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Abstract

Machine learning models are often brittle on production data despite achieving high
accuracy on benchmark datasets. Benchmark datasets have traditionally served dual
purposes: first, benchmarks offer a standard on which machine learning researchers
can compare different methods, and second, benchmarks provide a model, albeit
imperfect, of the real world. The incompleteness of test benchmarks (and the data
upon which models are trained) hinder robustness in machine learning, enable short-
cut learning, and leave models systematically prone to err on out-of-distribution
and adversarially perturbed data. The mismatch between a single static benchmark
dataset and a production dataset has traditionally been described as a dataset shift
(or distribution shift with subcategories including covariate shift, prior probability
shift, and concept shift). These shifts are simultaneously over-specified with formal
definitions for comparing two data samples and under-specified for evaluating
the data-generating process that drives the mismatch between data samples. In
an effort to clarify how to address the mismatch between test benchmarks and
production data, we introduce context shift to describe semantically meaningful
changes in the underlying data generation process. Moreover, we identify three
methods for addressing context shift that would otherwise lead to model prediction
errors: first, we describe how human intuition and expert knowledge can identify
semantically meaningful features upon which models systematically fail, second,
we detail how dynamic benchmarking – with its focus on capturing the data gener-
ation process – can promote generalizability through corroboration, and third, we
highlight that clarifying a model’s limitations can reduce unexpected errors. Robust
machine learning is focused on model performance beyond benchmarks, and as
such, we consider three model organism domains – facial expression recognition,
deepfake detection, and medical diagnosis – to highlight how implicit assumptions
in benchmark tasks lead to errors in practice. By paying close attention to the
role of context in a prediction task, researchers can design more comprehensive
benchmarks, reduce context shift errors, and increase generalization performance.

1 Machine Learning Models are Brittle in Production

Dataset benchmarks offer a standard for comparing and evaluating the performance of machine
learning models on real-world tasks like object detection (1), handwritten digit recognition (2), image
captioning (3), general language understanding (4), affect recognition (5), deepfake detection (6),
medical diagnosis (e.g. for skin disease (7), pneumonia (8), critical care (9), etc.), and many other
tasks. As a standard for comparison, dataset benchmarks have enabled rapid progress in computer
vision and natural language processing.

Despite intentions to create and curate data that match the real-world as closely as possible, the
dynamic, high-dimensional, combinatoric complexity of many real-world tasks is often difficult to
capture in a single static benchmark. Indeed, the development and evaluation of machine learning
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models on benchmarks often suffer from a variety of historical, representational, measurement,
aggregation, and evaluation biases (10). These biases can be further exacerbated by deployment biases
where the task that a benchmark is intended to measure differs from the real-world task (11). Moreover,
data for benchmarks are often collected at scale with minimal oversight (12), which leaves data open
to poisoning attacks (13), leakage (14), multiple interpretations (15) and error (16). As a consequence,
machine learning models that appear to be approaching (and sometimes surpassing) human-level
ability on a test benchmark will often error when shown out-of-distribution (17) data. In other words,
the reliance on static test benchmarks as metrics for projecting production performance (18) inflates
the accuracy of machine learning model performance and leaves open the questions, “Can you trust
your model? Will it work in deployment?” (19)

The meaning of out-of-distribution data depends on a task’s context. Two canonical examples of
out-of-distribution data in object detection tasks are images of either a cow on a sandy beach or a
camel on a green pasture (20). Today’s commonly used training data rarely contain such animal-
environment pairs, and as a result, machine learning models often learn spurious correlations such
as cloven hoofed mammals next to sand are camels but the ones next to grass are cows. With a
priori knowledge of potentially spurious correlations, one approach for addressing this kind of
model brittleness is to include auxiliary labels that can serve as a causally-motivated regularization
framework (21). However, post hoc model explanations are often ineffective for identifying previously
unknown shortcuts (22) (though both explanations via concept traversals (23) and identifying model
failures as directions in latent space via contrastive learning where images and natural language are
embedded in a shared latent space show promise (24)). In contrast, human intuition can identify many
out-of-distribution contexts on which spurious correlations (sometimes called shortcut learning) may
occur.

