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ABSTRACT

Event-based multimodal large language models (MLLMs) enable robust perception
in high-speed and low-light scenarios, addressing key limitations of frame-based
MLLMs. However, current event-based MLLMs often rely on dense image-like
processing paradigms, overlooking the spatiotemporal sparsity of event streams and
resulting in high computational cost. In this paper, we propose EventFlash, a novel,
efficient MLLM to explore spatiotemporal token sparsification for reducing data
redundancy and accelerating inference. Technically, we built EventMind, a large-
scale and scene-diverse dataset with over 500k instruction sets, providing both
short and long event stream sequences to support our curriculum training strategy.
Then, we present the adaptive temporal window aggregation module for efficient
temporal sampling, which adaptively compresses temporal tokens while retaining
key temporal cues. Finally, the sparse density-guided attention module is designed
to improve spatial token efficiency by selecting informative regions and suppressing
empty or sparse areas. Experimental results show that EventFlash achieves a 12.4×
throughput improvement over the baseline (EventFlash-Zero) while maintaining
comparable performance. It supports long-range event stream processing with up
to 1,000 bins, significantly outperforming EventGPT’s 5-bin limit. We believe
EventFlash serves as an efficient foundation model for event-based vision. Our
code and dataset details are provided in the supplementary.

1 INTRODUCTION

Event cameras (Gallego et al., 2020; Posch et al., 2014; Li & Tian, 2021), bio-inspired vision
sensors, operate differently from frame-based cameras. Each pixel responds to intensity changes by
generating asynchronous events (Li et al., 2022; Kudithipudi et al., 2025). Due to their high temporal
resolution and high dynamic range, event cameras have been applied to various vision tasks (e.g.,
scene understanding (Zhu et al., 2018; Kong et al., 2024; Yao et al., 2024; Zhou et al., 2024; Li et al.,
2025a; Liu et al., 2025; Li et al., 2025b; Zhou & Lee, 2025)) in high-speed or low-light scenarios.

Recent multimodal large language models (MLLMs) (Xiang et al., 2025; Li et al., 2024a; Tang et al.,
2025; Huang et al., 2024a; Qian et al., 2024) have achieved remarkable breakthroughs in processing
conventional frames and language, showing strong capabilities in scene understanding and visual
question answering. However, these models are primarily designed for frame-based inputs and cannot
directly handle the unique spatiotemporal properties of event streams. A straightforward approach to
extending MLLMs to event-based vision involves converting event streams into dense, image-like
representations before feeding them into existing MLLMs (e.g., LLaVA (Liu et al., 2023), GPT-
4 (Bubeck et al., 2023), or Qwen (Bai et al., 2023)). However, this transformation often overlooks
the inherent spatiotemporal sparsity of event data and introduces substantial redundancy (Gehrig &
Scaramuzza, 2024; Messikommer et al., 2020; Wu et al., 2024a). In other words, applying dense
image-like processing paradigms to event streams not only incurs significant computational overhead
but also substantially limits the effective length and efficiency of event stream understanding. Thus,
developing efficient MLLMs that fully exploit the unique spatiotemporal properties of event data
remains a critical and unresolved challenge.

Despite recent progress, most existing event-based MLLMs (Liu et al., 2025; Li et al., 2025b; Zhou &
Lee, 2025) still rely on dense image-like representations, which hinders computational efficiency and
scalability to long event sequences. For example, EventGPT (Liu et al., 2025) converts event streams
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into dense token sequences for language modeling. EventVL (Li et al., 2025b) integrates RGB frames
with event data to enhance multimodal reasoning. LLaFEA (Zhou & Lee, 2025) employs frame-event
fusion for region-level spatiotemporal grounding. Although these models perform well in challenging
scenarios such as high-speed motion and low-light conditions, their dense processing of sparse event
data leads to significant overhead and limits real-time or long-range understanding. Meanwhile,
the scene diversity of their datasets is relatively limited, and the event streams are short, making it
difficult to support general-purpose models for long event-stream understanding.

In this paper, we propose EventFlash, a novel efficient MLLM that leverages spatiotemporal token
sparsification to reduce data redundancy and accelerate inference. Unlike prior works that focus on
maximizing reasoning accuracy, our goal is to address three key challenges in efficient MLLMs: (i)
Temporal inefficiency: The microsecond resolution of event streams results in prohibitively large
token volumes when processed over long temporal durations; (ii) Spatial inefficiency: The inherent
sparsity of event data leads to numerous empty or low-information tokens that incur computational
overhead due to uniform attention allocation; (iii) Dataset limitations: Existing instruction-augmented
datasets are not publicly available and often lack diversity, contain low-quality annotations, and cover
short temporal sequences, making them inadequate for training generalizable models.

To address these challenges, our EventFlash presents a density-aware spatiotemporal token sparsi-
fication strategy that exploits the inherent sparsity and high temporal resolution of event streams.
Specifically, we propose an adaptive temporal window aggregation module for efficient temporal
sampling, which dynamically compresses temporal tokens while preserving essential temporal cues.
Then, a sparse density-guided attention module is presented to enhance spatial token efficiency by
selecting informative regions and suppressing empty or low-density areas. Moreover, we design a
progressive curriculum learning strategy following a short-to-long paradigm to improve EventFlash’s
generalization and generative capabilities. To support this, we built a large-scale scene-diverse dataset
over 500k instruction sets, including both short and long event stream sequences. Experimental results
show that EventFlash achieves a 12.4× improvement in throughput over our baseline (EventFlash-
Zero) while maintaining comparable performance. Notably, EventFlash enables long-range event
stream processing of up to 1,000 bins compared to only 5 bins in the competing EventGPT.

In summary, the main contributions of this work are:

• We propose EventFlash, an efficient event-based vision MLLM, which explores a spatiotemporal
token sparsification strategy for raw event streams to reduce redundancy, accelerate inference
(12.4× throughput), and enable long-range event stream understanding (up to 1,000 bins).

