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Abstract
Decentralized learning provides an effective framework to train machine learning models with data
distributed over arbitrary communication graphs. However, most existing approaches towards de-
centralized learning disregard the interaction between data heterogeneity and graph topology. In
this paper, we characterize the dependence of convergence on the relationship between the mixing
weights of the graph and the data heterogeneity across nodes. We propose a metric that quanti-
fies the ability of a graph to mix the current gradients. We further prove that the metric controls
the convergence rate, particularly in settings where the heterogeneity across nodes dominates the
stochasticity between updates for a given node. Motivated by our analysis, we propose an approach
that periodically and efficiently optimizes the metric using standard convex constrained optimiza-
tion and sketching techniques.

1. Introduction

Machine learning is gradually shifting from classical centralized training to decentralized data
processing. For example, federated learning (FL) allows multiple parties to jointly train an ML
model together without disclosing their personal data to others [18]. While FL training relies on
a central coordinator, fully distributed learning methods instead use direct peer-to-peer communi-
cation between the parties (e.g. personal devices, organization, or compute nodes inside a datacen-
ter) [3, 21, 27, 36]. In decentralized learning, communication is limited to the network topology.
The nodes can only communicate with their direct neighbors in the network in each round of (one
hop) communication [47].

The convergence in decentralized learning with distributed SGD [D-SGD, 27] crucially depends
on two factors (i) the spread of information, i.e. many rounds (hops) of communication are required
to spread information to all nodes in the network [3, 48], and (ii) the heterogeneity of the data
sources, i.e. when local data on each node is drawn from different distributions [6, 16, 19, 52].
The influence of the first factor is usually expressed through the spectral gap of the mixing matrix
[3, 13, 35, 39, 56]. However, spectral gap only provides a worst case diffusion rate independent
of the data heterogeneity. The effect of data-heterogeneity is commonly incorporated through the
variance of the gradients for the objectives across nodes [22], disregarding the relationship between
nodes due to the underlying topology.

Instead of viewing these factors independently, we propose an analysis that incorporates the
interaction between the graph topology and the data heterogeneity. Concretely, we refine the theo-
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retical analysis of D-SGD to reveal precisely the tight interplay between the graph’s mixing matrix
and the time-varying distribution of gradients across nodes. We prove that the above interaction af-
fects the convergence through a metric, that we call relative heterogeneity. The metric quantifies the
error between the average of the gradient across all the nodes and the updates obtained by each node
when using the given mixing weights to average the gradients of its neighbours at the same value
of the parameters. Crucially, the metric doesn’t depend on the magnitude of the consensus and the
stochastic noise in the gradients, allowing us to disentangle the precise effect of data heterogeneity
on the convergence.

Motivated by our theoretical analysis, we propose an approach to optimize the mixing ma-
trix to have low relative heterogeneity. In contrast to existing works attempting to tackle data-
heterogeneity through specialized algorithms [28, 30, 38, 46], we investigate how the performance
of D-SGD can be improved by a time-varying and data-aware design of the mixing matrix (while
respecting the network topology). We show that the design of an optimal data-dependent mixing
matrix can be described as a quadratic program that can efficiently be solved.

Subsequently, we combine the above optimization with D-SGD to dynamically adapt the mixing
matrix during training .While our approach only updates the mixing matrix, our metric can also
be used to select different topologies for a given heterogeneity across nodes as well as different
permutations of the nodes for a given network (see Appendix G).

Our main contributions are as follows:

1. We provide a tighter convergence analysis of DSGD by introducing a new metric that captures
the interplay between the communication topology and data heterogeneity in decentralized
(and federated) learning.

2. We propose a communication and computation efficient algorithm to design data-aware mix-
ing matrices in practice and verify its effectiveness through a set of extensive experiments on
synthetic and real data.

2. Related Work

Decentralized convex optimization over arbitrary network topologies has been studied in [13, 34,
47, 53] and decentralized versions of the stochastic gradient method (D-SGD) have been analyzed in
[22, 26, 27, 49]. It was found that the convergence of D-SGD is strongly affected by heterogeneous
data. Such impacts are not only observed in practice [16, 27], but also verified theoretically by
theoretical complexity lower bounds [19, 22, 55].Concurrent to our work, [5] provided a similar
analysis of the convergence rate of D-SGD for the smooth convex case using a metric quantifying
the mixing error in gradients named “neighborhood heterogeneity”. We discuss this work and other
related works in more detail in Appendix D

3. Setup

We consider optimizing the sum structured minimization objective distributed over n nodes or work-
ers/clients:

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)
]
, (1)
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where the functions fi(x) = Eξ∼Di
Fi(x, ξi) denote the stochastic objectives locally stored on ev-

ery node i. In machine learning applications, this corresponds to minimizing an empirical loss f
averaged over all local losses fi, with Di being a distribution over the local dataset on node i. We
define a communication graph G = (V,E) with |V | = n nodes. Following the convention in the
decentralized literature [e.g. 56], we define a mixing matrix W ∈ Rn×n as a weighted adjacency
matrix of G with wij ∈ [0, 1], wij > 0 only if (i, j) ∈ E and W being doubly stochastic, i.e.∑n

i=1wij = 1.
In D-SGD, every worker i ∈ [n] maintains local parameters x(t)

i ∈ Rd that are updated in each
iteration with a stochastic gradient update (computed on the local function fi) and by averaging with
neighbors in the communication graph. It is convenient to compactly write the gradients in matrix
notation:

X(t) :=
[
x
(t)
1 , . . . ,x(t)

n

]
∈ Rd×n , ∂F (X(t), ξ(t)) :=

[
∇F1(x

(t)
1 , ξ

(t)
1 ), . . . ,∇Fn(x

(t)
n , ξ(t)n )

]
,

where ξ(t) are independent random variables such that E
[
∂F (X(t), ξ(t))

]
= ∂f(X(t)). Similarly,

we denote the mixing step as multiplication with the mixing matrix W . This is illustrated through
the following update rule for D-SGD,

X(t+1) = (X(t) − ηtG
(t))W (t) ,

where the mixing matrix W (t) is sampled from a distribution W(t) and G(t) = ∂F (X(t), ξ(t)).

3.1. Standard Assumptions

We use the following standard assumptions on objective functions, similar to several existing works
[22, 27, 48, 50]. Following standard notation we let L and µ denote the smoothness and strong-
convexity constants of Fi(x, ξ) and fi respectively (defined in Appendix A), wherever applicable.

Assumption 1 (Bounded Variance). We assume that there exists a constant σ such that ∀x ∈ Rd

1
n

∑n
i=1 Eξi∼Di

∥∇Fi(x, ξi)−∇fi(x)∥2
2 ≤ σ2 . (2)

For the convex case it suffices to assume a bound on the stochasticity at the optimum x⋆ :=
argmin f(x). We assume there exists a constant σ2

⋆ ≤ σ2, such that

1
n

∑n
i=1 Eξi∼Di

∥∇Fi(x⋆, ξi)−∇fi(x⋆)∥2
2 ≤ σ2

⋆ (3)

Assumption 2 (Consensus Factor). We assume that there exists a constant p ∈ (0, 1] such that for
all t ≥ 0:

EW∼W(t)

∥∥XW −X
∥∥2
F
≤ (1− p)

∥∥X −X
∥∥2
F
, (4)

for all X ∈ Rd×n and X := X 11⊤

n .

The factor p measures averaging abilities of the mixing matrix W : in case of the fully connected
graph p = 1, as we obtain a perfect average in one step; for the disconnected graph p = 0.
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3.2. Gradient Mixing

Prior work introduced various notions to measure the dissimilarity between the local objective func-
tions [22, 27, 32, 46]. We instead introduce a new assumption that quantifies the interaction between
the data heterogeneity and graph topology.

Assumption 3 (Relative Heterogenity). We define ζ ′ as the smallest positive constant such that
∀X ∈ Rd×n, ∀t ≥ 0:

EW∼W(t)
1
n

∥∥∂f(X)W − ∂f(X)
∥∥2 ≤ ζ ′2 . (5)

For the convex case, it suffices to assume a bound at the optimum X⋆ only. We assume define ζ⋆ as
the smallest positive constant, such that ∀t ≥ 0

EW∼W(t)
1
n

∥∥∂f(X⋆)W − ∂f(X⋆)
∥∥2 ≤ ζ ′2⋆ . (6)

The above quantity measures the effectiveness of a mixing matrix in producing close to the
global average of the gradients at each node.

4. Convergence Result

In this section, we present a refined analysis of the D-SGD algorithm [22, 27]. We state our main
convergence results below, whose proofs can be found in Appendix B. In all cases, we assume
L-smoothness of Fi(x, ξi). These results are stated in terms of the mean of the parameters across
nodes x(t) := 1

n

∑n
i=1 x

(t)
i .

Theorem 1. Let Assumptions 1, 2 and 3 hold. Then there exists a constant stepsize, such that D-
SGD needs the following number of iterations to achieve an ε error:

Non-Convex: It holds 1
T+1

∑T
t=0 E

∥∥∇f(x(t))
∥∥2
2
≤ ε after O

(
σ2

nε2
+

ζ′+σ
√
p

pε3/2
+ 1

pε

)
·LF0 iterations.

