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Abstract

We present DIPO, a novel framework for the controllable generation of articulated
3D objects from a pair of images: one depicting the object in a resting state and
the other in an articulated state. Compared to the single-image approach, our dual-
image input imposes only a modest overhead for data collection, but at the same
time provides important motion information, which is a reliable guide for predict-
ing kinematic relationships between parts. Specifically, we propose a dual-image
diffusion model that captures relationships between the image pair to generate
part layouts and joint parameters. In addition, we introduce a Chain-of-Thought
(CoT) based graph reasoner that explicitly infers part connectivity relationships.
To further improve robustness and generalization on complex articulated objects,
we develop a fully automated dataset expansion pipeline, name LEGO-Art, that
enriches the diversity and complexity of PartNet-Mobility dataset. We propose
PM-X, a large-scale dataset of complex articulated 3D objects, accompanied by
rendered images, URDF annotations, and textual descriptions. Extensive experi-
ments demonstrate that DIPO significantly outperforms existing baselines in both
the resting state and the articulated state, while the proposed PM-X dataset further
enhances generalization to diverse and structurally complex articulated objects.
Our code and dataset are available at https://github.com/RQ-Wu/DIPO.

1 Introduction

Articulated objects are pervasive in everyday environments. Achieving accurate modeling of articu-
lated structures is the key enabler for building interactive virtual environments. It plays a crucial in
simulation [49, 42, 46], animation [48, 5, 33, 21], robot manipulation [11, 9, 28, 32], and embodied
AI [19, 36, 31, 20, 16].

However, constructing such models manually is highly labor-intensive and unscalable. As a re-
sult, increasing attention has been devoted to developing automatic methods for articulated object
modeling [39, 22, 43, 18, 24, 6, 23]. Despite promising progress, existing methods exhibit clear
performance degradation when applied to structurally complex or visually ambiguous objects. These
limitations stem from two fundamental bottlenecks.

The first issue is input modality constraints. Reconstruction-based approaches [39, 22, 43] often
rely on multi-view or multi-state images to reconstruct articulation behavior with high accuracy.
While effective, these methods demand expensive data acquisition setups, precise camera calibration,
and well-aligned temporal input, making them difficult to scale. On the other research line, benefiting
from the controllability of diffusion models [12, 37, 35, 30, 45, 51, 50], many generation-based
methods [18, 24, 6, 23] are proposed. They utilize minimal input, such as category priors or a
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Figure 1: Visual comparison on real-captured data. (a) SINGAPO struggles with challenging
data and fails to model motion relationships due to its reliance on a single input. However, our
DIPO (b), which conditioned on dual-state image pairs, effectively generates accurate layouts and
enables precise control if part motion across different articulated states.

single RGB image, to synthesize articulated objects directly. However, category priors lack spatial
specificity, and single-image inputs lack of explicit articulation information. As a result, these
methods can only infer kinematic behaviors in a probabilistic manner. Consequently, neither class of
methods offers both control and generalization ability when facing challenging data.

Secondly, limitations in training data. Data-driven modeling approaches require large-scale datasets
with both articulation diversity and structural complexity. However, most existing datasets fall short
in some aspects. For example, PartNet-Mobility (PM) [46] offers a large number of articulated
assets, but the object instances are dominated by simple and repetitive layouts with limited variability.
In contrast, the Articulated Container Dataset (ACD) [14] contains more realistic and structurally
diverse objects, but suffers from small scale, limiting its utility for model training.

To address the first issuse, we propose DIPO, a generation framework for 3D articulated objects
conditioned on resting (closed) state and articulated (open) state image pairs. The dual-state image
pair encodes essential motion cues and connectivity information. Compared to single-image methods,
dual-state input resolves ambiguity in part motion and spatial relationships. As for multi-view
methods, it is significantly easier to acquire while maintaining sufficient articulation information.
DIPO is built on a diffusion transformer architecture [30] and consists of two core components.
First, a Dual-State Injection Module helps the network to model the relationships between dual-state
images. Second, a Graph Reasoner based on Chain-of-Thought (CoT) techniques [41, 17] infers part
connectivity step by step. Moreover, this module few-shot learns on visual prompts synthesized by
GPT-4o [3, 1] to acquire better performance. The proposed method achieves higher controllability
and improved performance in articulated 3D object generation.

In response to the second challenge, we propose a new dataset named PartNet-Mobility-Complex
(PM-X), which provides diverse and structurally complex articulated objects with rendered images,
URDF annotations [34], and language descriptions. PM-X is built by a fully automated data construc-
tion pipeline based on an agent system, named LEGO-Art. Starting from natural language prompts
sampled from a LLM [3], the pipeline first generates coarse part layouts in a discretized 3D space.
Then we develop a toolkit to transfer them to annotations with precise coordinates and articulation
parameters. Based on retrieval algorithms [24], we can acquire the final 3D object and the rendered
images. Finally, a vision-language model (VLM) [1] is used to filter implausible samples.