In one of the clearest examples of spurious correlations that lead to the benchmark-production
gap, researchers recreated ImageNet (1) and CIFAR-10 (25) with news data and demonstrated that
the state-of-the-art models’ performance is significantly lower on the recreated versions of these
datasets (26). The benchmark-production gap is particularly salient in this example because these
two datasets have been the most commonly used benchmarks for object recognition over the last
decade. Recht et al explain that the drop in performance does not appear to be explained by random
sampling error, hyperparameter tuning for optimizing performance on the original test set, or obvious
changes in semantically meaningful features, but instead, the performance gap appears to arise from
subtle changes in the data (26). Object recognition is not as straightforward a task as it might appear
at first glance and involves edge cases arising from a variety of contexts.

In complex human-centered machine learning applications, a task’s context involves answers to the
following kinds of questions: What is the task? For whom is the task designed? When and where
does it take place? Why is it done? Are there any interventions happening that might alter features
and labels associated with the task? And how is the task measured? The lack of clear answers to
these questions indicates that the model and its evaluation lack generalizability simply because it is
not clear to what the model should generalize. Likewise, clear answers to these questions without a
corresponding diverse representation in the benchmark dataset to evaluate performance leaves open
the question of whether the dataset generalizes to the contexts in which the model is intended to
generalize.

As an example of a generalization failure in a human-centered machine learning application, consider
facial recognition. In Joy Buolamwini’s and Timnit Gebru’s algorithmic audit of facial recognition
benchmarks and classifiers, the authors reveal the most commonly used benchmarks for evaluating
facial recognition accuracy were composed of images of people with predominantly light skin. In
other words, images of people with dark skin were relatively out-of-distribution (27). Furthermore,
the Buolamwini et al 2018 audit presented a new benchmark to evaluate accuracy across intersectional
identities. Commercial gender classification models performed extremely accurately in identifying
men with light skin (with a maximum error rate of less than 1%) but incorrectly in women with dark
skin (with a maximum error rate of 35%) (27). This large accuracy disparity reveals how failures
to generalize can be hidden by benchmarks that do not represent the diversity of the real world.
Research on machine learning applied to the diagnosis of skin disease reveals a similar story to facial
recognition: models trained to classify skin disease based on images of only light or dark skin are
more accurate in skin tones closest to the skin tones in the images in which the model was trained (28).
These examples corroborate the notion that simply optimizing for predictive accuracy with very large
datasets can often misrepresent the true data generating process and lead to systematic errors (29).
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In other domains like affect recognition, an out-of-distribution context can be very task specific. For
example, spontaneous facial expressions can be out-of-distribution for facial expression benchmarks
that primarily contain posed expressions (30). Likewise, images labeled with emotions such as anger
or surprise can be out-of-distribution for the same benchmarks where happy and neutral labels are
most common (31).

Machine learning models that have been trained on perceptual data are subject to systematic failures
on a special case of out-of-distribution data: adversarial perturbations. Adversarial perturbations refer
to minor changes in data that do not influence classification of the data by humans but radically alter
a model’s classification. As an example, researchers have demonstrated that adding a small sticker to
a stop sign can alter the classification of machine learning models’ such that the models incorrectly
classify the stop sign as a yield sign (32; 33). Researchers have shown that one can generalize
adversarial perturbations by attaching a mainly translucent sticker on the lens of a camera (34).
Likewise, researchers have demonstrates that adversarial perturbations can be applied to medical data
e.g. noise or rotations in medical images and text substitution in medical notes and reimbursement
codes (35). In general, adversarial perturbations demonstrate a lack of model robustness (36), lead
to model errors that reasonable humans would rarely make, and open the question: How can we
build models that are invariant to the same semantically meaningful features to which humans are
invariant? Training robust models with adversarial perturbations is a starting point for aligning
model performance more closely with human perceptions (37), but it is often difficult to identify the
comprehensive possibility space of adversarial perturbations.

What drives the systematic errors by machine learning models on out-of-distribution data? The next
section discusses two perspectives for characterizing the benchmark-production gap: the distribution
shift perspective and the context shift perspective. The rest of the paper describes three methods
for addressing context shift and considers three case studies of context shift in facial expression
recognition, deepfake detection, and medical diagnosis.

2 Systematic Errors Arise from Context Shift and Lead to Distribution Shift

The mismatch between two datasets (e.g. the train and test splits or a test benchmark and production
data) has been traditionally described as a dataset shift (38). More recently, machine learning
researchers have described the same concept as distribution shift. In order to illustrate the growing
attention to and evolving semantics of distribution shift, we present the number of papers on Google
Scholar containing both “machine learning” and “distribution shift” (and other sub-components of
distribution shift) in Figure 1.

