d represents the cool-
down segment. This stable phase allows us to efficiently manage experiments by saving intermediate
checkpoints and then running additional cool-down steps from those points, according to each budget.
For the warmup, we allocate 5% of the total training steps of the smallest budget (2EB), and we set
the cool-down steps to 20% of the total training steps for each corresponding budget.

51EB =1018 floating-point operations.
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Results at a glance. Table 9 reports NLL on FineWeb-Edu validation set and few-shot accuracy on
six benchmarks. Our findings reveal a clear trend: more compute consistently leads to better models,
evidenced by lower NLL and improved accuracy with higher FLOPs. However, weight-sharing alone
in recursive models degraded performance compared to Vanilla, a clear trade-off for the reduced
parameters. Crucially, token-routed MoR models overcome this shortcoming, catching up to and
then surpassing Vanilla models from 360M parameters upward, all while utilizing only one-third
of the parameters. This performance advantage persists at 730M and 1.7B parameter scales.

Table 9: Detailed results of isoFLOP analysis across three compute budgets. We evaluate negative
log-likelihood (NLL) on the FineWeb-Edu validation set and few-shot accuracy on six downstream
tasks for four base model sizes (135M, 360M, 730M, 1.7B). Each model was initially trained up to
16.5EB and sliced back to 5EB and 2EB via mid-training checkpoints using a trapezoid learning-rate
schedule. All models used three recursion steps. For MoR models, we use expert-choice routing and
recursion-wise caching mechanisms. We highlight the best-performing model in each setting in gray.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑
Models Base N-Emb NL FLOPs Ntok Share Loop FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla 135M 106M 30 2.0e+18 6.5B - - 3.0922 22.80 30.93 62.35 51.14 36.28 26.29 38.30
Recursive 135M 42M 1+10+1 2.0e+18 6.1B M-Cyc 3 3.2058 19.79 29.32 60.17 50.59 34.83 25.40 36.68
MoR 135M 42M 1+10+1 2.0e+18 9.2B M-Cyc 3 3.1077 21.13 31.00 59.79 49.09 34.87 25.63 36.92

Vanilla 135M 106M 30 5.0e+18 16.1B - - 2.9464 26.88 33.69 63.98 51.46 37.08 27.07 40.03
Recursive 135M 42M 1+10+1 5.0e+18 15.1B M-Cyc 3 3.0534 24.51 31.57 62.40 50.83 35.78 25.94 38.51
MoR 135M 42M 1+10+1 5.0e+18 23.1B M-Cyc 3 3.0192 22.01 32.53 61.75 49.88 35.39 26.19 37.96

Vanilla 135M 106M 30 16.5e+18 53.3B - - 2.8432 30.16 36.51 64.80 53.43 40.17 27.82 42.15
Recursive 135M 42M 1+10+1 16.5e+18 50.0B M-Cyc 3 2.9552 25.98 33.36 63.98 51.78 36.96 26.68 39.79
MoR 135M 42M 1+10+1 16.5e+18 76.2B M-Cyc 3 2.9490 22.61 33.99 61.92 47.83 35.95 26.36 38.11

Vanilla 360M 315M 32 2.0e+18 2.4B - - 3.3785 17.27 27.90 59.36 51.38 32.10 25.49 35.58
Recursive 360M 118M 1+10+1 2.0e+18 2.4B M-Cyc 3 3.4864 10.34 26.66 58.00 51.54 30.94 24.94 33.74
MoR 360M 118M 1+10+1 2.0e+18 3.6B M-Cyc 3 3.1026 24.14 30.53 61.86 50.99 34.74 25.50 37.96

Vanilla 360M 315M 32 5.0e+18 6.0B - - 3.0097 25.17 32.10 63.22 48.62 36.01 26.69 38.63
Recursive 360M 118M 1+10+1 5.0e+18 6.0B M-Cyc 3 3.0722 23.29 31.19 62.62 51.30 35.85 25.99 38.37
MoR 360M 118M 1+10+1 5.0e+18 9.0B M-Cyc 3 2.9161 28.33 34.53 63.22 51.07 36.70 26.98 40.14

Vanilla 360M 315M 32 16.5e+18 19.8B - - 2.7824 31.94 37.92 66.10 51.30 39.70 27.95 42.49
Recursive 360M 118M 1+10+1 16.5e+18 19.8B M-Cyc 3 2.8466 29.75 35.92 64.91 51.46 39.12 27.18 41.39
MoR 360M 118M 1+10+1 16.5e+18 29.7B M-Cyc 3 2.7924 33.15 37.94 66.97 52.09 38.46 27.49 42.68

Vanilla 730M 654M 26 2.0e+18 1.2B - - 3.7164 07.74 26.58 57.62 51.14 29.74 24.46 32.88
Recursive 730M 252M 1+8+1 2.0e+18 1.2B M-Cyc 3 3.8136 05.53 26.25 55.77 50.59 29.88 24.63 32.11
MoR 730M 252M 1+8+1 2.0e+18 1.8B M-Cyc 3 3.3300 17.93 28.74 59.30 51.46 33.14 25.37 35.99

Vanilla 730M 654M 26 5.0e+18 3.1B - - 3.0821 22.05 31.99 62.68 50.67 35.88 26.12 38.23
Recursive 730M 252M 1+8+1 5.0e+18 3.1B M-Cyc 3 3.1640 18.51 30.72 62.13 47.83 35.97 25.84 36.83
MoR 730M 252M 1+8+1 5.0e+18 4.5B M-Cyc 3 3.0067 26.18 32.76 62.46 50.91 36.93 26.37 39.27

Vanilla 730M 654M 26 16.5e+18 10.1B - - 2.7048 34.50 40.29 66.81 49.49 40.82 28.66 43.43
Recursive 730M 252M 1+8+1 16.5e+18 10.1B M-Cyc 3 2.7886 30.76 37.84 65.51 52.41 39.26 27.51 42.21
MoR 730M 252M 1+8+1 16.5e+18 14.9B M-Cyc 3 2.7438 32.93 39.55 66.32 54.38 40.00 28.09 43.55