If we in addition assume convexity,

Convex: Under convexity (µ ≥ 0), the error 1
(T+1)

∑T
t=0(Ef(x(t)) − f⋆) ≤ ε after O

(
σ2

nε2
+

√
L(ζ′+σ

√
p)

pε3/2
+ L

pε

)
·R2

0 iterations, and if strong-convexity µ > 0,

Strongly-Convex: then
∑T

t=0
wt∑T
t=0 wt

(Ef(x(t)) − f⋆) + µE∥x(T+1) − x⋆∥2 ≤ ε for1 Õ
(

σ2

µnε +

√
L(ζ′⋆+σ⋆

√
p)

µp
√
ε

+ L
µp log

1
ε

)
iterations, where wt denote appropriately chosen positive weights, F0 :=

f(x0)− f⋆ for f⋆ = minx∈Rd f(x) and R0 = ∥x0 − x⋆∥ denote the initial errors.

4.1. Discussion

We note that our convergence rates in Theorem 1 resemble the ones in [22] but the old heterogene-
ity ζ (or ζ⋆) described in Section 3.2 is replaced with the new relative heterogeneity measure ζ ′ (or
ζ ′⋆ correspondingly). As ζ ′ ≤ ζ (ζ ′⋆ ≤ ζ⋆), the convergence rates given in Theorem 1 are always
tighter than previous works. In Appendix C, we explain that ζ ′ can be significantly smaller than ζ.

1. Õ/Ω̃-notation hides constants and polylogarithmic factors.
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5. Heterogeneity-Aware Mixing

In this section, we build upon our novel theoretical insights developed above to improve the perfor-
mance of D-SGD in practice.

5.1. Motivation

Theorem 1 predicts that small values of the relative heterogeneity parameter ζ ′ lead to improved con-
vergence. More specifically, progress in each iteration is determined by the current data-dependent
gradient mixing error

∥∥∂f(X(t)
)W (t) − ∂f(X

(t)
)
∥∥2 which is upper bounded by ζ ′ (as defined in

Assumption 3). This quantity depends both on the current iterate X(t) but also on the chosen mixing
weights W (t), thus suggesting to continually update the mixing matrix such that the gradient mixing
error remains low, while the gradients evolve during training.

Thus, we can write the following time-varying optimization problem for the mixing weights
W . For current parameters X ∈ Rd×n, X = X 1

n11
⊤ (we drop the time index) distributed over n

nodes, we aim to solve
min

W∈Mw

∥∥∂f(X)W − ∂f(X)
∥∥2
F

(GME-exact)

where Mw = {W : 1W =1 ,1⊤W =1⊤; 0 ≤ wij ≤ 1 ∀i, j , wij =0 ∀(i, j) ̸∈ E} is the set of
allowed mixing matrices. The objective function comes from the definition of ζ ′2 in Equation (14).
The first two conditions ensure double stochasticity of W , while the last condition respects edge
constraints of the communication graph G. Note that unlike the matrix corresponding to the optimal
spectral gap, the optimal matrix obtained above could be asymmetric. We call this optimization
problem the exact Gradient Mixing Error (GME-exact).

5.2. Proposed Algorithm

We can equivalently reformulate (GME-exact) as to more efficiently solve when the dimension d
of the gradient vectors is large, compared to the number of nodes n. Defining the gram matrix
Γ :=

(
∂f(X)− ∂f(X)

)⊤(
∂f(X)− ∂f(X)

)
, we obtain:

min
W∈Mw

Tr
[
W⊤ΓW

]
. (GME-opt-Γ)

This is a quadratic program with linear constraints. The minimizer, i.e. resulting mixing matrix, of
(GME-opt-Γ) is the same as for (GME-exact). However, as the problem formulation depends only
on the gram matrix Γ ∈ Rn×n it can be solved more efficiently [9].

Since the direct optimization of (GME-opt-Γ) is infeasible due to the inability to access x and
the full gradients, we propose to approximately solve an approximation of the above objective,
only once every H ≥ 1 step. We summarise the resulting algorithm in Algorithm 1, which calls
equation (GME-opt-Γ) as a subproblem. To make our approach communication-efficien, we utilize
sketching techniques and intermittent communication. Sketching allows the nodes to communicate
low dimensional projections of the gradients/parameters instead of the full parameter vectors. This
is illustrated in Algorithm 2 (CE-GME), and further explained in Appendix E, along with theo-
retical guarantees in Appendix E.3. We provide additional justification for the design choices in
Appendix E.

5



SPECIFY RUNNING TITLE

Algorithm 1 HETEROGENEITY-AWARE DE-
CENTRALIZED SGD (HA-SGD)

X(0), stepsizes {ηt}T−1
t=0 , number of it-

erations T , communication graph G,
GME optimization period H , initial
mixing matrix W (0). for t in 0 . . . T do
in parallel on all workers

1:2: G(t) = ∂F (X(t), ξ(t)) ▷ stochastic
gradients

3: if t mod H = 0 then
4: W (t) = CE-GME(G(t))
5: else
6: W (t) = W (t−1)

7: end if
8: X(t+1) = (X(t) − ηtG

(t))W (t) ▷
update & mixing

9: end parallel for

Algorithm 2 CE-GME: Communication Effi-
cient GME

matrix G ∈ Rd×n, distributed column-
wise across n nodes, random seed s, di-
mension k W , mixing matrix minimiz-
ing the GME in parallel on n nodes do

1:2: sample A ∈ Rk×d, aij ∼ N (0, 1) ▷ use
the same random seed s on every node.

3: S = 1√
k
AG ∈ Rk×n ▷ compute

sketches
4: S = S 11⊤

n ▷ all-reduce-communication

5: Γ =
(
S − S

)⊤(
S − S

)
▷ sketched

gram matrix
6: W = GME-opt(Γ)
7: end

(a) (b) (c)

Figure 1: Comparison of HA-DSGD to D-SGD. (a) Average distance from the opti-
mum, (b) consensus distance 1

n

∥∥X −X
∥∥2
F

, and (c) gradient mixing error∥∥∂F (X, ξ)W − ∂F (X, ξ)
∥∥2
F

vs. the number of iterations for quadratic objectives. “Op-
timal Spectral Gap” denotes the DSGD algorithm with mixing matrix optimized using
the SLEM objective defined in [8]. We report an average over a window of 5 iterations of
corresponding quantity on each plot.

6. Experiments

For all our experiments, we use the CVXPY [12] convex optimization library to perform the con-
strained optimization defined in the section. We denote the number of nodes in the underlying
topology and the time period for GME optimization by n and T respectively. HA-DSGD refers to
our proposed Alg. 1 with updates alternating between the weights obtained by the GME optimiza-
tion and the Metropolis-Hastings weights, similarly as discussed in Appendix E.

We consider a simple setting of random quadratic objectives, with the objective for the ith client
given by fi(x) = ∥Aix+ bi∥22 where x denotes a d dimensional parameter vector and both Ai and
bi contain entries sampled randomly from N (0, 1) and fixed for each client. For our experiments,
we set d = 10. We further introduce stochasticity to the gradients by adding random Gaussian
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noise with variance 0.1. Figure 1 illustrates the improvements due to our approach across three
metrics: the distance from the optimum, consensus error, as well as the gradient mixing error. In the
Appendix J, we provide additional results for Deep Learning Benchmarks and quadratic objectives
along with details of the experiments.
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Appendix A. Preliminary Definitions

L-smoothness: Each local function Fi(x, ξ) : Rd × Ωi → R, i ∈ [n] is differentiable for each
ξ ∈ supp(Di) and there exists a constant L ≥ 0 such that for each x,y ∈ Rd, ξ ∈ supp(Di):

∥∇Fi(y, ξ)−∇Fi(x, ξ)∥ ≤ L ∥x− y∥ . (7)

(µ-strong) convexity: Each function fi : Rd → R, i ∈ [n] is µ-(strongly) convex for constant
µ ≥ 0. That is, for all x,y ∈ Rd:

fi(x)− fi(y) +
µ

2
∥x− y∥22 ≤ ⟨∇fi(x),x− y⟩ . (8)

Appendix B. Proofs of Main Results

B.1. Preliminaries

We utilize the following set of standard useful inequalities:

Lemma 1. Let g be an L-smooth convex function. Then we have:

∥∇g(x)−∇g(y)∥22 ≤ 2L (g(x)− g(y)− ⟨x− y,∇g(y)⟩) , ∀x,y ∈ Rd, (9)

Lemma 2. Let Y ∈ Rd×n be an arbitrary matrix and Y the matrix with each column containing
the columnwise mean of Y i.e. Y = Y 11⊤

n . Then we have:∥∥Y − Y
∥∥2
F
= ∥Y ∥2F −

∥∥Y ∥∥2
F
≤ ∥Y ∥2F . (10)

Lemma 3. For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd

∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

∥ai∥2 . (11)

Lemma 4. For given two vectors a,b ∈ Rd

∥a+ b∥2 ≤ (1 + α) ∥a∥2 + (1 + α−1) ∥b∥2 , ∀α > 0 . (12)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in Frobenius norm.