Figure 1: Number of papers on Google Scholar from 2012 to 2021 for search queries combining
“machine learning” + the four most common terms for distribution shifts. For context, “machine
learning” returns 185,000 articles in 2012 and 245,000 articles in 2021. The terms “prior probability
shift” and “concept shift” return 398 and 1,040 papers over all time, respectively, when paired with
“machine learning”.

Distribution shift refers to the non-equivalence of the joint distributions between two datasets.
Formally, distribution shift describes the following equation P1(y, x) ̸= P2(y, x) where Pn(y, x) is
the joint distribution of labels, y, and covariates, x for a particular dataset, n (39). Based on Moreno
et al 2012, the four subcategories of distribution shift include covariate shift when the distribution of
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Figure 2: Illustrations of the four kinds of distribution shifts as defined in Moreno et al. 2012 (39). The
spatial positions represents the feature space, geometric shapes and colors represents the ground truth
label, the solid boundary line represents the learned representation of labels from the original sample,
and the dotted boundary line represents the learned representation of labels from the shifted sample.
Most real-world distribution shifts involve changes across features, labels, and the relationship
between features and labels, and as such would be characterized as “Other Distribution Shift.” The
core problem with the conceptual framework of distribution shift is that it is merely a symptom of
changes in data-generating processes - how data are created, collected, and curated – but not part of
the data-generating process itself. In order to improve model reliability and robustness, researchers
need to take into consideration the data generating process.
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features changes but everything else remains the same, prior probability shift when the distribution
of labels changes but everything else remains the same, concept shift (more commonly referred
to as concept drift) when the distribution of labels conditional on features changes but everything
else remains the same, and other distribution shift when none of the other three shifts hold and the
joint distributions between two datasets is different. We illustrate examples of each shift in Figure 2
to motivate intuition as to how the changes appear. Moreno et al 2012 formally specify the four
subcategories of distribution shifts as follows (39):

• Covariate shift: P1(x) ̸= P2(x) but P1(y|x) = P2(y|x)
• Prior probability shift: P1(y) ̸= P2(y) but P1(y|x) = P2(y|x)
• Concept drift: P1(y|x) ̸= P2(y|x) but P1(x) = P2(x)

• Other distribution shift: P1(y, x) ̸= P2(y, x) where none of the above three shifts applies.

In theory (and within synthetic data), these four subcategories of distribution shift can be disentan-
gled. However, production data, especially in human-centered applications, is subject to changing
distributions and is often best characterized by the catch-all “Other distribution shift” sub-category.
As such, the fundamental problem with trying to directly address the benchmark-production gap
by focusing on distribution shift (or robustness under covariate shift) is the solution focuses only
on the symptoms of the changes but not the underlying changes themselves. Distribution shift is
downstream of the data generating process, and machine learning researchers has long considered
the hidden contexts behind the distribution shift (40). In this paper, we seek to re-direct attention
from the perspective of “distribution shift” towards “context shift” which refers to changes in the
semantically meaningful features that influence data-generating processes. The solution to addressing
context shift involves focusing on how to identify the changes in the creation, collection, and curation
of data that lead to distribution shifts. By centering the problem of robustness and generalizability
of applied machine learning on context shift, we seek to illustrate the importance of data-centered
machine learning (alongside model-centered machine learning) in generating research that produces
robust and generalizable models.

