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Abstract. Providing omnidirectional depth along with RGB informa-
tion is important for numerous applications. However, as omnidirectional
RGB-D data is not always available, synthesizing RGB-D panorama data
from limited information of a scene can be useful. Therefore, some prior
works tried to synthesize RGB panorama images from perspective RGB
images; however, they suffer from limited image quality and can not be
directly extended for RGB-D panorama synthesis. In this paper, we study
a new problem: RGB-D panorama synthesis under the various configu-
rations of cameras and depth sensors. Accordingly, we propose a novel
bi-modal (RGB-D) panorama synthesis (BIPS) framework. Especially,
we focus on indoor environments where the RGB-D panorama can pro-
vide a complete 3D model for many applications. We design a generator
that fuses the bi-modal information and train it via residual depth-aided
adversarial learning (RDAL). RDAL allows to synthesize realistic in-
door layout structures and interiors by jointly inferring RGB panorama,
layout depth, and residual depth. In addition, as there is no tailored
evaluation metric for RGB-D panorama synthesis, we propose a novel
metric (FAED) to effectively evaluate its perceptual quality. Extensive
experiments show that our method synthesizes high-quality indoor RGB-
D panoramas and provides more realistic 3D indoor models than prior
methods. Code is available at https://github.com/chang9711/BIPS.

Keywords: RGB-D panorama synthesis, indoor layout, GAN, VR/AR

1 Introduction

Omnidirectional RGB-D data is important for numerous applications, e.g., VR/
AR, yet it is not always available. Manually creating a 3D space from scratch
is unrealistic and requires a huge effort, while capturing and restoring whole
real-world requires high computational cost [35]. Synthesizing RGB-D panorama
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Fig. 1. Overall scheme for our BIPS framework, which takes RGB-D input from cam-
eras and depth sensors in various configurations and synthesizes an RGB-D panorama.

from limited input information can overcome the limitations and generate 3D
virtual space with minimal time and effort. Even though prior works have tried
to synthesize RGB panorama images from perspective RGB images [20,60], these
methods show limited performance on synthesizing panoramas from small partial
views and can not be directly extended for RGB-D panorama synthesis.

By contrast, jointly learning to synthesize depth data along with the RGB
images accompanies two advantages: (1) Depth panorama, which is useful to
plenty of applications, can be directly obtained without additional endeavors
such as monocular depth estimation or depth completion. (2) The quality of
generated RGB and depth panorama can be improved to complement each other.
It is because they share the semantic correspondence of the scene, and this
correspondence is learned during the joint learning. The extensive experiments
in Sec. 4.2 demonstrates the mutual gain between RGB and depth panorama.
Therefore, it is promising to synthesize RGB-D panorama from the cameras and
depth sensors, such that we can synthesize realistic 3D indoor models.

In this paper, we consider a novel problem: RGB-D panorama synthesis from
limited input visual information of a scene. To maximize usability, we consider
the various configurations of cameras and depth sensors. To this end, we design
the various sensor configurations by randomly sampling the number of sensors,
their intrinsic parameters, and extrinsic parameters, assuming that the sensors
are calibrated and aligned to each other. This enables to represent most of the
possible combinations of cameras and depth sensors. Accordingly, our novel bi-
modal panorama synthesis (BIPS) framework synthesizes RGB-D indoor panora-
mas from the camera and depth sensors in various configurations via adversarial
learning (See Fig. 3). We thus design a generator that fuses the bi-modal (RGB
and depth) features. Through the generator, multiple latent features from one
branch can help the other by providing the relevant information of different
modalities. For synthesizing the depth of indoor scenes, we rely on the fact that
the overall layout is usually made of flat surfaces, while interior components
have various structures. Thus, we propose to separate the depth of a scene Id

into two components: layout depth Id,lay and residual depth Id,res. Here, Id,lay

corresponds to the depth of planar surfaces, and Id,res corresponds to the depth
of other objects, e.g., furniture. With this relation, we propose a joint learn-
ing scheme called Residual Depth-aided Adversarial Learning (RDAL). RDAL
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jointly trains RGB panorama, layout depth, and residual depth to synthesize
more realistic RGB-D panoramas and 3D indoor models (Sec. 3.2).

Previously, some metrics [56,22] have been proposed to evaluate the outputs
of generative models using latent feature distribution of a pre-trained classifi-
cation network [62]. However, the input modality of utilizing an off-the-shelf
network is only limited to perspective RGB images. For this reason, we propose
a novel metric, called Fréchet Auto-Encoder Distance (FAED), to evaluate the
perceptual quality for RGB-D panorama synthesis (Sec. 3.3). FAED adopts an
auto-encoder to reconstruct the inputs from latent features with an unlabeled
dataset. Then, the latent feature distribution of the trained auto-encoder is used
to calculate the Fréchet distance between the synthesized and GT RGB-D data.
Extensive experimental results demonstrate that our RGB-D panorama synthe-
sis method significantly outperforms the extensions of the prior image inpainting
[46,88,61], image outpainting [32,60], and image-guided depth synthesis meth-
ods [11,51,37,24] modified to synthesize RGB-D panorama from partial RGB-D
inputs. Moreover, we show the validity of the proposed FAED by showing how
well it captures the disturbance level [22] of synthesized RGB-D panorama.