B.2. Recursion For Consensus

The recursion for consensus, analyzed in Lemmas 9 and 12 of [22] relies on the following inequal-
ities:

nΞt = E
∥∥∥X(t) −X

(t)
∥∥∥2
F
= E

∥∥∥X(t) −X
(t−1) −

(
X

(t) −X
(t−1)

)∥∥∥2
F
≤ E

∥∥∥X(t) −X
(t−1)

∥∥∥2
F

The above inequality, however, discards the fact that it is desirable for the update at each node to be
close to the update to the mean. Our analysis below instead incorporates the effect of the mixing of
the gradient through the following lemma:
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Lemma 5. The update to X(t−1) at the tth step of DSGD with mixing matrix W (t−1) can be refor-
mulated as:

X(t)−X
(t)

=
(
X(t−1) −X

(t−1)
)
W (t−1)−ηt

(
∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
W (t−1)

(13)

Proof

X(t) −X
(t)

= (X(t−1) − ηt∂F (X(t−1), ξ(t−1)))(W (t−1) − 1

n
11⊤)

= X(t−1)W (t−1) −X
(t−1) − ηt

(
∂F (X(t−1), ξ(t−1))W (t−1) − ∂F (X(t−1), ξ(t−1))

)
=

(
X(t−1) −X

(t−1)
)
W (t−1) − ηt

(
∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
W (t−1).

Where in the last step we used the identity 11⊤

n W = 11⊤

n , valid for any doubly stochastic matrix

W , implying that X(t−1)
W (t−1) = X

(t−1) and ∂F (X(t−1), ξ(t−1))W (t−1) = ∂F (X(t−1), ξ(t−1)).
For the sake of generality and consistency with [22], we prove our result under a generalization

of the Assumption 3 on the gradient mixing error

Assumption 4 (Relative Heterogenity with Growth). We assume that there exist constants ζ ′ and
P ′, such that ∀X ∈ Rd×n:

EW∼W(t)
1
n

∥∥∂f(X)W − ∂f(X)
∥∥2 ≤ ζ ′2 + P ′ ∥∥∂f(X)

∥∥2 . (14)

Assumption 3 corresponds to a special case of the above assumption with P ′ = 0.

We now prove the following consensus recursion:

Lemma 6. Let Ξt = 1
nEt

∑n
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2 denote the consensus distance at time t, and let

et = f(x(t))− f(x⋆) for the convex case and et =
∥∥∇f(x(t))

∥∥2
2

for the non-convex case. Then:

Ξt ≤
(
1− p

2

)
Ξt−1 +Dη2t−1et−1 +Aη2t−1. (15)

Where D = 36L(1 − p) + 4L8−7p
p for the convex case , 8−7p

p P ′ for the nonconvex case and

A = 8−7p
p (ζ ′2) + 3(1− p)σ2 for the non-convex case and 16−14p

p (ζ ′2) + 9(1− p)σ2 for the convex
case.

Proof

EW∼W
1
n

∥∥∂f(X)W − ∂f(X)
∥∥2 ≤ ζ ′2 + P ′ ∥∥∂f(X)

∥∥2 . (16)
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Let Ξt = 1
nEt

∑n
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2 denote the consensus distance at time t. We have, using
Lemma 5:

nΞt = E
∥∥∥X(t) −X

(t)
∥∥∥2
F

= E
∥∥∥(X(t−1) −X

(t−1)
)
W (t−1) − ηt

(
∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
W (t−1)

∥∥∥2
F

= E
∥∥∥(X(t−1) −X

(t−1)
)
W (t−1) − ηt

(
∂f(X(t−1))− ∂f(X(t−1))

)
W (t−1)

∥∥∥2
F︸ ︷︷ ︸

=:T1

+ η2tE
∥∥∥(∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
W (t−1) −

(
∂f(X(t−1))− ∂f(X(t−1))

)
W (t−1)

∥∥∥2
F︸ ︷︷ ︸

=:T2

Where the last inequality follows from the fact that noise in the gradient is independent at each
time step, and also from unbiased stochastic gradients Eξ(t−1)∂F (X(t−1), ξ(t−1)) = ∂f(X(t−1)).
We first observe that, using assumption 2, we have:

E
∥∥∥(∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
W (t−1) −

(
∂f(X(t−1))− ∂f(X(t−1))

)
W (t−1)

∥∥∥2
F

≤ (1− p)E
∥∥∥(∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
−
(
∂f(X(t−1))− ∂f(X(t−1))

)∥∥∥2
F

Furthermore, using equation (2), we have:

E
∥∥∥(∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
−
(
∂f(X(t−1))− ∂f(X(t−1))

)∥∥∥2
F

≤ E
∥∥∥∂F (X(t−1), ξ(t−1))− ∂f(X(t−1))

∥∥∥2
F

We then add and subtract the gradients at the mean point ∂F (X
(t−1)

, ξ(t−1)) and the corresponding
mean ∂F (X

(t−1)
) to obtain:

E
∥∥∥(∂F (X(t−1), ξ(t−1))− ∂f(X(t−1))

)∥∥∥2
F

Lemma 3
≤ 3

∥∥∥∂F (X(t−1), ξ(t−1))− ∂F (X
(t−1)

, ξ(t−1))
∥∥∥2 + 3E

∥∥∥∂f(X(t−1))− ∂F (X
(t−1)

∥∥∥2
+ 3E

∥∥∥∂F (X
(t−1)

, ξ(t−1))− ∂F (X
(t−1)

)
∥∥∥2
F

Using the L smoothness of each node’s objective, the first two terms can be bounded as follows:

E
∥∥∥∂F (X(t−1), ξ(t−1))− ∂F (X

(t−1)
, ξ(t−1))

∥∥∥2 ≤ L2E
∥∥∥X(t−1) −X

(t−1)
∥∥∥2
F

Similarly, we have:
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E
∥∥∥∂f(X(t−1))− ∂F (X

(t−1)
)
∥∥∥2 ≤ L2E

∥∥∥X(t−1) −X
(t−1)

∥∥∥2
F
. (17)

Subsequently, we utilize the assumptions on stochasticity 1 to bound the third term.
We proceed separately for the Convex and non-convex cases:
Convex Case: We add and subtract ∂F (X⋆, ξ(j)) and the corresponding mean ∂F (X⋆) to

obtain:

E
∥∥∥∂F (X

(t−1)
, ξ(t−1))− ∂F (X

(t−1)
)
∥∥∥2
F

= E
∥∥∥(∂F (X

(t−1)
, ξ(t−1))− ∂F (X⋆, ξ(j))

)
−
(
∂F (X

(t−1) − ∂F (X⋆)
)
+
(
∂F (X⋆, ξ(j))− ∂F (X⋆))

)∥∥∥2
F

Lemma 3
≤ 3E

∥∥∥∂F (X
(t−1)

, ξ(t−1))− ∂F (X⋆, ξ(j))
∥∥∥2
F
+ 3

∥∥∥∂F (X
(t−1)

)− ∂F (X⋆)
∥∥∥

+ 3
∥∥∥∂F (X⋆, ξ(j))− ∂F (X⋆))

∥∥∥2
F

Lemma 1
≤ 3 · 2Ln(f(x)− f(x⋆)) + 3 · 2Ln(f(x)− f(x⋆)) + 3nσ2

= 12Ln(f(x)− f(x⋆)) + 3nσ2

(18)

Non-convex Case: We directly utilize the uniform bound on the stochasticity (assumption 1) to
obtain:

E
∥∥∥∂F (X

(t−1)
, ξ(t−1))− ∂F (X

(t−1)
)
∥∥∥2
F
≤ nσ̂2 (19)

The final bound on T2 is therefore given by:
Convex case:

T2 ≤ η2t 6(1− p)L2E
∥∥∥(X(t−1) −X

(t−1)
)∥∥∥2

F
+ 36(1− p)η2tLn(f(x

(t−1)− f(x⋆))

+ 9n(1− p)η2t σ
2

Non-convex case:

T2 ≤ 6(1− p)η2tL
2E

∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F
+ 3n(1− p)η2t σ

2
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We now bound T1 as follows:

E
∥∥∥(X(t−1) −X

(t−1)
)
W (t−1) − ηt

(
∂f(X(t−1))− ∂f(X(t−1))

)
W (t−1)

∥∥∥2
F

= E
∥∥∥∥(X(t−1) −X

(t−1)
)
W (t−1) − ηt

(
∂F (X

(t−1)
)− ∂F (X

(t−1)
)
)
W (t−1)

−ηt

((
∂f(X(t−1))− ∂F (X

(t−1)
)
)
−
(
∂f(X(t−1))− ∂F (X

(t−1)
)
))

W (t−1)

∥∥∥∥2
F

Lemma 4
≤ (1 + β1)E

∥∥∥∥(X(t−1) −X
(t−1)

)
W (t−1)

−ηt

((
∂f(X(t−1))− ∂F (X

(t−1)
)
)
−
(
∂f(X(t−1))− ∂F (X

(t−1)
)
))

W (t−1)

∥∥∥∥2
F

+ (1 + β−1
1 )E

∥∥∥−ηt

(
∂F (X

(t−1)
)− ∂F (X

(t−1)
)
)
W (t−1)

∥∥∥2
F

Lemma 4 ,Assumption 2
≤ (1− p)(1 + β1)(1 + β2)E

∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F

+η2t (1− p)(1 + β1)(1 + β−1
2 )E

∥∥∥∥(∂f(X(t−1))− ∂F (X
(t−1)

)
)

−
(
∂f(X(t−1))− ∂F (X

(t−1)
)
)∥∥∥∥2

F

+ (1 + β−1
1 )E

∥∥∥ηt(∂F (X
(t−1)

)− ∂F (X
(t−1)

)
)
W (t−1)

∥∥∥2
F

The second term can be bounded by utilizing Equation 17 and Equation 2 as follows:

E
∥∥∥∥(∂f(X(t−1))− ∂F (X

(t−1)
)
)
−
(
∂f(X(t−1))− ∂F (X

(t−1)
)
)∥∥∥∥2

F

Lemma 2
≤ E

∥∥∥∥(∂f(X(t−1))− ∂F (X
(t−1)

)
)∥∥∥∥2

F

17
≤ L2

∥∥∥X(t−1) −X
(t−1)

∥∥∥2
F
.

