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ABSTRACT

The rate-distortion-perception (RDP) framework has attracted significant recent
attention due to its application in neural compression. It is important to understand
the underlying mechanism connecting procedures with common randomness and
those without. Different from previous efforts, we study this problem from a
quantizer design perspective. By analyzing an idealized setting, we provide an
interpretation on the advantage of dithered quantization in the RDP setting, which
further allows us to make a conceptual connection between randomized (dithered)
quantizers and quantizers without common randomness. This new understand-
ing leads to a new procedure for RDP coding based on multiple quantizers with
offsets. Though the procedure can be viewed as intermediates between the two
extremes, its explicit structure can be advantageous in some cases. Experimental
results are given on both simple data sources and images to illustrate its behavior.

1 INTRODUCTION

Compression plays an important role in efficient representation of information content, particularly
visual content. Traditionally, the tradeoff between the compression rate and the distortion caused
by such compression has been studied under two different but related frameworks: the quantization
framework (Gersho & Gray, 1992) and the rate-distortion theory (Berger, 1971) framework. In the
former, the focus is on the design of quantizers that compress the data samples one a time (i.e., scalar
quantization) or few at a time (i.e., vector quantization), while the latter focuses on the fundamental
limits of lossy compression by allowing an asymptotically large number of samples to be encoded
together. While the latter approach is able to provide sharp theoretical guarantees in the information
theoretic sense, the former has arguably more practical impact leading to near-optimal quantizers.
In both approaches, the distortion is measured in an objective yet potentially artificial manner, e.g.,
in terms of the mean squared error (MSE).

Largely driven by the recent emergence of the neural compression, the issue of perceptual quality
has led to the formulation and the study of the problem of rate-distortion-perception (RDP) tradeoff.
In this formulation, a new quality constraint, which is introduced to capture the perceptual quality
loss due to compression, is further imposed in addition to the existing objective distortion constraint.
Mathematically, this formulation (Blau & Michaeli, 2019) requires the probability distribution of the
content after decompression to be close to that of the source content before compression; the case
when the two distributions are exactly the same is often referred to as “perfect perceptual quality”.

The RDP problem has attracted significant recent research attention, and several studies in this area
revealed that common randomness plays an important role in this setting (Theis & Agustsson, 2021;
Chen et al., 2022). More precisely, the lack of the common randomness can cause significant perfor-
mance loss comparing to methods that have such common randomness at their disposal, and this loss
is particularly severe for scalar quantization. There are two known prevailing methods of introducing
common randomness for RDP coding. The first is based on probabilistic sampling (Li & El Gamal,
2018), and the second is through universal dithered quantization (Ziv, 1985; Zamir & Feder, 1992).
The probabilistic sampling-based method requires the knowledge of a target joint distribution be-
tween the samples and the compressed version, and furthermore, involves a rather complex sampling
procedure. This is hardly surprising, since the approach was originally proposed to provide strong
information theoretic bounds instead of as an immediately practical coding procedure. The dither-
based approach, on the other hand, is simpler to implement and thus more attractive, however, its
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architecture places an inherent constraint on the eventual probability distribution, and it is not clear
what actually makes it suitable for the RDP setting.

One piece of the puzzle has thus far been missing between the compression procedures without com-
mon randomness (e.g., scalar quantization with deterministic encoder) and those with a large amount
of common randomness (dithered quantizers), particularly from a quantizer design perspective. That
is, quantizers with deterministic encoders require no common randomness, and dither-based ap-
proach will utilizes a common randomness on an uncountable set in a less transparent manner. What
exactly is the underlying mechanism that lends the dither-based approach the advantage, and is there
an effective procedure with an intermediate amount of common randomness? Although these ques-
tions have previously been studied under the rate-distortion framework with asymptotic large sample
block size (Saldi et al., 2014), the asymptotic nature of such analysis makes the mechanism rather
opaque. In this work, we set out to develop understanding on these issues under the quantization
framework, and the main contribution of this work is as follows:

• Using a decomposition perspective, we provide a new way to understand the mechanism
from which procedures utilizing common randomness obtain the advantage. A simple set-
ting is analyzed in detail to illustrate the benefit in a quantitative manner.

• Based on these understandings, we provide a new approach to introduce common random-
ness using multiple quantizers with offsets, which can be viewed as intermediates between
the two extreme cases of with full common randomness and without common randomness.

• The new approach is applied on simple data sources, and on neural network based image
compression to illustrate its behavior. The explicit coding structure can be advantageous in
some settings, e.g., for nonuniform distributions and/or distributions with bounded support.

2 BACKGROUNDS

2.1 RATE-DISTORTION FUNCTION AND QUANTIZERS

Let the data source X be a real-valued random variable, with a distribution PX on the alphabet X .
The reconstruction alphabet is denoted as X̂ . Given a distortion measure d : X × X̂ → [0,∞),
e.g., the squared error distortion d(x, x̂) = (x − x̂)2 when X = X̂ = R, the (informational)
rate-distortion function under a distortion constraint D is defined as

R(D) = min
PX̂|X :Ed(X,X̂)≤D

I(X; X̂),

where I(·; ·) is the mutual information function. Explicit solutions for this optimization problem are
only known for some limited probability distributions and distortion measures, however for discrete
random variables on finite alphabets, the Blahut-Arimoto algorithm can be used to compute the
solution efficiently (Cover & Thomas, 2006). The significance of this function is that it characterizes
the best possible rate that any encoding function and decoding function pair can accomplish.

Rate-distortion theory deals with the setting when an infinite number of samples is allowed to be
encoded together. In practice, samples are usually encoded one or few at a time, referred to as scalar
quantization and vector quantization, respectively. In particular, a scalar quantizer consists of an
encoding mapping f : X → Z which determines the representation index to assign to a sample, and
a decoding function g : Z → X̂ which assigns a reconstruction point to each representation index.
Therefore, X̂ = g(f(X)). Indices are allowed to be further entropy-coded, e.g., using Huffman
code. When entropy coding is allowed, it is usually referred to as entropy constrained quantization
(ECQ), whereas when the number of quantization level is fixed, it is usually referred to fixed-rate
quantization. The encoding and decoding functions can be optimized using iterative algorithms,
such as Lloyd algorithm (Lloyd, 1982) or generalized Lloyd algorithms (Chou et al., 1989).