Vanilla 1.7B 1.61B 24 2.0e+18 0.6B - - 5.1349 00.00 24.96 51.03 51.38 25.75 23.07 29.37
Recursive 1.7B 0.67B 1+8+1 2.0e+18 0.5B M-Cyc 3 5.3277 00.00 25.27 51.36 48.62 26.52 22.98 29.13
MoR 1.7B 0.67B 1+8+1 2.0e+18 0.8B M-Cyc 3 4.1175 01.44 25.80 53.97 49.64 27.56 24.08 30.42

Vanilla 1.7B 1.61B 24 5.0e+18 1.5B - - 3.6926 08.33 26.84 57.29 51.30 29.72 24.51 33.00
Recursive 1.7B 0.67B 1+8+1 5.0e+18 1.3B M-Cyc 3 3.8876 03.14 26.57 54.73 49.17 29.01 24.49 31.19
MoR 1.7B 0.67B 1+8+1 5.0e+18 2.0B M-Cyc 3 3.2905 17.62 28.32 59.03 49.80 32.14 25.28 35.37

Vanilla 1.7B 1.61B 24 16.5e+18 4.8B - - 2.8658 26.94 35.61 64.74 50.59 38.55 26.81 40.54
Recursive 1.7B 0.67B 1+8+1 16.5e+18 4.5B M-Cyc 3 3.0042 23.25 32.09 62.95 50.75 37.64 26.53 38.87
MoR 1.7B 0.67B 1+8+1 16.5e+18 6.5B M-Cyc 3 2.8316 28.10 36.18 64.64 50.99 38.68 27.25 40.97
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G Details of Experimental Settings for Throughput Measurement

We implement a continuous depth-wise batching inference system [6, 39] to evaluate decoding
throughput of MoR models. Queries are enqueued and scheduled dynamically during decoding
using 1K samples from the FineWeb-Edu validation set. In particular, for MoR, when some queries
exit early, the vacant slots in the batch are immediately filled with new queries waiting in the queue,
maintaining a fully utilized batch at all times.

We compare the throughput of Vanilla and MoR models (at a 360M parameter scale) for generating
a certain length of tokens per sample, where the number is sampled from a normal distribution with a
mean of 256, starting without any input prefix. The speeds of the MoR models are normalized against
the speed of the Vanilla Transformer. For pretraining MoR-4 models, we add two additional layers
(34 layers in total) before applying recursion. This ensures the total effective depth is divisible by the
recursion number (specifically for the Middle-Cycle strategy). Consequently, the speed comparison
for MoR-4 is made against a modified vanilla model that includes these two extra layers, resulting
in a total of 34 layers (32 original layers + 2 added layers).

We use two batching settings: (1) a fixed batch size of 32 and (2) a relative maximum batch size,
derived by multiplying 32 by the ratio of the maximum batch sizes of vanilla and MoR models.
Specifically, based on the H100 GPU’s VRAM size, we calculated the maximum batch sizes by
considering model parameters and their KV cache memory. For simplicity, we omit the memory size
from the hidden states at the current position. Under these adaptive conditions, MoR-2 supports a
batch size of 42, MoR-3 supports 48, and MoR-4 supports up to 51. By employing recursion-wise
KV caching, MoR allows a substantial increase in batch size stemming from its reduced parameter
and KV cache memory footprint.

For implementation, we use a queue to enable continuous depth-wise batching and employ FlashAt-
tention 2 [17] to support variable-length KV caches within a batch. We adopt a static-sized cache
where each position is updated over time, since this is compatible with torch.compile [73] to fur-
ther optimize inference speeds. Furthermore, mimicking real-world deployment scenarios [53, 109],
we decouple the transformer block phase from the rest of the computation by pre-processing the
input embeddings or the first non-shared layer before passing into the transformer blocks. Then, we
measured the actual time taken during the forward pass. Note that we include a warmup stage by
running the model for 100 iterations before actual measurement, in order to obtain stable timing
results. For further optimization, tokens that exited early were accumulated up to the maximum batch
size before being processed by the last non-shared layer, classifier, and embedding layers (including
the non-shared first layer in the case of MoR models). After this, we queue them for sequential
batching by following a FIFO (First-In, First-Out) strategy. For implementation convenience, we
exclude the time spent on caching and updating for KV pairs, as these aspects can be significantly
optimized through various engineering techniques [53]. We leave a more precise speed comparison,
which accounts for these considerations, as future work.
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H Expanded Results of Parameter Sharing Strategy

This section complements the ablation in §4.1 by providing the full quantitative panorama be-
hind Figure 4b. We revisit the four weight-tying schemes—Cycle, Sequence, Middle-Cycle, and
Middle-Sequence—on two base model scales (135M and 360M non-embedding parameters) and two
different recursion depths (Nr = 2 and 3). All models were trained from scratch for 10B tokens under
identical optimization hyperparameters. Validation NLL on FineWeb-Edu and averaged few-shot
accuracy over six benchmarks are summarized in Table 10.
Middle-Cycle is consistently the safest choice. For the 360M models, Middle-Cycle achieves
the lowest NLL at both depths (Nr = 2 and Nr = 3) and also shows the largest improvement in
average accuracy compared to vanilla reduced models. For the 135M models, while Cycle is slightly
ahead at two recursion setting (3.0071 vs. 3.0330), Middle-Cycle overtakes when recursion depth
rises (3.1048 vs. 3.1154) and shows a steadier accuracy profile. Meanwhile, pure Sequence sharing
records the worst NLL in all four settings, and its accuracy gap widens with recursion depth. The
Middle strategy slightly improves the performance of the Sequence, but it still performs worse than
the Cycle-based methodology. We visualized the results in Figure 6.