Therefore, we obtain:

T1 ≤
(
(1− p)(1 + β1)(1 + β2) + η2t (1− p)(1 + β1)(1 + β−1

2 )L2
) ∥∥∥X(t−1) −X

(t−1)
∥∥∥2
F

+ (1 + β−1
1 )η2tE

∥∥∥(∂F (X
(t−1)

)− ∂F (X
(t−1)

)
)
W (t−1)

∥∥∥2
F

Finally, incorporating the bound on T2, we obtain:
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Convex Case:

nΞt ≤
(
(1− p)(1 + β1)(1 + β−1

2 ) + η2t (1− p)(1 + β1)(1 + β−1
2 )

) ∥∥∥X(t−1) −X
(t−1)

∥∥∥2
F

+ (1 + β−1
1 )η2tE

∥∥∥(∂F (X
(t−1)

)− ∂F (X
(t−1)

)
)
W (t−1)

∥∥∥2
F

+ 6(1− p)L2E
∥∥∥(X(t−1) −X

(t−1)
)∥∥∥2

F

+ 36(1− p)η2tLn(f(x)− f(x⋆)) + 9n(1− p)η2t σ
2

Nonconvex Case:

nΞt ≤
(
(1− p)(1 + β1)(1 + β−1

2 ) + η2t (1− p)(1 + β1)(1 + β−1
2 )

) ∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F

+ (1 + β−1
1 )η2tE

∥∥∥(∂F (X
(t−1)

)− ∂F (X
(t−1)

)
)
W (t−1)

∥∥∥2
F

+ 6(1− p)L2η2tE
∥∥∥(X(t−1) −X

(t−1)
)∥∥∥2

F

+ 3n(1− p)η2t σ
2

We now choose β1 such that (1− p)(1 + β1) = (1− 7p
8 ) i.e. β1 = p

8(1−p) Subsequently, we choose

β2 such that ((1 − 7p
8 )(1 + β2) = (1 − 3p

4 ) i.e. β2 = p
8−7p . Then, assuming that the step size ηt

satisfies, η2t ≤
p
4

(1−p)(1+β1)(1+β−1
2 )L2+6(1−p)L2

=
p
4(

(1− 7p
8
) 8−6p

p
+6(1−p)

)
L2

, we obtain:

nΞt ≤ (1− 3p

4
)E

∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F
+

p

4
E
∥∥∥(X(t−1) −X

(t−1)
)∥∥∥2

F

+ (1 + β−1
1 )η2tE

∥∥∥(∂F (X
(t−1)

)− ∂F (X
(t−1)

)
W (t−1)

∥∥∥2
F
+ 6(1− p)L2η2tE

∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F

+ 3n(1− p)η2t σ
2

≤ (1− p

2
)E

∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F

+ η2t (1 + β−1
1 )E

∥∥∥(∂F (X
(t−1)

)− ∂F (X
(t−1)

)
)
W (t−1)

∥∥∥2
F
+ 3n(1− p)η2t σ

2

Since
p
4(

(1− 7p
8
) 8−6p

p
+6(1−p)

)
L2

≥ p2

80L2 , we only require the step size to be O( pL), same as [22].

Thus the consensus distance decreases linearly, along with an error dependent on the diffusion of the
gradients across nodes. Finally, substituting the assumption 4 for the non-convex case, we obtain:

nΞt ≤ (1− p

2
)E

∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F
+ η2t

8− 7p

p
(ζ ′

2
+ P ′ ∥∥∂F (X)

∥∥2)
= (1− p

2
)E

∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F
+ η2t (1 + β−1

1 )ζ ′
2
+ η2t

8− 7p

p
(1− p)P ′ ∥∥∂F (X)

∥∥2
+ 3n(1− p)η2t σ

2.

For the convex case, we first bound the gradient mixing error at X in terms of that at X∗ as follows:
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E
∥∥∥(∂F (X

(t−1)
)− ∂F (X

(t−1)
)
)
W (t−1)

∥∥∥2
F

= E
∥∥∥(∂F (X

(t−1)
)− ∂F (X∗)− (∂F (X

(t−1)
)− ∂F (X∗))

)
W (t−1) +

(
∂F (X∗)− ∂F (X∗)

)
W (t−1)

∥∥∥2
F

Lemma 3
≤ 2E

∥∥∥(∂F (X
(t−1)

)− ∂F (X∗)− (∂F (X
(t−1)

)− ∂F (X∗))
)
W (t−1)

∥∥∥2
2

+ 2E
∥∥∥(∂F (X∗)− ∂F (X∗)

)
W (t−1)

∥∥∥2
F

Assumption 2
≤ 2(1− p)E

∥∥∥∂F (X
(t−1)

)− ∂F (X∗)− (∂F (X
(t−1)

)− ∂F (X∗))
∥∥∥2
2

+ 2E
∥∥∥(∂F (X∗)− ∂F (X∗)

)
W (t−1)

∥∥∥2
F

Lemma 2
≤ 2(1− p)E

∥∥∥∂F (X
(t−1)

)− ∂F (X∗)
∥∥∥2
2
+ 2E

∥∥∥(∂F (X∗)− ∂F (X∗)
)
W (t−1)

∥∥∥2
F

≤ 2(1− p)E
∥∥∥∂F (X

(t−1)
)− ∂F (X∗)

∥∥∥2
2
+ 2E

∥∥∥(∂F (X∗)− ∂F (X∗)
)
W (t−1)

∥∥∥2
F

≤ 4(1− p)LE
(
f(x(t−1))− f(x⋆)

)
+ 2E

∥∥∥(∂F (X∗)− ∂F (X∗)
)
W (t−1)

∥∥∥2
F
.

Where in the last step, we used Equation 1. Therefore, we obtain:

nΞt ≤ (1− p

2
)E

∥∥∥(X(t−1) −X
(t−1)

)∥∥∥2
F

+ 4(1− p)η2t
8− 7p

p
LE

(
f(x(j))− f(x⋆)

)
+ 2η2t (1 + β−1

1 )nζ
2

+ 36Ln(1− p)η2t (f(x)− f(x∗)) + 9n(1− p)η2t σ
2

B.3. Convergence Rate

We utilize the consensus recursion in Lemma 6 to bound an appropriately weighted sum of the
consensus iterates as follows:

T∑
t=0

wtnΞt ≤
T∑
t=1

wt(1−
p

2
)nΞt−1 +

T∑
t=1

wtη
2
t−1Det−1 +

T∑
t=1

wtη
2
t−1A
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Recursively substituting nΞt−1 for t in [1, · · · , T ], we then obtain:

T∑
t=0

wtnΞt ≤
T∑
t=1

t−1∑
j=0

wtη
2
j (1−

p

2
)t−j−1(Dej +A)

=
T∑
t=1

t−1∑
j=0

wtη
2
j (1−

p

2
)t−j−1(Dej +A)

=

T−1∑
j=0

T∑
t=j+1

η2jwt(1−
p

2
)t−j−1(Dej +A)

≤
T∑

j=0

∞∑
t=j+1

η2jwt(1−
p

2
)t−j−1(Det−1 +A)

≤
T∑

j=0

η2j
2

p
wj(Dej +A) .

Where in the last step we used wt ≤ wj for j ≥ t
We thus obtain an Equation having the same form as Equation 18 of [22] :

B ·
T∑
t=0

wtΞt ≤ b

2
·

T∑
t=0

wtet +AB
2

p
·

T∑
t=0

wtη
2
t , (20)

where η satisfies η ≤
√

pbD
2B and the factor B is as defined in [21] for the different cases.

The rest of the proof involves utilizing the descent lemma in [22] and choosing the appropriate
step size following exactly the use of Equation 18 in [22]. Finally, setting P ′ = 0 leads to the
convergence rates provided in Theorem 1.

