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ABSTRACT

Error feedback, originally proposed a decade ago by Seide et al (2014), is an im-
mensely popular strategy for stabilizing the convergence behavior of distributed
algorithms employing communication compression via the application of contrac-
tive compression operators, such as greedy and random sparsification, quantiza-
tion, and low-rank approximation. While our algorithmic and theoretical under-
standing of error feedback has grown immensely over the years, several important
considerations remained elusive. For example, the theory of error feedback is
fully focused on the smooth convex and nonconvex regimes, and results in the
nonsmooth convex setting are limited. This is not a coincidence: Error feedback
works when the gradients converge, and this is not necessarily the case in the non-
smooth setting. Further, existing stepsize rules for error feedback are limited to
constant schedules; a by-product of the current theoretical approach to analyzing
error feedback. By modifying the algorithmic design of error feedback, we are
able to resolve these issues. In particular, we provide a comprehensive analysis
covering both the smooth and nonsmooth convex regimes, and give support for
constant, decreasing and adaptive (Polyak-type) stepsizes. This is the first time
such results are obtained. In particular, this is the first time adaptive stepsizes
have successfully been combined with compression mechanisms. Our theoretical
results are corroborated with suitable numerical experiments.

1 INTRODUCTION

Machine learning tasks can be formulated into the finite-sum optimization:

min
x∈Rd

f(x), (1)

where f(x) = (1/n)
∑n

i=1 fi(x) is a convex, but not necessarily smooth function, n is the number
of training data samples, and fi(x) is the loss of the model vector x ∈ Rd on data sample i. In this
paper, we focus on the problem of minimizing the function that preserves the property of convexity
and the existence of minimizer.

Assumption 1. The function f is convex.

Assumption 2. The function f has at least one minimizer, denoted by x⋆.

Classical instances of problem (1) include empirical risk minimization for supervised learning tasks.
In these tasks, each component function fi(x) = ϕ(⟨ai, x⟩ , bi), where ai ∈ Rd is the ith data sample
vector with its associated output bi ∈ R. Here, ϕ : R×R → R is a loss function that measures how
close the predicted output ⟨ai, x⟩ is to the true output bi. Examples of loss functions include mean
squared error loss in the least squares problems (Allen, 1971), cross-entropy loss in neural network
training (Zhang & Sabuncu, 2018), and hinge loss in support vector machines (Hearst et al., 1998).

Substantial attention has been directed towards developing optimization algorithms to solve machine
learning problems within desirable solution accuracy and training time. Among simple optimiza-
tion algorithms is stochastic gradient descent (SGD), which can be implemented under distributed
computing environments that leverage multiple devices to train the learning model. However, the
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increasing learning model size to demonstrate impressive classification, recognition, and reasoning
capabilities poses significant challenges. This leads to immense resources in computation, stor-
age, and energy for running the algorithm. For example, the ResNet-50 (He et al., 2016) model
comprises 23 million parameters, which needs 95 MB for storage and 4 GFLOPs (Giga Floating
Point Operations) of the computations (You et al., 2019). Training ResNet-50 takes 14 days on one
NVIDIA M40 GPU (You et al., 2019). These advanced models, therefore, place immense strain on
the communication between workers and servers during algorithm execution, underscoring the need
for optimization algorithms that can minimize communication overhead especially when training
across communication-constrained networks of edge devices.

To alleviate communication requirements, one common approach is to compress model parameters
or gradients before they are used in optimization algorithms. Widely used compressors encompass
sparsification (Alistarh et al., 2018; LeCun et al., 1989; Hagiwara, 1993) where a few important
vector elements are kept, quantization (Alistarh et al., 2017; Wen et al., 2017; Bernstein et al.,
2018) where each vector element is mapped into a smaller set of discrete finite values, and low-
rank approximation (Vogels et al., 2019; Safaryan et al., 2022a) that reduces the number of neural
network parameters. Empirical observations suggest significant communication savings for running
optimization algorithms that utilize compressors. However, these algorithms suffer from poor con-
vergence performance or even diverge. Distributed gradient algorithms with biased compressors
may diverge exponentially for strongly convex quadratic functions (Beznosikov et al., 2023).