Figure 3: Illustrations of sample selection bias and adversarial perturbations with colors representing
the ground truth label, geometric shapes and spatial positions representing the features, the top of the
funnel representing the full populations, the bottom of the funnel representing the samples drawn
from the population, and the solid boundary line representing the learned representation of labels
from the original sample. On the left, the population contains upright stars, rotated stars, hexagons,
rectangles, and circles, but the biased original sample only contains circles and stars. The random
sample contains much higher diversity of features and relationships between features and labels. As
such, the learned representation fails in more than 50% of observations. On the right, the population
contains upright stars and blue circles. The original sample contains the same set of features, but the
perturbed sample includes both rotated hexagons and stars, which may not be immediately noticeable
to humans at first glance. Depending on the rotation, the learned representation misclassifies the
perturbed shapes. Both pairs of samples present changes in features and changes in labels conditional
on the features, which would make these examples of “Other Distribution Shift.” This figure is
intended to provide intuition for where the perspective of distribution shift is inadequate and where
the perspective of identifying semantically meaningful features that influence how samples are curated
and created can inform approaches for addressing robustness in applications of machine learning.
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Rather than focusing on differences in two distributions with disregard for the reasons behind the
difference, we suggest researchers consider three concepts that drive context shift. These semantically
meaningful shifts include sample selection bias (e.g. the new dataset contains images of people from
a demographic not represented in the old dataset), adversarial perturbations (e.g. the new dataset
contains noise injections that are imperceptible to human perception but change model performance),
or non-stationarity (e.g. the new dataset contains images of smart phones post 2018 but the old
dataset only contains flip phones before 2010). While we list non-stationarity separately from sample
selection bias, non-stationarity can be considered as a special case of sample selection bias where
sample selection bias arises from the inability to sample from features and labels in the future.
We present Figure 3 to illustrate sample selection bias and adversarial perturbations, which can be
formally described as follows:

• Sample selection bias: P1(s) ̸⊂ P2(s) where s indicates x, y, or y|x
• Adversarial perturbations: P1(x) ̸= P2(x) but P1(y|H(x)) = P2(y|H(x)) where H(x)

represents human perception of the data

Unlike distribution shift, which can be measured between two datasets, context shift can only be
fully addressed by learning the entire population’s data distribution, the kinds of changes that are
and are not perceptible to humans, and how the population’s data distribution changes over time and
space. Outside of artificially constrained spaces like synthetic datasets or games, access to the entire
populations data distribution (or the rules governing the distribution) across space and time is rare.
Nevertheless, people generally have intuition and the ability to reason about data distributions of
combinatoric contexts that they might never experience. In fact, cognitive science research shows
that intuitive reasoning about statistical power analysis begins early in childhood (41).

By addressing the benchmark-production gap problem from the perspective of context shift as
opposed to distribution shift, we can consider three approaches for increasing generalizaibility:
human intuition and subject matter expertise in machine learning model development, dynamic
benchmarking in the evaluation of machine learning models, and limitations statements that clarify
how a machine learning model will generalize.

3 Addressing Robustness with Human Intuition and Expertise

Over the last few years, researchers have been developing data-centered frameworks to offer guidance
for breaking down the data generating process into relevant component parts that reveal where
context shift may lead to benchmark-production performance gaps. These frameworks include Data
Statements for Natural Language Processing (42), The Dataset Nutrition Label (43), Model Cards
for Model Reporting (44), Datasheets for Datasets (45), Closing the AI accountability gap (46),
The Ethical Pipeline for Healthcare Model Development (47), and The Clinician and Dataset
Shift in Artificial Intelligence (48). Likewise, meta-frameworks offer guidance for ensuring data
documentation frameworks are useful and actionable (49).

As a heuristic for human-centered machine learning applications, teams of conscientious, creative,
and skilled model developers, data engineers, and subject matter experts may find it useful to identify
a first-order, non-exhaustive list of dimensions on which context shift is likely to occur. This list
of dimensions depends largely on the context and the degree to which the data are subjective,
representative, and missing (50). In ethnographic interviews with machine learning engineers,
researchers find that engineers often address changes in context with “elaborate rule-based guardrails
to avoid incorrect outputs” (51). Recent examples of semantically meaningful dimensions that
have been demonstrated as useful for evaluating robustness in applied machine learning include
skin color in face recognition (27) and dermatology diagnosis (28; 7), background scenery for
affect recognition (5), number of people in a video for deepfake detection (52), number of chronic
illnesses for algorithmic healthcare risk prediction (53), data artifacts like surgical markings (54) or
clinically irrelevant labels (55) for medical diagnosis classification, patients’ self reports of pain for
quantifying severity of knee osteoarthritis (56), and image similarity characteristics for pathologists
to disambiguate between machine learning and user errors (57).

Knowledge elicitation is not a solved problem, but helpful questions that may guide the identification
of potential context shifts in complex, human-centered machine learning applications include (and are
not limited to): who are represented in the data and as annotators of the data, when and where is the
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data collected, how do social, geographical, temporal, technological, aesthetic, financial incentives
and other idiosyncrasies influence the creation of the data, and why the data is curated as it is.
Knowledge elicitation has been historically ill-defined in artificial intelligence applications (58), but
recent work developing taxonomies for knowledge elicitation helps to formalize the process and
increase transparency along the way (59; 60).