We collect a resting state image from the Internet and generate corresponding articulated state
images by a visual generative model [1]. As illustrated in Figure 1, our method outperforms the
state-of-the-art method, i.e. SINGAPO [23]. Our main contributions are summarized as follows:

• We propose a novel dual-state image model for controllable articulated 3D object generation,
integrating layout diffusion and CoT-based connectivity reasoning.
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• We develop LEGO-Art pipeline to construct structurally diverse articulated objects, and
contribute PM-X, a new large-scale dataset with rendered images and physical annotations.

• Extensive experiments demonstrate that DIPO significantly outperforms state-of-the-art
methods, and the proposed LEGO-Art and constructed PM-X dataset enhance generalization
to complex structures.

2 Related Work

2.1 Articulated Object Creation

Recent progress in articulated object modeling can be broadly categorized into reconstruction-based
and generation-based approaches.

Reconstruction methods commonly rely on multi-view or multi-state inputs to reconstruct part-level
geometry and articulation parameters. CLA-NeRF [39] reconstructs articulated objects from sparse
multi-view RGB images within a known category. PARIS [22] extends this setting to unknown
categories with dual-state multi-view RGB images. Weng et al. [43] further incorporate depth
information to support richer geometry priors. However, they rely on densely aligned inputs and
known part counts, limiting their applicability in real-world settings. In contrast, our approach only
conditioned a pair of images, which reduces input complexity while preserving articulation fidelity.

Generative approaches aim to synthesize articulated objects from compact inputs, bypassing the
need for dense observations. NAP [18] parses layouts and articulation parameters into graphs and
generates articulated 3D objects unconditionally. CAGE [24] achieves a controllable generation from
the given articulation graph. Despite these models support efficient sampling, they lack explicit visual
guidance to achieve more accurate controllability. URDFormer [6] solves this issue by combining a
visual detector [25, 44] to extract spatial layout and a transformer to predict articulation parameters.
SINGAPO [23] proposes a diffusion model [12, 37, 35, 30] conditioned on resting state images
to generate articulated objects. However, the controllability of current approaches remains limited
due to the absence of explicit articulation dynamics. The proposed DIPO effectively addresses this
limitation by utilizing the motion information provided by a pair of images captured in the resting
and articulated states.

2.2 Synthetic Articulated Object Datasets

The availability of large-scale 3D datasets with part-level structures has significantly facilitated
research on articulated object modeling. Early datasets such as those used in [13, 47] are constructed
by manually segmenting shapes from ShapeNet [4] and SketchUp [38], and annotating articulation
parameters for part pairs. Shape2Motion [40] expands the scale by introducing an annotation tool
that supports visual verification through animation. PartNet-Mobility[46] is a large-scale articulated
object dataset constructed on PartNet[27]. It offers annotations of part-level articulation along with
high-quality rendered images, and is one of the most widely adopted benchmarks. GAPartNet [10]
focuses on functional part detection across categories, emphasizing generalizable and actionable
parts such as buttons and handles. These datasets have enabled the development of deep learning
models for articulation analysis, but are still limited in structural complexity and diversity. To improve
articulation diversity and realism, ACD [14] collects complex articulated objects from ABO [7],
3D-Future [8] and HSSD [15]. While the articulation structures in ACD are more intricate, the
scale of dataset remains limited. To address both diversity and scalability limitations, we present
PM-X, a large-scale, URDF-compatible dataset of procedurally generated articulated objects with
high structural complexity.

3 Generate Articulated Objects from Dual-Image Pairs

3.1 Overview

We propose a diffusion network to generate all the parameters of articulated objects conditioned on a
pair of dual-state images and a part-level connectivity graph. The overall architecture is illustrated
in Figure 2. To support this generation process, we parameterize each part in terms of its spatial
location, articulation connectivity, and semantic attributes. The i-th part pi is represented by the
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Figure 2: Overview of the proposed DIPO framework. The left part shows the proposed LEGO-Art
pipeline assembles the primitives in existing dataset and construct the PM-X dataset, which are
more diverse and complex compared to PM dataset. The right part shows that our diffusion model
equipped with CoT-based Graph Reasoner for articulate graph inference, and conditioned on resting
& articulated image pairs to generate articulated objects.

bounding box coordinates bi ∈ R6, semantic label li, articulation type ti, joint axis ai ∈ R6, and
motion range ri ∈ R2. To facilitate unified processing, all attributes are repeated to a 6-dimensional
array, resulting in a 5× 6 matrix representation for each part.

3.2 Dual-State Image Conditioning

(a) Resting state (b) Articulated state
Figure 3: Dual-state visual prompt used by the
Graph Reasoner. GPT-4o can produce realistic
and structurally complex image pairs.