In summary, our main contributions are three-fold: (I) We introduce a new
problem of generating RGB-D panoramas from partial RGB-D inputs under
various sensor configurations. (II) We propose a BIPS framework that synthe-
sizes RGB-D panoramas via residual depth-aided adversarial learning. (III) We
introduce a novel evaluation metric, FAED, for RGB-D panorama synthesis.

2 Related Works

Image Inpainting. Conventional approaches explore diffusion or patch match-
ing [5,6,7,13,16,8,14]. However, they have limited ability inpainting largely miss-
ing regions. The learning-based methods often use generative adversarial net-
works (GANs) [89,38,26,79], optimized by the minimax loss [27]. Some works
explored different convolution layers, e.g., partial convolution [40] and gated con-
volution [80,50], to handle missing pixels. Moreover, attention mechanism [65,66]
has also been applied to capture the contextual information [79,75,41,70,39]. Re-
cently, research has been made to synthesize high-resolution outputs [59,72,52]
or semantically diverse outputs [42,87]. Although endeavors have tackled large
completion problem [46,88,61], they often fail to synthesize visually pleasing
panoramas due to only using perspective RGB inputs.

Image Outpainting. Conventional methods extend an input image to a larger
seamless one; however, they require manual guidance [4,6,86] or image sets of
the same scene category [29,58,69]. By contrast, learning-based methods syn-
thesize large images with novel textures that do not exist in the input im-
age [55,34,74,18,30,82,47,31,19]. Some works focus on driving scenes [73,84] or
synthesize panorama with iterative extension or multiple perspective images
[78,32,20,60]. Although performance has been greatly improved, the existing
methods are still afflicted by the limited quality from the perspective images.
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Image-guided Depth Synthesis. One line of research attempts to fuse the
bi-modal information, i.e., the RGB image and sparse depth. Some methods,
e.g. [44], fuse the sparse depth and RGB image via early fusion while oth-
ers [43,28,63,17,37,25] utilize a late fusion scheme, or jointly utilize both [64,36,67].
Another line of research focuses on utilizing affinity or geometric information of
the scene via surface normal, occlusion boundaries, and the geometric convolu-
tional layer [33,53,76,85,24,11,10,51]. However, these works only generate dense
depth maps that have the same FoV with the input perspective RGB images.
Evaluation of Generative Models. Image quality assessment can be clas-
sified into three groups: full-reference (FR), reduced-reference (RR), and no-
reference (NR). There exist many conventional FR metrics, e.g., PSNR, MSE,
and SSIM, and deep learning (DL)-based FR metrics, e.g., LPIPS [83]. These
metrics typically calculate either pixel-wise or patch-wise similarity to the ground
truth images. By contrast, NR methods, e.g., BRISQUE [48] and NIQE [49] do
not require reference image. Among the DL-based NR metrics, Inception Score
(IS) [56] and Fréchet Inception Distance (FID) [22] are widely used [2]. IS and
FID scores are calculated from pretrained classification models to capture the
high-level features. Unfortunately, these metrics are less applicable for RGB-D
panorama evaluation because (1) they are trained only with perspective RGB
images, and (2) there are no labeled panorama images for training. They are
highly sensitive to the distortion of panoramas, making them hard to capture
perceptual quality properly on panoramas. Furthermore, naively using them on
RGB-D leads to an imprecise measure of the semantic correspondence between
the two different modalities. Therefore, we propose FAED, which aims to di-
rectly evaluate the RGB-D panorama quality. FAED can be adaptively applied to
evaluate multi-modal data that lacks a labeled dataset.

3 Proposed Methods

3.1 Problem Formulation

Previous works, e.g., [60,20], generate an equirectangular projection (ERP) im-

age (ERP rgb) from input RGB image(s) (Irgbin ). Then, an RGB panorama Irgbout

can be created via a function G, mapping Irgbin into a ERP rgb [21], which can be

formulated as Irgbout = ERP rgb = G(Irgbin ).
However, as it is crucial to provide omnidirectional depth information [54,1]

in many applications, many studies tried to synthesize depth panoramas from
input RGB panorama and partial depth measurements [68,23]. One solution
to synthesize an RGB-D panorama would be to sequentially synthesize RGB
panorama from input RGB images, and then apply the depth synthesis methods
to generate an omnidirectional depth map. However, such an approach is cum-
bersome and less effective, as shown in the experimental results (See Table 4). We
solve this novel yet challenging problem by jointly utilizing the input RGB image
(Irgbin ) and depth data (Idin). Our goal is to directly generate the RGB panorama
(ERP rgb) and depth panorama (ERP d) simultaneously via a mapping function
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Fig. 2. Sampled input masks. (a) Input mask of cameras and perspective depth sensors
with parameters (δH , δV , ψ, n) and (b) mechanical LiDARs with (δL, δU , ψ, ω, η).

G, which can be described as (Irgbout , I
d
out) = (ERP rgb, ERP d) = G(Irgbin , Idin).

G can be formulated by learning a single network to synthesize ERP rgb and
ERP d using Irgbin and Idin obtained in various sensor configurations. As the in-
formation in the left and right boundaries in ERP images should be connected,
our designed G uses circular padding [57] before each convolutional operation.