Table 10: Comparison of parameter-sharing strategies (Cycle, Sequence, Middle-Cycle, Middle-
Sequence) across two model scales (135M and 360M) and two recursion depths (NR = 2 and
NR = 3). All models are pretrained from scratch on 10B tokens. We report validation negative
log-likelihood (NLL) on FineWeb-Edu and few-shot accuracy across six tasks. Middle-Cycle
consistently outperforms other strategies in both NLL and average task accuracy, especially at higher
recursion depth. We highlight the optimal strategy for each setting in gray.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑
Base Model N-Emb NL Ntok Share Loop FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla 135M 106M 30 10B - - 3.0323 24.14 31.12 61.15 52.01 34.74 25.95 38.19
Vanilla 135M 53M 15 10B - - 3.0818 23.64 30.10 60.94 50.99 35.38 25.93 37.83
Vanilla 135M 35M 10 10B - - 3.1582 21.46 29.30 60.01 52.01 34.40 25.53 37.12

Vanilla 135M 53M 15 10B Cyc 2 3.0071 25.52 31.25 61.10 50.99 36.08 26.11 38.51
Vanilla 135M 53M 15 10B Seq 2 3.1093 22.39 29.60 61.10 50.12 34.46 25.72 37.23
Vanilla 135M 57M 1+14+1 10B M-Cyc 2 3.0330 23.40 31.20 61.59 50.59 35.44 25.54 37.96
Vanilla 135M 57M 1+14+1 10B M-Seq 2 3.0991 21.70 30.06 60.45 49.41 35.20 25.74 37.09

Vanilla 135M 35M 10 10B Cyc 3 3.1154 21.42 30.14 60.61 49.72 34.15 25.57 36.94
Vanilla 135M 35M 10 10B Seq 3 3.1637 19.99 29.39 59.25 51.62 33.79 25.32 36.56
Vanilla 135M 39M 1+9+1 10B M-Cyc 3 3.1048 22.41 30.35 61.04 49.01 34.80 25.91 37.26
Vanilla 135M 39M 1+9+1 10B M-Seq 3 3.1602 20.69 29.35 61.43 51.30 34.40 25.51 37.11

Vanilla 360M 315M 32 10B - - 2.8471 27.27 34.78 64.20 52.80 38.29 26.72 40.68
Vanilla 360M 157M 16 10B - - 2.8908 27.01 33.49 64.42 52.09 37.40 26.54 40.16
Vanilla 360M 98M 10 10B - - 2.9449 26.41 32.93 63.38 50.36 37.15 26.48 39.45

Vanilla 360M 157M 16 10B Cyc 2 2.8487 28.47 34.79 63.06 49.96 37.38 26.81 40.08
Vanilla 360M 157M 16 10B Seq 2 2.9467 26.33 32.49 62.89 52.41 36.37 26.24 39.46
Vanilla 360M 167M 1+15+1 10B M-Cyc 2 2.8295 28.59 34.98 64.53 50.51 39.68 27.20 40.91
Vanilla 360M 167M 1+15+1 10B M-Seq 2 2.9303 26.14 32.71 62.79 51.38 36.31 25.73 39.18

Vanilla 360M 98M 10 10B Cyc 3 2.9363 25.87 32.98 62.89 50.28 36.35 26.54 39.15
Vanilla 360M 98M 10 10B Seq 3 3.0245 24.55 31.48 63.11 49.25 35.65 25.73 38.30
Vanilla 360M 118M 1+10+1 10B M-Cyc 3 2.8760 28.51 34.89 64.31 50.51 39.51 27.20 40.82
Vanilla 360M 118M 1+10+1 10B M-Seq 3 2.9753 24.18 31.89 62.08 49.72 36.47 26.27 38.44
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Figure 6: Validation negative log-likelihood (lower is better) on FineWeb-Edu for four
parameter-sharing strategies. Bars are grouped by model capacity (135M vs. 360M parameters).
Middle-Cycle consistently attains the lowest NLL, with its margin widening as either model size or
depth increases. The horizontal dashed lines mark the untied (non-sharing) baselines: the lower red
line represents the full capacity model, while the upper black line represents a parameter-matched
reduced model with a footprint equal to the unique trainable parameter sizes of the recursive model.

For fairer comparison, we also compare the Middle-Cycle and Cycle sharing strategies, fixing the
number of unique parameters for both models. For 730M model comparison, both strategies use 3
recursion steps. Especially, Middle-Cycle uses 8 layers for the recursion block and 2 unshared layers
(1 + 8×3 + 1), resulting in 10 unique layers and 26 effective layers. We compare this to the Cycle
strategy with 10 layers per recursion block (10×3), which also has 10 unique layers but a total of
30 effective layers. Despite having fewer effective layers, as shown in Table 11, the Middle-Cycle
model achieves better performance, with a lower negative log-likelihood (2.7552 vs. 2.7573) and
higher average few-shot accuracy (42.32 vs. 41.90). While these results are promising, we leave
further validation across more scales as future work.

Table 11: Comparison of Middle-Cycle and Cycle sharing strategies under the same number of
unique parameters. All models use 730M scales (non-embedding parameters) as the base model with
3 recursion steps. The models are trained from scratch on 10B tokens using the Fineweb-Edu dataset.

Recursion Pretrain NLL ↓ Few-shot Accuracy ↑
Base Model Share Loop N-Emb NL Ntok Fineweb LD HS PQ WG ARC MMLU Avg

Vanilla 730M Cycle 3 252M 10 10B 2.7573 28.72 37.31 65.56 52.01 39.94 27.85 41.90
Vanilla 730M M-Cycle 3 252M 1+8+1 10B 2.7552 29.75 37.73 66.00 52.49 40.49 27.50 42.32
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Behavior under continued pre-training (up-training). Table 12 extends the study by “up-training”
models—continuing from open-sourced SmolLM [4] checkpoints for an additional 5B tokens. Both
Middle strategies demonstrate superior performance across all settings, and notably, they significantly
outperform the reduced baseline models that are initialized in the same manner but without recursion.
The other strategies reach a performance plateau earlier, suggesting that they have limited room for
further improvement in capacity.

Table 12: Uptraining results across four parameter sharing strategies. Models are trained on 5B
tokens from FineWeb-Edu and evaluated by train NLL and few-shot accuracy across six benchmarks.
ARC denotes average of ARC-Easy and ARC-Challenge tasks, MMLU denotes the MMLU-Cont
task. We highlight the optimal strategy for each setting in gray.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑
Base Model N-Emb NL Ntok Share Init Loop FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla 360M 315M 32 5B - - - 2.4825 41.67 50.63 70.35 55.09 46.99 30.82 49.26
Vanilla 360M 157M 16 5B - Step 1 2.7168 31.85 37.59 64.74 53.20 41.06 27.34 42.63
Vanilla 360M 157M 16 5B Cyc Avg 1 2.8603 22.14 30.36 60.07 48.22 34.99 25.56 36.89
Vanilla 360M 157M 16 5B Seq Avg 1 2.7919 25.40 32.35 62.30 50.12 35.88 26.19 38.71
Vanilla 360M 98M 10 5B - Step 1 2.8915 26.63 35.03 64.42 52.09 38.75 26.86 40.63
Vanilla 360M 98M 10 5B Cyc Avg 1 3.0512 23.19 31.27 62.30 51.22 36.71 26.29 38.50
Vanilla 360M 98M 10 5B Seq Avg 1 2.9915 25.67 32.21 62.30 51.38 36.68 26.56 39.14