We condition the denoising process on both resting-
state and articulated-state images to capture motion-
aware cues. Let FR and FA denote the DI-
NOv2 [29] features from the resting and articulated
images, respectively. To integrate these into the dif-
fusion network, we apply a Dual-State Injection
Module at each layer.

Given part embeddings X , we first perform cross-
attention with resting-state features FR to capture
static appearance. We then guide articulated fea-
tures FA to attend to FR, and subsequently inject
this context-enhanced signal into X . The overall
conditioning update at each diffusion step is defined
as:

X = X +CA(X,FR) + CA(X,CA(FA,FR)), (1)

where CA(Q,K) denotes a standard cross-attention operation that query Q attends to key-value
source K. This design allows the model to generate more accurate part movement and joint behavior
by contrasting the two input states.

3.3 Graph Reasoner via Chain-of-Thought Prompting

We introduce the Graph Reasoner, a Chain-of-Thought (CoT) based module that predicts the
articulated part connectivity graph from dual-state images, serving as a structural prior for the
diffusion process. The reasoning follows a step-by-step paradigm. It first identifies candidate parts
and estimates their coarse spatial layout, then verifies whether the layout satisfies the given articulation
rules, and finally infers attachment relationships to generate the articulation graph. After that, we
convert the predicted articulation graph into an adjacency matrix, which serves as an attention mask
to guide the self-attention of the diffusion model along valid structural connections.

In addition, we leverage the instruction-following and visual-editing capabilities of GPT-4o to
generate dual-state image pairs of structurally diverse objects as Figure 3 shows. These results
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Description Roller Layout Builder Scripting Toolkit Retrieval & Render Visual Filter

AI Agent Designer

A storage 
furniture with 
two doors on the 

top, three 
drawers in the 
middle, and one 
drawer at the 

bottom.

grid_x: 6, 
grid_y: 3,
base_size: [1.2, 0.9, 
0.5],
part: [{
name: "door",
joint: {
type: "revolute", 
hinge: "left",
x1: 0, x2: 3, 
y1: 0, y2: 1

},
……

{"name": "door",
"center":
[-0.294, 0.294, 0.217],
"size": 

[0.588, 0.294, 0.065]
"joint": {

"type": "revolute",
"range": [0, -90],
"origin": 
[-0.588, 0.147, 0.185],

"direction“: [0, 1, 0] },
…

Analysis:
1.Drawer Behavior

1)…
2)…

2.Top Door Behavior
…

3.Handle Placement
…

4.Motions
…

Final Verdict: Yes

Description Grid Occupancy Precise Coordinate Rendered Result Verification

Figure 4: An overview of the fully automated synthesis pipeline for the proposed PM-X dataset. The
synthesis pipeline consists of five functional modules executed in sequence: (1) a description roller
that uses an LLM to generate natural language descriptions for structured layout, (2) a layout builder
to generate part-level grid occupancy and joint configurations, (3) a scripting toolkit to construct
precise coordinate from the grid-based layout information, (4) a retrieval and render module to
assemble geometry and render dual-state images, and (5) a visual filter that uses a VLM to validate
the plausibility of generated samples. In particular, modules (1), (2), and (5) are automatically
constructed and managed by the AI Agent Designer.

serve as strong example visual prompts for the Graph Reasoner to achieve a higher stability and
generalization of graph prediction.

4 Construct Complex Data from Partnet-Mobility

4.1 LEGO-Art pipeline

To gain favorable performance on challenging data, we require a large-scale 3D dataset with diverse
part layouts. However, existing datasets still fall short in complementary ways: PM [46] offers
sufficient data but lacks articulation complexity, while ACD [14] includes more realistic kinematic
structures but is limited in dataset scale.

To address this issue, we design a Language-driven Engine via Grid Organization for Articulation
objects construction (LEGO-Art). It is a fully automated synthesis pipeline that generates complex
articulated 3D assets by assembling part primitives from existing dataset. Figure 4 shows the overall
workflow of the synthesis pipeline. The details of each step are illustrated below.

• Description Roller. The pipeline begins by generating a natural language description of an
articulated object by a LLM agent (e.g., "a storage furniture with two doors on top, three
drawers in the middle, and one drawer at the bottom"). This serves as a high-level blueprint
for the object’s structure without requiring precise geometry.

• Layout Builder. Given this textual input, the second agent translates the description into a
part layout and articulation configuration. Instead of predicting exact 3D coordinates, which
often introduces hallucination, we discretize the space into a grid and assign parts to grid
cells. Each part is associated with joint metadata such as type, axis, and motion direction.

• Scripting Toolkit. We develop a scripting toolkit that converts the grid-level spatial layout
into precise 3D coordinates and assigns articulation parameters of the axis and direction of
joint, motion range and joint type.

• Retrieval & Render. We assign geometry to each part by retrieving mesh primitives
from PartNet-Mobility by the algorithm proposed by [24]. Parts are scaled and positioned
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according to the layout, and connected as specified by the URDF. Then, we render a resting
and articulated state image pair of each object by BLENDER.