• We present a density-aware spatiotemporal token sparsification strategy for event-based MLLMs,
which effectively reduces redundancy while maintaining comparable reasoning accuracy by
leveraging the fine-grained temporal resolution and inherent sparsity of raw event streams.

• We build a large-scale scene-diverse dataset for long-range event stream understanding. We
believe this standardized dataset will accelerate future research in event-based MLLMs.

2 RELATED WORK

Event-based Vision with MLLMs. Early works (Wu et al., 2023; Zhou et al., 2023) have explored
the alignment between event data and textual information. Event-CLIP (Wu et al., 2023) builds on
pre-trained vision-language models (Radford et al., 2021; Yang et al., 2023; Klenk et al., 2024; Huang
et al., 2024b) for event-based recognition, and EventBind (Zhou et al., 2023) incorporates an event
encoder to unify images, events, and texts. Yet both overlook the world knowledge embedded in
LLMs, constraining nuanced scene understanding. More recently, emerging event-based MLLMs (Liu
et al., 2025; Li et al., 2025b; Zhou & Lee, 2025) have demonstrated strong reasoning capabilities in
challenging conditions. For example, EventGPT (Liu et al., 2025) is the first to design an event-based
MLLM for accurate description and generation. EventVL (Li et al., 2025b) enhances robustness by
fusing complementary modalities from event streams and RGB frames. LLaFEA (Zhou & Lee, 2025)
achieves region-level spatiotemporal grounding through the complementary fusion of frame and event
modalities. However, these event-based LLMs rely on dense image-like processing of inherently
sparse events (Peng et al., 2024; Perot et al., 2020; Vemprala et al., 2021; Zhu et al., 2022; Tulyakov
et al., 2019; Qu et al., 2024; Lin et al., 2023; Shrestha & Orchard, 2018; Wu et al., 2024b; Engelken,
2023; Cho et al., 2024; Wan et al., 2022; Mei et al., 2023), leading to excessive computation and
hindering long-sequence inference.
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Task 7: Motion Caption

Query: How does the baby's

movement evolve from initial

contact with the sofa to a

sustained jumping action?

Answer: The baby approaches

the sofa and makes contact by

lying down, transitions into a

crawling position …

Task 6: Event QA

Query: What is the baby doing

in the scene?

Answer: The baby is playing 

on the sofa.

Task 4: MCQA

Query: What activity is the baby

engaged in on the sofa? Options:

(A) Sleeping peacefully on the sofa

(B) Playing energetically on the sofa

(C) Watching TV while sitting still

(D) Eating snacks on the sofa

Answer: (B) Playing energetically …

Task 2: Human Action QA

Task 1:Simple Caption

Task 5: FGQA

Task 3: Scene Caption

Query: What human action is 

depicted in this event stream?

Answer: It is jumping sofa. The

baby approaches the sofa and leaps

onto it, landing with their body …

A baby is playing on the sofa.

In a cozy living room with a 

cushioned sofa, a baby actively 

moves around, crawling …

Query: What does the baby do after

crawling across the sofa?

Answer: The baby stands up while

holding onto the backrest of the sofa.

00:00 00:01 00:02 00:03 00:04

(a) Multiple task instructions (c) Data distribution across training stages

(b) Data distribution for multiple tasks
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Figure 1: Instructions and data statistics of our EventMind. (a) Seven tasks instructions for event
stream understanding. (b) Data distributions of each task. (c) Data distributions of the three stages.

Efficient Token Sparsification in MLLMs. Recent MLLMs (Weng et al., 2024; Jiang et al., 2025;
Qian et al., 2024) have revealed that visual tokens extracted from foundation models like CLIP contain
substantial redundancy, leading to significant computational overhead. Consequently, several token
sparsification strategies (Yehezkel et al., 2024; He et al., 2024; Zhang et al., 2024) have been attempted
to reduce token counts while preserving essential semantics in video tasks. However, asynchronous
events differ fundamentally from structured frames: while video redundancy mainly stems from spatial
repetition within a regular patch grid, event streams consist of sparse spatiotemporal points with
redundancy arising from uneven temporal sampling. Their tokens are distributed irregularly and vary
in density, making frame-based sparsification not only computationally costly but also ineffective for
long event stream understanding. Thus, this work presents a novel spatiotemporal token sparsification
strategy specifically tailored for event streams.

3 EVENTMIND DATASET

Data Collection. To support the curriculum learning strategy in our EventFlash, we construct a large-
scale multimodal dataset named EventMind for event stream understanding. EventMind provides
long temporal sequences, diverse scenes, multiple tasks, and high-quality instructions. The raw event
data is sourced from both real-world and synthetic domains. Real-world data includes short-duration
event sequences from DSEC (Gehrig et al., 2021) and N-ImageNet (Kim et al., 2021), as well as
longer-duration streams from HARDVS (Wang et al., 2024b) and E2VID (Rebecq et al., 2019).
Synthetic data are generated by converting large-scale video datasets (i.e., Kinetics-700 (Carreira
et al., 2019), UCF-101 (Soomro et al., 2012), Wevid-10 M (Bain et al., 2021), PLM-Data (Cho et al.,
2025), and MotionBench (Hong et al., 2025)) into event streams using the V2E simulator (Hu et al.,
2021). To ensure high-quality simulated events, we use GPT-4o to automatically filter videos using
their captions before simulation. To align with our curriculum stages, we categorize them into three
groups: short (0–50 ms), medium (50–5,000 ms), and long (5,000–20,000 ms).

Instruction Generation. To evaluate the modeling capacity and generalization ability of our
EventFlash, we define seven distinct task types for event stream understanding. As shown in Fig.
1(a), these tasks include motion captioning, event question answering (Event QA), human action QA,
multiple-choice QA (MCQA), simple captioning, fine-grained QA (FGQA), and scene captioning.
Text instructions are constructed via two pathways: (i) For samples with existing textual annotations,
we use GPT-4o to refine the descriptions by removing static attributes and irrelevant visual details
(e.g., texture, color), ensuring better alignment with event streams. (ii) For samples lacking ground-
truth text, we leverage Qwen-VL-Max to automatically generate annotations from corresponding
video inputs, enabling a scalable and consistent data synthesis pipeline. In addition, we organize a
multi-person team to manually inspect and filter the generated instruction sets for quality assurance.