Appendix C. Comparision with Koloskova et al. [22]

In this section, we discuss how ζ ′ relates to ζ defined in Koloskova et al. [22].

Remark 1. Using Assumption 4, we obtain:

EW∼W(t)
1
n

∥∥∂f(X)W − ∂f(X)
∥∥2 = EW∼W(t)

1
n

∥∥(∂f(X)− ∂f(X))(W − 1
n11

⊤)
∥∥2

≤ 1
n(1− p)

∥∥∂f(X)− ∂f(X)
∥∥2 ≤ (1− p)ζ2 .

This implies that ζ ′2 ≤ (1− p)ζ2 and ζ ′2⋆ ≤ (1− p)ζ2⋆ . Often ζ ′ can even be much smaller

As a motivating example, we consider a ring topology with the Metropolis-Hasting mixing
weights and a particular pattern on how the data is distributed across the nodes:

Example 1. Consider a ring topology on n = 3k nodes, k ≥ 1, with uniform mixing among
neighbors (wi,i−1 = wi,i = wi,i+1 = 1

3 ) and assume that Di = Di+3 mod n for all i and suppose
there is an x′ with ∇f(x′) = 0, ∥∇f1(x

′)∥ > 0. Then ζ ′ = 0 and ζ ̸= 0.
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It is easy to see that the relative heterogenity is ζ ′ = 0. This holds, because uniform averaging
of three neighboring gradients result in an unbiased gradient estimator:

1
3

∑
j∈{i−1,i,i+1}∇fj(x) = ∇f(x) , ∀x ∈ Rd ,

while in contrast

ζ2 ≥ 1
3

(∥∥∇f1(x
′)
∥∥2 + ∥∥∇f2(x

′)
∥∥2 + ∥∥∇f3(x

′)
∥∥2) > 0.

In Appendix F, we discuss another example provided by [6], where mixing within interconnected
cliques (i.e., locally fully connected sets of nodes) having global label distribution leads to ζ ′ = 0.]

Appendix D. Additional Related Work

Several recent works have attempted to tackle the undesirable effects of data heterogeneity across
nodes on the convergence of D-SGD through suitable modifications to the algorithm. D2/Exact-
diffusion [46, 57, 58] apply variance reduction on each node. Gradient Tracking [23, 30, 31, 37, 40]
utilizes an estimate of the full gradient at each node, obtained by successive mixing of gradients
along with corrections based on updates to the local gradients. However, these approaches have not
been found to yield performances comparable to D-SGD in practice [28], despite superior theoreti-
cal properties [2, 23].

The undesirable effects of data heterogeneity persist also in the Federated Learning setting,
which is a special case of the fully decentralized setting. Several algorithms have been designed
to mitigate the undesirable effects of data heterogeneity [10, 19, 33, 51], yet extending them to the
setup of decentralized learning remains challenging.

For optimizing convex functions, specialized variants such as EXTRA [45], decentralized primal-
dual methods [1] have been developed. With a focus on deep learning applications, [28, 59] propose
adaptations of momentum methods.

Bellet et al. [6] recently proposed utilizing a topology that minimizes the data-heterogeneity
across cliques composed of clusters of nodes capturing the entire diversity of data distribution (D-
Cliques). Our analysis does apply to their setting and can be used to theoretically explain the
theoretical underpinnings behind D-Clique averaging (Appendix F)

Another line of work focuses on the design of (data-independent) mixing matrices with good
spectral properties [56]. Another example is time-varying topologies such as the directed expo-
nential graph [3] that allow for perfect mixing after multiple steps, or matchings [50]. Several
theoretical works argue to perform multiple averaging steps between updates [24, 32, 43], though
this introduces a noticeable overhead in practical DL applications. Vogels et al. [48] propose to
replace gossip averaging with a new mechanism to spread information on embedded spanning trees.

Several works have analyzed the relationship between graph topology, data-heterogeneity, and
computational efficiency in settings such as Network Lasso [15, 17], Clustered Federated Learning
[42], and Extreme Variational Inference [60]. However, such an analysis for the optimization in
decentralized SGD has been lacking.

Appendix E. Designing good mixing matrices

One of the main advantages of our theoretical analysis is that it allows a principled design of good
mixing matrices. We identify in Theorem 1 two concurrent factors: on the one hand, the consensus
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factor p should be close to 1, and on the other hand the relative heterogeneity parameter ζ ′ should
be close to 0. Trying to find a mixing matrix satisfying both might seem a difficult task. However,
one can combine matrices that are good for either of the tasks.

Example 2. Suppose a mixing matrix Wp has consensus factor p ≤ 1, and a mixing matrix Wζ′ has
relative heterogeneity parameter ζ ′. Then W = Wζ′Wp has consensus factor at least p and relative
heterogeneity at most ζ ′.

Proof By the mixing property of Wp,∥∥XW −X
∥∥2
F

=
∥∥XWζ′Wp −X

∥∥2
F

≤ (1 − p)
∥∥XWζ′ −X

∥∥2
F

≤ (1 − p)
∥∥X −X

∥∥2
F
,

and similarly, 1
n

∥∥∂f(X)Wζ′Wp − ∂f(X)
∥∥2 ≤ 1

n

∥∥∂f(X)Wζ′ − ∂f(X)
∥∥2 ≤ ζ ′2.

Where we used the double stochasticity of Wζ′ which implies that
∥∥(W − 1

n11
⊤)

∥∥
2
≤ 1 (Proof

in Proposition 5). In practice, we observe that two communication rounds are not necessary, alter-
nating between mixing with Wp and Wζ′ works well and does not increase the communication
costs.

E.1. Justifying the Design Choices

Next we analyze the relationship between Algorithm 2 and GME-exact.

Effect of Periodic Optimization. In Algorithm 1, we optimize the mixing matrix W only once
every H steps in order to reduce the computational cost. Below we show that for small H , if at step
t+H we apply the matrix W (t) found by GME at the step t, then this matrix would still give a good
error ζ ′.

To isolate the effect of periodic optimization, we assume that every H steps we solve an original
GME-exact problem. We perform optimization using the full gradients, moreover on line 4 of Algo-
rithm 1 we solve an original (GME-exact) problem with full gradients on the averaged parameters,
i.e. line 4 is replaced with W (t) = GME(∂f(X

(t)
)).

Proposition 1.
∥∥∂f(X(t+H)

)
W (t) − ∂f

(
X

(t+H)
)∥∥2

F
≤ 2

∥∥∂f(X(t)
)
W (t) − ∂f

(
X

(t)
)∥∥2

F

+ 2H
∑H−1

i=0 η2tL
2
∥∥∂f(X(t+i))

∥∥2
F

For the proof refer to the appendix. Since the learning rate ηt is usually small, the relative
heterogeniety does not increase much for a small number of steps H .

Effect of Stochastic Estimation. In practice the full gradients are too expensive to compute, so
we will resort to stochastic gradients instead. The following proposition controls the error due to
the selection of the mixing matrix using stochastic gradients.

Proposition 2. Let W ∗(ξ) be any mixing matrix dependent on the noise parameters ξ satisfying the
given edge constraints. Then, we have:

E
[∥∥(∂f(X)− ∂f(X)

)
W ∗(ξ)

∥∥2
F

]
≤ 2E

[∥∥(∂f(X, ξ)− ∂f(X, ξ)
)
W ∗(ξ)

∥∥2
F

]
+ 2nσ2.

Proof can be found in the appendix. Setting W ∗(ξ) = argmin
W∈Mw

∥∥∂f(X, ξ)W − ∂f(X, ξ)
∥∥2
F

reveals that minimizing GME with stochastic gradients would also lead to a small heterogeneity ζ
up to additive stochastic noise.

22



SPECIFY RUNNING TITLE

Sketching for Gram Matrix Estimation. The original GME-exact formulation requires transmit-
ting the entire gradients. We instead propose to calculate the Gram matrix using sketched gradients,
for improved communication efficiency.

Let A denote a random matrix with Gaussian entries and let U be an arbitrary matrix. We
observe that 1

kE(UA)⊤UA = 1
kEU

⊤A⊤AU = U⊤U . Therefore, the above projection operation
preserves the inner products in expectation. The approximation error of the above scheme can be
bounded using standard concentration techniques. We provide precise theoretical guarantees for
sketching and the use of local gradients in section ?? of the Appendix.

E.2. Optimizing mixing of updates of arbitrary algorithms

Our approach can be generalized to arbitrary additive updates to the parameters of the form x
(t+1)
i =

x
(t)
i +ηu

(t)
i . Concretely, let U (t) denote the matrix with its ith column being u

(t)
i . Then, the updates

to X can be decoupled as follows:

X(t) −X
(t)

=
(
X(t−1) −X

(t−1)
)
W (t−1) − ηt

(
U (t) − U (t)

)
W (t−1). (21)

Therefore, the contribution to the deviation from the mean of the ith node due to the mixing of
the updates is again given by

∑n
j=1Wjiuj − u.