Universal dithered quantizer utilizes a uniform quantizer with stepsize ∆ in the encoding and de-
coding process (Zamir, 2014). Different from classic deterministic quantizers, a random noise Z,
independent of the data samples and uniformly distributed on the base interval (−∆/2,∆/2], is
available at both the encoder and the decoder. The noise Z is first added on top of the sample re-
sulting X + Z, which is then quantized to its nearest neighbour using the deterministic uniform
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quantizer, and the finally the same dither noise Z is subtracted from this point at the decoder. It was
shown (Ziv, 1985; Zamir & Feder, 1992) that using this procedure X̂ = X + Z̃, where Z̃ has the
same marginal probability distribution as Z and is also independent of X , and conditioned on the
common randomness, the optimal entropy coding rate (of the lattice index) is exactly

H(f(X + Z)|Z) = I(X;X + Z).

Note that in practice, such rate is not possible to achieve, since it requires one entropy code for a
specific realization of the noise Z = z. Entropy coding with respect to the (marginal) distribution
of f(X + Z) is usually applied for a rate H(f(X + Z)), which is higher than H(f(X + Z)|Z).

2.2 RATE-DISTORTION-PERCEPTION FUNCTION AND RDP CODING

The (informational) rate-distortion-perception function can be viewed as a generalization of the rate-
distortion function, which under a given distortion constraint D and a given perception constraint
P , is defined as

R(D,P ) = min
PX̂|X :Ed(X,X̂)≤D,w(PX ,PX̂)≤P

I(X; X̂), (1)

where w(·, ·) is a measure quantifying the distance between two probability distributions, e.g., KL
divergence, total variation, or Wasserstein metric. We are mainly interested in the case of perfect
perception, i.e.,

R(D, 0) = min
PX̂|X :Ed(X,X̂)≤D,PX̂=PX̂

I(X; X̂), (2)

which is independent of the choice of w(·, ·) measure. Similar to the rate-distortion setting, it was
shown (Theis & Wagner, 2021) that the RDP function is also the fundamental limits of any encoding
and decoding function pairs in the RDP setting. It was established in Yan et al. (2021) that under
the MSE distortion measure, R(D, 0) = R(D2 ,∞). These results are again asymptotic in nature,
meaning the corresponding codes are allowed to encode a large number of samples together.

For one-shot coding (i.e., scalar coding), it is possible to achieve the following coding rate (Theis &
Wagner, 2021) R(D,P ) + log(R(D,P ) + 1) + 4, using the sampling-based approach mentioned
earlier, which is at a higher rate than the RDP function gives. The loss can be significant at the usual
range of practical compression applications, e.g., at a target rate 4bits with a potential loss of more
than 4bits. It is however not known whether this is the best rate possible for one-shot coding.

It has been shown that quantizers without common randomness can suffer significantly in RDP
coding, and common randomness is important to bring the performance close to the RDP function.
Dithered quantizer, with its common random dither, appears to be a natural match and can be utilized
in this setting. However, note that the output of the original dithered quantizer has a distribution
the same as X + Z, and therefore, there is a mismatch with the target RDP-optimal distribution.
Particularly, for the perfect perceptual quality setting, the distribution of X + Z may be different
from PX , and a distribution shaping procedure is needed at the decoder, at the expense of increased
distortion. This shaping can be accomplished using a nonlinear function φ(·) operating on the output
of the dithered quantizer X + Z̃, and neural networks are often used to fulfill this role.

3 ANALYSIS OF QUANTIZATION ON THE UNIT CIRCLE

As a starting step, let us consider the following idealized unit-circle setting: the data signal X to
be compressed is uniformly distributed over the unit circle X = {x ∈ R2 : ‖x‖2 = 1}. The
distortion is measured using the square error function d(x, x̂) = ‖x − x̂‖22, the coding rate is set
at 1 bit per sample, and the reconstruction X̂ is required to be of perfect perception quality, i.e.,
X̂

d
= X . Since the signal has its domain being the unit circle, we can represent any x ∈ X by its

angle θ(x) ∈ Θ , (−π, π] such that x = (cos(θ(x)), sin(θ(x))).

Fixed-rate quantization at rate 1 on the data source was previously considered in Theis & Agustsson
(2021) to illustrate the advantage of stochastic (dithered) encoders. Two types of quantizers were
considered there:
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(a) Quantizer - private randomness (b) Dithered quantization (c) Dissection of dithered quantization

Figure 1: 1-bit quantizers on the unit-circle with perfect perceptual quality: the “×” indicates a
sample realization of X; the dots “•” indicate the distribution of reconstruction X̂; red and blue
regions indicate the partition region associated with indices +1 and −1, respectively. In (a), the
deterministic encoder is used when the sample lies in the red region. It is encoded as +1 and its
reconstruction is distributed uniformly over the red region. In (b), the dithered approach is used, and
the reconstruction would be distributed uniformly over the arc centered at the sample. There are no
clear partitions in this case, and thus purple is used as a mixture of red and blue regions. In (c), “◦”
indicates realizations of common randomness Z, and the dithered quantization procedure is viewed
as a mixture of uncountably many deterministic quantizers, each associated with a realization of Z.

• Quantizer with a deterministic encoder (no common randomness): Since there is no com-
mon randomness, to obtain perfect perception quality, decoder side noise must be injected.
It was shown that the optimal quantization procedure in this case is as follows:

f(θ(x)) =

{
1 θ(x) ∈ [0, π)
−1 otherwise , g(i) =

i× π
2
− Z̃, (3)

where Z̃ is a private random variable at the decoder side, independent of X , distributed
uniformly on [−π/2, π/2). Note here we view g(i) as a random function, and therefore did
not include Z̃ as part of the function input. This procedure gives a distortion 2− 8/π2.

• Dithered quantizer (with common randomness): Let Z be distributed uniformly over
[−π/2, π/2) independent of X , dithered quantization operates as follows:

f(θ(x) + Z) =

{
1 θ(x) + Z ∈ [0, π) mod 2π
−1 otherwise , g(i) =

i× π
2
− Z, (4)

and θ(x̂) = g(f(θ(x) + Z)). By the property of the dither quantizer, we have θ(X̂) =

θ(X) + Z̃ mod 2π, where Z̃ d
= Z and is independent of X . The distortion thus induced

is 2− 4/π, which is about 38.9% lower than that using the deterministic encoder.

The dithered quantizer performs better here for two reasons: 1) the distribution of θ(X) + Z̃
mod 2π is exactly uniform on the unit circle, and thus naturally match the perception requirement;
2) if the perception consideration is not present, the quantizer without common randomness could
choose a single reconstruction point to minimize the distortion, however it is forced to utilize private
randomness at the decoder, over 1/2 of the unit circle, to produce the desired distribution. In Fig. 1
(a) and (b), we illustrate this effect for the two procedures.