3
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EventFlash: The main motion in the scene is a sudden and forceful impact that causes the doll to
violently shatter. Fragments scatter outward in multiple directions before gradually settling down.
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Figure 2: The pipeline of efficient MLLMs (EventFlash). The adaptive temporal window aggregation
module is presented for efficient temporal sampling, which adaptively compresses temporal tokens
while retaining key temporal cues. Besides, the sparse density-guided attention module is designed to
improve spatial token by selecting informative regions and suppressing empty or sparse areas.

Dataset Statistics. We analyze the composition of the EventMind dataset from a curriculum learning
perspective (see Fig. 1(b)). It is structured into three stages based on event sequence length and
task complexity. In Stage 1, short sequences are used for the simple captioning task, contributing
200k instruction samples. Stage 2 utilizes medium-length sequences for scene captioning and human
action understanding, with a total of 110k instructions. Stage 3 focuses on long sequences for
more complex tasks such as motion captioning, EventQA, FGQA, and MCQA, comprising 190k
instructions. Overall, our EventMind comprises 500k instruction samples spanning seven task types
(see Fig. 1(c)): 200k for simple captioning, 90k for scene captioning, 30k for motion captioning, 90k
for EventQA, 60k for FGQA, 10k for MCQA, and 20k for human action QA.

All in all, the novel event-text modality and labor-intensive design make EventMind a highly compet-
itive dataset with several key strengths: (i) High temporal sampling resolution at the microsecond
level from event streams; (ii) Coverage of temporal sequences of various lengths; (iii) Diverse scene
types supporting 7 distinct tasks; (iv) A large-scale high-quality instruction set with 500k samples.

4 METHOD

4.1 EVENTFLASH OVERVIEW

This work aims at designing an efficient MLLM for event stream understanding, termed EventFlash,
which presents a spatiotemporal token sparsification strategy to reduce redundancy and accelerate
inference. As illustrated in Fig. 2, our framework consists of five modules: adaptive temporal
window aggregation module, sparse density-guided attention module, event encoder, event-language
projector, and large language model (LLM) decoder. More precisely, the adaptive temporal window
aggregation module first segments the continuous event stream into uniform short bins and adaptively
merges adjacent bins based on token similarity or event density. These processed bins are then passed
by an event encoder (e.g., CLIP) to extract semantic embeddings. In parallel, the sparse density-
guided attention module improves spatial token efficiency by emphasizing informative regions and
suppressing empty or low-density areas. The event-language projector aligns the event tokens with
text tokens to enable coherent multimodal fusion. Finally, the compact event tokens are fused with
text tokens and processed by an LLM decoder (e.g., Qwen-2.5) for multimodal generation tasks.

4.2 TEMPORAL SPARSE

The microsecond-level resolution of raw event streams generates an excessive number of temporal
tokens, resulting in high computational overhead. To address this, we introduce a two-stage density-
guided adaptive temporal window aggregation (ATWA) module that compresses event streams while
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preserving key motion dynamics. The event stream is first divided into fine-grained bins, which are
iteratively merged based on an asynchronous spatiotemporal spike metric (Li et al., 2022). Each bin
is treated as a polarity-aware spatiotemporal point process with an intensity function λB :

λB(x, y, t, p) =
∑
en∈B

f(pn) · exp
(
− (x− xn)

2

2σ2
x

− (y − yn)
2

2σ2
y

− (t− tn)
2

2σ2
t

)
, (1)

where f(pn) encodes the polarity for an event (xn, yn, tn, pn). σx, σy , and σz are the parameters of
the Gaussian kernel. The similarity distance between two bins Bi and Bi+1 can be computed as:

D(Bi, Bi+1) =
∥∥λBi

− λBi+1

∥∥
2
, (2)

where a lower D indicates higher temporal correlation between two bins. We iteratively merge adja-
cent bins when the distance is below a threshold τ , forming meta event windows {M1,M2, . . . ,MK}.

In the second stage, we perform semantic-aware aggregation of meta bins. Each window Mi is passed
through an event encoder (e.g., ViT (Arnab et al., 2021)) to obtain a CLS token representation zi, and
the similarity Si between adjacent windows is defined as cosine similarity as follows:

Si =
z⊤i zi+1

∥zi∥ · ∥zi+1∥
. (3)

To incorporate event sparsity, we define a normalized event density factor ri = 1
|Mi|

∑
en∈Mi

1en ,
and compute a density-aware weight. The final adaptive merging score can be formulated by:

Ai = Si · exp(−α · ri), (4)
where α controls the decay sensitivity. which jointly considers semantic similarity and event sparsity.
We iteratively merge windows with high Ai to obtain a compressed yet semantically meaningful
temporal sequence that preserves key temporal cues with reduced computational cost.

4.3 SPATIAL SPARSE
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Figure 3: The architecture of the sparse density-guided attention
module. It enhances spatial token efficiency by selecting infor-
mative regions and suppressing empty or low-density areas.

While temporal aggregation re-
duces sequence length, spatial
redundancy still persists due to
the inherent sparsity and uneven
event distribution across the sensor
plane. To tackle this, we propose
the sparse density-guided atten-
tion (SDGA) module (see Fig. 3),
which adaptively prunes uninfor-
mative tokens based on both vi-
sual semantics and event density.
For each aggregated event bin, we
use an encoder (i.e., ViT) to ex-
tract patch-level features {xj}nj=1,
which are fed into a multi-head self-attention mechanism as:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, (5)

where Q, K, and V are the projected queries, keys, and values from {xj}, and dk is the key dimension.