Consequently, we design the various input configurations by randomly sam-
pling the parameters of cameras and depth sensors to provide the input to the
G during training. Since our model takes partial ERP input, data obtained from
sensors should be projected to ERP image space. The masks of the sensor input
area projected on the ERP can be represented as shown in Fig. 2. Therefore, the
partial RGB-D input projected on the ERP space, Irgbin and Idin, can be obtained
by multiplying sampled mask to the full ERP image. We also randomly choose
whether to use cameras only, depth sensors only, or both, to handle the cases
where only cameras or depth sensors are available.
Parameters of RGB Cameras. We denote the parameters of RGB cam-
eras, horizontal FoV as δH , vertical FoV as δV , pitch angle as ψ, and the num-
ber of viewpoints as n. When n > 1, we arrange the viewpoints in a circle
having the sampled pitch angle from the equator and at the same intervals.
We do not consider roll and yaw, as they do not affect the results (i.e., the
output is equivariant to the horizontal shift of input) thanks to using circular
padding. Considering general setting of cameras, we sample the parameters from
{δH , δV } ∼ U [60◦, 90◦], ψ ∼ U [−90◦, 90◦], and n ∼ U{0, 1, 2, 3, 4}, where U [·]
represents uniform distribution.
Parameters of Depth Sensors. Idin can be obtained from mechanical LiDARs
or perspective depth sensors thus we should generate various depth input masks
for both. For the LiDARs, we denote lower FoV as δL, upper FoV as δU , pitch
angle as ψ, yaw angle as ω, and the number of channels as η. The yaw angle
is needed to consider the relative yaw motion to the camera arrangement. For
the perspective depth sensors providing dense depth, we use the same sampled
parameters with the cameras (δH , δV , ψ, n). In practice, we first sample the pa-
rameters from ψ ∼ U [−90◦, 90◦], ω ∼ U [0◦, 360◦], and η ∼ U{0, 2, 4, 8, 16}. Then,
we sample δL and δU from U{η, 2η, 3η}. Finally, our problem is formulated as

(Irgbout , I
d
out) = (ERP rgb, ERP d) (1)

= G(Irgbin (δH , δV , ψ, n), I
d
in(δL, δU , ψ, ω, η, δH , δV , n)) (2)



6 Oh et al.

One

Input

Generator
Output

InputInput Mask

Gout
rgb

D

Discriminator

Ladv

Loss for G

~

LD

LD
Zero

Cameras and
Depth Sensors

Multiplication ~ SimulationLoss for D Measure (test)

Gout
res

Gin
d

Gin
rgb

Gout
lay

Ground Truth

Output Depth

Arbitrary Sensor Simulation

RGBD Panorama Synthesis

RGBD Panorama Quality 
Evaluation  with FAED

① 
② 
③ 

RGBD Panorama Quality Evaluation

Loss Measure (Test) Multiplication Simulation~

 

RGB-D PanoramaInput Mask

Output

D

Ground Truth

Camera and 
Depth Sensors

FAED

f latent

Layout Depth

Residual Depth

Discriminator

Input

Ladv

~

(Eq. 5, 6, 7)

(Eq. 3)

Lpixel (Eq. 4)

Aencoder

(I)

(II)

(III)

Layout Depth

Residual Depth
Various Sensor 
Configurations

Adecoder

(I) RGB-D Input Generation  (II) Bi-modal Panorama Synthesis (BIPS)
(III) RGB-D Panorama Quality Evaluation  with FAED

Reconstruction

 

Loss Measure (Test) Multiplication Mask Sampling~

RGBD PanoramaInput Mask

I rgb

Gout
res

OutputGBFF

D

Ground Truth

Camera and 
Depth Sensors

FAED

f latent

I d

Layout Depth

Residual Depth

Discriminator

3D Restored Result
Input

Ladv

~

(Eq. 8, 9, 10)

LD(Eq. 4)

Lpixel

Interactable Virtual Space

(Eq. 5)

(Eq. 6)

Aencoder

Loss Measure (Test) Multiplication Simulation~

(I)

(II)

(III)

Layout Depth

Residual Depth
Arbitrary Sensor 
Configurations

Î res

Î lay

Î rgb

Gout
rgb

Gout
lay

Gin
rgb

Gin
depth

Adecoder

(I) Arbitrary Sensor Simulation      (II) RGBD Panorama Synthesis
(III) RGBD Panorama Quality Evaluation  with FAED

Reconstruction

I rgb
out

I d,lay
out

I d,res
out

I rgb
in

I d
in

I d
gt

I rgb
gt

I d,lay
gt

I d,res
gt

I rgb
gt

Output Depth

I d
out

3D Indoor Model

GBF
F

Ginrgb

Ginde
pth

Goutres

Goutrgb

 

RGB-D PanoramaInput Mask

Gout
res

Output
GBFF

D

Ground Truth

Camera and 
Depth Sensors

FAED

f latent

Layout Depth

Residual Depth

Discriminator

Input

Ladv

~

(Eq. 5, 6, 7)

(Eq. 3)

Lpixel (Eq. 4)

Aencoder

Loss Measure (Test) Multiplication Mask Sampling~

(I)

(II)

(III)

Layout Depth

Residual Depth
Various Sensor 
Configurations

Gout
rgb

Gout
lay

Gin
rgb

Gin
depth

Adecoder

(I) RGB-D Input Generation  (II) Bi-modal Panorama Synthesis (BIPS)
(III) RGB-D Panorama Quality Evaluation  with FAED

Reconstruction

I rgb
out

I d,lay
out

I d,res
out

I rgb
in

I d
in

I d
gt

I rgb
gt

I d,lay
gt

I d,res
gt

I rgb
gt

Output Depth

I d
out

3D Indoor ModelG

GBF
F

Ginrgb

Goutlay

G
Gout

res

Gout
rgb

Gout
lay

Gin
rgb

Gin
depth

GBFF

C C C C

C

GBFF

ConvResidual 
Connection

DownBlock

UpBlockConcatenation 
& Feedback C DownBlock

C C C

Fig. 3. Overall structure of our bi-modal indoor panorama synthesis (BIPS) frame-
work. Our framework takes RGB-D input provided by various sensor configurations,
integrates the bi-modal input data with BFF branch in the generator network, and
jointly trains to synthesize layout depth and residual depth. Then, the perceptual
quality of the synthesized RGB-D panorama is measured by proposed FAED metric.