1.1 ERROR FEEDBACK

Error feedback (EF), originally proposed by Seide et al. (2014) a decade ago, is a mechanism that
stabilizes compressed optimization algorithms. Several EF variants were studied in the centralized
or distributed setting by, e.g., Stich et al. (2018); Cordonnier (2018); Wu et al. (2018); Alistarh et al.
(2018); Karimireddy et al. (2019); Gorbunov et al. (2020); Qian et al. (2021); Chen et al. (2021);
Basu et al. (2019); Khirirat et al. (2020). However, analyses for distributed EF algorithms often
make the bounded gradient (Cordonnier, 2018; Alistarh et al., 2018) or homogeneous (IID) data
assumption (Stich & Karimireddy, 2019), thus leading to the less optimal rate (e.g. O(1/K2/3)
for nonconvex problems). To alleviate these issues, one re-engineered EF mechanism, called EF21,
was proposed by Richtárik et al. (2021). EF21 attains the O(1/K) rate in the deterministic regime
(Richtárik et al., 2021) with the provably lower complexity constant than classical gradient de-
scent for sparse problems (Richtárik et al., 2023), and the O(1/K1/2) rate in the stochastic set-
ting (Fatkhullin et al., 2024). Another recent EF variant that enjoys fast convergence over arbitrarily
heterogeneous data is EControl (Gao et al., 2023).

1.2 NONSMOOTH OPTIMIZATION

The convergence bounds of error feedback algorithms have been extensively studied under the
smoothness assumption of objective functions, such as Lipschitz continuity of the gradients. How-
ever, this assumption often fails to capture machine learning problems that involve minimizing
nonsmooth functions, e.g. Lipschitz continuity of the functions. For example, support vector
machines (Hearst et al., 1998) utilize hinge loss to achieve sparse solutions, while robust regres-
sion (Holland & Welsch, 1977) employs absolute loss to create regressors that are resistant to out-
liers. Moreover, many deep neural networks exhibit nonsmooth behaviors, particularly when using
activation functions such as rectified linear units (ReLU) and leaky ReLU (Maas et al., 2013). In var-
ious network models, the Lipschitz continuity parameter of the objective functions can be estimated
efficiently, as demonstrated in, e.g. Anil et al. (2019); Béthune et al. (2023); Jordan & Dimakis
(2020); Latorre et al. (2020).

Designing optimization methods for nonsmooth objective functions possess significant challenges,
compared to optimizing smooth functions. Subgradient methods are commonly used to tackle non-
smooth problems. However, when these methods incorporate compressed subgradients to reduce
communication costs, they may not ensure necessarily convergence. This issue is particularly evi-
dent in the case of signSGD which can diverge even for simple nonsmooth problems by Karimireddy
et al. (2019). To mitigate this problem, a very limited number of prior works have explored the ben-
efits of error feedback in nonsmooth regimes. In particular, Karimireddy et al. (2019) demonstrated
that error feedback can enable subgradient methods to achieve the O(1/

√
K) convergence rate while
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reducing communication costs. Nonetheless, the existing analysis frameworks requires the stepsizes
to be constant, which may not yield optimal convergence performance in practice. This raises an
open question: can we develop a convergence analysis framework that allows error feedback algo-
rithms to accomodate parameter-free stepsize rules under possibly nonsmooth regimes?

1.3 CONTRIBUTIONS

We summarize our main contributions as follows:

EF21-P for nonsmooth and smooth convex regimes. In contrast to Gruntkowska et al. (2023),
which analyzes EF21-P only using deterministic gradients and constant step sizes, we investigate
EF21-P using subgradients (either deterministic or stochastic) and various step size strategies in
both nonsmooth and smooth convex regimes. EF21-P serves as a useful error feedback algorithm
in the primal space of models. It can be combined with other appropriate algorithms to design
communication-efficient distributed algorithms, and it encompasses many first-order algorithms of
interest, such as EF14 and primal averaging algorithms.

Comprehensive convergence analysis for any stepsize rules under standard assumptions. We
revisit the convergence analysis of EF21-P in both nonsmooth and smooth convex regimes. Our
analysis introduces a novel descent inequality that explicitly captures the impact of any stepsize rules
on the convergence behaviors of EF21-P using either deterministic or stochastic subgradients. This
inequality is derived under standard assumptions on compressors and objective functions. While
compressors are assumed to be α-contractive, objective functions are assumed to be convex, posses
at least one minimizer, and have Hölder continuous subgradients.