In parallel, we compute the event density Dj of each token region based on the number of events
falling within its receptive field. This scalar value is then passed through a density encoding unit
consisting of a linear transformation followed by GELU activation:

f(Dj) = GELU(Linear(Dj)), (6)
where f(Dj) is a soft modulation signal that reflects the importance of each spatial token. The
encoded density is added to the attention scores to focus on denser and more important areas as:

Ãij =
QiK

⊤
j√

dk
+ f(Dj). (7)
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Finally, we apply a Token Selector operation that ranks the aggregated attention responses and
discards low-importance tokens, which can be formulated as follows:

x̂i = TokenSelector

∑
j

softmax(Ãij) · Vj

 . (8)

In summary, this density-guided token pruning strategy enables EventFlash to keep important spatial
details while greatly cutting down on redundant computations. By combining semantic relevance
with event density, SDGA produces more compact tokens for the efficient MLLM.

4.4 SHORT-TO-LONG CURRICULUM LEARNING

To support scalable training across different event durations and enhance generalization, we propose
a progressive short-to-long curriculum learning strategy. Unlike prior event-based MLLMs such as
EventVL (Li et al., 2025b) and EventGPT (Liu et al., 2025), which train different modules in separate
stages, our curriculum emphasizes a gradual progression from short to long event streams. This
design facilitates smoother training dynamics, enabling EventFlash to evolve from mastering simple
alignments to handling complex reasoning and long-range event understanding.

To be specific, Stage 1 focuses on event-language alignment by training on 200k short sequences
(0-50 ms) paired with simple scene descriptions to establish basic cross-modal understanding. Stage
2 expands to 110k medium sequences (50-5,000 ms) featuring complex motions like human actions,
enhancing the model’s reasoning and ability to handle instruction-following and event-based QA over
longer inputs. Stage 3 fine-tunes the model on 190k long sequences (5,000–20,000 ms) with rich
scene descriptions, enabling holistic scene understanding and open-ended language generation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implements Details. We initialize the event encoder with CLIP-ViT-Large-Patch14 (Radford et al.,
2021) and use Qwen2.5 (Bai et al., 2023) as the LLM backbone. A two-layer MLP serves as the
Event-Language Projector to align the event and semantic spaces. EventFlash is implemented in
both 3B and 7B variants and trained on 8 A100 GPUs. For throughput evaluation, the inference is
conducted on an A100 GPU using Hugging Face deployment. Our three-stage curriculum learning
strategy proceeds as follows: only the Event-Language alignment module is trained in Stage 1, using
a learning rate of 2× 10−3 and a batch size of 64. For Stage 2 and Stage 3, all model parameters are
unfrozen and trained with a learning rate of 2× 10−5, a batch size of 8, and a gradient accumulation
step of 4. A cosine learning rate decay schedule is applied throughout training. We set the temporal
aggregation interval to 10 ms and use a density attenuation factor α of 0.1 for spatial sparsification.

Evaluation Metrics. To thoroughly evaluate the generalization and reasoning capabilities of our
EventFlash, we adopt four metrics aligned with protocols established in LLaVA (Liu et al., 2023) and
other widely used benchmarks (Fang et al., 2024). More precisely, we use the following evaluation
metrics: (i) Global detailed captioning (GDC) to assess scene-level summarization, (ii) Fine-grained
question answering (FGQA) to evaluate the model’s understanding of localized event details, (iii)
Human action question answering (HAQA) to measure temporal reasoning at the action level, and
(iv) Multiple choice question answering (MCQA) to assess instruction-following and discriminative
reasoning. For open-ended tasks (GDC and FGQA), we employ LLM-based evaluation using GPT-4o
(i.e., LLM-Judge) consistent with prior benchmarks. For HAQA and MCQA, we report the accuracy
based on exact matches with ground-truth answers. In addition, throughput and maximum event bin
capacity are used to evaluate the efficiency of all MLLMs. Throughput is typically defined as the
number of tokens generated per second during inference, while maximum event bin capacity refers to
the largest number of event bins the model can process in a single input.

5.2 QUALITATIVE RESULTS

Comparison with State-of-the-Art MLLMs. To evaluate the effectiveness and efficiency of
EventFlash, we compare it against four state-of-the-art video-based MLLMs and the only open-

6
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Table 1: Comparison of video-based MLLMs and event-based MLLMs on our EventMind dataset
and EventChat-Sub dataset (Liu et al., 2025). Notably, it can process significantly longer event bins
than the event-based competitor EventGPT.

Models Params LLM Backbone Max Bins Throughput
(Token/s)

EventMind EventChat-Sub

GDC FGQA HAQA MCQA GDC FGQA

Video-Base ∼3B Scale MLLMs
Qwen2.5 VL (Bai et al., 2023) 3B Qwen2.5 768 – 20.6 41.7 23.8 34.6 34.5 51.2

VideoChat2-Flash (Li et al., 2024b) 2B Qwen2.5 1,000 – 31.6 38.9 16.2 43.6 36.9 43.8
InternVL2.5 (Lu et al., 2025) 4B Qwen2.5 – – 17.9 37.0 21.3 27.3 28.9 44.6

Video-Base ∼7B Scale MLLMs
VideoChat2-Flash (Li et al., 2024b) 7B Qwen2.5 1,000 – 36.2 41.9 18.9 48.2 53.1 53.6

LLaVA-Next-Video (Liu et al., 2023) 7B Qwen2.5 56 – 31.2 44.6 22.8 42.7 46.3 54.8
Qwen2.5 VL (Bai et al., 2023) 7B Qwen2.5 768 – 22.1 43.9 28.6 41.8 41.6 53.2
InternVL2.5 (Lu et al., 2025) 8B InternLM2.5 – – 19.7 40.0 25.3 38.2 42.5 55.6

Event-Base MLLMs
EventGPT-7B (Liu et al., 2025) 7B Vicuna-v1.5 5 42.2 – – – – 71.2 78.2

EventFlash-Zero 3B Qwen-2.5 1,000 2.3 45.3 60.4 85.0 58.2 70.4 77.1
EventFlash-3B (Ours*) 3B Qwen-2.5 1,000 28.5 46.8 61.1 84.9 60.0 71.5 78.6
EventFlash-7B (Ours*) 7B Qwen-2.5 1,000 24.0 52.3 64.2 87.6 63.1 74.1 79.5

A doll stands on a platform when a sudden bullet is fired, piercing through it. In the next moment, the doll shatters

violently, with fragments scattering through the air, vividly capturing the dramatic instant of destruction.