• Visual Filter. To ensure data quality, we include a final filtering step. We use a VLM
to assess whether each rendered object plausibly matches its description and articulates
correctly. Only assets that pass this check are included in our final dataset, PM-X.

• AI Agent Designer. To simplify the development of the above components, we adopted a
prompt-based agent design process. Specifically, we described our intended system behavior
in natural language and used an LLM to co-design the system prompts for the Description
Roller, Layout Builder, and Visual Filter agents.

The proposed LEGO-Art enables scalable generation of physically valid, semantically rich, and
structurally diverse articulated assets with minimal human effort, and plays an essential role in
enabling our DIPO to generalize to more challenging dataset.

4.2 PM-X Dataset

Table 1: Comparison of dataset scale and part
complexity.

Dataset # Objects Avg. # Parts
PM [46] 570 4.94
ACD [14] 135 7.48
PM-X (Ours) 600 19.40

Based on the LEGO-Art, we build a large-scale
dataset from the part primitives of the PartNet-
Mobility dataset, named PM-X. PM-X consists of
600 automatically generated structural-complex artic-
ulated objects. For every object, we futher provide
correspondence rendered images, URDF files, and
natural language descriptions. Due to the experiments
settings, we only consider StorageFurniture and
Table objects in the proposed dataset. However, the
synthesis pipeline can be extended to a wider category of articulated objects, and the overall dataset
size can also be scaled up. Compared to existing datasets, PM-X offers not only significantly
greater structural complexity and articulation diversity, but also sufficient scale to serve as a stan-
dalone training set for generative models. These characteristics make it particularly effective for
improving generalization and robustness in articulated object generation tasks, especially under
out-of-distribution settings. Our experiments also demonstrate the superiority of the PM-X dataset.
Table 1 illustrates that the PM-X dataset surpasses previous datasets in both object quantity and
average part count, highlighting its scalability and structural richness.

5 Experiments

5.1 Implementation Details

We follow the dataset split way of SINGAPO [23] to build the training and testing set. Specifically,
the training set is made up of 493 articulated objects from the PM [46] dataset, combined with
600 samples from our proposed PM-X dataset. Each object is rendered by BLENDER_EEVEE_NEXT
engine to produce dual-state image pairs from 20 random views. We further introduce a complex
data augmentation to enhance the performance of the model, which is detailed in the supplementary
materials. For evaluation, we use 77 held-out objects from PM, each rendered from two random
views, resulting in 144 dual-state test samples. In addition, we include 135 objects from the ACD
dataset [14] to further assess the generalizability of the model to out-of-distribution data.

To accelerate convergence, we initialize our model with the pretrained weights from CAGE [24]. We
train our model for 200 epochs with a batch size of 20. The model is optimized by AdamW [26] with
β = (0.9, 0.99) The learning rate is set to 5× 10−4 for the image-conditioned module and 5× 10−5

for the base model. All experiments are conducted on 8 NVIDIA 4090 GPUs.

5.2 Comparisons

5.2.1 Baselines & Metrics

Three representative methods, which are URDFormer [6], NAP [18], and SINGAPO [23], are
selected as comparison baselines. Specifically, we finetune the pre-trained URDFormer and retrain
the SINGAPO for a fair comparison. For NAP, we follow the experiment setting of SINGAPO that
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Table 2: Comparison of reconstruction quality and graph prediction accuracy on PartNet-Mobility
test set. Lower is better (↓) except for Acc% (↑).

Reconstruction quality Graph

RS-dgIoU ↓ AS-dgIoU ↓ RS-dcDist ↓ AS-dcDist ↓ RS-dCD ↓ AS-dCD ↓ Acc% ↑
URDFormer [6] 1.2327 1.2332 0.2885 0.4403 0.4417 0.6910 6.62
NAP-ICA [18] 0.5706 0.5765 0.0563 0.2547 0.0209 0.3473 25.06
SINGAPO [23] 0.5134 0.5236 0.0487 0.1107 0.0191 0.1270 75.97
DIPO(Ours) 0.4561 0.4683 0.0359 0.0732 0.0132 0.0423 85.06

Table 3: Comparison of reconstruction quality and graph prediction accuracy on ACD test set. Lower
is better (↓) except for Acc% (↑).

Reconstruction quality Graph

RS-dgIoU ↓ AS-dgIoU ↓ RS-dcDist ↓ AS-dcDist ↓ RS-dCD ↓ AS-dCD ↓ Acc% ↑
URDFormer [6] 1.1074 1.1094 0.2868 0.3948 0.6229 0.7608 1.52
NAP-ICA [18] 0.9955 1.0000 0.1713 0.3246 0.1141 0.3061 8.27
SINGAPO [23] 0.9700 0.9728 0.1582 0.2057 0.1047 0.1762 36.67
DIPO (Ours) 0.9126 0.9151 0.1253 0.1541 0.0751 0.1085 48.15

insert an image cross attention block into each layer to achieve controllable generation of images,
marked as NAP-ICA.