Sublinear rate for constant, decreasing, and Polyak stepsizes. We demonstrate how to apply
our descent inequality to derive the convergence rates of EF21-P using three common step size
strategies, i.e. constant, decreasing, and Polyak, in both smooth and nonsmooth convex regimes.
Our approach contrasts with most existing works, which typically analyze error feedback algorithms
only in smooth regimes. To the best of our knowledge, Karimireddy et al. (2019) is the only work
that provides convergence results for EF14 in both regimes; however, their analysis is restricted to
constant step sizes. A summary of the theoretical comparisons between existing results and our find-
ings for error feedback algorithms is provided in Table 1. Additionally, we derive the sublinear rates
of EF21-P. With decreasing stepsizes of the form γk = γ0/

√
k + 1 for k ∈ [0,K] and some positive

scalars γ0, EF21-P achieves a O(log(K + 1)/
√
K) rate in nonsmooth regimes and a O(1/

√
K)

rate in smooth regimes. With constant and Polyak stepsizes, EF21-P achieves a O(1/
√
K) rate in

nonsmooth regimes and O(1/K) rate in smooth regimes.

The first successful combination of adaptive stepsizes with error feedback algorithms. Unlike
existing works that are limited to constant or decreasing stepsizes, our finding marks the first suc-
cessful application of the adaptive Polyak stepsizes to first-order algorithms that use error-feedback
compression. Specfically, for both nonsmooth and smooth regimes, EF21-P with the Polyak stepsize
attains the same convergence rate as that with the carefully tuned constant stepsize. The Polyak step-
size, unlike the constant stepsize, does not need to know smoothness parameters, which are often
inaccessible in practice.

Numerical evaluations. We verify our theory via numerical experiments on EF21-P for solving
logistic regression problems over synthetic data and support vector machines problems over LIB-
SVM data (Chang & Lin, 2011), which represent smooth and nonsmooth convex problems. Our
results confirm that by admitting larger learning rates, the Polyak stepsize outperforms constant and
decreasing stepsizes.

1.4 NOTATIONS

We use the following notations throughout this paper. For x, y ∈ Rd, ⟨x, y⟩ := xT y is the inner
product, and ∥x∥ :=

√
⟨x, x⟩ is the Euclidean norm. For a real-valued function f : Rd → R, f(x⋆)

is its minimum with a minimizer x⋆ = argminx∈Rdf(x).
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Method Stepsize Smooth Nonsmooth Note

EF21

Richtárik et al. (2021)
Fixed ✓ ✗ nCVX and µ-PL nonconvexity

EF21-P

Gruntkowska et al. (2023)
Fixed ✓ ✗ sCVX and nCVX

EControl

Gao et al. (2023)
Fixed ✓ ✗ sCVX, CVX, nCVX

EF14

Gorbunov et al. (2020)
Fixed ✓ ✗ sCVX, CVX

EF14

Stich et al. (2018)
Decreasing ✓ ✗ sCVX + Bounded gradient norm

EF14

Stich & Karimireddy (2020)
Fixed ✓ ✗ sCVX, CVX, nCVX

EF14

Beznosikov et al. (2023)

Fixed,

Decreasing
✓ ✗ sCVX

EF14

Karimireddy et al. (2019)
Fixed ✓ ✓ nCVX for smooth and CVX for nonsmooth

EF21-P

This paper

Polyak,

Fixed,

Decreasing

✓ ✓ CVX

Table 1: Known and our results for error feedback algorithms. EF21-P is equivalent to EF14, as
shown by Gruntkowska et al. (2023). Here, sCVX, CVX and nCVX are strongly convex, convex
and nonconvex problems, respectively. In this paper, we provide the comprehensive convergence
analysis of EF21-P with constant, decreasing, and Polyak stepsizes for both nonsmooth and smooth
convex problems. Notably, we provide the first result showing how adaptive Polyak stepsizes can be
integrated into error feedback algorithms. Our approach significantly differs from previous works
that have only examined error feedback algorithms with constant and/or decreasing stepsizes mostly
for smooth problems.

2 RELATED WORK

Stepsize selection. The main hyperparameter that affects the convergence of stochastic optimiza-
tion algorithms such as SGD is the stepsize. Several stepsizes have been proposed to guarantee
and improve the algorithmic convergence. For example, SGD converges towards the neighborhood
of the minimizer when we use a constant stepsize (Gower et al., 2019; Garrigos & Gower, 2023;
Gower et al., 2021; Ghadimi & Lan, 2013; Needell et al., 2014), and it enjoys the convergence to-
wards the exact minimizer when we choose a decreasing stepsize (Gower et al., 2019; Garrigos &
Gower, 2023; Shamir & Zhang, 2013; Robbins & Monro, 1951) and step-decay stepsize (Ge et al.,
2019; Wang et al., 2021; Li & Arora, 2020). However, these stepsize schedules require significant
hyperparameter hand-tuning efforts to maximize the convergence speed in practice.