EventFlash:

Human Caption:

(Ground Truth)

Question 1: What is happening in this high-speed motion scene? Please give the simple description.

A standing object is struck by a high-speed projectile, resulting in a violent explosion. The object shatters into multiple

fragments that disperse rapidly into the air, creating a dense burst of event activity.

Question 2: What happens to the object after the high-speed impact? Options:

(A) It remains intact but is pushed backwards. (B) It breaks into pieces and the fragments scatter.

(C) It bounces into the air without damage. (D) It catches fire and melts.

EventFlash: (B) It breaks into pieces and the fragments scatter.

𝑡

Figure 4: Representative visualization tests on motion captioning and multiple-choice question
answering (MCQA) are conducted in high-speed scenarios. Our EventFlash demonstrates superior
accuracy in recognizing fast-moving objects, such as a sudden bullet being fired at a doll.

sourced event-based MLLM (i.e., EventGPT (Liu et al., 2025)). We select strong video-based models
at both the 3B and 7B scales, including Qwen2.5-VL (Bai et al., 2023), VideoChat2-Flash (Li et al.,
2024b), LLaVA-Next-Video (Liu et al., 2023), and InternVL 2.5 (Lu et al., 2025). EventGPT uses
fixed bin encoding for event stream understanding. We also construct a baseline, EventFlash-Zero, by
removing spatiotemporal sparsification from EventFlash.

Qualitative Evaluation. As illustrated in Table 1, EventFlash outperforms four video-based
MLLMs and the event-based EventGPT on all four tasks (i.e., GDC, FGQA, HAQA, and MCQA).
This demonstrates that EventFlash excels at understanding and describing dynamic event scenes.
While EventGPT implements a fixed configuration of 5 event bins, EventFlash can process up to
1,000 event bins, achieving a 200× increase in processing capacity. In other words, our EventFlash is
enabled by our efficient sparsification strategy for longer-term understanding. In addition, EventFlash
reaches a speed of 28.5 tokens per second during inference. This is 12.4× faster than our baseline
EventFlash-Zero (2.3 tokens per second), and it still maintains comparable performance on all tasks.

Visualization Evaluation. We further evaluate EventFlash under challenging scenarios, such as high-
speed motion and low illumination. As shown in Fig. 4 and Fig. 5, our model demonstrates strong
descriptive and reasoning capabilities in both cases. In high-speed case: The scene depicts a goblin
being struck by a high-velocity projectile, resulting in a mid-air explosion with scattered fragments.
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Question 1: What is the main content presented in the scene? Please briefly describe it. 

Human Caption:

(Ground Truth)

EventFlash:

Question 2:

EventFlash:

The scene captures a quiet urban street . Dim streetlights illuminate the road, revealing a pedestrian crosswalk

ahead. Several cars are parked along the right side of the street, and residential buildings line both sides, partially

obscured by shadows and trees.

The scene depicts an urban street with multiple cars parked along both sides of the road. Tall trees and residential 

buildings line each side of the street.

What types of objects are present along both sides of the street? Please give the simple description.

There are trees, residential buildings, and a car parked on the side of the street.

Car Car Car Car

𝑡

Figure 5: Representative visualization tests on event questioning answering (QA) and scene caption
are conducted in low-light scenarios. EventFlash showcases strong scene description and reasoning
capabilities, such as identifying a car in a nighttime scene where it is barely visible on RGB images.

EventFlash generates an accurate and fine-grained description of this dynamic event and correctly
answers a multiple-choice question. In low-light case: The scenario involves a vehicle driving
through darkness. Despite the absence of frame-based visual cues, EventFlash generates a coherent
and precise description, along with an accurate response to the corresponding QA prompt. These
results validate EventFlash’s ability to understand complex dynamics in edge-case environments
where traditional frame-based models often fail.

EventFlash :

EventGPT :

50ms 10,000ms10ms

0-50 ms

0-10,000 ms

0-50ms

0-10,000ms

EventGPT EventFlash

The subject performs a fluid contact juggling routine with two spheres, smoothly rolling

them between hands using precise finger. Their body remains still, emphasizing controlled,

continuous motion of the objects in seamless circular patterns.

The person raises one arm to perform an

upward toss, appearing to manipulate a ball

in a performance. (Moment)

(Sequence)

𝑡

Figure 6: Comparison of EventFlash and EventGPT on long-
duration event streams from our EventMind dataset.

To further demonstrate the ad-
vantages of EventFlash on long-
duration event streams, we com-
pare it with EventGPT on a
10,000 ms sequence. As shown
in Fig. 6, EventGPT operates
on a fixed number of bins (e.g.,
0–50 ms), limiting its under-
standing to moment-level seg-
ments. In contrast, EventFlash
leverages its high maximum
event bin capacity to process ex-
tended sequences, enabling co-
herent reasoning across the full
temporal window and capturing
sequence-level motion dynamics.
As a result, EventFlash generates
more contextually accurate de-
scriptions, highlighting its potential for real-world applications that require long-range understanding,
such as surveillance analysis and autonomous driving. More experimental details are in the Appendix.

5.3 ABLATION STUDY

Table 2: The contribution of each component to our
EventMind dataset. The baseline uses our EventFlash
without the spatiotemporal token sparsification strategy.

Model S T Token/s EventMind

GDC FGQA HAQA MCQA

Baseline ✗ ✗ 2.3 45.3 60.4 85.0 58.2
A ✓ ✗ 5.3+2.3× 46.3 61.2 85.1 59.6
B ✗ ✓ 14.0+6.1× 47.1 60.6 83.8 60.3

Ours* ✓ ✓ 28.5+12.4× 46.8 61.1 84.9 60.0

Contribution of Each Component. To
explore the impact of each component on
overall performance, we conduct an ab-
lation study by comparing our full model
against three variants: a baseline without
any sparsification (EventFlash-Zero), a
model with only temporal sparsification,
and a model with only spatial sparsifica-
tion. As shown in Table 2, our full model

8
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achieves a 12.4× increase in throughput (28.5 tokens/s vs. 2.3 tokens/s) while maintaining compa-
rable performance across four evaluation metrics (i.e., GDC, FGQA, HAQA, and MCQA). With
temporal sparsification alone, the model achieves 14.0 tokens/s, representing a 6.1× speedup over the
baseline. In contrast, spatial sparsification alone yields a 2.3× improvement, reaching 5.3 tokens/s.
The results show that both temporal and spatial sparsification contribute to efficiency gains.