Vanilla 360M 157M 16 5B Cyc Step 2 2.7165 31.30 37.68 64.91 52.17 39.29 27.53 42.15
Vanilla 360M 157M 16 5B Cyc Avg 2 2.8263 23.21 30.52 60.55 50.28 36.01 25.50 37.68
Vanilla 360M 157M 16 5B Cyc Lower 2 2.8024 27.67 34.71 63.49 49.88 38.12 26.87 40.13
Vanilla 360M 157M 16 5B Cyc Upper 2 2.7915 18.26 34.88 63.06 51.85 39.27 26.88 39.03
Vanilla 360M 157M 16 5B Cyc Rand 2 2.7575 25.29 34.78 61.64 52.01 38.09 26.62 39.74

Vanilla 360M 157M 16 5B Seq Step 2 2.6862 34.14 42.49 67.90 53.35 43.24 28.80 44.99
Vanilla 360M 157M 16 5B Seq Avg 2 2.7508 29.01 34.13 63.60 52.09 36.31 26.58 40.29
Vanilla 360M 157M 16 5B Seq Lower 2 2.8300 27.50 33.28 63.38 51.38 37.44 26.32 39.88
Vanilla 360M 157M 16 5B Seq Upper 2 2.7498 30.49 40.07 65.61 52.25 40.28 28.17 42.81
Vanilla 360M 157M 16 5B Seq Rand 2 2.7153 32.00 41.31 66.10 53.35 42.13 28.52 43.90

Vanilla 360M 167M 1+15+1 5B M-Cyc Step 2 2.6800 35.47 42.39 67.19 50.99 42.54 28.79 44.56
Vanilla 360M 167M 1+15+1 5B M-Cyc Avg 2 2.7314 33.81 40.42 66.87 51.78 41.68 28.17 43.79
Vanilla 360M 167M 1+15+1 5B M-Cyc Lower 2 2.7449 30.76 39.50 66.16 50.99 41.12 28.07 42.77
Vanilla 360M 167M 1+15+1 5B M-Cyc Upper 2 2.6605 34.41 43.74 67.46 53.20 43.75 28.93 45.25
Vanilla 360M 167M 1+15+1 5B M-Cyc Rand 2 2.6730 35.65 43.04 67.74 52.17 42.60 28.62 44.97

Vanilla 360M 167M 1+15+1 5B M-Seq Step 2 2.6627 35.09 43.34 67.57 51.22 43.66 28.91 44.97
Vanilla 360M 167M 1+15+1 5B M-Seq Avg 2 2.7143 33.92 40.93 66.49 51.70 40.72 28.24 43.66
Vanilla 360M 167M 1+15+1 5B M-Seq Lower 2 2.7696 30.74 38.36 65.94 51.78 41.27 27.73 42.64
Vanilla 360M 167M 1+15+1 5B M-Seq Upper 2 2.6931 32.66 42.35 67.14 52.80 42.83 28.49 44.38
Vanilla 360M 167M 1+15+1 5B M-Seq Rand 2 2.6908 35.07 42.03 66.32 53.75 43.11 28.42 44.78

Vanilla 360M 98M 10 5B Cyc Step 3 2.8901 27.46 35.26 63.82 51.54 39.35 27.44 40.81
Vanilla 360M 98M 10 5B Seq Step 3 2.8258 30.43 37.37 63.76 52.33 40.55 27.65 42.02
Vanilla 360M 118M 1+10+1 5B M-Cyc Step 3 2.7735 31.38 39.31 65.51 50.51 40.70 27.65 42.51
Vanilla 360M 118M 1+10+1 5B M-Seq Step 3 2.7678 31.67 39.23 65.89 52.09 40.65 27.90 42.91
Vanilla 360M 118M 1+10+1 5B M-Cyc Upper 3 2.8100 28.86 37.61 65.51 52.57 41.44 28.17 42.36
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I Expanded Results of Design Choices for Router

I.1 Details of Design Configurations

We investigate various router design choices to optimize performance and stability. Specifically,
we tune the coefficient values controlling the strength of auxiliary or balancing loss terms (Coeff ),
and adjust the scaling factor applied after the router function (α) to modulate routing weights.
Moreover, we test different activation functions (Func), such as sigmoid or softmax, are evaluated,
with architectural variations (Arch) of the router network, including linear layer, 2-layer MLP with
GELU activation, Wide-MLP that expands the hidden layer size by a factor of four.

We also incorporate several techniques to stabilize training. To improve training stability, we utilize
the router z-loss [111], which penalizes large logits produced by the gating network. Large logits
can cause numerical instability and hinder effective training of the router. The z-loss is computed as
follows:

Lz(x) =
1

B

B∑
i=1

log

Nr∑
j=1

ex
(i)
j

2

,

where B is the number of tokens in the batch, Nr is the number of experts, and x ∈ RB×Nr denotes
the logits input to the router. This regularization encourages the gating network to produce smaller
logits, promoting more stable and reliable routing decisions.

I.2 Router Performance Evaluation Metrics

Expert-choice routing. We evaluate dead token ratio and sampling accuracy to assess the router’s
selection behavior. The dead token ratio measures the proportion of tokens at specific positions within
the batch that are consistently unselected during the final recursion step, indicating a positional bias
where certain token positions are systematically neglected by the router. The sampling accuracy how
well the router used during inference predicts whether a token belongs to the top-k tokens identified
during training, reflecting the router’s ability to consistently select the most relevant tokens. Ideally,
high sampling accuracy with a low dead token ratio indicates a router that both identifies important
tokens accurately and maintains diversity in token selection.
Token-choice routing. We evaluate the router’s ability to balance token assignments across experts
using MaxVio (maximum violation) and entropy metrics. MaxVio [93] measures the load imbalance
across experts:

MaxVio =
maxi Loadi − Loadi

Loadi
,

where Loadi denotes the actual number of tokens assigned to the i-th expert, and Loadi represents
the expected load per expert assuming perfect balance.