3.2 RGB-D Panorama Synthesis Framework

Overview. An overview of the proposed BIPS framework is depicted in Fig. 3.
BIPS consists of a generator G, and a discriminator D. G takes the partial RGB
image Irgbin and depth Idin as inputs. We notice that the quality of the RGB-D
panorama depends on both the overall (mostly rectangular) layout and how the
furniture are arranged in the indoor scene. Inspired by [81], we separate the depth

data Idgt into layout depth Id,laygt , and residual depth (interior components) Id,resgt ,

which is defined as (Idgt - Id,laygt ). The generator G outputs the RGB panorama

I
rgb
out , the layout depth panorama Id,layout , and the residual depth panorama Id,resout

simultaneously. As these are jointly trained with adversarial loss, we call this
learning scheme Residual Depth-aided Adversarial Learning (RDAL).
Generator. G is composed of input branch Gin, bi-modal feature fusion (BFF)
branch GBFF, and output branch Gout, as shown in Fig. 3. Gin consists of two
encoding branches: Grgb

in and Gdepth
in , which take Irgbin and Idin respectively, that

independently extract RGB and depth features. Then, GBFF fuses the highly
correlated features to fully exploit the bi-modal information of the scene. Lastly,
Gout have three decoding branches and each of them generates RGB panorama
I
rgb
out , layout depth panorama Id,layout , and residual depth panorama Id,resout , respec-
tively. Since realistic indoor space comes with clean layout structure and detailed
interiors, we design Gout to jointly synthesize the layout and residual depth of
an indoor scene. The detailed structure can be found in suppl. material.
BFF Branch. GBFF takes Grgb

in (Irgbin ) and Gdepth
in (Idin) as inputs. Since I

rgb
in and

Idin are captured in the same scene, their bi-modal information is highly correlated
in a semantic manner. To utilize this correlation, GBFF consists of two-stream
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encoder-decoder networks fusing the bi-modal features. The bi-modal features
are fused in between the layers of GBFF four times. In particular, the features
from both branches are concatenated and fed back to each other. Overall, the
fusion is done after the features pass two ‘DownBlocks’ and before the features
pass two ‘UpBlocks’. The ‘UpBlock’ consists of one convolution layer with 4×4
kernel and three convolution layers with 3×3 kernel. The ‘DownBlock’ consists of
one upsample layer, one convolution layer with 4×4 kernel and three convolution
layers with 3×3 kernel. In addition, multi-scale residual connections are used to
vitalize the transfer of information between the layers and branches. As multiple
latent features from one branch help the other by sharing the information apart
in both ways, GBFF can generate features by fully exploiting the information of
the scene.
Discriminator. We use the multi-scale discriminator D from [71], but modify
it to have five input channels (three for Irgb, one for Id,lay, and one for Id,res).
The detailed discriminator structure can be found in the suppl. material.
Loss Function. For training G, we use a weighted sum of the pixel-wise L1
loss and adversarial loss. The pixel-wise L1 loss between the GT and the output
panorama, denoted as Lpixel, consists of three terms as the G has three outputs
(RGB, layout depth, residual depth panorama):

Ltotal
pixel = L

rgb
pixel + L

d,lay
pixel + L

d,res
pixel. (3)

For adversarial loss Ladv, we used LSGAN loss [45]: Ladv = 1
2 E

[(D(Itotalout )− 1)2],

where Itotalout is the concatenation of generator outputs Irgbout , I
d,lay
out and Id,resout , and

D is a discriminator. By decomposing the total depth loss into Ld,lay and Ld,res,
our RDAL scheme allows G to synthesize RGB-D panorama that has a highly
plausible interior. Finally, the total loss for the generator is:

LG = λLtotal
pixel + Ladv (4)

where λ is a weighting factor. For detailed loss terms, refer to suppl. material.

3.3 Fréchet Auto-Encoder Distance (FAED)

Auto-Encoder Network. Similar to the high-level features in a CNN trained
with large-scale semantic labels, latent features flatent in a trained auto-encoder
also contain high-level information, as auto-encoder is trained to reconstruct the
input from the latent features. Moreover, the auto-encoder has the advantage
that it does not need any labels for training. Since there is no dataset including
semantic labels for RGB-D panoramas, we propose to train an auto-encoder
A to generate RGB-D panoramas and use its latent features to calculate the
perceptual quality. The detailed structure of A is given in the suppl. material.
Calculation of FAED for RGB-D Panorama. We denote flatent at c-th
channel, h-th row, and w-th column as flatent(c, h, w). Note that as we use ERP,
the h and w have one-to-one relation to latitude and longitude.
Longitudinal Invariance. To evaluate the performance of G, we extract flatent
from generated samples using Aencoder. However, as we generate the upright ERP