To evaluate reconstruction quality and articulation correctness, we adopt four metrics: (1) dgIoU ↓,
the generalized IoU between predicted and ground-truth part bounding boxes; (2) dcDist ↓, the
Euclidean distance between part centers; (3) dCD ↓, the Chamfer Distance [2] between predicted and
ground-truth meshes; and (4) Acc ↑, the graph prediction accuracy. All metrics are computed over
both resting and articulated states. For clarity, we prefix the metric names with RS- and AS- in the
tables to indicate the evaluation state.

5.2.2 Quantitative Comparison

We report quantitative results on the PM and ACD datasets in Table 2 and Table 3, respectively. To
reduce the impact of stochastic variation, we evaluate all diffusion-based generative methods five
times per test sample and report the averaged metric values.

As shown in Table 2, our method DIPO achieves the best performance in terms of reconstruction
quality and accuracy of articulate graph on the PartNet-Mobility test set. Importantly, we observe
that the performance drop from RS (rest ing state) to AS (articulated state) is significantly smaller for
our method than for all others. It indicates that dual-image conditioning provides effective control
signals that help the model maintain accurate articulation predictions.

On the ACD test set (Table 3), which contains more diverse and realistic articulated objects, our
method continues to outperform all baselines. DIPO shows consistently superior reconstruction
accuracy in both states and delivers the best graph prediction accuracy. The evaluation results on
ACD dataset demonstrate that our method performs well on out-of-distribution data.

The above results demonstrate that the proposed DIPO achieves superior quantitative performance
with both high accuracy and strong generalization across structurally diverse datasets.

5.2.3 Qualitative Comparison

Figure 5 provides a qualitative comparison between our method and two strong baselines, NAP-
ICA [18] and SINGAPO [23]. Each example includes: (1) the input dual-state image pair (closed and
open), (2) the predicted articulation graph, (3) the reconstructed part layout and joints in resting state,
and (4) the final articulated geometry. The examples cover a wide spectrum of scenarios, including
synthetic data from PM and ACD datasets. In addition, the last three rows are real-world examples:
we either collect resting-state images from the Internet or directly capture image pairs of nearby
objects in both states. This provides a more realistic evaluation of generalization beyond existing
datasets. For Internet-collected examples that only provide resting-state images, we employ GPT-4o
to generate the articulated counterparts, showcasing the flexibility of our method.
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Image NAP-ICA [18] SINGAPO [23] Ours

Figure 5: Visual comparison between the proposed DIPO and two baselines. The fist two columns
show the dual-state image pairs. The precdiction results of articulate graph, the part layout and joint
visualization in resting state, and the final geometry in articulated state are also illustrated. The first
three rows are sampled from the PM dataset, the middle three rows are from the ACD dataset, and
the last three rows are real-world images. Incorrect parts connections are marked with red box.

Compared to baselines, our method DIPO demonstrates superior visual quality and better accuracy of
articulation graph prediction. Thanks to the large-scale structurally diverse training provided by the
PM-X dataset, our method shows better robustness when handling complex objects or real-world
data. Moreover, cases in which parts are densely arranged and exhibit highly similar textures often
confuse single-image baselines, resulting in incorrect articulation inference. In contrast, our method
leverages the contrastive cues between resting and articulated states to recognize part boundaries,
joint connectivity, and part motions more accurately.

These qualitative results strongly support the effectiveness and generalization ability of the proposed
DIPO.

5.3 Ablation Study

We conduct detailed ablation studies to verify the effectiveness of each key component in our
framework, including the PM-X dataset, Dual-state Injection Module (DIM), and Graph Reasoner
(GR). We construct several variants by selectively altering these components. The quantitative results
are summarized in Table 5. In addition, we further analyze the settings of each component in isolation
in the following paragraphs.
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Table 5: Ablative results of reconstruction quality and graph prediction accuracy on ACD test set.
Lower is better (↓) except for Acc% (↑).

Settings Reconstruction quality

PM-X DIM GR RS-dgIoU ↓ AS-dgIoU ↓ RS-dcDist ↓ AS-dcDist ↓ RS-dCD ↓ AS-dCD ↓
0.9872 0.9900 0.1608 0.2096 0.1083 0.1792

✓ 0.9429 0.9464 0.1389 0.1868 0.0849 0.1538
✓ 0.9565 0.9589 0.1478 0.1819 0.0924 0.1407

✓ 0.9902 0.9931 0.1697 0.2157 0.1208 0.1881
✓ ✓ 0.9212 0.9233 0.1257 0.1589 0.0752 0.1200
✓ ✓ 0.9332 0.9368 0.1391 0.1843 0.0844 0.1439