To measure the diversity of token assignments across experts, we also compute the Entropy of the
average selection probabilities for each expert:

H = −
Nr∑
i=1

pi log pi,

where pi is the average probability of selecting the i-th expert over all tokens in the evaluation batch,
and Nr is the total number of experts. A higher entropy indicates a more uniform distribution of
tokens among experts, reflecting balanced and diverse routing decisions.

I.3 Extended Evaluation Results of Router Designs

The results presented in Table 13 indicate that although both the auxiliary router and auxiliary
loss methods enhance sampling accuracy, they are also associated with high dead token ratios. In
particular, some auxiliary router variants exhibit dead token ratios as high as 66.7%, suggesting that
the router always selects tokens from the same positions across inputs, reflecting a positional bias.
Notably, employing a linear router architecture in conjunction with auxiliary loss effectively reduces
the dead token ratio without compromising sampling accuracy.
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Results from Table 14 reveal that applying an explicit balancing loss significantly reduces
MaxVio and increases entropy, leading to improved load balance without sacrificing overall model
performance. Loss-free approaches, while simpler, tend to show higher MaxVio and lower entropy,
indicating less balanced token routing. Architectures such as MLP and Linear routers perform
comparably under balancing loss, with z-loss often contributing to improved routing stability and
model accuracy. Nevertheless, it still struggles to achieve balance during quite long initial stage.
The heterogeneity among the experts, stemming from the use of computation blocks with varying
recursion depths as experts, likely complicates load balancing.

Table 13: Ablation results on using expert-choice router with different routing configurations. We
use the recursion-wise KV caching strategy by default. Coeff denotes coefficient values for auxiliary
loss term, and α denotes scaling term after router function. Dead token ratio are measured within
evaluation batch size of 500. Warmup refers to gradually decreasing the capacity from 1.0 to
desired value over warmup steps. The last highlighted row represents a chosen final strategy, and
intermediate best-performing designs (based on performance and routing metrics) are highlighted
to illustrate how it was derived.

Expert-choice Configurations Router Metrics NLL ↓ Few-shot Accuracy ↑
Sampling Coeff Func α Arch Warmup z-loss Dead ↓ Samp-Acc ↑ FineWeb LD HS PQ WG ARC MMLU Avg

- - rand - - ✗ ✗ 0.0 - 2.9335 26.0 33.1 61.6 52.3 35.8 26.2 39.1

Aux Router - - - MLP ✗ ✗ 66.7 50.0 NaN 0.0 25.04 49.5 49.6 23.9 23.0 28.5
Aux Router - σ 0.1 MLP ✗ ✗ 0.0 89.2 2.8893 26.1 33.8 62.0 51.5 36.6 26.4 39.4
Aux Router - σ 1.0 MLP ✗ ✗ 66.7 50.0 2.8867 26.4 33.6 63.0 52.4 37.0 24.1 39.8
Aux Router - tanh 0.1 MLP ✗ ✗ 66.7 98.6 2.8720 13.9 31.8 60.7 49.3 35.8 25.8 36.2
Aux Router - tanh 1.0 MLP ✗ ✗ 66.7 97.0 3.0624 18.26 29.7 60.1 50.9 34.6 25.5 36.5

Aux Loss 0.01 - - MLP ✗ ✗ 66.7 50.0 NaN 0.0 25.04 49.5 49.6 23.9 23.0 28.5
Aux Loss 0.01 σ 0.1 MLP ✗ ✗ 0.0 99.6 2.8967 24.8 33.6 63.3 50.3 36.6 26.6 39.2
Aux Loss 0.01 σ 1.0 MLP ✗ ✗ 65.9 100.0 2.9189 12.0 31.6 59.4 51.5 33.2 25.3 35.5
Aux Loss 0.01 tanh 0.1 MLP ✗ ✗ 32.8 99.7 2.9426 23.5 32.4 62.4 49.8 35.6 26.0 38.3
Aux Loss 0.01 tanh 1.0 MLP ✗ ✗ 0.0 98.8 3.2743 16.4 28.14 58.8 52.2 31.6 24.8 35.3

Aux Loss 0.1 σ 0.1 MLP ✗ ✗ 0.0 99.8 3.0416 21.5 31.0 61.8 50.3 35.0 26.0 37.6
Aux Loss 0.001 σ 0.1 MLP ✗ ✗ 0.0 99.1 2.8816 27.6 34.3 63.0 51.6 36.7 26.5 40.0
Aux Loss 0.001 tanh 0.1 MLP ✗ ✗ 0.0 56.4 2.9933 25.0 32.3 61.5 51.5 36.6 26.0 38.8

Aux Loss 0.001 σ 0.1 Linear ✗ ✗ 0.1 99.2 2.8667 27.4 34.6 63.2 51.5 37.2 26.5 40.1
Aux Loss 0.001 σ 0.1 W-MLP ✗ ✗ 0.4 99.2 2.8716 27.8 33.9 62.4 49.9 36.3 26.3 39.4

Aux Loss 0.001 σ 0.1 Linear ✓ ✗ 4.9 99.1 2.8744 26.0 33.9 62.0 51.2 36.1 26.1 39.2
Aux Loss 0.001 σ 0.1 Linear ✗ ✓ 0.0 99.3 2.8824 26.9 34.0 63.8 52.3 36.8 26.4 40.0

Table 14: Ablation results on token-choice router under different routing configurations. We use
the recursion-wise KV caching strategy by default. Coeff denotes coefficient for balancing loss term,
or updating coefficient (u) for loss-free algorithm. The last highlighted row represents a chosen final
strategy, but we added z-loss back in with a small coefficient of 1e-3 since it often stabilizes load
balancing. The intermediate best-performing designs (based on performance and routing metrics)
are highlighted to illustrate how it was derived.