8 Oh et al.

co
nv

 9
x9

, 
32

re
s 

9x
9,

 3
2

co
nv

 4
x4

, 
64

re
s 

7x
7,

 6
4

co
nv

  
4x

4,
 1

28

re
s 

5x
5,

 1
28

co
nv

 4
x4

, 
12

8

re
s 

3x
3,

 1
28

co
nv

 4
x4

, 
12

8

co
nv

 3
x3

, 
12

8

re
s 

3x
3,

 1
28

Stride 1 Stride 2

co
nv

 9
x9

, 
32

re
s 

9x
9,

 3
2

co
nv

 4
x4

, 
64

re
s 

7x
7,

 6
4

co
nv

  
4x

4,
 1

28

re
s 

5x
5,

 1
28

co
nv

 4
x4

, 
12

8

re
s 

3x
3,

 1
28

co
nv

 4
x4

, 
12

8

co
nv

 4
x4

, 
12

8

re
s 

3x
3,

 1
28

co
nv

 4
x4

, 
12

8

re
s 

3x
3,

 1
28

co
nv

 3
x3

, 
25

6

co
nv

 3
x3

, 
12

8

co
nv

 3
x3

, 
12

8

re
s 

3x
3,

 1
28

co
nv

 3
x3

, 
12

8

re
s 

5x
5,

 1
28

co
nv

 3
x3

, 
12

8

re
s 

5x
5,

 1
28

co
nv

 3
x3

, 
32

re
s 

9x
9,

 3
2

co
nv

 3
x3

, 
32

re
s 

9x
9,

 3
2

co
nv

 9
x9

, 
3

co
nv

 9
x9

, 
1

U
ps

am
pl

e 
(x

2)
U

ps
am

pl
e 

(x
2)

U
ps

am
pl

e 
(x

2)
U

ps
am

pl
e 

(x
2)

co
nv

 3
x3

, 
64

re
s 

7x
7,

 6
4

co
nv

 3
x3

, 
64

re
s 

7x
7,

 6
4

U
ps

am
pl

e 
(x

2)
U

ps
am

pl
e 

(x
2)

U
ps

am
pl

e 
(x

2)
U

ps
am

pl
e 

(x
2)

U
ps

am
pl

e 
(x

2)

flatent

Aencoder Adecoder

Aencoder Adecoder

Aencoder Adecoder

FAED

f’’latentflatent

Gaussian distribution

Gaussian distribution

⇒

(Eq. 5, 6)

(Eq. 5, 6)

(Eq. 7)

Frechet 
Distance FAED

(Eq. 10)

GT
Aencoder Adecoder

Pred
Aencoder Adecoder

FAED

f’’latentflatent

flatent

Gaussian distrib.

Gaussian distrib.

f’’latent

(Eq. 8, 9)

(Eq. 8, 9)

(Eq. 10)

(Eq. 10)Aencoder

Adecoder

f latent

RGBD GT

GT f’’latent
GT

(Eq. 8, 9)

Gaussian distribution

f’’latent
Pred.

Aencoder

Adecoder

RGBD Pred.

f latent
Pred.

(Eq. 8, 9)

FAED

GT

f latent
Pred.

GT

f’’latent
Pred.

Fig. 4. The proposed FAED metric for RGB-D panorama quality evaluation. It mea-
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auto-encoder network on RGB-D panorama.

image, it is expected to have a distance metric that is invariant to the longitudinal
shift. This is because an upright ERP panorama represents the same scene when
it is cyclically shifted along the longitudinal direction. Therefore, to make the
resulting distance metric invariant to the longitudinal shift, we take the mean
along the longitudinal direction of flatent as:

f ′latent(c, h) =
1

W

∑

w

flatent(c, h, w). (5)

Latitudinal Equivariance. As ERP has varying sampling rates depending on
the latitude φ, we apply different weights on f ′latent considering information den-
sity along latitude. Specifically, we multiply cos(φ) to feature at the latitude φ,
since in ERP, each pixel occupies cos(φ) area in the spherical surface, compared
with the pixels in the equator. The resulting feature is expressed as:

f ′′latent(c, h) = cos(φ) · f ′latent(c, h). (6)

Fréchet Distance. We treat the resulting f ′′latent as a vector and assume that it
has a multi-dimensional Gaussian distribution. Then, we get the distribution of
ground truths N (m,C) and that of generated samples N (m̂, Ĉ), and calculate
the Fréchet distance d between them as given by [15]:

d2(N (m,C),N (m̂, Ĉ)) = ||m− m̂||22 + Tr(C + Ĉ − 2(CĈ)1/2). (7)

We use d2 as a perceptual distance metric wherem and C is mean and covariance.

4 Experimental Results

Synthetic Dataset. Structured3D dataset [90] provides various textures of
indoor scenes with a 512×1024 resolution. We split the dataset into 17468 train,
2183 validation, and 2184 test data. Then we augmented the entire data with
three random horizontal shifts then the number of the dataset has quadrupled.
In addition, with the corner locations provided in the dataset, we manually
generated layout depth maps of each 3D scene. The residual depth maps are
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Fig. 5. Verification of FAED in Structured3D dataset. It can be seen that FAED cor-
relates well with perceptual evaluation of humans, as FAED increases as the data
becomes more corrupted. For more detailed results, please refer to the suppl. material.

obtained by subtracting the layout depth from the GT depth map. More details
about GT layout and residual depth generation can be found in suppl. material.