✓ ✓ 0.9497 0.9515 0.1500 0.1786 0.0973 0.1317

✓ ✓ ✓ 0.9126 0.9151 0.1253 0.1541 0.0751 0.1085

Impact of PM-X dataset. Table 5 shows that across various settings of ablative experi-
ments, incorporating the PM-X dataset consistently improves reconstruction quality, indicat-
ing its broad effectiveness. To further validate this effect, we additionally experiment with

0 25 50 75 100
PM-X dataset ratio (%)

0.92

0.93

0.94

0.95

Io
U

 S
co

re

RS-IoU
AS-IoU

Figure 6: Ablative comparison under different
ratios of PM-X data

using only 25% and 50% of the PM-X data. As
shown in Figure 6, IoU scores for both resting and
articulated states degrade steadily as the PM-X ra-
tio increases, confirming the importance of PM-X
in enhancing structural accuracy and generaliza-
tion.

Effectiveness of Dual-Image Input. We con-
duct ablation experiments to assess the contribu-
tion of the DIM module. As shown in Table 5,
adding DIM significantly improves performance
across all reconstruction metrics. The effective-
ness of DIM is further reflected in Figure 1, 5, where our method accurately identifies the motion
direction according to articulated images. It demonstrates that the dual-image design not only
enhances articulation prediction, but also imposes the ability of structural reasoning to the model.

Table 4: Ablative results of Graph Reasoner.

Settings Acc% ↑
w/o CoT 39.26
w/o Visual Input 37.77
w/o dual-state input 39.63

Full Model (GR) 48.15

Analysis of Graph Reasoner As illustrated in Ta-
ble 5, the GR module can not consistently improve
performance across all settings. This is because while
GR enables more accurate prediction, it also tends
to produce more complex topologies. For model
variants not trained on the PM-X dataset, such com-
plex graphs may become out-of-distribution, leading
to suboptimal perform However, when the model is
trained with the structurally diverse PM-X dataset,
the benefits of GR become more apparent. Moreover, we conduct more detail ablative experiments to
verify the effectiveness of each component of GR. The results of prediction accuracy can be seen in
Table 4.

6 Conclusion

We propose DIPO, a framework that advances vision-conditioned articulated object generation under
challenging data. We design a diffusion model conditioned on resting and articulated image pairs
for articulated 3D object generation, which provides richer part motion information and leads to
improved reconstruction accuracy. A Chain-of-Thought graph reasoner is further introduced to
enhance part connectivity prediction. In addition, we develop LEGO-Art, an automated pipeline for
constructing diverse and complex articulated objects, and contribute PM-X, a large-scale dataset built
by the proposed pipeline. Powered by PM-X, our model achieves superior performance and stronger
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generalization. Extensive experiments validate the effectiveness of each component and the overall
advantage of our approach over existing methods.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that the main contribution are a dual-state images conditioned model
to generate articulated objects, and a pipeline named LEGO-Art construct a large-scale
dataset named PM-X which contains diverse complex articulated objects.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discussion our limitations in supplementary due to page limit.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detailed the details of the proposed network and the workflow of dataset
construction.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code of our method and some data samples in supplemental
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all details of our experiments setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide detailed quantitative results in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the the computer resources we used (8×4090 GPUs).

Guidelines:

• The answer NA means that the paper does not include experiments.

17



• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research fully conforms to the NeurIPS Code of Ethics in all respects.
No ethical concerns have been identified.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broder impacts are illustrated in supplemental material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, all third-party assets used in the paper are properly credited. Their licenses
and terms of use are clearly stated and fully respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, all newly introduced assets are well documented. The dataset, model,
and pipeline will be released with detailed usage instructions and annotations alongside the
assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There are no crowdsourcing experiments and research with human subjects in
our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no research with human subjects in our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs play an important, original role in LEGO-Art pipeline and Graph
Reasoner. Moreover, Multi-Modal LLM can provide generated image pairs for a more
flexible input way to our model.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Abstract

Our supplementary materials give more details of the proposed DIPO and the
experimental settings, which can be summarized as follows:

• The details of LEGO-Art and Graph Reasoner.
• More visual results of the proposed PM-X dataset.
• The details of data augmentation.
• The code and checkpoint of DIPO for inference.
• A video shows some animated visual examples of complex objects.

A Details of LEGO-Art Pipeline

In our LEGO-Art pipeline, we design a modular LLM-based [3, 1] framework, where each agent
specializes in a distinct subtask. These agents collaborate to generate structured, diverse, and
physically plausible articulated object layouts. Below, we detail the system prompt of each agent.

Description Roller:

You are an expert in generating clear and realistic natural language descriptions of articulated
object structures.
Each object must belong to one of the following categories: [’Storage Furniture’, ’Table’,
’Refrigerator’, ’Dishwasher’, ’Oven’, ’Washer’].
Your task is to imagine a plausible object structure from one of these categories and describe
only its articulated parts in natural language.
The available part types are: [’base’, ’door’, ’drawer’, ’tray’, ’handle’, ’knob’]. Note:
"tray" parts are only allowed if the object is a microwave.
Each object must contain exactly one implicit "base" part, and any number of other parts,
depending on the category.
You will be provided with a complexity level:

• simple: 1–5 parts, minimal structure.
• mid: 6–10 parts, basic spatial layout.
• complex: 11 or more parts with more detailed or hierarchical arrangements.