Token-choice Configurations Router Metrics NLL ↓ Few-shot Accuracy ↑
Balancing Coeff Func α Arch Z-loss MaxVio ↓ Entropy ↑ FineWeb LD HS PQ WG ARC MMLU Avg

- - rand - - ✓ 0.007 1.099 3.0268 24.8 32.0 61.4 52.2 35.5 26.1 38.7

Loss 0.1 soft 1.0 MLP ✓ 0.200 1.076 3.0239 24.2 31.9 61.4 51.5 35.7 26.2 38.5
Loss 0.01 soft 1.0 MLP ✓ 0.682 0.921 2.9118 28.0 33.3 62.8 49.7 36.4 26.2 39.4

Loss-free 0.01 soft 1.0 MLP ✓ 1.788 0.297 2.9078 25.5 32.5 61.3 52.3 36.1 26.0 38.9
Loss-free 0.01 σ 0.1 MLP ✓ 0.956 0.646 3.1144 21.8 29.8 60.3 51.6 34.0 25.7 37.2
Loss-free 0.01 σ 1.0 MLP ✓ 0.918 0.749 3.0188 23.4 31.3 59.9 50.0 35.2 25.8 37.6
Loss-free 0.001 soft 1.0 MLP ✓ 0.852 0.915 2.9081 25.8 33.6 62.8 50.6 37.5 26.7 39.5
Loss-free 0.001 σ 0.1 MLP ✓ 1.281 0.551 2.9165 23.9 33.1 61.2 51.6 37.3 26.2 38.9
Loss-free 0.001 σ 1.0 MLP ✓ 0.542 0.941 3.0188 24.9 32.0 61.9 51.4 35.5 25.9 38.6

Loss 0.1 soft 1.0 Linear ✓ 0.492 0.960 2.9974 23.7 31.3 62.2 50.3 36.7 26.0 38.4
Loss 0.1 soft 1.0 W-MLP ✓ 0.384 1.037 3.0293 25.3 31.5 62.2 51.2 36.4 26.3 38.8

Loss 0.1 soft 1.0 Linear ✗ 0.266 1.056 2.9358 25.7 32.6 61.9 51.7 36.4 26.5 39.1
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J Expanded Results of KV Cache Sharing Mechanism

J.1 Key Value Representation Trends in Recursive Transformers

Sharing KV caches across model depths has emerged as a promising approach to improve inference
throughput in Vanilla Transformers [9]. This technique can reduce the memory footprint required
for KV caches, enabling larger inference batch sizes. Significant speedups can be also achieved
by skipping the KV projection and even prefill operations at shared depths, especially with Cycle
strategy [85]. Due to the high degree of freedom in Vanilla models—where trainable parameters
can be well optimized for shared caches—these models exhibit only marginal performance drops
when KV caches are shared between adjacent layers. In contrast, Recursive Transformers have far
fewer parameters available for being optimized to tied KV states. Nevertheless, we hypothesize that
similar patterns may emerge between shared blocks. To investigate this, we decomposed the KV
states from pretrained Recursive Transformers into magnitude and directional components.

As shown in Figure 7, the sharing of key and value projection layers across recursion depths leads
to clear recursive patterns in the magnitude values. Although the magnitudes of hidden states tend
to increase, the projection layers appear to be trained to produce similar signal sizes at corresponding
depths within each recursion.
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Figure 7: Average L2 norm magnitude of (a) hidden states, (b) key states, and (c) value states across
layers in a Middle-Cycled Recursive Transformer 360M with 3 recursion steps. Note that the last
hidden states correspond to the final hidden states after the last layer normalization.

When we measured the cosine similarity in Figure 8, distinct diagonal patterns emerge, suggesting that
shared projection layers generate highly similar key and value representations. While sharing value
states across recursions appears to be more challenging than sharing key states, these findings suggest
that the performance drop from KV cache sharing can be marginal even in Recursive Transformers.
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Figure 8: Cosine similarity matrices showing the layer-wise similarity of (a) hidden states, (b) key
states, and (c) value states in Recursive Transformer with Middle-Cycle strategy and recursion depth
3. Results are from a 360M parameter model with 32 layers. The hidden states matrix includes the
final hidden states after the last layer normalization.
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J.2 Performance Comparison of KV Sharing Strategy

Experimental results of key-value cache sharing. In Table 15, we present the performance results
when applying KV cache sharing to Vanilla, Recursive, and MoR models. Especially, we tested
various strategies for KV caches, including Cycle or Sequence strategies that share the same concepts
as parameter sharing (see §C.1 for details). Interestingly, KV cache sharing even improves the
performance of vanilla models, where sharing acts as a regularization technique. In case of recursive
models, we align the sharing strategy for parameters and KV caches. Despite some variations in the
results after applying KV sharing, the Middle-Cycle strategy (the best parameter sharing strategy)
showed a slight perplexity drop, albeit not substantial.

When moving to MoR models, they still introduced a small amount of degradation in our best
settings (expert-choice router). However, considering the reduced parameter sizes and cache sizes,
we believe this minor drop is acceptable. Furthermore, we explored an alternative sharing strategy
(indicated by †) that utilized shared caches for inactive (unselected) positions while updating active
positions through actual computation. This method is analogous to a recursive caching scheme but
initializes inactive positions with key-value pairs from the first recursive iteration. Although it did not
provide additional benefits, it is still worth exploring combinations of KV sharing and actual updates.

Table 15: Comparison of KV cache sharing strategies across Vanilla, Recursive, and MoR
Transformers. Models are pretrained on 10B tokens of FineWeb-Edu, and evaluated using negative
log-likelihood (NLL) on train set and few-shot accuracy across benchmarks. KV sharing denotes
use of recursive KV sharing mechanism. If MoR is mentioned without further specification of KV
sharing strategy, it implies the use of the recursion-wise caching strategy. †It indicates training with
hybrid KV sharing that leverages shared caches for inactive positions while updating active ones
through actual computation.