For example, replacing the gradients in the Algorithm 1 by the updates of the Adam algorithm
[20] results in the minimization of the mixing error involved in decentralized Adam updates. We
empirically verify the effectiveness of such an algorithm for an NLP task as discussed in Section J.2.
In Appendix I, we discuss other variations and extensions covered by our framework, such as di-
rectly optimizing the mixing of parameters.

E.3. Guarantees on Sketching and the use of Local Gradients

The bound on the error due to sketching is provided through the following extension of the John-
son–Lindenstrauss lemma:

Proposition 3. Let {u1, · · · ,um} ∈ Rd. Assume that the entries in A ⊂ Rk×d are sampled
independently from N (0, 1). Then, for k = ω(

log(m
δ
)

ε2
), with probability greater than 1 − δ , we

have: ∣∣ 1
k ⟨Aui, Auj⟩ − ⟨ui,uj⟩

∣∣ ≤ εmax
i∈[m]

∥ui∥2 for all i, j ∈ [m].

In our algorithm, the {u1, · · · ,um} ∈ Rd correspond to the gradients across nodes, and are
compressed using a the random projection generated independently at each period, using shared
seeds.

Use of local X . In our practical implementation we solve GME problem for gradients computed
at the parameters X instead of X in GME-exact. We show that this leads to the minimization of the
GME upto an additional term proportional to the consensus:

Proposition 4.
∥∥∂f(X)W − ∂f(X)

∥∥2
F

≤ 2
∥∥∂f(X)W − ∂f(X)

∥∥2
F
+ 2L2

∥∥X −X
∥∥2
F

Our analysis also provides an estimate of the decrease of consensus distance ∥X −X∥2F . Thus,
the small right hand side ensures the small relative heterogeneity.
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E.4. Proof of Proposition 1

We first note that

X
(t+H) −X

(t)
=

H−1∑
i=0

−ηt+i∂f(X
(t+i)) (22)

We further have:∥∥∥(∂f(X(t+H)
)
− ∂f

(
X

(t+H)
))

W (t)
∥∥∥2
F

Lemma 3
≤ 2

∥∥∥(∂f(X(t)
)
− ∂f

(
X

(t)
))

W (t)
∥∥∥2
F

+ 2
∥∥∥(∂f(X(t+H)

)
− ∂f

(
X

(t+H)
)
−
(
∂f

(
X

(t)
)
− ∂f

(
X

(t)
)))

W (t)
∥∥∥2
F

Applying Lemma 2 to the second term in the RHS yields:

∥∥∥(∂f(X(t+H)
)
− ∂f

(
X

(t+H)
))

W (t)
∥∥∥2
F

Lemma2
≤ 2

∥∥∥(∂f(X(t)
)
− ∂f

(
X

(t)
))

W (t)
∥∥∥2
F

+ 2
∥∥∥(∂f(X(t+H)

)
− ∂f

(
X

(t)
))

W (t)
∥∥∥2
F

Finally, using Equation 22 and the L-smoothness of the objectives, we obtain:∥∥∥(∂f(X(t+H)
)
− ∂f

(
X

(t+H)
))

W (t)
∥∥∥2
F

≤ 2
∥∥∥(∂f(X(t)

)
− ∂f

(
X

(t)
))

W (t)
∥∥∥2
F
+ 2L2

∥∥∥X(t+H) −X
(t)
∥∥∥2

≤ 2
∥∥∥(∂f(X(t)

)
− ∂f

(
X

(t)
))

W (t)
∥∥∥2
F
+ 2H

H−1∑
i=0

η2tL
2
∥∥∥∂f(X(t+i))

∥∥∥2
F

E.5. Proof of Proposition 4

We start by adding and subtracting the corresponding gradients at the mean parameters X:

∥∥(∂f(X)− ∂f(X)
)
W

∥∥2
F

=
∥∥(∂f(X)− ∂f(X)−

(
∂f(X)− ∂f(X)

))
W +

(
∂f(X)− ∂f(X)

)
W

∥∥2
F

Lemma 3
≤

∥∥(∂f(X)− ∂f(X)−
(
∂f(X)− ∂f(X)

))∥∥2
F
+ 2

∥∥(∂f(X)− ∂f(X)
)
W

∥∥2
F

Lemma 2
≤ 2

∥∥(∂f(X)− ∂f(X)
)∥∥2

F
+ 2

∥∥(∂f(X)− ∂f(X)
)
W

∥∥2
F

L-smoothness
≤ L2

∥∥X −X
∥∥2
F
+ 2

∥∥(∂f(X)− ∂f(X)
)
W

∥∥2
F
,

E.6. Spectral Norm of Doubly Stochastic Matrices with Non-negative Entries

Proposition 5. Let W ∈ Rn×n be possibly asymmetric doubly stochastic matrix with non-negative
entries. Then the spectral norm ∥W∥2 is bounded by 1.
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Proof We note that W TW is itself a symmetric doubly-stochastic matrix and therefore has an eigen-
vector 1√

n
1 with eigenvalue 1. Perron-Frobenius theorem then implies that the largest eigenvalue

of (W (t))⊤W (t) is bounded by 1, completing the proof.

E.7. Proof of Proposition 2

The proof proceeds by introducing the stochastic gradients into the LHS as follows:

E
[∥∥(∂f(X)− ∂f(X)

)
W ∗(ξ)

∥∥2
F

]
= E

[∥∥(∂f(X)− ∂f(X)−
(
∂f(X, ξ)− ∂f(X, ξ)

)
+
(
∂f(X, ξ)− ∂f(X, ξ)

))
W ∗(ξ)

∥∥2
F

]
Lemma 3
≤ 2E

[∥∥(∂f(X, ξ)− ∂f(X, ξ)
)
W ∗(ξ)

∥∥2
F

]
+ 2E

[∥∥(∂f(X)− ∂f(X)−
(
∂f(X, ξ)− ∂f(X, ξ)

))
W ∗(ξ)

∥∥2
2

]
Lemma 2
≤ 2E

[∥∥(∂f(X, ξ)− ∂f(X, ξ)
)
W ∗(ξ)

∥∥2
F

]
+ 2E

[∥∥(∂f(X)− ∂f(X, ξ)
)
W ∗(ξ)

∥∥2
2

]
.

Since W ∗(ξ) is doubly-stochastic, using Proposition 5, we obtain a bound on the spectral norm∥∥W (∗)∥∥
2
≤ 1. Combining the bound on the spectral norm with the assumption on the variance

yields:

E
[∥∥(∂f(X)− ∂f(X)

)
W ∗(ξ)

∥∥2
F

]
≤ 2E

[∥∥(∂f(X, ξ)− ∂f(X, ξ)
)
W ∗(ξ)

∥∥2
F

]
+ 2E

[∥∥(∂f(X)− ∂f(X, ξ)
)∥∥2

2

]
≤ 2E

[∥∥(∂f(X, ξ)− ∂f(X, ξ)
)
W ∗(ξ)

∥∥2
F

]
+ 2σ2

E.8. Proof of Proposition 3

We utilize the following compression bound, that arises as a consequence of the concentration of
χ2 random variables, as often utilized in the proof of the Johnson–Lindenstrauss lemma [7]:

Lemma 7. Let {u1, · · · ,um} ∈ Rd. Assume that the entries in A ⊂ Rk×d are sampled inde-
pendently from N (0, 1). Then, for k ≥ 100(

log(m
δ
)

ε2
), with probability greater than 1 − δ , we

have,∀i, j ∈ [m]:

(1− ε) ∥ui − uj∥2 ≤
1

k
∥Aui −Auj∥2 ≤ (1 + ε) ∥ui − uj∥2 (23)

Slightly weaker bounds can be obtained in more general settings such as that of sub-Gaussian
random variables but we restrict to the Gaussian case in the theory as well as implementations of
our algorithm.

Now, adding {−u1, · · · ,−um} to the set of points and applying Lemma 7 yields, ∀i, j ∈ [m]:

(1− ε) ∥ui − uj∥2 ≤ ∥Aui ±Auj∥2 ≤ (1 + ε) ∥ui − uj∥2 (24)
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Therefore, we bound the inner product as follows:

1

k
⟨Aui, Auj⟩ =

1

4k

(
∥Aui +Auj∥2 − ∥Aui −Auj∥2

)
≤ 1

4

(
(1 + ε) ∥ui + uj∥2 − (1− ε) ∥ui − uj∥2

)
≤ ⟨ui,uj⟩+

1

2
ε
(
∥ui + uj∥2 + ∥ui − uj∥2

)
≤ ⟨ui,uj⟩+ εmax

i
∥ui∥2

Similarly, we obtain the lower bound:

⟨ui,uj⟩ − εmax
i

∥ui∥2 ≤
1

k
⟨Aui, Auj⟩

Appendix F. Using different matrices for Parameter and Gradient Mixing

An additional advantage of our analysis is that it decouples the effect of parameter and gradient
mixing. This allows our analysis to be extended to the case of use of different mixing matrices Wp

and Wg for mixing the parameters and gradients at each step respectively. Concretely, we consider
the following algorithm:

Algorithm 3 DECENTRALIZED SGD WITH DECOUPLED MIXING

X(0), stepsizes {ηt}T−1
t=0 , number of iterations T , mixing matrix distributions W(t)

p ,W(t)
g ,

t ∈ [0, T ] for t in 0 . . . T do in parallel on all workers
1:2: G(t) = ∂F (X(t), ξ(t)) ▷ stochastic gradients
3: W

(t)
p ∼ W(t)

p ,W
(t)
g ∼ W(t)

g ▷ sample mixing matrices
4: X(t+1) = X(t)W

(t)
p − ηtG

(t)W
(t)
g ▷ update & mixing

5: end parallel for

We now show that the above algorithm leads to convergence rates having the same dependence
on p and ζ ′ as Theorem 1 but with these parameters defined as above in terms of W(t)

u and W(t)
g .