Table 3: The influence of aggregation interval length on
our EventMind dataset.

Aggregation
interval

Throughput
(Token/s)

EventMind

GDC FGQA MCQA HAQA

5ms 15.8 47.1 61.8 84.6 58.2
10ms 28.5 46.8 61.1 84.9 60.0
20ms 52.6 43.2 56.3 72.6 48.4
30ms 63.3 36.8 48.2 61.8 46.2

Influence of the Aggregation Inter-
val Length. To explore how the ini-
tial temporal bin duration affects perfor-
mance and efficiency, we evaluate model
throughput and accuracy across different
initial event bin durations. As shown in
Table 3, we compare four settings with
bin lengths of 5 ms, 10 ms, 20 ms, and
30 ms. We observe that shorter bin dura-
tions (e.g., 5 ms) provide finer temporal resolution but significantly increase the number of windows,
resulting in lower throughput (15.8 tokens/s) compared to our default setting of 28.5 tokens/s at 10
ms. Despite the increased computational load, the model maintains strong performance across all
tasks. Conversely, increasing the bin size to 20 ms and 30 ms improves throughput to 52.6 and 63.3
tokens/s, respectively, indicating greater efficiency. However, this comes at the cost of performance
degradation on GDC, FGQA, MCQA, and HAQA. In this work, a bin duration of 10 ms offers a
trade-off between accuracy and efficiency, and is therefore adopted as our default setting.

Table 4: The influence of density factor α on throughput
and performance on our EventMind dataset.

Density Factor α
Throughput

(Token/s) GDC FGQA MCQA HAQA

0.1 28.5 46.8 61.1 84.9 60.0
0.2 27.6 45.6 61.4 85.2 58.4
0.4 28.8 45.3 61.6 85.2 58.4
0.6 26.8 47.2 60.8 83.2 60.1

Impact of Density Attenuation Factor
α. We investigate how the density atten-
uation factor α affects model throughput
and task performance (see Table 4). To ex-
plore the trade-off between density-guided
and similarity-guided token merging, we
evaluate four values of α to identify the
optimal balance between accuracy and ef-
ficiency. The results show that increasing α leads to higher throughput, indicating that stronger
density suppression accelerates the token aggregation process. For example, FGQA and MCQA stay
mostly stable when α is between 0.2 and 0.4. However, GDC and HAQA rely more on detailed
timing information. Because of this, their performance drops when α gets higher. The results confirm
the effectiveness of our density-aware weighting mechanism. Notably, α = 0.1 and α = 0.4 achieve
a favorable trade-off, providing substantial speed gains while preserving strong task performance.

5.4 EXTENSIVE APPLICATION

Table 5: Action recognition results on processed
DailyDVS-200 (Wang et al., 2024a) dataset.

Methods Venue Input Type Backbone top-1 acc. (%)

Swin-T (Liu et al., 2022) CVPR’22 Frame Transformer 48.06
GET (Peng et al., 2023) ICCV’23 Event Transformer 37.28
SDT (Yao et al., 2023) NeurIPS’24 Event Transformer 35.43
ESTF (Wang et al., 2024b) AAAI’24 Event ResNet50 24.68

EventFlash Ours* Event Qwen2.5 48.36

We further investigate additional down-
stream applications enabled by our
EventFlash. For instance, EventFlash
can be readily fine-tuned to support
action recognition tasks. As shown
in 5, we evaluate its performance on
the DailyDVS-200 (Wang et al., 2024a)
dataset, where EventFlash predicts ac-
tion categories in an open-ended QA set-
ting. Our EventFlash achieves outstanding performance and strong generalization capability.

6 CONCLUSION

This paper presents EventFlash, a novel efficient MLLM that leverages spatiotemporal token sparsi-
fication to reduce data redundancy and accelerate inference. We also built a large-scale dataset for
event stream understanding. The results show that EventFlash achieves a 12.4× improvement in
throughput over our baseline (EventFlash-Zero) while maintaining comparable performance. Notably,
EventFlash enables long-range event stream processing of up to 1,000 bins compared to only 5 bins
in the EventGPT. Our EventFlash serves as an efficient foundational model for event-based vision.
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EVENTFLASH: TOWARDS EFFICIENT MLLMS FOR EVENT-BASED VISION
– SUPPLEMENTARY MATERIAL–

A EVENT CAMERA SENSING MECHANISM

Event cameras, namely dynamic vision sensors (DVS), asynchronously detect pixel-wise intensity
changes instead of recording absolute luminance, emulating the operation of biological retinas. Unlike
conventional frame-based cameras that capture images at fixed intervals, DVS generate sparse event
streams, significantly improving computational efficiency. Each event en occurs asynchronously
when the logarithmic brightness variation at the pixel un = (xn, yn) surpasses a preset threshold C:

log

(
I(xn, yn, tn)

I(xn, yn, tn −∆t)

)
= pnC, (9)

where pn ∈ {+1,−1} indicates the polarity of brightness change, and ∆t denotes the time elapsed
since the previous event at the same pixel. Consequently, the event stream can be described as:

E = {en}Nn=1 = {(xn, yn, tn, pn)}Nn=1, (10)

The inherent sparsity and asynchronous generation of event data facilitate ultra-low latency, enabling
robust performance under high-speed motion and low-light conditions. Furthermore, event cameras
possess an exceptional dynamic range exceeding 120 dB, significantly surpassing conventional
imaging sensors. However, directly applying dense image-like processing paradigms to event streams
overlooks their high temporal resolution and sparsity, two of their most critical advantages, resulting
in substantial spatiotemporal redundancy. In this work, we aim at designing a spatiotemporal token
sparsification strategy tailored for efficient and expressive event stream understanding.