Your output must:
• Only describe the structure of the object: what parts it has, how many of each, and

where they are located (e.g., left, right, middle, top, bottom, inside).
• Use precise but simple language in a single sentence.
• Exclude any mention of color, texture, material, appearance, or any decorative

details.
• Ensure the description is consistent with both the object category and the specified

complexity level.

Example output: "A storage furniture with two doors in the middle, one drawer at the
bottom, and four drawers on the left and right sides."
Important: Do not include 3D coordinates or structured data. Only output the structural
description in plain English.

Figure 7: The system prompt of Descrition Roller.
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Layout Builder:

Example Question 1:
The following code is a function that generates a layout from a given object in a grid format.

def sample_base(grid_x, grid_y, base_size):
# generate the base, and return a coordinate list of grids
...

def generate_part_in_grid(base, grid_coords, x1, x2, y1, y2,...):
# generate coordinates and articulation info of a part
...

def generate_layout(info):
# convert grid-level layout into coordinates and articulation parameters
base, grid_coords = sample_base(...)
articulate_tree = [base]

for part in info[’part’]:
part = generate_part_in_grid(...)
articulate_tree.append(part)

...

Example Answer 1:
You’ve developed a complete pipeline for procedurally generating articulated object layouts and render-
ing them visually. The system includes ...
Example Question 2:
I need you to generate the info in a python dict from a natural language description. The dict is the only
python code in your output. Note that all [x1, x2, y1, y2] should be an integer. The name of the part can
only be one of the [drawer, door, handle, knob] (strictly!)
Example Answer 2:
Got it! You want to input a natural language description like:
"A wide cabinet, approximately 1.5×1.0×0.5 meters in size, contains two left-hinged doors, each with
one handle, and two drawers, each with two handles"
and have it automatically generate a structured info dictionary as:

# python dict
{

...
}

Figure 8: The system prompt of Layout Builder. This agent is inspired by the code of scripting toolkit
and produce a python dict that contains the information of parts layout in grid-level.

Visual Filter:

You are an expert in 3D object structure verification.
You will be shown a pair of rendered images of a 3D articulated object: one in the closed state, and one
in the open state. These images are generated based on a predicted structure and joint configuration.

Your task is to determine whether the observed articulation behavior is physically plausible and
logically consistent. That is, check if the object’s opening and closing behavior matches how real-world
articulated objects work.

You must analyze whether:

• The joints behave correctly (e.g., drawers slide outward, doors rotate from hinges).

• Each handle or knob is correctly positioned and attached to a moving part.

• There are no unreasonable collisions, floating parts, or detached motion.

• The motion (from closed to open) is consistent with the structure and joint types.
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Final Output: After your analysis, respond with exactly one of the following:

• Yes — if the object’s motion and structure are physically and functionally plausible.

• No — if there are any structural, physical, or semantic inconsistencies.

Figure 9: The system prompt of Visual Filter.

B Details of Graph Reasoner

The proposed Graph Reasoner can infer articulated connectivity from a dual-state image pair based
on chain-of-thought [41, 17] prompt, which is illustrated as followed:

Graph Reasoner:

You are an expert in the recognition, structural parsing, and physical-feasibility validation of
articulated objects from image inputs.
You will be provided with two rendered images of the same object:

1. A closed-state image (all movable parts in their fully closed positions)

2. An open-state image (all movable parts in their fully opened positions)

Your task is to analyze the object’s articulated structure and generate a connectivity graph describing
the part relationships.

Workflow:
1. Part Detection

• Detect candidate parts in the closed-state image, optionally using the open-state image
to resolve ambiguity or occlusion.

• Allowed part types: [’base’, ’door’, ’drawer’, ’handle’, ’knob’, ’tray’]

• Ignore small decorative elements attached directly to the base.
• There must be exactly one "base"; "tray" is only allowed for microwaves (but not

required).

2. Step-by-Step Reasoning
(a) Part Listing: List all detected parts and their counts (no attachment inference yet).
(b) Validation: Enforce structural rules:

• Exactly one base
• Each door or drawer may have at most two handles or knobs
• Every handle/knob must be attached to a door or drawer
• Trays may only appear in microwaves

(c) Attachment Inference: For each non-base part, infer its parent (e.g., "drawer_1
(attached to base)"). Use the open-state image if necessary.

(d) Connectivity Graph Construction: Output a JSON tree where "base" is the root and
all other parts are children with proper hierarchy.