An alternative view of a quantizer with common randomness is to consider the quantizer induced
by fixing a realization of the common randomness Z = z, which is illustrated in Fig. 1 (c) . It is
seen that the partitions of these quantizers are in fact congruent to that shown in Fig. 1 (a). Since
Z is uniformly distributed on [−π/2, π/2), the dithered quantization procedure is in fact mixing an
uncountably many such quantizers, one for each z ∈ [−π/2, π/2). Due to the common randomness
Z, there is no need to inject decoder side randomness, which helps reduce the resultant distortion.

The two types of quantizers considered in Theis & Agustsson (2021) can then be viewed as two
extremes of a class of quantizers: the former is a single quantizer with a deterministic encoder
that relies solely on decoder side randomness for the perception consideration, while the latter is
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=

Figure 2: MultiQuan of 4 quantizers with 2 levels: 1 bit coding rate and 2 bits common randomness.

mixing (randomly selected using the common randomness) among an uncountably many quantizers
each with a deterministic encoder that requires no decoder side randomness. In between the two
extremes, we can consider mixing several quantizers with deterministic encoders, which will need
to rely on decoder side randomness to some extent. One such example with N = 4 quantizers is
illustrated in Fig. 2. It can be seen that each individual quantizer only requires the decoder side
randomness to be uniformly distributed on 1/8 of the unit circle, instead of 1/2 of the unit circle. As
discussed earlier, decoder side randomness induces distortion, and this reduction on its range helps
to reduce the distortion. As we increase the number of quantizers, the distortion is further reduced,
eventually approaching that of the dithered quantizer.

More generally, we can use L-quantization levels which uniformly partitions the unit circle. The N
quantizers are obtained by offseting sequentially by an amount of 2π/(LN) in terms of the angle on
the unit circle, one after another. We refer to this as the MultiQuan procedure.
Theorem 3.1. In the unit-circle setting, at perfect perceptual quality MultiQuan of N quantizers
with L levels achieves the rate-distortion pair

(R,D) =

(
logL, 2− 2

sin(π/(LN))

π/(LN)

sin(π/L)

π/L

)
.

The next two theorems provide the fundamental limits of RDP coding and that of single-shot coding
in the unit-circle setting.
Theorem 3.2. In the unit-circle setting, the information-theoretic rate-distortion trade-off with per-
fect perceptual quality R(D, 0) is given by the pairs parametrized by λ > 0{

(R,D) =
(

log(2π)− h(Z),E[2− 2 cos(Z)]
)

: Z ∼ p(z;λ) =
eλ cos(z)∫ π

−π e
λ cos(z′)dz′

, λ > 0

}
.

Note that this is a slice of the RDP function, which is the best possible allowing infinite large coding
blocks of data samples, and it is in general not possible to achieve using scalar (single shot) coding.
Theorem 3.3. In the unit-circle setting, the optimal scalar quantization (single shot coding) trade-
off between the coding rate and the distortion with perfect perceptual quality is the piece-wise linear
function with the following extreme points{

(R,D) =

(
logL, 2− 2

sin(π/L)

π/L

)
: L = 1, 2, 3, . . .

}
,

which can be achieved by dithered quantizations introduced earlier.

As N → ∞, sin(π/(LN))
π/(LN) → 1, therefore, the performance of the MultiQuan approaches that of

dithered quantization in this setting. Due to the uniform data source distribution, dithered quantizers
are optimal, and MultiQuan with N quantizers and L levels each does not offer any advantage over
dithered quantizers. However, as we will show and discuss in more details in the next section, this
is not the case in general, since the flexibility in entropy coding and optimizing the thresholds can
lead to an additional edge. The proofs of Theorem 3.1-3.3 are given in the supplementary material.

Generalizing the deterministic encoder with only private randomness procedure, it can be shown
(Theis & Agustsson, 2021) that without common randomness, the operating points (R,D) =(

logL, 2− 2 sin2(π/L)
(π/L)2

)
can be achieved, which can also be viewed as MultiQuan with N = 1.
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Figure 3: Performance comparison of different proce-
dures in the unit-circle setting.

In Fig. 3, we plot the rate and distor-
tion pairs for different methods. The RDF
function is that given in Theorem 3.2,
which can only be approached by cod-
ing asymptotically long blocks of sam-
ples. As we increase the number of
quantizers being used in MultiQuan, its
performance improves and eventually ap-
proaches that of the optimal single-shot
quantization. The optimal single-shot
quantization is achieved by the dithered
quantization procedure in this unit-circle
setting. The procedure based on determin-
istic encoder with private randomness at
the decoder performs the worst as we an-
ticipated. More discussions on the unit-
circle setting is postponed to the appendix.

4 DESIGN AND OPTIMIZATION OF OFFSET QUANTIZERS

The unit circle setting discussed in the previous section has a uniform source data distribution for
which the dithered quantizer has a natural advantage since θ(X) + Z̃ in fact matches the desired
output distribution. This implies that there does not exist tension between distortion and perception
quality in that particular setting. In this section, we consider more general distributions, where the
tension between the distortion and the perception constraint does manifest.

In addition to providing an interpretation for the advantage of dithered quantization over determinis-
tic encoder, potential coding advantages of MultiQuan are as follows: since the number of quantiz-
ers is small, it is possible to design and use tailored entropy code specifically for each, whereas for
dithered quantizer, this becomes impractical (the noise realization z is in an uncoutable set); more-
over, the explicit form of MultiQuan structure allows us to also optimize the quantization thresholds
explicitly, in contrast to dithered approach for which the thresholds are always uniform.

4.1 UNIFORM QUANTIZERS WITH UNIFORM OFFSETS

We first introduce MultiQuan with uniform quantization stepsizes, before discussing optimization
of the quantization thresholds in the next subsection. Assuming there are N uniform quantizers to
be used jointly in the proposed method, the encoding function fn(x) for the n-th quantizer with
stepsize ∆ is

fn(x) =
⌊ x

∆
− n

N

⌉
, n = 0, 1, 2, . . . , N − 1 (5)

where b·e is the operation that rounds to the nearest integer.

To achieve perfect perceptual quality, decoder side randomness must be used, yet due to the non-
uniformity of the distribution, it is more involved than simply subtracting certain random value. To
present the procedure, first denote the density of the data sourceX as pX(x) and denote by FX(x) =

P(X ≤ x) its cumulative generating function. Denote its inverse as F−1X (t) , inf{x : FX(x) > t}
for any t ∈ [0, 1). Let us introduce a density function qa,b(x) , pX(x)∫

a,b
pX(t)dt

. A random variable that

is generated privately at the decoder side according to this distribution is denoted as Z̃a,b, which is
independent of all the other random variables.