B MULTI-STAGE TRAINING PIPELINE

Stage 1: Event-Language Alignment. This stage establishes a foundational alignment between
event representations and textual semantics. We train the model using 200k short-duration (0-50
ms) event streams paired with simple yet descriptive scene captions. By focusing on fine-grained,
low-level event-language associations, this stage effectively facilitates initial cross-modal grounding
while mitigating interference from complex, long-range temporal dependencies.

Stage 2: Temporal Reasoning Tuning. To enhance spatiotemporal reasoning, we extend training
to 200k medium-length event sequences ranging from 50 ms to 5,000 ms. These samples include
complex motion patterns such as human action recognition, which require the model to capture
fine-grained dynamics and temporal dependencies. This stage strengthens the model’s capacity for
instruction following and event-based question answering over temporally extended inputs.

Stage 3: Long-Term Scene Understanding. In the final stage, we fine-tune the model on 100k
long-duration (5,000–20,000 ms) event streams paired with diverse high-quality language annotations.
This enhances the model’s ability to understand complex temporal dynamics and generate coherent
outputs in long-range scenarios.

C MORE DATASET DETAILS

Table 6: Summary of our EventMind dataset.
Task Data Source Scale

Simple Caption DSEC, N-ImageNet 200k
Human Action QA Kinetics-700, UCF-101, HARDVS 30k

Scene Caption Wevid-10M, PLM-Data 90k
MCQA PLM-Data 10k
FGQA E2VID, PLM-Data, Wevid-10M 60k

EventQA Wevid-10M, Kinetics 90k
Motion Caption MotionBench 30k

We construct EventMind, a large-scale and
temporally diverse event-text dataset tai-
lored for long-range event stream under-
standing. The dataset comprises over 500k
high-quality samples spanning 7 tasks with
varying temporal lengths, and is designed
to support evaluation under four key met-
rics. Our EventMind enables comprehen-
sive training and benchmarking of event-
based multimodal large language models
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Step1: Data Prepare

Video-Instruction

Dynamic

Motion

StaticClassification

Instructions

Step2: Instruction Generation

Task

Instruction: You are a helpful assistant, you
need to generate descriptions ...

Step3: Instruction Filtering Instruction Pool

V2E Simulator

GPT-4o

Event Stream Pool

Random Select

GPT-Judge

Instruction

Real World Event 
Stream

Human

Figure 7: Overview of the instruction data construction pipeline for the EventMind dataset. The
process includes data preparation with event simulation (Step 1), instruction generation via GPT-4o
(Step 2), and quality filtering using GPT-Judge and human verification (Step 3).

(MLLMs) across captioning, temporal rea-
soning, instruction following, and fine-grained event stream understanding. We believe this standard-
ized dataset will accelerate research on event-based MLLMs.

As illustrated in Fig. 7, our EventMind dataset is constructed via a multi-stage pipeline comprising
motion classification, GPT-assisted instruction generation, and rigorous quality filtering. Table 6
provides an overview of the raw data sources and the task-specific distribution statistics. Fig. 8
showcases representative examples from EventMind, covering a range of tasks including fine-grained
question answering, multiple-choice QA, scene captioning, and human action understanding.

D EVALUATION TASKS

Simple Caption. This task involves concise single-sentence descriptions of short event streams,
primarily focusing on visual-language alignment. It is used in the first stage of curriculum learning to
initialize event-text grounding. The dataset contains 200k instruction samples.

Human Action QA. This task centers on identifying and reasoning about specific human actions,
covering over 700 distinct motion categories. It is designed to enhance the model’s temporal reasoning
and fine-grained action understanding. The dataset includes 30k annotated samples.

Scene Caption. This task provides detailed descriptions of event-rich scenes, emphasizing environ-
mental context and background semantics. It improves the model’s ability to generate coherent and
complete global summaries. The dataset contains 90k instruction samples.

MCQA (Multiple Choice QA). This task presents structured multiple-choice questions, requiring
the model to select the correct answer from given options. It primarily evaluates instruction-following
and discriminative reasoning capabilities. The dataset includes 10k QA pairs.

FGQA (Fine-Grained QA). This task focuses on event-specific question answering at a fine-grained
level, targeting subtle spatial or temporal details within a dynamic scene. It aims to improve the
model’s sensitivity to localized event cues. The dataset provides 60k examples.

EventQA. This task involves open-form questions grounded in temporally unfolding events, empha-
sizing understanding of causality, object interaction, and motion phases. It improves general event
reasoning under natural language queries. The dataset includes 90k instances.
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Instruction: Are there any noticeable changes in the player's brushing technique or direction while 
brushing the ice floor?

Answer: No noticeable changes are in the person's brushing technique or direction.

FGQA

Instruction: What letter combination is prominently shown in the image sequence?

A. Flash B. Splash
C. Slash D. Crash

Answer: (B) Splash

MCQA

Instruction: What is happening in this scene?

Answer: A bird is initially facing forward, then gradually turns its head to the side. The motion
sequence captures the transition in head orientation, indicating a natural scanning or attention shift.

Scene
Caption

Instruction: What human action is depicted in this event stream? First, identify the action
performed by the human, and start with 'It is + the name of the action. Please step by step.

Answer: It is playing chess. The sequence shows two individuals seated across from each other at a
table, with their hands moving pieces on a chessboard. One individual reaches out to move a piece,
followed by the other responding with a counter-move…

Human Action
QA

Figure 8: An example from our EventMind dataset illustrating four typical tasks (i.e., fine-grained
QA, multiple-choice QA, scene captioning, and human action QA).

Motion Caption. This task targets the generation of action-centric scene descriptions, with an
emphasis on temporal ordering and motion dynamics. It enhances the model’s ability to capture and
narrate event transitions. The dataset includes 30k annotated captions.