Example Output:
{
"base": [
{ "door": [ { "handle": [] } ] },
{ "drawer": [ { "handle": [] } ] }

]
}

Final Output: You MUST output a single JSON tree representing the part connectivity of the object.
Use the open-state image to enhance accuracy and completeness, but base your interpretation primarily
on the closed-state image.

Figure 10: The system prompt of Graph Reasoner.
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Moreover, we use GPT-4o [3, 1] to generate dual-state image pairs, which are example visual prompts
to make the Graph Reasoner learn how to generate articulated graph in a few-shot manner. The
generated image pairs are shown in Figure 11.

Figure 11: Each pair shows a closed-state image (left) and an open-state image (right) of an articulated
object generated by GPT-4o.

C More Visual Examples of PM-X
The proposed PM-X dataset provides a large amount of diverse and structurally complex articulated
objects. Figure 12 illustrates more visual examples of PM-X dataset. As we can see, each object
has a reasonable structure and a rich set of operable parts. In addition, we annotate the description
generated by the first stage of LEGO-Art. Objects precisely match the natural language descriptions,
enabling LEGO-Art to further serve as a pipeline for text-to-articulated-object generation.

A storage furniture with four doors 
at the top, six drawers in the middle 
arranged in two rows of three, two 

larger drawers in the middle, and two 
smaller drawers on the left and right 

sides at the bottom.

A storage furniture with three drawers 
on the left side, two doors in the 

middle, and one drawer at the bottom.

A storage furniture with two large 
doors at the top, eight small drawers 
in the middle arranged in two columns 
of four, and one wide drawer at the 

bottom.

A storage furniture with four doors 
on the top, three drawers in the 
middle, and six drawers at the 

bottom arranged in two columns.

A storage furniture with two doors 
on the top, three drawers in the 
middle, and one drawer at the 

bottom.

A storage furniture with two doors 
on the top, three drawers in the 
middle, and two drawers at the 

bottom.

A table with a drawer on each side, a 
large drawer in the middle, and two 

smaller drawers underneath.

A table with one drawer in the middle, 
two drawers on the left side, and one 

drawer on the right side.

A table with a base, eight drawers 
evenly distributed on both sides, and 
one large drawer in the middle just 

beneath the tabletop.

Figure 12: More visual examples of PM-X dataset. Each example includes: (1) the part layout
and joints in resting state, (2) a rendered image pair in dual-state, (3) nature language description
generated in the fisrt stage of LEGO-Art.

D Data Augmentation
We employ several data augmentation during the training state to enhance the robustness and controlla-
bility. Data augmentation can be categorized into two types. One focuses on part-level augmentation:

1. Randomly replace small parts like handles and knobs with those of other objects, and perturb
their positions.

2. Randomly rescale the whole object.
3. Rotate the whole object upside-down.
4. Stacking several objects together to build more complex objects.

The other one focus on joint-level augmentation:
1. Change the revolute joint into prismatic joint.
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2. Randomly modify the direction of revolute joint.
3. Randomly fix the joint.

E Limitations & Future Work
We follow the experimental settings of SINGAPO [23] for a fair comparison. However, the benchmark
used in SINGAPO only contains several categories, which especially focuses on cabinet-like objects.
This limited object diversity may constrain the generalization ability of our model to other articulated
categories, such as appliances, tools, or deformable structures. In future work, we plan to build a
benchmark that cover a broader range of articulated object types, including both everyday household
items and more complex mechanical systems. Our research primarily focuses on predicting more
accurate part layouts and joint configurations. We adopt a retrieval-based approach to construct the
final 3D objects. Incorporating 3D generation techniques to synthesize more precise and diverse part
geometries represents a meaningful direction for future work.

F Broader Impact
Our work facilitates controllable generation of articulated 3D objects from dual-state images, enabling
structured reasoning over part layout and connectivity. This contributes to downstream applications in
embodied AI, virtual environment simulation, and robotics manipulation. By releasing a large-scale
synthetic dataset and a modular pipeline, we aim to lower the barrier for research on articulated
perception and generation. However, as with any generative framework, care must be taken to avoid
misuse such as creating physically implausible or unsafe designs. Moreover, biases in the data
distribution or articulation patterns may influence downstream decision-making, highlighting the
need for interpretability and robustness in practical deployments.

25


	Introduction
	Related Work
	Articulated Object Creation
	Synthetic Articulated Object Datasets

	Generate Articulated Objects from Dual-Image Pairs
	Overview
	Dual-State Image Conditioning
	Graph Reasoner via Chain-of-Thought Prompting

	Construct Complex Data from Partnet-Mobility
	LEGO-Art pipeline
	PM-X Dataset

	Experiments
	Implementation Details
	Comparisons
	Baselines & Metrics
	Quantitative Comparison
	Qualitative Comparison

	Ablation Study

	Conclusion
	Details of LEGO-Art Pipeline
	Details of Graph Reasoner
	More Visual Examples of PM-X
	Data Augmentation
	Limitations & Future Work
	Broader Impact