Real Dataset. We used a combination of two datasets: Matterport3D [9] and
2D-3D-S dataset [3]. Both datasets provide real-world indoor RGB-D panorama
captured with real sensors, so depth data in those datasets contain sensor noise
or missing holes. However, since this dataset does not provide a sufficient number
of annotated layouts, it is only used for test purpose.

Implementation Details. Please refer the suppl. material. for the details.

4.1 Verification of FAED

To show the effectiveness of FAED on measuring the perceptual quality of RGB-
D panorama, we corrupt the Structured3D dataset [90] in two ways: corrupting
RGB only or corrupting depth only. Following [22], we corrupt the dataset by
applying various types of noise: Gaussian blur, Gaussian noise, uniform patches,
swirl, and salt and pepper noise. Also, we utilized discrete cosine transform that
causes blocking effects to show that our model is sensitive to GAN-like artifacts.
Here, we plot the result of Gaussian blur in Fig. 5. Other results can be found in
suppl. material. Note that the evaluation is done for RGB-D panorama, neither
for RGB image alone nor for depth map alone. As shown in Fig. 5, the Fréchet
distance for both RGB and depth panorama increases as the disturbance level
is increased. We show that the same applies to the other five types of noises in
the suppl. material due to the lack of space. This demonstrates the perceptual
quality of RGB-D panorama becomes poorer as the FAED increases.

Moreover, we calculated FAED of paired and unpaired RGB-D panorama to
verify that FAED is effective in considering semantic alignment between RGB
and depth panorama. Unpaired RGB-D panorama consists of RGB panorma
and randomly selected depth panorama not corresponded to RGB panorama,
and its FAED score is 168.0. 3D indoor model from unpaired RGB-D panorama
has inconsistent semantic information, e.g., misaligned corner of indoor room
and distorted furniture. The visual results of the inconsistency can be found in
suppl. material. Consequently, it indicates that the higher FAED score denotes
poorer semantic alignment between RGB and depth panorama.
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Table 1. Quantitative results of RGB panorama synthesis on Structured3D dataset.
As [60] needs 4 perspective RGB inputs, we report our results in the same setting. In
other cases, 1∼4 number of RGB inputs are randomly used. The depth input is not
used to compare with image synthesis methods. For FAED calculation, GT full depth
is used with synthesized RGB panorama. Best results in bold.

Category Method
Input no. (n) RGB metric Layout metric Proposed metric
RGB Depth PSNR(↑) SSIM(↑) LPIPS(↓) 2D Corner error(↓) FAED(↓)

Inpainting
BRGM [46]

1/2/3/4 0

14.00 0.5310 0.6192 72.52 442.3
CoModGAN [88] 14.35 0.5837 0.4768 62.45 208.2

LaMa [61] 13.74 0.5207 0.5658 51.12 379.2
Outpainting Boundless [32] 13.74 0.5663 0.6144 74.47 429.4

Ours 16.21 0.6161 0.4549 39.63 162.3

Panorama syn. Sumantri et. al.[60]
4 0

18.49 0.6680 0.4190 50.76 443.4
Ours 17.29 0.6510 0.3975 34.68 103.1

Masked GT RGB Image Sumantri et. al. OursGT RGB Image Masked GT RGB Image

Sumantri et. al. Ours

Fig. 6. Qualitative comparison to Sumantri et. al. [60]. While the result from [60] is
blurry, our result is sharp and realistic.

4.2 RGB-D Panorama Synthesis

Evaluation on RGB Panorama Synthesis. Table 1 shows the quantitative
comparison with the inpainting and outpainting methods on the Structured3D
dataset. Our model takes partial RGB inputs and no depth as inputs. We use
PSNR, SSIM, and LPIPS to evaluate the quality of RGB panorama. We also
measure 2D corner error, where the 2D GT corner points are compared with
the estimated 2D corner points using DuLa-Net [77] on the synthesized RGB
panorama. We also use the proposed FAED to evaluate the perceptual quality.
Here, synthesized RGB panorama and GT depth are used to compute FAED.

As shown in Table 1, our method outperforms the image inpainting and out-
painting methods: BRGM [46], CoModGAN [88], LaMa [61], and Boundless [32],
by a large margin for all metrics. For instance, our method outperforms the best
inpainting method, CoModGAN, by a 4.6% decrease in LPIPS score, 36.5% drop
of 2D corner error, and 22% decline of FAED score. The effectiveness can also
be visually verified in Fig. 7(a). Our method produces clearer RGB panorama
images compared with LaMa producing blurry images. Although CoModGAN
produces clear RGB outputs, it does not consider the indoor layout and se-
mantic information of the furniture, e.g., the electric cooker is combined with
bookshelves, as shown in Fig. 7. The reason our model has higher performance
than the existing SoTA inpainting/outpainting method is that RDAL helps the
generator to learn distinguishing features of layout and residual during joint
learning. Although the layout and the residual are separated only in the depth
image, our joint learning framework induces learning of highly correlated features
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Table 2. Quantitative results of depth panorama synthesis on Structured3D dataset.
Depth input type L/P means that we use LiDAR (L) and dense perspective depth
sensor (P). The full GT RGB is used with synthesized depth panorama for FAED
calculation. Best results in bold.