E EVALUATION METRICS

We design four evaluation metrics to assess all models (GDC, FGQA, MCQA, and HAQA). Specifi-
cally, GDC measures the model’s capability of scene description, while FGQA evaluates fine-grained
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Table 7: Token-to-First-Token (TTFT) latency comparison across models under 5 bin and 1,000
bin temporal scales. Note that our EventFlash achieves the best overall performance, significantly
improving latency while maintaining or exceeding accuracy.

Model Scale EventEncoder LLM Backbone TTFT (s) Average acc

5 bin scale
EventGPT 7B clip-vit-large-patch14-336px Vicuna-v1.5 0.59 74.7

EventFlash-Zero 7B clip-vit-large-patch14 Qwen2.5 0.70 73.8
EventFlash(Our*) 7B clip-vit-large-patch14 Qwen2.5 0.32 76.8

1000 bin scale
EventFlash-Zero 7B clip-vit-large-patch14 Qwen2.5 2.97 62.2

EventFlash(Our*) 7B clip-vit-large-patch14 Qwen2.5 0.73 66.8

GT Caption: A person initiates the motion by flicking the lighter’s ignition switch with a swift finger movement. This triggers a
sudden burst of energy as the flame erupts and momentarily surges upward. The flame then stabilizes, maintaining…

Qwen2.5-VL-7B: A hand gripping a gun is prominently featured in the foreground, set against a high-contrast background of
dark shapes and bright light. The dramatic lighting and composition evoke a sense of tension and impending action.

EventGPT-7B: The scene depicts a firearm being fired, with a bullet being launched from the barrel. 

EventFlash-3B(Ours*): The thumb slowly depresses the lighter's switch, the flint strikes to spark, and the gas ignites instantly,
releasing a flickering burst of flame.

Error

Sequence

Error

GT

10ms 20ms 30ms 40ms 50ms

Figure 9: Representative visual comparison between EventFlash, EventGPT, and other open-source
MLLMs, highlighting their performance under challenging high-speed motion scenarios.

scene question answering. Both are conducted in an open-set QA manner and assessed using GPT as
a judge. To ensure a more objective evaluation, MCQA and HAQA are formulated as multiple-choice
questions. As shown in the Table. 1, we conduct experiments on our constructed EventMind dataset
as well as the EventChat-Sub dataset, which is derived from the publicly available EventGPT dataset,
where we randomly sample 1,000 instances for evaluation.

Global Detailed Captioning (GDC). This metric evaluates the model’s ability to generate rich
scene-level descriptions. It emphasizes coverage, fluency, and relevance in captioning tasks.

Fine-Grained Question Answering (FGQA). This metric reflects the model’s capacity to capture
fine spatial and temporal details, measuring its precision in localized event reasoning.

Human Action QA. This metric assesses the model’s understanding of human motion, especially its
ability to distinguish between subtle action variations across time.

Multiple Choice QA (MCQA). This metric evaluates the model’s instruction-following and decision-
making capabilities through structured reasoning over candidate answers.

F MORE RESULTS

Qualitative Analysis. To better evaluate the performance of EventFlash, we select several challenging
cases from the test set of EventMind and visualize the results in comparison with open-source state-
of-the-art video-based MLLMs (e.g., Qwen2.5-VL) and event-based MLLMs (e.g., EventGPT), as
shown in Fig. 9 and Fig. 10. The results show that EventFlash consistently outperforms other models
in event-driven scenarios. Under high-speed motion conditions with a temporal span of only 50 ms,
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GT Caption: At night, a car drives along a dimly lit urban street. It moves steadily through a pedestrian crossing with no visible
pedestrians or cyclists. Streetlights and building lights provide limited illumination as the vehicle continues down the road.

Qwen2.5-VL-7B: This scene depicts a nighttime urban setting. A person is crossing a zebra crossing in the middle of an
intersection, illuminated by streetlights. The surrounding area includes buildings and parked cars, with a few other vehicles…

EventGPT-7B: The scene depicts a quiet street with a crosswalk in the foreground. There are no people or moving vehicles
visible, and the street appears to be empty except for the parked cars.

EventFlash-3B(Ours*): A car navigates through a quiet, dimly lit city street. It steadily approaches and passes over a
pedestrian crosswalk, with no other road users in sight. The vehicle continues along the road...

Error

Sequence

Moment

GT

10ms 1100ms 2100ms 2750ms 4950ms

Figure 10: Representative visual examples from our EventMind dataset, comparing EventFlash,
EventGPT, and other open-source MLLMs. Not that, our EventFlash achieves the best performance
under challenging low-light scenarios.

EventFlash exhibits superior temporal sensitivity and more accurate scene understanding, highlighting
its clear advantage in handling fine-grained, fast-evolving dynamic events. In low-light environments,
EventFlash also maintains robust performance with accurate descriptions and reasoning, whereas
EventGPT, although capable of capturing static scene elements, tends to provide only moment-level
observations without modeling the full temporal dynamics of the scene.

Efficiency Analysis. Our comprehensive evaluation compares the inference efficiency of EventFlash
against both EventFlash-Zero and EventGPT across two distinct temporal scales: 5-bin and 1,000-bin
configurations. As depicted in Table 7, EventFlash demonstrates significant improvements in Time-
to-First-Token (TTFT) latency across both experimental conditions. For the 5 bin setting, EventFlash
reduces TTFT from EventGPT’s 0.59s baseline to 0.32s, representing a 45.8% reduction in latency.
For the challenging 1,000 bin configuration, our EventFlash achieves a dramatic 75.4% improvement
over the baseline EventFlash-Zero, cutting latency from 2.97s down to 0.73s. These substantial gains
in processing speed highlight how our novel sparsification strategy not only enhances immediate
inference efficiency but also maintains robust scalability when handling longer temporal sequences.
Importantly, these latency improvements are achieved without compromising model accuracy. In fact,
EventFlash maintains comparable or superior performance metrics across all evaluated scenarios. The
consistent performance advantages indicate that our EventFlash maintains efficiency across diverse
real-world application requirements.

G LLM USAGE

We only used LLMs for language polishing, while no LLMs were involved in the creative aspects or
the development of the innovations in our paper.
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