Another expert intuition guided approach to closing the benchmark-production gap involves develop-
ing test benchmarks with adequate diversity in the data along the contextual dimensions upon which
human intuition and expertise suggests model performance is most likely to vary. Recent examples of
benchmark datasets working towards this goal are BREEDS: Benchmarks for Subpopulation Shift (61)
and WILDS: A Benchmark of in-the-Wild Distribution Shifts (62), which includes labels for relative
contexts and sub-populations for the explicit examination of context shifts.

4 Addressing Robustness with Dynamic Benchmarking

A second approach to addressing the benchmark-production gap is to transform the practice of evalu-
ation from static benchmarks to dynamic benchmarks where models’ performance is not evaluated on
a single dataset, but rather continually evaluated on datasets produced via well-specified, quality con-
trolled data generation processes. One example of dynamic benchmarking is dynabench (63), which
is designed for natural language processing tasks. For general development of dynamic benchmarks,
data generation process desiderata should include specifying the following dimensions of a dynamic
benchmark:

• Prediction task: What are the input features and output labels? For example, inputs may be
images and outputs may be lists of objects or inputs may be described more specifically as
images of skin lesions photographed by dermatoscopes and outputs may be classifications of
benign and malignant by board-certified dermatologists in the United States. It is important
to be careful that the task matches the expected goal because unexpected mismatches
between tasks and goals are relatively common (64; 65).

• Ground truth annotation arbitration: Who has the authority to annotate the data? How do
experts differ from crowdworkers or an algorithm (66)? How should the data be annotated?
How should inter-annotator disagreement be represented? What categories should be
included?

• Data inclusion and exclusion criteria: What are the possible data sources? How are data
curated from these sources? What is the data distribution of categories and subcategories?
What are the quality constraints?

• Benchmark size and shape: What is the minimum size of a batch of data to serve as a
benchmark? How should benchmarks by different groups for the same task be combined
together?

These desiderata enable the development of dynamic benchmarks that further enable quantitative
evaluation of model robustness via corroborated accuracy, which is the distribution of accuracy scores
across dynamic benchmarks. Rather than simply evaluating a model on a single or a few static test
benchmarks, we might consider a well-corroborated model to be one that meets two criteria: first, it
is reasonably available for evaluation, and second, all attempts to uncover systematic errors in well-
specified contexts reveal no significant accuracy disparities. The practice of dynamic benchmarking
could be particularly relevant for addressing the AI Knowledge Gap (67) characterized by the disparity
between the large number of machine learning models and the small number of studies evaluating
these models’ performance. Furthermore, dynamic benchmarking can be combined with benchmark
task misalignment methodologies (68; 69) to assess how aligned (or misaligned) model predictions
are with human annotations and considering diverse examples that bring transparency to the ethical
implications and societal impact to model development (70).

The transition from static benchmarks on a particular instance (or set of instances) to dynamic
benchmarks on data generation processes defined by explicit desiderate may be useful for addressing
the fundamental issue of construct validity that arises in singular, static benchmarks (46).

7



5 Addressing Robustness by Clarifying a Model’s Limitations

A third approach to reducing the benchmark-production gap is to appropriately specify the contexts
in which a model is expected to work via a limitations section (71).

To clarify domain-specific limitations driving the benchmark-production gap, we consider implicit
assumptions that lead to a context shift in three real-world computer vision tasks: facial expression
recognition, deepfake detection, and medical diagnosis.

6 Case Studies for Addressing Context Shift in Applied Machine Learning

6.1 Facial Expression Recognition

In the field of affective computing, facial expression recognition (FER) is a task to classify human
facial expressions with affective labels (72; 31), which can be a useful component in designing
human-AI interactions with computational empathy (73; 74; 75). Model-based FER is similar to
how humans recognize the emotions of others (called empathic accuracy in affective science (76)
and emotion reasoning in developmental psychology (77)) except that FER is based solely on facial
expressions, whereas affect recognition can include information about someone’s gestures, language,
tone, physiological measurements, and the long-tail of context, which can include factors such as the
temperature outside, the social relationship between two individuals, what happened the day before,
and more.