Polyak stepsizes. Adaptive stepsize rules adjust stepsizes to maximize the algorithmic conver-
gence on the fly. One classical adaptive stepsize rule is by Polyak (1987). The Polyak stepsize
computes its value based on the function values at the current iterate and the minimizer, and on
the Euclidean norm of the (sub)gradient to maximize a convergence bound at each iteration. Well-
known results of deterministic (sub)gradient descent with the Polyak stepsize were shown by Hazan
& Kakade (2019); Boyd et al. (2003). The algorithm attains O(1/K) convergence for smooth con-
vex regimes and the O(1/K1/2) convergence for nonsmooth convex regimes. The Polyak stepsize
has also been extended to stochastic optimization algorithms, such as SGD and stochastic momen-
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tum algorithms, by many recent works including Prazeres & Oberman (2021); Berrada et al. (2020);
Loizou et al. (2021); Jiang & Stich (2024); Schaipp et al. (2023); Wang et al. (2023).

Other adaptive stepsizes. Other adaptive stepsize schedules are line search and statistical adaptive
procedures. First, line search techniques determine an acceptable stepsize at each iteration to obtain
a sufficient decrease in the objective function. One common line search is Armijo Armijo (1966).
Convergence analyses of gradient-based algorithms using the Armijo line search and its variants
have been conducted in both deterministic and stochastic settings, as demonstrated by Vaswani
et al. (2019); Ahookhosh & Ghaderi (2017); Galli et al. (2024); Kunstner et al. (2024); Jiang &
Stich (2024). Second, statistical tests detect stationarity of the iterate progress to decrease the fixed
stepsize. Despite their convergence benefits empirically by Zhang et al. (2020); Pesme et al. (2020),
the algorithms using these adaptive tests lack theoretical guarantees.

Adaptive gradient methods. Adaptive gradient algorithms refer to SGD that use stepsizes com-
puted adaptively based on magnitudes of previous stochastic gradients. Popular adaptive gradient
algorithms include Adagrad (Duchi et al., 2011), Adam (Kingma & Ba, 2015) and RMSProp (Tiele-
man, 2012) for effectively solving sparse optimization (Duchi et al., 2013) and deep learning
tasks (LeCun et al., 2015).

3 EF21-P: USEFUL FORM FOR ERROR FEEDBACK ALGORITHMS

EF21-P (Gruntkowska et al., 2023) is an algorithm that solves problem (1) by performing error-
feedback updates in the primal space of the models/iterates. Given the initial iterates x0, w0 ∈ Rd,
and the compressor Ck, EF21-P updates the iterates xk, wk via:

xk+1 = xk − γkg(wk), and wk+1 = wk + Ck(xk+1 − wk). (2)

Here γk is any positive stepsize, and g(wk) is either the subgradient of f at wk in the deterministic
setting or the subgradient of fik at wk, where ik is sampled from {1, 2, . . . , n} uniformly at random
in the stochastic setting. See the full description of EF21-P in Algorithm 1.

Algorithm 1 Primal variant of Error Feedback 2021 (EF21-P)
1: Parameters: Starting points x0, w0 ∈ Rd; learning rates γk > 0 for k = 0, 1, . . .; α-contractive

compressors Ck : Rd → Rd for k = 0, 1, . . .
2: for k = 0, 1, 2, . . . do
3: Set g(wk) to be a subgradient of f at wk (deterministic setting), or a subgradient of fik at

wk where ik is selected uniformly at random from {1, 2, . . . , n} (stochastic setting).
4: xk+1 = xk − γkg(wk)
5: wk+1 = wk + Ck (xk+1 − wk)
6: end for

Furthermore, EF21-P is a very useful update for error feedback algorithms for four main reasons.
First, EF21-P is equivalent to the traditional EF14 algorithms by Seide et al. (2014). By taking
ek := xk − wk, the EF21-P update in (2) can be expressed equivalently as

wk+1 = wk + Ck(ek − γkg(wk)), and ek+1 = ek − γkg(wk)− Ck(ek − γkg(wk)). (3)

Second, EF21-P can be combined with suitable algorithms, e.g. DIANA and DCGD, to obtain dis-
tributed algorithms that utilize bi-directional compression to improve communication complexity
(Gruntkowska et al., 2023). Third, EF21-P yields stochastic primal averaging algorithms (Defazio,
2020; Tao et al., 2018) when Ck(v) = αk · v for αk ∈ (0, 1] in (2). Fourth, EF21-P recovers
(stochastic) subgradient descent when the compressors {Ck} are chosen to be identity operators.