Define an indexing function m(x, n) = N ·fn(x) +n, which essentially specifies an order of all the
quantization cells in all these N quantizers. Define its inverse at input x as m−1X (j) , inf{x : ∃n ∈
[0 : N − 1],m(x, n) = j}. Intuitively, for each quantizer and quantizer cell index pair (n, fn(x)),
the reconstruction at the decoder is a random variable that follows a probability distribution which
matches the data sample distribution in an interval. Now to specify the specific interval, we define a
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decoder reconstructions

Figure 4: MultiQuan based on offset quantizers: each component quantization cell will be mapped
to a reconstruction interval at the decoder, and the probability mass in the component quantizer
cell is N times the mass in that reconstruction cell for the same probability distribution due to the
perception constraint.

sequence of boundaries (a(j), b(j))j∈Z as

a(j) , F−1X

(
N∑
k=1

FX(m−1x (j − k))

N

)
, b(j − 1) , a(j). (6)

The encoding and reconstruction process can now be described as follows. Given data source X
at the encoder side, the MultiQuan encoding procedure uniformly at random selects one of the N
encoders {f0, f1, . . . , fN−1} with stepsize ∆. The index n of the selected encoder is a common
randomness shared by the decoder, and the data sample is encoded as fn(X). At the decoder,
MultiQuan decoder computes the index j using f(x) and n by indexing function m(·), and the
reconstruction is a random sample X̂ = Z̃a(j),b(j). More formally, the decoding function upon
receiving code fn(X) = i is

g(i) = Z̃a(j),b(j), with j = Ni+ n, (7)

where n is the common randomness of the offset quantizer index.

We remark here that the offsets can be viewed as a random dither which takes discrete values in
{0, 1/N, 2/N, . . . , (N − 1)/N}. However for each realization, the reconstruction is an interval
instead of a single value, unlike in classic deterministic quantizers or dithered quantizers.

4.2 OPTIMIZING OFFSET QUANTIZERS

Unlike dithered quantizers, where the encoding function is restricted to have uniform thresholds,
MultiQuan does not have such constraint and we can further optimize the thresholds. However, such
optimization is not expected to provide significant gain over uniform thresholds when entropy coding
is allowed in the procedure. This type of effect was well-known at high rate in classic quantization
theory (Gish & Pierce, 1968). The optimization of quantization thresholds turns out to be rather
difficult in the RDP setting, and we consider two methods:

• Gradient descent-based method: At perfect perceptual quality, we can define the cost func-
tion asD+λR, where λ is the Lagrange multiplier. Viewing the thresholds of the quantizers
as the variables, we can directly apply gradient descent type of methods to minimize this
cost function. Note that the algorithm may only converge to a local optimal, even if the
stepsize is properly chosen.

• Pseudo-Llyod method: Generalized Lloyd method is a classic iterative method to train
entropy-constraint quantizers that updates the thresholds, the reconstruction points, and the
codeword lengths separately, assuming the other two are fixed. In the setting of MultiQuan,
we can view the support of each Z̃a,b as a reconstruction interval, instead of a single re-
construction point, and apply the same iterative procedure. However, in the RDP setting
the analogous condition for updating the thresholds does not guarantee optimal thresholds
even with the other two components fixed, and therefore this step may not always reduce
the cost, further implying that the algorithm may not always converge.
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Figure 5: Comparing quantization procedures for simple sources with perfect perceptual quality

Details of these two approaches are given in the appendix together with some numerical results.

5 EXPERIMENTAL RESULTS

We experimentally compare the performance of MultiQuan with that of quantization without com-
mon randomness and dithered quantization. For simple data sources, perfect perceptual quality is
enforced, whereas for image data sources, a high perceptual quality constraint is enforced.

5.1 SIMPLE SOURCE WITH PERFECT PERCEPTUAL QUALITY

We first study scalar quantization for two simple sources – uniform distribution (source X dis-
tributes uniformly over the unit interval [0, 1]) and exponential distribution (source X has density
pX(x) = e−x for x ≥ 0), where perfect perceptual quality can be analytically guaranteed. Multi-
Quan quantization procedures with 1-3 common random bits are compared to two reference quanti-
zation procedures: 1) quantization without common randomness (same as MultiQuan with N = 1);
2) dithered quantization with post processing φ(·), which transforms the output of dithered quantizer
X+Z̃ such that φ(X+Z̃) has the same distribution as the source dataX . This can be accomplished
using the function φ(y) = F−1X (FX+Z̃(y)) (Li et al., 2010).

Although we mainly aim to develop better understanding on the connection between quantizers
without randomness and dithered quantizers, as shown in Figure 7, the MultiQuan procedures can
sometimes outperform both of them. Particularly, even just mixing 2 quantizers appears to provide
very competitive performance, relative to dithered quantization. The performance of dithered quan-
tization is superior to that of quantization without common randomness when rate is moderately
high, but at low rate dithered quantization suffers, because entropy coding cannot be realistically
and effectively performed conditioned on each Z realization, but rather is done on f(X + Z).

In the appendix, we further improve the MultiQuan procedure by the gradient-descent and pseudo-
Lloyd algorithms and compare it with dithered quantization with conditional entropy coding. Even
though the latter improves significantly over the dithered quantization with marginal entropy coding,
MultiQuan procedures (with optimization) is still able to outperform other procedures.

5.2 NEURAL NETWORK-BASED IMAGE COMPRESSION

We next consider neural network-based image compression on the MNIST dataset, similar
to that used in Blau & Michaeli (2019). We follows an auto encoder-decoder architec-
ture under a Wasserstein GAN regularization, with three trainable neural network components
(f(·;ωf ), g(·;ωg), c(·;ωc)) parameterized by (ωf , ωg, ωc). A scalar quantization procedure Q is
then used between the encoder and decoder, which is chosen to be either quantization without com-
mon randomness, dithered quantization, or MutliQuan quantization.
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Figure 6: Neural network based image compression. (a) Rate-distortion tradeoff of various proce-
dures at high perception quality. (b) Reconstructed images of quantization without common random-
ness, dithered quantization, MultiQuan with N = 2, 4, 6 in the columns, respective; rate increases
from top to bottom in each column.

More precisely, the neural network f(·;ωf ) is a non-linear function that maps the input image X to
a vector v in the low dimensional hidden space [−1, 1]d. The quantization procedure Q is applied
to signal v coordinate-wise, which encodes v into bits at the encoder side and reconstructs it to v̂
at the decoder side. Generator g(·;ωg) generates/reconstructs image X̂ based on the reconstructed
signal v̂. The critic c(·;ωc) discriminates the images from the true image distribution and that of the
generated image distribution to preserve the perceptual quality.