For instance, for the Non-convex case, we obtain that 1
T+1

∑T
t=0 E

∥∥∇f(x(t))
∥∥2
2
≤ ε after

O
(

σ2

nε2
+

ζ ′ + σ
√
p

pε3/2
+

1

pε

)
· LF0

iterations. Analogously, we obtain the corresponding convergence rates for the convex case with ζ ′⋆
defined at the optimum i.e. E

Wg∼W(t)
g

1
n

∥∥∂f(X⋆)Wg − ∂f(X⋆)
∥∥2 ≤ ζ ′2 . Similar to Lemma 5, the

update can then be expressed as

X(t) −X
(t)

=
(
X(t−1) −X

(t−1)
)
W (t−1)

p − ηt

(
∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
Wg

(25)
Subsequently, analogous to the proof of Theorem 1, we obtain the following decomposition of

the consensus iterates:
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nΞt = E
∥∥∥(X(t−1) −X

(t−1)
)
W (t−1)

u − ηt

(
∂f(X(t−1))− ∂f(X(t−1))

)
W (t−1)

g

∥∥∥2
F︸ ︷︷ ︸

=:T1

+ η2tE
∥∥∥((∂F (X(t−1), ξ(t−1))− ∂F (X(t−1), ξ(t−1))

)
−
(
∂f(X(t−1))− ∂f(X(t−1))

))
W (t−1)

g

∥∥∥2
F︸ ︷︷ ︸

=:T2

Now, for p and ζ ′ satisfying:

E
Wu∼W(t)

u

∥∥XWu −X
∥∥2
F
≤ (1− p)

∥∥X −X
∥∥2
F
, (26)

and,

E
Wg∼W(t)

g

1
n

∥∥∂f(X)Wg − ∂f(X)
∥∥2 ≤ ζ ′2 , (27)

we obtain the analogous consensus recursion:

Ξt ≤
(
1− p

2

)
Ξt−1 +Dη2t−1et−1 +Aη2t−1., (28)

where D = 36L + 4L8−7p
p for the convex case , 8−7p

p P ′ for the nonconvex case and A =
8−7p
p (ζ ′2) + 3σ2 for the non-convex case and 16−14p

p (ζ ′2) + 9σ2 for the convex case.
D-cliques [6]: Suppose that the graph can be divided into K cliques, such that the mean gradient

for each clique equals the mean across the entire graph. Let the nodes be numbered such that the nk

nodes belonging to the kth clique succeed the nk−1 nodes belonging to the (k − 1)th clique. Then,
we observe that utilizing a block matrix of the type

1
n1
11⊤ 0 · · · 0

0 1
n2
11⊤ · · · 0

...
...

0 0 · · · 1
nK

11⊤


leads to zero Gradient Mixing Error. This corresponds to the proposed algorithm in D-cliques [6]
where W

(t)
g is set to a matrix performing uniform averaging within each clique, while W

(t)
u utilizes

all the edges for mixing. For unbiased cliques, we obtain ζ ′ = 0. Therefore, our analysis above
provides an explanation for the improvements achieved by decoupled parameter mixing and clique-
averaging [6] under the presence of unbiased cliques. We further note that, unlike the algorithm
presented in [6], our algorithm HA-DSGD with random sampling of mixing matrices does not
involve the additional communication overhead for separately mixing the gradients at each time-
step.

Appendix G. Mixing Error under Permutations

We now demonstrate how the “Gradient Mixing Error” can be used to guide the choice of the ar-
rangement of a given set of nodes over a graph. Given a set of nodes having fixed data distributions,
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(a) (b)

Figure 2: Comparison of the distance from optimum vs number of iterations for different permu-
tations of the nodes for (a) A random connected graph with 4 nodes (b) two-class ring
topology setting with 16 nodes

the parameters controlling the Gradient Mixing Error (GME) is controlled by the choice of mixing
weights as well as the graph topology. To illustrate the effects of the choice of topology on the con-
vergence rates, we consider a toy setup of 4 nodes, having data distributions defined by quadratic
objectives as in Section 6.

To further illustrate the benefits of selecting an appropriate permutation, we consider a setup
of 16 nodes distributed on a ring topology with the data distributions of exactly half of the nodes
belonging to each one of the following class of objectives:

f1(x) = ∥A(x− 1)∥2

f2(x) = ∥A(x+ 1)∥2 ,

where A denotes a fixed matrix with entries from N (0, 1). We simulate the noise in SGD, by
adding random vectors ξ(t) ∼ N (0, 0.001) to the gradient updates for each node We compare the
performance of DSGD under the following two permutations and choices of the mixing matrices:

1. Heterogenous pairing: As illustrated in Figure 3, the nodes are ordered around the ring al-
ternating between the data for objectives f1 and f2. Subsequently, every node is paired with
exactly one of its neighbours such that the mixing steps involve averaging between the mem-
bers of the pairs with equal weights of 0.5.

2. Random permutation: The nodes are randomly distributed on the ring with the mixing matrix
corresponding to the maximal spectral gap.

We provide illustrations of the setup and the results in Figures 2 and 3 respectively, confirming
the improvements in convergence due to the minimization of the GME.

Appendix H. Effect of Varying Data-Heterogeneity

Since ζ ′ ≤ ζ, reducing the heterogeneity of gradients across clients diminishes the role played by
relative heterogeneity in the convergence rates. We verify this empirically on quadratic objectives
under a similar setup as 6 with a random connected graph on 16 nodes having 60 edges.
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(a) (b)

Figure 3: Different arrangements of data and mixing weights across a ring topology: (left) Het-
erogenous pairing between adjacent nodes having different data distributions, (right) Ran-
dom permutation of nodes with uniform weights. The colors red and blue indicate two
different classes of data distributions.

We consider local objectives of the form fi(x) = ∥((I+Ai)x− (1+ bi)∥22 with I denoting
the identity matrix, the dimension of the parameters x being d = 10 and Ai, bi containing entries
sampled randomly from N (0, τ) and fixed for each client. The parameter τ therefore controls the
level of heterogeneity acrosss clients. In Figures 4 and 5, we observe that reducing the level of
heterogeneity across clients limits the improvements achieved by HA-DSGD in the distance to the
optimum, while the consensus error and the GME are still lower than those for DSGD.

(a) (b) (c)

Figure 4: Comparison of HA-DSGD to D-SGD. (a) Average distance from the opti-
mum, (b) consensus distance 1

n

∥∥X −X
∥∥2
F

, and (c) gradient mixing error∥∥∂F (X, ξ)W − ∂F (X, ξ)
∥∥2
F

vs. the number of iterations for quadratic objectives with
heterogeneity parameter τ = 1 We report an average over a window of 5 iterations of
corresponding quantity on each plot.

Appendix I. Possible Extensions

Theorem 1 does not cover the just discussed case of alternating between two or more matrices. As
our main focus in this work is on highlighting the benefits of relative heterogeneity, we just covered
a simple case of time-varying mixing in the theorem (when all matrices are sampled from the same
distribution). However, it is possible to extend our analysis to deterministic sequences (such as
alternating) with the derandomization technique presented in [22, Assumption 4, Theorem 2]. Our
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(a) (b)

(c)

Figure 5: Comparison of HA-DSGD to D-SGD. (a) Average distance from the opti-
mum, (b) consensus distance 1

n

∥∥X −X
∥∥2
F

, and (c) gradient mixing error∥∥∂F (X, ξ)W − ∂F (X, ξ)
∥∥2
F

vs. the number of iterations for quadratic objectives with
heterogeneity parameter τ = 0.1 We report an average over a window of 5 iterations of
corresponding quantity on each plot.

analysis can also be extended to the case of optimizing parameter averaging and the use of two
separate mixing matrices to mix parameters and gradients respectively (similar as in Bellet et al. 6)
as discussed in sections I.2 and F respectively.

I.1. Optimizing mixing of updates of arbitrary algorithms

Our approach can be generalized to arbitrary additive updates to the parameters of the form x
(t+1)
i =

x
(t)
i +ηu

(t)
i . Concretely, let U (t) denote the matrix with its ith column being u

(t)
i . Then, the updates

to X can be decoupled as follows:

X(t) −X
(t)

=
(
X(t−1) −X

(t−1)
)
W (t−1) − ηt

(
U (t) − U (t)

)
W (t−1). (29)

Therefore, the contribution to the deviation from the mean of the ith node due to the mixing of
the updates is again given by

∑n
j=1Wjiuj − u.