Pretrain Recursion MoR KV Sharing NLL ↓ Few-shot Accuracy ↑
Models N-Emb NL Share Loop Type Share Loop FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla 315M 32 - - - - - 2.8471 27.3 34.8 64.2 52.8 38.3 26.7 40.7
Vanilla 315M 32 - - - Seq 2 2.7848 30.0 36.5 64.6 50.7 39.4 26.9 41.3
Vanilla 315M 32 - - - Cyc 2 2.7650 30.0 36.7 65.2 51.1 39.6 27.5 41.7

Vanilla 295M 30 - - - - - 2.8069 29.1 35.6 65.1 50.4 38.5 27.3 41.0
Vanilla 295M 30 - - - Seq 3 2.7879 28.3 36.4 64.3 52.7 39.4 27.3 41.4
Vanilla 295M 30 - - - Cyc 3 2.7890 28.9 36.5 64.6 51.4 39.0 27.6 41.3

Recursive 157M 16 Seq 2 - - - 2.9467 26.3 32.5 62.9 52.4 36.4 26.2 39.5
Recursive 157M 16 Seq 2 - Seq 2 2.8904 26.4 33.4 64.0 51.0 37.0 26.9 39.8
Recursive 157M 16 Cyc 2 - - - 2.8487 28.5 34.8 63.1 50.0 37.4 28.8 40.1
Recursive 157M 16 Cyc 2 - Cyc 2 2.8577 26.2 34.5 64.2 51.4 37.3 26.9 40.1
Recursive 167M 1+15+1 M-Cyc 2 - - - 2.8295 28.6 35.0 64.5 50.5 39.7 27.2 40.9
Recursive 167M 1+15+1 M-Cyc 2 - M-Cyc 2 2.8451 27.3 34.7 63.7 50.5 37.8 27.0 40.2

Recursive 98M 10 Seq 3 - - - 3.0245 24.6 31.5 63.1 49.3 35.7 25.7 38.3
Recursive 98M 10 Seq 3 - Seq 3 2.9554 24.2 32.3 62.5 52.7 36.6 26.2 39.1
Recursive 98M 10 Cyc 3 - - - 2.9363 25.9 33.0 62.9 50.3 36.4 26.5 39.2
Recursive 98M 10 Cyc 3 - Cyc 3 2.9155 24.1 32.9 62.4 51.2 37.4 26.7 39.1
Recursive 118M 1+10+1 M-Cyc 3 - - - 2.8760 28.5 34.9 64.3 50.5 39.5 27.2 40.8
Recursive 118M 1+10+1 M-Cyc 3 - M-Cyc 3 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2

MoR 118M 1+10+1 M-Cyc 3 Expert - - 2.8667 27.4 34.6 63.2 51.5 37.2 26.5 40.1
MoR 118M 1+10+1 M-Cyc 3 Expert M-Cyc 3 2.8895 34.0 61.6 50.2 26.0 36.5 27.0 39.2
MoR 118M 1+10+1 M-Cyc 3 Expert M-Cyc† 3 2.8653 24.8 34.3 62.0 50.1 36.7 26.7 39.1

MoR 118M 1+10+1 M-Cyc 3 Token - - 2.9358 25.7 32.6 61.9 51.7 36.4 26.5 39.1
MoR 118M 1+10+1 M-Cyc 3 Token M-Cyc 3 2.9155 25.7 32.6 61.8 49.4 36.2 26.0 38.6
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Relaxation for key-value sharing constraints. We also investigated relaxing the constraints on
KV sharing in Table 16, similar to the relaxation approach in Bae et al. [6] for parameter sharing
constraints. Specifically, we first re-examined four relaxation techniques for standard Recursive
Transformers with very small ranks [42, 61] or prefix lengths [62]. We also experimented with the
position encoding [12], where trainable embeddings are element-wise multiplied with the output of
each recursion block.

Our results show that these techniques do not provide substantial performance improvements when
pretraining relaxed models from scratch, consistent with prior studies, as they introduce only a
limited number of additional parameters. Although we hypothesize that incorporating prefix-based
approaches (such as adding trainable prefixes to attention) into KV sharing might lead to greater
benefits, our experiments did not reveal substantial differences in this regard. Further exploration of
more sophisticated techniques for efficiently relaxing KV cache sharing constraints remains an open
direction for future research.

Table 16: Experimental results of relaxing parameter sharing and KV cache sharing constraints in
Recursive Transformers. All models are trained on FineWeb-Edu with 10B tokens, and we apply the
Middle-Cycle parameter sharing for 360M models with 3 recursion depths. We evaluate them based
on training NLL and few-shot accuracy across six benchmarks. Relaxation types include encoding
trainable embeddings on recursion outputs via element-wise multiplication (Enc), applying LoRA
and DoRA to query and value weight matrices, and adaptation prompt tuning (Adapt-P).

Pretrain Relaxation KV Sharing NLL ↓ Few-shot Accuracy ↑
Models N-Emb NL Type Rank Len Share Loop FineWeb LD HS PQ WG ARC MMLU Avg

Recursive 118M 1+10+1 - - - - - 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2
Recursive 118M 1+10+1 Enc - - - - 2.8604 27.3 34.6 63.9 53.4 38.6 26.7 40.2
Recursive 124M 1+10+1 LoRA 64 - - - 2.8599 27.3 34.6 64.3 50.9 38.0 26.9 39.7
Recursive 124M 1+10+1 DoRA 64 - - - 2.8945 26.4 33.6 64.4 50.6 37.4 26.5 39.2
Recursive 126M 1+10+1 Adapt-P - 256 - - 2.8626 27.1 34.7 64.0 51.9 37.6 26.8 39.7

Recursive 118M 1+10+1 - - - M-Cyc 3 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2
Recursive 126M 1+10+1 Adapt-P - 256 M-Cyc 3 2.9030 24.5 33.1 63.0 52.2 26.7 37.6 39.5

K Expanded Qualitative Results

K.1 Analysis on Adaptive Computation Paths

Table 17 illustrates a qualitative analysis of the recursion depth assigned to each subword token.
This visualization provides a detailed insight into how tokens within each sample exhibit varying
levels of recursive processing, showcasing the adaptive computation mechanism within the MoR
framework. Notably, some tokens exit early (purple), while others require deeper processing (blue
and red), reflecting the model’s ability to focus more compute on challenging parts of the input.
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Table 17: Visualization of the recursion depth for each subword token, with colors representing
the number of recursion steps: 1 , 2 , and 3 . This depth specifically indicates how many times
recursion is applied at that token’s position to predict the subsequent token. Each row corresponds to
a single sample, offering a clear illustration of the token-level recursion distribution in practice. We
use an MoR model with Nr = 3, auxiliary loss, and recursion-wise KV caching. This model is built
on a 360M parameter base and trained on 30B tokens.