The training steps follow those in Blau & Michaeli (2019). Since perfect perceptual quality can not
be analytically guaranteed, we take a sufficiently large Lagrange multiplier λ = 0.08 and minimize
the distortion-perception Lagrangian

L = E[‖X − X̂‖22] + λW1(pX , pX̂),

where W1 is the 1-Wasserstein metric with Kanotorovich’s dual formulation W1(pX , pX̂) =

sup1-Lipschitz c:X→R

(
E[c(X)]− E[c(X̂)]

)
, and is approximated by maximizing parameterized critic

function c(·;ωc) with gradient regularization Gulrajani et al. (2017) during the training. The soft
gradient estimator of Mentzer et al. (2018) is used to back-propagate through the quantizer. More
details on the training procedure and related discussions are given in the appendix, and our code will
be released upon paper’s acceptance.

From Fig. 6, it is seen that similar to the simple data sources, there is a performance gap between
dithered quantization and quantizer without common randomness. MultiQuan procedures can again
outperform dithered quantization in some cases when neural network is used. On the plot we also
indicate the error bar on the distortions in different training runs. It is seen that neural network
based image compression induces significant variations. We train the neural network such that the
perceptual quality is sufficiently high, however it should be noted that perfect perception quality
cannot be enforced, and the discriminator can only estimate the true Wasserstein distance.

6 CONCLUSION

We consider RDP coding from a quantizer design perspective. By decomposing dithered quantiza-
tion, we obtain MultiQuan as intermediates between the two extremes of dithered quantization and
quantization without common randomness. This new perspective provides a new way to understand
the advantage of coding procedures with common randomness. Interestingly, in some cases, the
MultiQuan procedure can in fact outperform dithered quantization by mixing only a few quantizers,
since its explicit structure allows effective entropy code of each individual quantizer, and further al-
lows optimization of the quantization thresholds. We focus on the case of perfect perceptual quality
in this work, and leave the study of more general perceptual quality to a future work.
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A RELATED WORKS

Rate-distortion (RD) theory provides a mathematical framework to study the fundamental limits of
the rates needed for preserving the signal under a given distortion criteria (Cover & Thomas, 2006;
Berger, 1971). Such studies are asymptotic (in term of the number of samples encoded together
as a single block) in nature. Its more practical counterpart, quantization theory, provides analysis
and design for efficient scalar or vector quantizers (Gersho & Gray, 1992). The distortion measure
imposed in traditional studies does not adaquately consider the perceptual quality, and as a remedy,
Blau and Michaeli (Blau & Michaeli, 2019) proposed the RDP framework, which has since attracted
significant attention (Theis & Agustsson, 2021; Theis & Wagner, 2021; Yan et al., 2021; Zhang et al.,
2021; Wagner, 2022; Chen et al., 2022). The perception constraint requires the recovered signal to
be realistic by measuring the discrepancy between its distribution and the distribution of the original
signal. The RDP problem was analyzed, by extending the rate-distortion theory approach (Theis &
Wagner, 2021; Chen et al., 2022; Wagner, 2022). Theis & Wagner (2021) also presents one shot
coding result, which is similar in spirit to scalar quantization.

A problem closely related to RDP coding is coding for a target probability distribution, which re-
duces to RDP coding when the target distribution is in fact RDP-optimizing. This more general
setting had in fact been studied earlier (Saldi et al., 2013; 2014), and information theoretic results
were given. The same problem was also considered under the moniker of channel synthesis (Cuff,
2013), and the work (Li & El Gamal, 2018; Theis & Ahmed, 2022) can also be viewed as treating
this problem.

The sampling-based approach proposed in Li & El Gamal (2018) has often been invoked to prove
rate-distortion type of results in the RDP setting, but it was well understood that such approach is
fundamentally expensive in terms of computation (Agustsson & Theis, 2020). On the more practical
front, dither-based approach is attractive and has been adopted in Agustsson & Theis (2020); Zhang
et al. (2021); Yang et al. (2022). Dithered quantization with common randomness has a long history
that traces back to Ziv (1985); see also Roberts (1962). Though it has some desirable properties
(Zamir & Feder, 1992), which make it a convenient choice for some neural network based sys-
tems (Agustsson & Theis, 2020), its performance is in general inferior to deterministic quantizers
when there is no perception consideration (Theis & Agustsson, 2021). Integrated with non-linear
post mapping which preserves the perfect perception quality, dithered quantization was studied as
a heuristic in Li et al. (2010). Dithered quantization provides a seemingly natural match for RDP
coding, given the importance of utilizing common randomness in this setting (Chen et al., 2022;
Wagner, 2022), and the illustrative example given in (Theis & Agustsson, 2021) appears to con-
firm the benefit of this approach in the RDP setting. However, the underlying mechanism of this
advantage appears rather opaque.

B PROOFS OF SECTION 3

Proof of Theorem 3.1. Since each of N quantifiers are uniform with L levels, the rate for the cor-
responding MultiQuan procedure is logL. Due to symmetry, we analyze the distortion with a fixd
quantizer. The arc (in angle) that the samples are quantized to the same index on has a length (2π)/L
since there are L levels, and the inserted decoder noise is placed at the center of the arc uniformly
distributed with a length (2π)/(NL) since there are also N quantizers. The distortion can then be
calculated as

L

2π

LN

2π

∫ π/L

−π/L

(∫ π/(NL)

−π/(NL)
‖(cos(θ), sin(θ))− (cos(α), sin(α))‖2dα

)
dθ (8)

=
L

2π

LN

2π

∫ π/L

−π/L

(∫ π/(NL)

−π/(NL)
2(1− cos(θ − α))dα

)
dθ (9)

= 2 +
L2N

2π2

∫ π/L

−π/L
sin(θ − π/(NL))− sin(θ + π/(NL))dθ (10)

= 2 +
L2N

π2

(
cos(

π

L

N + 1

N
)− cos(

π

L

N − 1

N
)

)
(11)
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= 2− 2
sin(π/(NL))

π/(NL)

sin(π/L)

π/L
, (12)

which is the desired result.

Proof of Theorem 3.2. We aim to minimize the rate distortion Lagrangian with perfect perceptual
quality for any Lagrange multiplier λ > 0, i.e,

min
pX̂|X :X̂

d
=X

I(X; X̂) + λE[‖X − X̂‖2]. (13)

Due to perfect perceptual quality, the reconstructed signal X̂ must lie on the unit circle, and we can
represent X̂ by its angle representation θ(X̂). The MSE distortion term can be written as

‖X − X̂‖22 =
∥∥∥(cos(θ(X)), sin(θ(X)))− (cos(θ(X̂)), sin(θ(X̂)))

∥∥∥2
2

= 2− 2 cos(θ(X)− θ(X̂)).