Consider an example from relatively recent research (78) where a standard neural network architecture,
AlexNet (79), is trained on a large number of images of spontaneous and posed facial expressions to
classify images into seven categories (anger, disgust, fear, happiness, sadness, surprise, and neutral)
and achieves accuracy scores ranging from 48.6% in SFEW (80) to 56.0% in MMI (81) to 56.1% in
DISFA (82) to 61.1% in FER2013 (83) to 77.4% in FERA (84; 85) to 92.2% in CK + (86) to 94.8%
in MultiPie (87). While this model’s accuracy is significantly better than random guessing, which
would be 14.2%, it varies dramatically depending on the chosen benchmark dataset. How should we
interpret a performance gain of 21.9 percentage points on one dataset and an average performance
gain of 3.5 percentage points on the other 6 datasets in an alternative network architecture? How
should we interpret the model’s ability to achieve higher accuracy scores than non-neural network
methods on three of the seven benchmark datasets? What does the distribution of performance tell
us about how this model would perform on real-world production data? There is no clear answer to
any of these questions, yet an implicit assumption in the well-cited, peer-reviewed publication of this
FER paper is the slightly improved performance on several benchmark datasets appears to mark a
contribution to the field of facial expression recognition. This assumption has the potential to lead
to another more pernicious and mistaken assumption: the role of contextual features for real-world
performance can be ignored when assessing the state-of-the-art methodology in applied problems
like FER.

Clearly, models can learn facial expression features that map to human annotations of a handful
of emotion categories to classify images at significantly better than chance rates. But, it is not
reported nor clear how changes in lighting, head pose, occlusion, skin tone, ethnicity, age, gen-
der, and background scenery influence both the model’s performance or human annotations. It is
also underexplored how well FER models would perform if humans of diverse cultures annotated
these images. Likewise, it is unclear how the model would perform on more fine-grained emotion
categories (88) or labels based on affective dimensions like valence, arousal, and dominance. Fur-
thermore, in many real-world settings where people may feign smiles to appease their managers, cry
to express joy, or appear neutral to hide a winning poker hand, the perspective of outside observers
may be very different than the perspective of close friends or individuals themselves. We highlight
these relevant contextual features to highlight the many dimensions in which context shift can occur
between test benchmarks and real-world production data. While these are not an exhaustive list of
contextual features, these represent intuitive, first-order contexts for conducting algorithmic audits,
developing future benchmark datasets with these labeled contexts, and adapting models to handle
these dimensions. While researchers build the next version of contextualized dynamic benchmarks,
other researchers who are focused on developing models should at the very least include caveats in
their papers about the likely contextual dimensions that may affect performance.
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6.2 Deepfake Detection

As a second case study of context shift in real-world applications of computer vision, we consider
deepfake detection. Deepfakes are videos that have been manipulated to make someone appear
to do or say something they have not said (89). These types of manipulation can be qualitatively
characterized as face swapping where two people’s faces are swapped, head puppetry where facial
landmarks are adjusted to make someone appear to be speaking, and lip-syncing where an individual’s
lips are moved in sync with the phonemes from an external audio track (90).

The largest deepfake detection benchmark dataset to date is the Deepfake Detection Competition
Dataset (DFDC) (91; 6), which consists of 128,154 videos based on performances by 960 consenting
actors representing diversity across sex and ethnicity. However, Groh et al 2022 point out,“Unlike
viral deepfake videos of politicians and other famous people, the videos from [this benchmark
dataset] have minimal context: These are all 10 [second] videos depicting unknown actors making
uncontroversial statements in nondescript locations” (52). This deepfake test benchmark is designed
to evaluate algorithmic performance in identifying videos that have (and have not) been manipulated
by seven synthetic techniques.

But, the real-world deepfake detection problem is not simply identifying whether one of seven
synthetic techniques has been applied to a video. Instead, the real-world problem is identifying
videos that have been algorithmically altered to impersonate innocent people and deceive the viewer.
This problem is more than just a computer vision problem; it is a deception detection problem that
involves both searching for artifacts that reveal that a manipulation has occurred and applying prior
knowledge and critical reasoning to assess the likelihood that the video has been fabricated.