For example, replacing the gradients in the Algorithm 1 by the updates of the Adam algorithm
[20] results in the minimization of the mixing error involved in decentralized Adam updates. We
empirically verify the effectiveness of such an algorithm for an NLP task as discussed in Section J.2.
In Appendix I, we discuss other variations and extensions covered by our framework, such as di-
rectly optimizing the mixing of parameters.
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Figure 6: Distance from the optimum vs number of iterations for quadratic objectives on 64 nodes

I.2. Optimizing Mixing of Parameters

An alternate way of simultaneously maximizing the consensus factor p and the gradient mixing
error is to directly optimize the mixing error of the parameters i.e.

∥∥(X(t) − X
(t)
)W

∥∥2
F

. Our
theoretical analysis covers such a choice of mixing matrices as a special case that involves trying to
obtain a mixing matrix having both small (1−p) and the gradient mixing error. However, unlike the
gradient mixing error that involves changes of the order η2 as shown by Lemma 1, the distribution
of the parameters across nodes can change rapidly due to the mixing. Moreover, we found both
approaches to yield similar improvements in practice and focus on the gradient mixing error since
it covers a wider range of design choices such as mixing within unbiased cliques.

Appendix J. Additional Experiments and Details

J.1. Quadratic Objectives

Details of the sampling procedure for graphs: We generate a random connected graph of 16
nodes through the following procedure: starting from a fully connected graph having 16 nodes and
120 edges, we repeatedly construct graphs by deleted 60 of the edges chosen uniformly at random
until we obtain a connected graph having 60 edges.

Experiments on 64 nodes: Similar to Section 6, we generate a random graph containing 64
nodes with half of the edges randomly removed from a complete graph. Figure 6 shows the results
in this setting for quadratic objectives, confirming the effectiveness of HADSGD on large graphs.

J.2. Deep Learning Benchmarks

In all our results, the period denotes the number of updates after which the mixing matrix is re-
computed i.e. a period of 100 implies that the communication of the compressed gradients and the
computation of the mixing matrix occurs only for a 1

100 fraction of the updates. Furthermore, in
Appendix J.4, we empirically verify that a sketching dimension of 100−1000 is sufficient for mod-
els having millions of parameters. These two factors make our overhead in communication cost
negligible compared to the baselines. In the Appendix J.3, we discuss utilizing the periodic global
communication to perform averaging using the decoded sketched gradients.
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CIFAR10. We evaluate our approach on the CIFAR10 dataset [25] by training the Resnet20
model [41] with Evonorm [29] for 300 epochs for each model. Following Sec. I.1, we consider the
extension of our algorithm to the mixing of Nesterov momentum updates, denoted by HA-DSGD
(momentum) in Table 1, and compare against the corresponding version of DSGD with momentum.
We also compare against the D2 algorithm [46] and Gradient Tracking [23, 30, 31, 37, 40] for
completeness. The results show that our approach generally outperforms the baselines across three
topologies, ring (n = 16), torus (n = 16), as well as the topology defined by the Davis Southern
Women dataset as available in the Networkx library [14]. Since both the Metropolis-Hastings
and the optimal spectral gap mixing schemes lead to similar results, we only compare against the
Metropolis-Hastings schemes in the subsequent tasks.

Method Ring (n=16) Torus (n=16) Social
Network
(n=32)

DSGD 74.71± 2.24 76.13± 1.65 77.68± 1.42
HA-DSGD 78.21± 2.19 79.08± 2.07 79.54± 1.61
HA-DSGD (mn, period=100) 80.75± 1.84 82.22± 1.87 83.24± 1.15
DSGD (mn, Metropolis-Hastings) 77.52± 2.78 80.45± 2.27 80.71± 1.93
DSGD (mn, Optimal Spectral Gap) 79.06± 1.82 80.28± 2.12 80.91± 1.74
DSGD (mn, Gradient Tracking) 78.42± 2.71 78.76± 2.43 80.14± 2.59
D2 49.68± 3.19 51.37± 2.68 52.15± 2.43

Table 1: Top-1 test accuracy on CIFAR10 under different topologies. The results in the table are
averaged over three random seeds.

Method Ring (n=16)

HA-DSGD(mn, period=1000) 55.14± 0.215
DSGD (mn) 53.22± 0.25

Table 2: Top-1 Test accuracy on the Ima-
genet dataset, The results in the ta-
ble are averaged over three random
seeds.

Method Ring (n=16) Torus (n=16)

DAdam 87.14± 0.71 87.42± 0.65
HA-DAdam 89.29± 0.48 89.73± 0.54

Table 3: Top-1 test accuracy on the AG-
News dataset under different
topologies. The results in the table
are averaged over three random
seeds.

Transformer on AG News. We evaluate the extension of our algorithm to the mixing of
Adam [20] updates on the NLP task of fine-tuning the distilbert-base-uncased model
[54] on the AGNews dataset [61]. Table 3 verifies the applicability of our approach to Adam up-
dates.

Imagenet. To evaluate our approach on a large-scale dataset, we consider the task of training a
Resnet18 model [41] with evonorm on the Imagenet dataset [11]. We use a larger period of 1000 for
the optimization of the mixing matrix to account for the larger number of steps per epoch. We train
each model using Nesterov momentum for 90 epochs using a ring topology defined on 16 nodes.
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Compression Dimension Test Accuracy

1 75.66
100 81.55
1000 81.97

Table 4: Effect of the Compression Dimension on the top-1 test accuracy on the CIFAR dataset.

Similar to other settings, our approach as shown in Table 2 outperforms DSGD, demonstrating its
effectiveness under large period and dataset sizes.

J.3. Effect of Periodic Averaging

While the use of sketching significantly reduces the communication cost, our algorithm is still not
fully decentralized due to the requirement of periodically communicating the sketched gradients to
a central server or node. When the full gradient is utilized, or a suitable compression scheme is used,
we can further utilize the central communication step to perform an averaging of the parameters.

J.4. Effect of the Compression Dimension

Proposition 3 predicts that a low approximation error in the entries of the Gram matrix can be
achieved through compression with dimension independent of the number of parameters and log-
arithmic in the number of nodes. We empirically verify this for the CIFAR10 dataset using HA-
DSGD with Nesterov momemtum and a period of 100 in table 4

Table 5: Experimental settings for Cifar-10
Dataset Cifar-10
Data augmentation random horizontal flip and random 32× 32 cropping
Architecture Resnet20 with evonorm
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16, 32
Topology Ring, Torus, Social Network
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from [28]

Batch size 32 patches per worker
Momentum 0.9 (Nesterov)
Learning rate 0.1 for α = 0.1
LR decay /10 at epoch 150 and 180
LR warmup Step-wise linearly within 5 epochs, starting from 0
# Epochs 300
Weight decay 10−4

Normalization scheme no normalization layer

Repetitions 3, with varying seeds

33



SPECIFY RUNNING TITLE

Table 6: Experimental settings for finetuning distilBERT
Dataset AG News
Data augmentation none
Architecture DistilBERT
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology ring
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from [28]

Batch size 32 patches per worker
Adam β1 0.9
Adam β2 0.999
Adam ε 10−8

Learning rate 1e-6
LR decay constant learning rate
LR warmup no warmup
# Epochs 10
Weight decay 0
Normalization layer LayerNorm [4],

Repetitions 3, with varying seeds

Table 7: Experimental settings for ImageNet
Dataset ImageNet
Data augmentation random resized crop (224× 224), random horizontal flip
Architecture ResNet-20-EvoNorm [29, 41]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology Ring
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from [28]

Batch size 32 patches per worker
Momentum 0.9 (Nesterov)
Learning rate 0.1× 32∗16

256
)

LR decay /10 at epoch 30, 60, 80
LR warmup Step-wise linearly within 5 epochs, starting from 0.1
# Epochs 90
Weight decay 10−4

Normalization layer EvoNorm [29]

Appendix K. Limitations

Like other works in the optimization literature, our convergence analysis does not directly explain
generalization. However, we empirically validate improvements in generalization performance on
several deep learning benchmarks. Our work also assumes a fixed topology and incorporating time-
varying and adapting topology is a promising direction for future work.
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Appendix L. Societal Impact

The demands for preserving privacy in machine learning training systems have been constantly
growing over the past few years [18, 36]. We believe that Decentralized learning can play a major
role in meeting such demands. This can improve the trust towards Machine Learning applications
as well as maintenance of data-ownership in society.

Additionally, improvements in efficiency of decentralized optimization algorithms can reduce
the environmental impact of training large machine learning models. We believe that the focus of
our work towards the setting of heterogeneous data makes it especially relevant for practical settings.

Appendix M. Conclusion and Future Work

In this work, we extended the analysis of DSGD to incorporate the interaction between the mixing
matrix and the data heterogeneity, leading to a novel technique for dynamically adapting the mix-
ing matrix throughout training. Future work could involve extending our technique to algorithms
designed for specific settings such as EXTRA [44] for convex non-stochastic cases, as well as ap-
proaches based on row-stochastic, column-stochastic matrices and time-varying topologies. On the
theoretical side, promising directions include extending our analysis to the mixing of momentum.
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