(14)

The mutual information can be lower bounded by

I(X; X̂) = h(X)− h(X|X̂) ≥ h(X)− h(X − X̂) = h(θ(X))− h(θ(X)− θ(X̂)). (15)

For simplicity, from here on we will write θ = θ(X) and θ̂ = θ(X̂), and denote β := θ − θ̂.

Since h(θ(X)) is a constant, we can consider the following optimization problem, which is equiva-
lent to lower-bounding (13)

minimizep(β) − h(β) + 2λE[(1− cos(β))] = 2λ+

∫ π

−π
p(β)[log(p(β))− 2λ cos(β)]dβ. (16)

Using simple calculus of variation, it can be verified that the optimal distribution of β for the opti-
mization above is p(β) = e2λ cos(β)∫ π

−π e
2λ cos(β′)dβ′

. Since β is independent of θ, the sum θ̂ = θ + β has a

uniform distribution over [−π, π]. Thus this distribution indeed provides an lower bound to (13).

To show that they are in fact equal, we only need to observe that in (15), the only inequality can be
written as

I(X; X̂) = h(X)− h(X|X̂) = h(θ)− h(θ|θ̂) = h(θ)− h(θ − θ̂|θ̂)
= h(θ)− h(β|θ̂) ≥ h(θ)− h(β). (17)

However observe that we have

pβ|θ̂(β|θ̂) =
pβ,θ̂(β, θ̂)

pθ̂(θ̂)
=
pβ,θ(β, θ̂ − β)

pθ̂(θ̂)
=
pβ(β)pθ(θ̂ − β)

pθ̂(θ̂)
= pβ(β), (18)

where the last step is because both θ and θ̂ are uniformly distributed marginally. This implies β is in
fact independent of θ̂, and h(β|θ̂) = h(β), and therefore (17) becomes an equality, which establishes
overall equality. Thus the rate-distortion pairs are indeed characterized by{

(R,D) =
(

log(2π)− h(Z),E[2− 2 cos(Z)]
)

: Z ∼ p(z;λ) =
eλ cos(z)∫ π

−π e
λ cos(z′)dz′

, λ > 0

}
.

It is not difficult to verify that the curve (or function) above is continuous, and its epigraph is non-
empty and closed lying in the upper right quadrant. Each point on the curve naturally has a sup-
porting hyperplane, since it is a solution of optimizing the corresponding Lagrangian. Thus by the
partial converse of supporting hyperplane theorem the curve is convex.

Proof of Theorem 3.3. Any codecs (f, g) can be represented by f : X × R → Z and g : Z ×
R → X . The signal X is encoded by f(X,V ) to some an integer and then reconstructed by
X̂ = g(f(X,V ), V ), where V is the common randomness. This is the most general class of codec,
and we will show the optimal rate and distortion tradeoff within this class.
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Due to the perfect perceptual quality requirement, the reconstructed signal X̂ must lie on the unit
circle. Without considering perceptual quality, we first characterize the scalar optimal quantization
under the condition that reconstruction X̂ lies on the unit circle. Take any Lagrange multiplier λ > 0,
consider minimizing the following rate distortion Lagrangian with decision variables (f, g, V )

H(f(X;V )|V ) + λEX,V [d(X, g(f(X;V );V ))]

= EV [EX [− log(P(f(X;V )|V )) + λd(X, g(f(X;V );V ))|V ]] (19)

It suffices to study the deterministic quantizer, since for any stochastic quantizer (f, g, V ), there
exists a deterministic quantizer (f(; v), g(; , v)) with some realization of V = v such that its La-
grangian is at most that of the stochastic quantizer.

To start with, first note that the optimal deterministic quantizer must have contiguous regions, i.e.,
the region in X of the same index f(·, v) should be contiguous. To see this, consider a partition F
of the unit circle that has non-contigous cells; however, a different partition with only contiguous
cells such that each index has an inverse image of the same measure as that in F , and reconstruction
point in the center will strictly improve the distortion. Now, for such a quantizer with L levels,
i.e., |f(·, v)| = L, and we claim that it must be uniform quantizer on the unit circle. Consider two
adjacent Voronoi cells. Suppose the two adjacent regions has a total size (in terms of the angle
spanned) 2πr for some r ∈ (0, 1], moreover, suppose the first Voronoi is of size 2πα for some
α ∈ (0, r). For optimal partitions, α must be a minimizer of following function

l(α; r) = (r − α) ln(r − α) +
λ

π
sin(π(r − α)) + α ln(α) +

λ

π
sin(πα). (20)

Its derivative is

l′(α; r) = − ln(r − α)− λ cos(π(r − α)) + ln(α) + λ cos(πα) (21)

and its second derivative is

l′′(α; r) =
1

r − α
+

1

α
− λπ(sin(π(r − α)) + sin(πα)). (22)

It is not hard to verify that l and l′′ are even functions, and l′ is an odd function. There are two
circumstances

1. λ is small, and l′′(α; r) ≥ 0. Then l(α; r) is a non-constant symmetric convex function
whose optimal value is achieved by α → 0 or α → r, which conflicts the fact that the
optimal quantizer has non-empty voronoi.

2. λ is large, and l′′(α; r) will be positive on both ends and negative in the middle. l′(α; r) is
increasing, decreasing and increasing. l(α; r) will either have a maximum with α = r/2
or the maximum is approached by α→ 0 or α→ r.

Therefore any two adjacent non-empty Voronoi cells have the same size. The optimal quantizer
thus must have equal sized Voronoi cells, thus a uniform quantizer. The optimal scalar quantization
(single shot coding) trade-off between the coding rate and the distortion is the piece-wise linear
function with the following extreme points{

(R,D) =

(
logL, 2− 2

sin(π/L)

π/L

)
: L = 1, 2, 3, . . .

}
.

The piece-wise linear function above is a lower bound, when considering perfect perceptual quality.
However, it is straightforward to verify that dithered quantizations has perfect perceptual quality and
can achieve the extreme points and thus match the lower bound. Thus the optimal scalar quantization
trade-off between the coding rate and the distortion with perfect perceptual quality is also the piece-
wise linear function above and can be achieved by (time-sharing) of dithered quantizers.

C MORE DISCUSSIONS ON THE UNIT-CIRCLE SETTING

We observe a sharp difference between the information-theoretic rate-distortion function (optimal
asymptotic rate-distortion tradeoff) and the performance of the optimal scalar quantization. Though
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Figure 7: Unit-circle setting: log plots

both distortions approach to zero as the rate increases, their ratio are roughly the same as shown in
the Figure 7a. In other words, to obtain the same distortion as the joint coding of infinite number of
i.i.d. data, scalar quantization requires 0.2-0.4 extra bits per dimension. Moreover, Figure 7a shows
that MultiQuan converges uniformly to the optimal scalar quantization as the amount of common
randomness increases. A linear convergence rate is also exhibited, i.e., the distortion difference
between MutliQuan and the optimal scalar quantization converges to zero exponentially fast as the
amount of common randomness increases.