Category Method
Input type Depth metric Layout metric Proposed metric

RGB Depth AbsREL(↓) RMSE(↓) 2D IoU(↑) FAED(↓)

Depth syn.

CSPN [11]

Full L/P

0.0855 2214 0.8062 428.9
NLSPN [51] 0.1268 2807 0.7333 836.1

MSG-CHN [37] 0.1764 3296 0.6724 896.4
PENet [24] 0.1740 3145 0.7033 906.0

Ours 0.0844 1942 0.8286 131.5

Masked GT
RGB Image

(Input)

Boundless

CoModGAN

LaMa

BRGM

GT RGB ImageMasked GT RGB Image (Input) OursCoModGANLaMa

(b)

GT RGB ImageMasked GT RGB 
Image (Input)

OursCoModGANLaMa

(a)

(b)

GT Depth MapGT RGB Image (Input) OursCSPNMasked GT Depth (Input)

GT Depth MapGT RGB Image (Input) OursCSPNMasked GT Depth Map (Input)

Ours

GT RGB
Image

Fig. 7. (a) Visual results for RGB panorama synthesis on Structured3D dataset. Two
methods, LaMa and CoMoGAN, are visualized for comparison. (b) Visual results for
depth panorama synthesis on Structured3D dataset. CSPN is also visualized for com-
parison. More qualitative results can be found in suppl. material.

by exchanging information between depth and RGB. Therefore, it is possible to
create a very realistic indoor environment panorama even in RGB compared to
other models that do not take this into account.

We also compare our model with the panorama synthesis method, Sumantri
et. al. [60]. Our method shows slightly lower scores using the conventional met-
rics, PSNR and SSIM; however, it shows a much better LPIPS score, 2D corner
error, and FAED score as shown Table 1. We argue that PSNR and SSIM merely
measure local photometric similarity and thus fail to reflect the perceptual qual-
ity while FAED catches the perceptual quality. This can be visually verified in
Fig. 6. Our method synthesizes better textures and shows much more visually
plausible output. More visual results can be found in suppl. material.

Evaluation on Depth Panorama Synthesis. We compare our method with
the image-guided depth synthesis methods: CSPN [11], NLSPN [51], MSG-
CHN [37] and PENet [24]. AbsREL, RMSE, layout 2D IoU [12] and the pro-
posed FAED are used for evaluation. The details of the metrics can be found in
the suppl. material. Table 2 shows the quantitative comparison with the depth
synthesis methods. In particular, our method outperforms one of the best depth
synthesis method, CSPN, with all metrics. We also compared our model with
the 360◦ monocular depth estimation method [67]. The visual result of [67] was
not reasonable, and its FAED score was 1140. With the proposed RDAL scheme,
our model understands the structure of the indoor scene and learns the relative
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Table 3. FAED scores of our model according to the amount of RGB-D inputs.

FAED
(The redder the cell,
the lower the value)

Number of Depth Input
Perspective (num. of NFoVs) LiDAR (num. of channels)

0 1 2 3 4 2 4 8 16

Number of
Perspective
RGB Input

0 - 2077 746.4 439.8 371.0 1345 1030 631.1 382.6
1 910.0 695.1 246.6 176.5 152.2 316.6 267.9 210.6 151.7
2 461.8 295.4 202.3 152.2 132.7 229.4 207.8 174.6 134.4
3 365.8 233.7 154.0 128.3 107.5 189.9 171.4 141.7 101.4
4 346.1 214.5 141.7 108.0 91.9 176.4 156.3 127.9 87.2

Ground Truth Input Output Ground Truth Input Output

GT RGBD Masked GT RGBD Ours GT RGBD Masked GT RGBD Ours

(a) (b)

GT RGB-D Masked GT RGB-D Ours GT RGB-D Masked GT RGB-D Ours

(c) (d)

(a) (b)

GT RGB-D Masked GT RGB-D Ours GT RGB-D Masked GT RGB-D Ours

(c) (d)

Fig. 8. Visualization of our synthesized RGB-D panorama results from RGB-D data
in various configurations. (a) and (b) take both RGB and depth data, (c) takes only
RGB, and (d) takes only depth data. More results are visualized in suppl. materials.

depth of interior components. Therefore, our method estimates the best layout
depth, which is demonstrated by the highest layout 2D IoU.

Fig. 7(b) shows the qualitative comparison with CSPN [11]. CSPN failed to
synthesize valid layouts with non-planar output depth map on the walls and
ceiling, which incurs unrealistic 3D indoor model. In contrast, our result shows
undisturbed, clear layouts. More of these results can be found in suppl. material.

Evaluation on RGB-D Panorama Synthesis. To show the effectiveness of
our model quantitatively, we compared our model with ‘inpainting with depth
synthesis’ (IwDS). To be specific, an RGB panorama is first synthesized from
partial RGB input using the image inpainting method. Then, depth panorama
is synthesized by applying the depth synthesis method to the synthesized RGB
panorama and partial depth input. We chose CoModGAN [88] and CSPN [11]
for RGB and depth synthesis methods, which showed the highest FAED score in
Table 1 and Table 2. In Table 4, it can be seen that IwDS leads lower 2D IoU score
and a much higher FAED score than our method. Also, FAED score of IwDS with
[60] and [11] was 722.1, even though [60] uses 1∼4 RGB inputs. These indicate
that the two-stage, sequential synthesis of RGB-D panorama is less effective than
our BIPS framework that fuses the bi-modal features, trained with one-stage,
joint learning scheme. Also, IwDS fails to generate realistic 3D indoor models,
with distorted indoor layouts and severe bumpy surfaces, as shown in Fig. 10.
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GT RGB-D Masked GT RGB-D Ours RGB-D GT 3D Indoor Model Ours 3D Indoor Model
GT RGB-D Masked GT RGB-D Ours RGB-D

GT 3D Indoor Model Ours 3D Indoor Model

GT RGB-D Masked GT RGB-D Ours RGB-D

GT 3D Indoor Model Ours 3D Indoor Model

Fig. 9. Visual results for RGB panorama synthesis on Matterport3D dataset.