The DFDC does not include politicians or any scenes of news conferences or people speaking to
a large audience. If we assume that harmful deepfakes will involve these kinds of contexts (like a
deepfake of President Volodomyr Zelensky that appeared in March 2022 (92)), then it is important
to evaluate models on videos with these kinds of dimensions, such as those from the Presidential
Deepfakes Dataset (93; 94) and the Protecting World Leaders against Deepfakes Dataset (95). When
Groh et al 2022 examined the leading state-of-the-art for detecting DFDC videos on deepfakes of
Kim Jung-un and Vladimir Putin, they found the the leading model predicted a 2% and 8% likelihood
these videos are deepfakes. While failure on two examples is only an anecdote, this failure speaks
to an important need: diverse test benchmarks that cover the first-order dimensions where human
intuition and expertise suggests context shift is most likely to occur.

6.3 Medical Diagnosis

As a third case study of context shift, we consider medical diagnosis in store-and-forward teleder-
matology settings where clinical data are collected at one site and sent electronically for evaluation
at another site. Recent research on machine learning applied to skin disease classification has
demonstrated the human expert-level performance of models in a number of specific tasks (96; 97).
However, it is unclear how these models will perform on people with dark skin because the first paper
does not describe the distribution of ethnicity or skin tone in the evaluation benchmark (96) and the
evaluation benchmark in the second paper contains only 2.7% of people with the second darkest of
the six Fitzpatrick Skin Types (FSTs) and 1 person with the darkest of the FSTs (97). Given the
accuracy disparities that appeared across skin types in facial recognition, expert intuition suggests
that systematic errors are likely to also appear in skin disease classifiers.

In fact, empirical research corroborates this intuition (28), and the Diverse Dermatology Images
(DDI) dataset (7) reveals that state-of-the-art skin disease classification models make systematically
more errors on dark skin than on light skin. The DDI represents a more comprehensive benchmark
than previous datasets, and as a result, the DDI exposed errors that should guide and motivate the
future development of machine learning models towards more robustness. However, the DDI is not
perfectly comprehensive; the dataset is de-identified for privacy reasons and lacks free text clinical
notes and other information that physicians would acquire via an in-person examination (7). Given
that many skin diseases appear similarly and expert diagnoses are based on clinical history and
non-visual features, expert intuition would expect, once again, that systematic errors lurk in the
state-of-the-art machine learning models for store-and-forward skin disease classification.
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7 Towards Robustness in Applied Machine Learning

Supervised machine learning models are very good at identifying statistical regularities in a given
dataset but tend to err on out-of-distribution data that may arise from sample selection bias, adversarial
perturbation, or nonstationarity. On the other hand, humans can be quite good at identifying contextual
examples of out-of-distribution data. By combining the strengths of machine learning models
with human intuition and expertise, early career ancient historians can quickly restore and date
ancient texts (98), content moderation teams can more accurately distinguish between real and fake
videos (52), and general practitioners can more accurately diagnose skin conditions from images (99)
(although AI advice can also mislead experts; see (100; 101; 102; 103; 104)). In fact, initial evidence
suggests that human intuition is fairly accurate in predicting model misclassifications on common
object detection tasks (105). The integration of machine predictions with human decisions in
collaborative decision making systems may be the most immediately effective way to avoid errors
from context shift. The three case studies suggest the following advice for applied machine learning
researchers:

• Human intuition and subject matter expertise can be useful for identifying first-order
dimensions where context shift is likely to occur. These dimensions can inform the write-up
of a limitations section, the development of a test benchmark, the collection of new data, or
changes to model architecture.

• The practice of dynamic benchmarking mirrors the real-world more closely than static
benchmarking and can enable insights from anywhere into systematic model failures.

• The inclusion of limitations statements in peer-reviewed research can increase model
generalizability by simply clarifying the contexts in which a model is expected to generalize
or not.

Promising future research directions for developing robust machine learning models under distribution
shift involve the following iterative process: first, identify missing contexts in test benchmarks, second,
collect data that contain those missing contexts, and third, adjust the model accordingly. Researchers
can begin to identify missing contexts by collaborating with human experts who may be able to
identify first-order drivers of context shift on a task-by-task basis. Similarly, researchers can further
identify missing contexts by evaluating models against data generation process desiderata rather than
a single or a few datasets.

Finally, one of the most effective solutions for addressing the benchmark-production gap is for
researchers to clearly communicate the contexts in which a model has been evaluated and the contexts
in which the model’s performance is unknown.
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