D OPTIMZING MULTIQUAN THRESHOLDS

We introduce two heuristic iterative algorithms to optimize the thresholds in the MultiQuan pro-
cedure. Recall that MultiQuan consists of N quantizers. Denote by an(i) and bn(i) the lower
boundary and upper boundary for quantization cell-i of quantizer-n, which are the decision vari-
ables to optimize. For the uniform offset quantizers introduced earlier, an(i) =

(
i− 1

2 + n
N

)
∆ and

bn(i) = an(i) + ∆, which are used as initialization in the iterative algorithms. The boundaries of
the reconstructed signal corresponding to cell-i of quantizer-n is a(iN + n) and b(iN + n), which
can be calculated as in (6).

The source data X has a probability density p(x). With a slight abuse of notation, denote p(a, b) =
P(X ∈ [a, b)). The objective function is the distortion-rate Lagrangian Lλ = D + λR, i.e.,

1

N

N−1∑
n=0

∑
i

(∫ bn(i)

an(i)

∫ b(iN+n)

a(iN+n)

(x− z̃)2p(x)p(z̃)dz̃dx+ λp(an(i), bn(i)) log
1

p(an(i), bn(i))

)
.

The Lagrangian Lλ is a function of the boundaries (an(i), bn(i))n∈[0:N−1],i∈Z. Optimal tradeoff
between the rate and the distortion can be achieved by minimizing the Lagrangian Lλ by varying
λ > 0.

D.1 GRADIENT DESCENT BASED APPROACH

To apply gradient descent on the Lagrangian Lλ, it suffices to calculate the gradient. Since the cells
of quantizer-n are adjacent to one another from left to right, the upper boundary for quantization
cell-i is the same as the lower boundary for quantization cell-i, i.e., bn(i− 1) = an(i). We can thus
view bn(i− 1) and an(i) as one decision variable ρ.

Define x̄iN+n = x̄n,i ,
∫ bn(i)

an(i)
p(x)dx

p(an(i),bn(i))
and z̄iN+n = z̄n,i ,

∫ b(iN+n)

a(iN+n)
p(x)dx

p(a(iN+n),b(iN+n)) , where index
iN + n matches the boundary functions (a(·), b(·)) of reconstruction function and (n, i) matches
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the quantizer cells’ boundary function (a·(·), b·(·)). Let `n(i) denote the codeword length for cell-i
in quantizer-n.

For an interval [a, b] denote by x̄a,b ,
∫ b
a
p(x)dx

p(a,b) the expectation of X conditioned on that X lies in

the interval. The partial derivative ∂Lλ
∂ρ can be calculated as

p(ρ)

(
iN+n−1∑

j=(i−1)N+n+1

(z̄j − b(j))2 − (z̄j − a(j)2 − 2(b(j)− a(j))(x̄j − z̄j)

+ (ρ− x̄n,i−1)2 − (x̄n,i−1 − z̄n,i−1)2 + (z̄n,i−1 − b((i− 1)N + n))2

− (ρ− x̄n,i)2 + (x̄n,i − z̄n,i)2 − (z̄n,i − a(iN + n))2 + λ`n(i− 1)− λ`n(i)
)
.

Note that valid boundaries of offset quantizers satisfy

b0(i− 1) = a0(i) ≤ a1(i) ≤ · · · ≤ aN−1(i) ≤ b0(i) = a0(i+ 1).

The thresholds after the descent update need to be valid, i.e., maintain the sequential order above. If
any of the above inequalities is violated, we can either select a smaller stepsize using backtracking
line search or project it to the set of valid boundaries.

D.2 PSEUDO-LLOYD BASED APPROACH

The classic Lloyd algorithm iterates among the optimization of three components: the thresholds,
the reconstruction values, and the codeword length for each coding index. In our setting, a recon-
struction interval takes of the role a reconstruction value in the classic setting. To be more concrete,
we assume the probability density function exists and has a finite support on the interval [L0, U0].
Furthermore, assume the distortion is measure by mean squared error. We can adopt the following
pseudo-Lloyd algorithm shown in Algorithm 1.

Algorithm 1 Pseudo-Lloyd for MultiQuan

Require: N,∆, p(x)
Initialize an(i) =

(
i− 1

2 + n
N

)
∆ and bn(i) = an(i) + ∆, ∀i, ∀n = 0, 1, 2, . . . , N − 1;

. Quantization intervals
Initialize a(j), b(j), ∀j, as given in (6); . Reconstruction intervals
Initialize `n(i) = − log p(an(i), bn(i)), ∀i, ∀n = 0, 1, 2, . . . , N − 1;

. Codeword lengths for i-th cell in quantizer-n
while Stopping criteria not satisfied do

for i and ∀n = 0, 1, 2, . . . , N − 1 do
a← a(n−1) (mod N)(i+ b(n− 1)/Nc), ā =← a(n+1) (mod N)(i+ b(n+ 1)/Nc)
Let

f(t) =

∫ b((i−1)N+n)

a((i−1)N+n)
(x− t)2p(x)dx∫ b((i−1)N+n)

a((i−1)N+n)
p(x)dx

+ λ`n(i− 1)−

∫ b(iN+n)

a(iN+n)
(x− t)2p(x)dx∫ b(iN+n)

a(iN+n)
p(x)dx

− λ`n(i)

Solve for t such that f(t) = 0 in [ā, b̄]
if t exists then

an(i)← t; bn(i− 1) = an(i);
else if f(ā) > 0 then

an(i)← ā; bn(i− 1) = an(i);
else

an(i)← a; bn(i− 1) = an(i);
end if

end for
Update a(j), b(j), ∀j, as given in (6);
Update `n(i) = − log p(an(i), bn(i)), ∀i, ∀n = 0, 1, 2, . . . , N − 1;

end while
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Figure 8: Simple source with perfect perceptual quality

In the pseudo code above, we have omitted some details, particularly regarding the updates of thresh-
olds between two cells with measure zero, which clearly does not require any optimization. Here we
adopt Lloyd’s update in analogous manner to update the thresholds, however it does not guarantee
optimality, unlike the classic setting. Nevertheless, experimental results show that the approach can
lead to some performance improvements.