Fig. 8 shows the qualitative results of our model generated from the partial
RGB and depth inputs, including RGB only or depth only cases. The mutual
gain for using RGB and depth information together is visually demonstrated in
Fig. 8(a). The upper shelf not visible in RGB input is successfully generated
by utilizing the corresponding depth data. Likewise, the lower shelf not visible
from the depth input is plausibly created in output depth panorama referring
to RGB information. It means that the bi-modal information is exchanged in a
bi-directional manner, which enables our model to understand the overall scene.
More results with 3D indoor models are visualized in suppl. materials.

In Table 3, we quantitatively analyze the performance with FAED regarding
the amount of input information. Overall, using both types of input shows better
panorama synthesis quality than that of using a single input. For example, using
2 RGB and 2 depth inputs shows much better FAED score (202.3) than those of
using 4 RGB or 4 depth inputs (FAED scores: 371.0, 346.1). The fusion between
textural information from RGB and structural information from depth through
BFF enables a more comprehensive understanding of the scene.
RGB-D Panorama Evaluation on Real Dataset. We evaluated our syn-
thesized RGB-D panorama on real indoor scenes in Matterport3D and 2D-3D-S
dataset. Fig. 9 shows an output RGB-D panorama and its 3D indoor model.
Overall, our method synthesizes high-quality RGB-D panorama on real indoor
scenes, which are unseen during training. Our synthesized depth panorama shows
the precise indoor layout and plausible residuals, generating a realistic 3D indoor
model. For quantitative results, our method achieved a much better FAED score
than IwDS (1123 vs. 5099). Since the domain of real dataset is different from
the domain of synthetic dataset, FAED scores generally increased. More visual
results can be found in suppl. material.

4.3 Ablation Study and Analysis

Impact of BFF. We studied the effectiveness of RGB-D panorama synthesis
by removing the BFF branch in the generator. In details, GBFF is replaced with
a single branch network taking the concatenation of Grgb

in (Irgbin ) and Gdepth
in (Idin).

For fair comparison, we designed a single branch network to be of similar capacity
to our final model (23,254 vs. 22,642 MB). As shown in Table 4, the 2D IoU drops
and FAED increases without BFF. Fig. 10 shows that the texture of the RGB-D
output is not consistent with the given RGB-D input. This reflects that BFF
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Table 4. Quantitative results of IwDS and ablation study of BIPS framework.

IwDS ([88]+[11]) Ours w/o BFF Ours w/o RDAL Ours

2D IoU(↑) 0.7561 0.7859 0.7164 0.8158

FAED(↓) 640.9 381.4 329.0 198.0

GT RGB Image Masked GT RGB Image

Ours - RDL OursOurs - BMF

Masked GT Depth Map

Masked GT RGB-D (Input) Ours w/o BFF Ours w/o RDAL Ours GT

Input Ours w/o BFF Ours w/o RDAL Ours GTIwDS

Fig. 10. Visualization of IwDS and our ablation study results on Structured3D dataset.

encourages the information exchange of bi-modal information and significantly
contributes to having minimal artifacts.
Impact of RDAL. We further compared the model without RDAL to validate
its effectiveness. In detail, the number of output branches is reduced to two, and
each is designed to learn RGB and total depth panorama. As shown in Table 4,
the 2D IoU drops and FAED increases without RDAL. It shows that RDAL is
critical for estimating precise indoor layouts. The impact of RDAL is visually
verified in Fig. 10. The result without RDAL shows a distorted indoor layout
while having fewer artifacts than ours without BFF. In summary, jointly learning
layout and residual depth helps to synthesize a more structural 3D indoor model.
Analysis on Robustness of BIPS. We conducted various experiments: ap-
plying on noisy sensor inputs, comparison on different input data of the same
3D scene, and generalization on unseen input configurations. The results show
that the proposed BIPS can synthesize visually pleasing RGB-D panorama un-
der these scenarios, making it directly applicable to real-world applications. The
implementation details, results, and discussion are included in suppl. material.

5 Conclusion

We tackled a novel problem of synthesizing RGB-D indoor panoramas from
various configurations of RGB and depth inputs. Our method can synthesize
high-quality RGB-D panoramas with the proposed BIPS framework by utiliz-
ing the BFF and jointly training through RDAL. Extensive experiments show
that this bi-modal joint learning enables the generator to effectively understand
the structure of indoor scene, so our model achieved the highest performance
in indoor RGB-D panorama synthesis than conventional methods. Moreover, a
label-free novel image quality assessment metric, FAED, was proposed, and its
validity was demonstrated. Acknowledgements. This work was supported by
the National Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (NRF2022R1A2B5B03002636). This research was conducted
while Wonjune Cho and Lin Wang were with KAIST.
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