Sample Text

Sample #1 People who feel comfortable defending their views — def ensively confident — may also eventually
change those views and corresponding behaviors . National Election Studies surveys showed that
defensive confidence predicted def ection in the 2 0 0 6 U . S . House elections , above and beyond
the impact of various demographic and political variables . Moreover , defensive confidence was
also associated with political knowledge and attention to politics and government affairs , but not

Sample #2 2 0 1 4 , 7 : 5 7 AM Space X Falcon 9 - R Rocket Suff ers M alf unction , Self - Dest ruct s During
Test Flight August 2 3 , 2 0 1 4 , 9 : 3 6 AM Texas Ch osen as Site for SpaceX &#x27;s First
Commercial Launch pad August 5 , 2 0 1 4 , 1 : 4 4 PM South Carolina Prison Find s C ras hed
Dr one Car rying Drugs , Ph ones August 1 , 2 0 1 4 , 2 : 4 9 PM NASA &#x27;s Mars 2 0 2 0
Rover G ains Seven New Instruments for Exploration August 1 , 2 0 1 4 , 1 : 3 0 PM NASA

Sample #3 9 PR New sw ire . All rights reserved A report released Thursday on the Slide Fire in Oak Creek
Canyon doesn &#x27;t hold back in laying out the danger facing the burned - out area . The U .

S . Forest Service issued the report Thursday afternoon stating the biggest concern is the st eeper
slopes of Oak Creek Canyon is especially subject to debris flows , rocks l ides , flash flooding and
erosion that could become concentrated flow or a landslide . The report said in smaller streams

Sample #4 Bil bo to accompany the dwar ves to fight the enemy . He says , “ S ar uman believes it is only
great power that can hold evil in check , but that is not what I have found . I found it is the
small everyday deeds of ordinary folk that keep the darkness at bay . Small acts of kindness
and love .” That ’ s what Jesus teaches us as well . Warning us that we would live in dark
times , He reminded us that because of Him we are “ the light of the world ” ( Matt . 5 : 1 4 )

Sample #5 mitting Plants After four years of research , most of it in total darkness , a Stanford University
plant biologist has discovered that some plants have a system of fiber optics that can transmit
light up and down their tissues in a way similar to the method the telephone company uses
to transmit many of its telephone calls . Dr . D ina Mand oli , seeking to find the light - transmit

ting properties of plants , had to rely on her sense of touch as she placed tissues of oat , m ung

Sample #6 an impression of market power abuses or other market failures . In some cases , however , prices
may spike to higher than usual levels and cause public concern and the need for more public
information . To address such events , the proposed amendment includes an event trigger that
would require the public release of entity - specific information on a much quicker timeframe .
The proposed amendment requires that , when the trigger is exceeded , the portion of every

Sample #7 and spaceflight and spacecraft . covers elementary astronomy , Newton ian mechanics , the Sun
and related physics and spaceflight . Also included are a Spanish translation , 4 6 lesson plans ,
a short but complete math course ( al gebra + trig ), teachers &#x27; guides , glossary , timelines ,

3 4 5 questions ( current tally ) by users and their answers , over 1 0 0 problems to solve , and
more . Learning Design Eng ines as Remote Control to Learning Support Environments . Context

Sample #8 a well established role in scientific computing , and a recent increased presence in desktop
computing , it almost certain that contemporary information professionals will encounter Unix
based systems in their work . This workshop is an intermediate level look at the Unix operating
system as compared to the Unix introduction that our S 4 0 1 students receive . We will have a
short review but it will be essential to have the S 4 0 1 - UN IX material internalized as much as

Sample #9 code and will serve as a good introduction to the syntax necessary for creating shell programs .
We will continue by discussing the importance of quoting now that we have used more powerful
met ach ar acters ( variable and command subs it itution ) and need to control their expansion
( interpretation ). Finally , we will end our day revisiting the Unix find utility and looking at some
advanced uses for this indispensable tool . Sl ides for Day 5 ( PDF ) A program running in Unix
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K.2 Analysis on Router Weights

To gain insight into the router output distributions, we visualized the results in Figure 9. Our analysis
reveals that various routing mechanisms are optimized to balance expert loads according to the desired
capacity. Notably, expert-choice routers achieved nearly perfect load balancing with the auxiliary
loss, resulting in almost binary values (1 or 0) for selected and unselected tokens, respectively. For
the auxiliary router, it was able to distinguish between selected and unselected tokens to some extent,
but still showed overlapping. Since this strategy allows for different capacity factors during training
and inference6, further research into methodologies that can more distinctly separate inter-cluster
variations seems necessary.

Other token-choice strategies also exhibited good balancing properties with reasonable router values,
which are used to refine the outputs of the corresponding recursion computation blocks. However,
most cases failed to converge to optimal load balancing (i.e., these were edge cases where they
achieved their own optimal load balancing), highlighting the challenges of achieving consistent
performance in heterogeneous expert settings.
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(b) Expert-choice (Auxiliary router)
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(c) Token-choice (Balancing loss)
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Figure 9: Distribution of router weights for selected and unselected tokens at each recursion step in
expert-choice and token-choice MoR (Nr=3). All models use the recursion-wise KV caching strategy.
The subplots show results for (a) expert-choice routing with auxiliary loss, (b) auxiliary router, (c)
token-choice routing with balancing loss, and (d) loss-free algorithm. Each subplot uses the best
hyperparameter settings identified in Table 4.

6The auxiliary router learns to capture intra-token differences within selected or unselected groups, rather
than being biased towards extreme points.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and Introduction sufficiently contain our main contributions: present-
ing Mixture-of-Recursions that unifies parameter sharing, token-level adaptive depth, and
memory-efficient KV caching, within a single framework.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix B, we provide a detailed discussion of the limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include any theoretical results in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided detailed instructions of our new Mixture-of-Recursion (MoR)
architecture in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We rely on accessible, well-known, and publicly available model architecture
and datasets. Code for both training and evaluation will be released upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix D contain all the experimental settings and details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our work involves pretraining models from scratch using a fixed data order,
which minimizes sources of randomness. Therefore, there is little to no stochastic variation
in our experiments that would necessitate reporting error bars or statistical significance
measures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix D, we elaborate the details on compute resource we have used for
the experiments and report the elapsed time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and couldn’t identify any
violation of the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This study does not invoke considerable societal concerns.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

43

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not contain such risks for data/model misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We follow the conventional LLM evaluation protocols for every experiment
and dataset, which we assume are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not provide new assets in this research.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not deal with crowdsourcing nor human subjects in this research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not deal with crowdsourcing nor human subjects in this research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

45

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not involve LLMs for the core method development in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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