E EXPERIMENTAL RESULTS AND DETAILS

E.1 SIMPLE SOURCE WITH PERFECT PERCEPTUAL QUALITY

In Figure 8, we include further results with dithered quantization, assuming conditional entropy
coding is allowed, i.e., the rate is the conditional entropy H(f(X + Z)|Z), which can be achieved
by infinitely many entropy codes. The performances of the MultiQuan quantizers optimized using
the gradient-descent based method and pseudo-Llyod based method are also given. The Gradient-
descent is updated for 20 iterates with step size 0.001 and stops early if the updated thresholds no
longer satisfy the offset quantizers. The pseudo-Llyod algorithm iteratively optimizes the thresholds
until the change of rate-distortion Lagrangian at one update step is within 1e-5.

Uniform distribution setting: As shown in Fig. 8a, dithered quantization with conditional entropy
coding shows a significant rate improvement over the dithered quantization with marginal entropy
coding. Unlike the latter, it is always superior to that of quantization with only private randomness
at any rate. Its performance surpasses that of the MultiQuan procedure with 1 common random bit,
however is inferior to MultiQuan with 2 or 3 common random bits. Gradient-based and Pseudo-
Lloyd algorithms improve the performance of the MultiQuan procedure. These two algorithms
appear to perform similarly, and their performances cannot be distinguished in the plot (the solid
lines of Gradient-descent optimized MultiQuan overlap with the dashdot lines of Pseudo-Lloyd
optimized MultiQuan). The best scalar quantization currently achieved is through MultiQuan with
optimized thresholds, when there are at least 3 common random bits. Its performance is clearly
better than that of the dithered quantization, even assuming unrealizable conditional entropy coding
in the dithered approach.

Exponential distribution setting: Similar to the uniform distribution setting, in Fig. 8b, dithered
quantization with conditional entropy coding shows a significant improvement over dithered quan-
tization using marginal entropy coding. It also outperforms quantization without common random-
ness at most rates, but is still inferior in the low rate region. In certain rate region, as shown in
the zoom box, its performance sometimes surpasses that of MultiQuan procedures without opti-
mization. Gradient-descent does not make much improvement in this setting on MultiQuan, while
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Figure 9: Estimated perception error with different lambda

pseudo-Lloyd algorithms is considerably more effective. The best rate-distortion tradeoff is achieved
by pseudo-Lloyd optimized MultiQuan with 3 common bits. We believe, due to the non-convexity
of the underlying optimization problem, the gradient-descent algorithm tends to stuck at a critical
point near the uniform-offset-quantizer initialization point.

E.2 NEURAL NETWORK BASED IMAGE COMPRESSION

We test different quantization procedures for neural network-based image quantization on the
MNIST dataset (LeCun et al., 1998). The training follows auto encoder-decoder with Wasserstein
GAN regularization, which is consisted of three trainable components (f(·;ωf ), g(·;ωg), c(·;ωc))
with parameters (ωf , ωg, ωc) and a given scalar quantization procedure Q. The trainable compo-
nents follows the same architecture as in Zhang et al. (2021). We take Lagrange multiplier λ = 0.08
for the distortion-perception Lagrangian, and perform adversarial training for a total of 30 epochs.
The learning rate was decayed by a factor of 5 after 20 epochs. All models were trained with the
Adam optimizer, and the batch size used was 64. The results are averaged over 5 repetitions with
different random seeds, and the error bar is ± standard deviation.

The hidden space has dimension 5, and the value in each coordinate is within [−1, 1]. The scalar
quantization procedure is applied to each coordinate. Specifically, three types of quantization pro-
cedures are compared. All the procedures rely on encoding with uniform thresholds. The step sizes
are chosen as ∆ = 2/L, where L = 2, 3, . . . , 6 for plotting the tradeoff.

• Quantization without common randomness: As MultiQuan without common randomness,
N = 1 and the encoding function is the deterministic f0 as in (5). Since the distribution
of the signal in the low dimensional space is not known, noise Z̃ uniformly distributed in
the interval [−∆/2,∆/2] is added to the reconstruction point so as to maintain perceptual
quality.

• Dithered quantization: dithered quantization follows the same as scalar setting, where the
generator function g(·;ωg) serves as a post-processing function that maintain perceptual
quality.

• MultiQuan: For MultiQuan with N quantizers, each quantizer performs similarly
as quantizer without common randomness, but with additive private noise Z̃ within
[−∆/(2N),−∆/(2N)].

Lagrange multiplier is sufficiently large to maintain high perceptual quality: The Lagrange
multiplier chosen as 0.08 is five times larger than the largest Lagrange multiplier 0.015 chosen
in Zhang et al. (2021), and also much larger than the Lagrange multiplier 0.0001 chosen in Liu
et al. (2022), where perfect perceptual quality is required. Perceptually, the reconstructed images
resemble the true images in the MNIST dataset. Moreover, the 1-Wasserstein metric estimated by
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(b) Noise scale 0.6
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(c) Noise scale 0.2

Figure 10: Impact of inserted noise on the distortion
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(b) Noise scale 0.6
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Figure 11: Impact of inserted noise on the perception

the critic network c(·;ωc) is shown in Fig. 9. We observe that if the λ is not chosen large enough
(e.g., λ = 0.005), the estimated 1-Wasserstein metric would decrease as the rate increases shown in
Figure 9b. In contrast, under sufficiently large Lagrange multiplier (λ = 0.08), the estimated metric
close to zero and does not decrease as the rate increases. These observations serve as evidence that
convinces us the Lagrange multiplier has been chosen sufficiently large to maintain high perceptual
quality.

Impact of the amount of inserted noise: Besides the common randomness, the inserted noise at
the decoder side is another source of randomness during the coding process. It is generally believed
that this noise should be inserted at the decoder side for quantization without common randomness
to maintain high perceptual quality, but how large? We control the scale of noise and illustrate the
impact of the inserted noise as well as its impact together with the common randomness. Note
that dithered quantization, as a universal quantization, does not have the flexibility to reduce this
noise, since the only source of randomness is the common randomness. However, we can control
the size of the inserted noise in quantization without common randomness and the MultiQuan pro-
cedure, simply by introducing a multiplicative factor between [0, 1] on the inserted noise. Let us
call this factor noise scale. When the noise scale is 0.6, inserted noise Z̃ is uniformly distributed
over [−0.3∆, 0.3∆], which reduce the variance of the input to the generator g(·;ωg). Fig. 10 shows
that, quantization without common randomness and MultiQuan procedures may achieve lower dis-
tortion due to reduced noise scale. The private noise only setting even catch up with the dithered
quantization when the rate is high. One reason is that when the rate is high, the coded vector in the
hidden space itself provide sufficient variations to maintain high perceptual quality without the need
of inserted noise. On the other hand, when the rate is low, reducing the inserted noise may have
negative impact on the distortion of quantization without common randomness.
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