To facilitate our convergence analysis of EF21-P that accommodates any stepsize rules, we impose
Assumptions 3 and 4 on the objective function and the compressor, respectively.
Assumption 3. The function f has Hölder continuous subgradient. That is, there exists L > 0 and
η ∈ [0, 1] such that its subgradient g(x) satisfies

∥g(x)− g(y)∥ ≤ Lη∥x− y∥η, ∀x, y ∈ Rd.

5
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On the one hand, Assumption 3 with α = 1 implies that the function f has an L1-Lipschitz con-
tinuous gradient. On the other hand, Assumption 3 with η = 0 is equivalent to the subgradients of
the function f that have the norms uniformly bounded by G ≥ L0/2. This G-bounded norm of the
subgradient is equivalent to the G-Lipschitz continuity of the functions, according to Lemma 8.8. of
Garrigos & Gower (2023).

Assumption 4 (α-contractiveness). The compressors {Ck}k≥0 are α-contractive. That is, there
exists α ∈ (0, 1] such that

E
[
∥C(x)− x∥2

]
≤ (1− α)∥x∥2, ∀x ∈ Rd. (4)

4 ANALYSIS FOR CONVEX, DETERMINISTIC OPTIMIZATION

We begin by studying EF21-P for convex, deterministic optimization. The result is of importance
for designing distributed algorithms that use bi-directional compression based on the combination
of EF21-P and other suitable algorithms (see the discussion Section 3). To derive the results for
popular stepsize schedules, we develop a novel key descent inequality below.

Lemma 1 (Convex, deterministic optimization). Consider problem (1), where f(x) satisfies As-
sumption 1 (convexity), and Assumption 2 (existence of a minimizer). Also, let Assumption 4 (con-
tractivity) hold, and let the stepsizes {γk} be constants conditional on xk and wk. Then the iterates
{xk, wk} generated by Algorithm 1 (EF21-P), where g(wk) is the subgradient of f at wk satisfy the
inequality/recursion

E [Vk+1|xk, wk] ≤ Vk − 2γk (f(wk)− f(x⋆)) +Bγ2
k∥g(wk)∥2,

where the Lyapunov function Vk and constants B are given by

Vk := ∥xk − x⋆∥2+
1

λ (1− (1− α)(1 + θ))
∥wk − xk∥2, and B = 1+λ+

1

λ

(1− α) (1 + 1/θ)

1− (1− α)(1 + θ)
.

Above, λ > 0 can be chosen arbitrarily, and θ > 0 is any constant such that (1−α)(1+θ) ∈ (0, 1).

Lemma 1 implies a decrease in the Lyapunov function Vk, when the stepsizes γk are chosen to ensure
that −2γk (f(wk)− f(x⋆)) + Bγ2

k∥g(wk)∥2 < 0 for all k. The rate of decrease in Vk depends on
the stepsizes γk, the compression parameter α ∈ (0, 1], and two free parameters due to Young’s
inequality λ, θ > 0. Also, from this lemma, the descent inequality of EF21-P with C(x) ≡ x (i.e.,
α = 1) implies

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2γk (f(xk)− f(x⋆)) + (1 + λ)γ2
k∥g(xk)∥2.

Due to the presence of λ > 0, this inequality is worse than that of the classical subgradient method:

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2γk (f(xk)− f(x⋆)) + (1 + 0)γ2
k∥g(xk)∥2.

Optimal choices of λ, θ > 0. Although we are free to choose λ, θ > 0, we wish to select λ, θ that
minimizes B in the last term on the right-hand side of the inequality from Lemma 1. We achieve
this by first choosing θ⋆ = 1√

1−α
− 1 to minimize (1−α)(1+1/θ)

1−(1−α)(1+θ) such that (1− α)(1 + θ⋆) ∈ (0, 1)

from Lemma 3 of Richtárik et al. (2021), and second by setting λ⋆ =
√
1−α

1−
√
1−α

to minimize B. The
associated minimal value of B is B⋆ = 1 + 2λ⋆.

5 THEOREMS FOR CONSTANT, DECREASING AND POLYAK STEPSIZES

Now, we demonstrate how the descent lemma from Section 4 can be applied to establish the con-
vergence rate results for EF21-P that uses three main stepsize schedules: constant, decreasing, and
Polyak stepsizes. Our results apply for both nonsmooth and smooth convex regimes, and the optimal
rates are summarized in Table 2. Derivations of all results can be found in the appendix.
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stepsize γk
Assumption 3

with α = 0
Assumption 3

with α = 1
rate required knowledge

of hyper-parameters
Constant (Theorem 1) ✓ ✗ G

√
B√

K

√
V0 G,B,K, V0

Constant (Theorem 1) ✗ ✓ 2L1B
K

V0 L1, B

Decreasing (Theorem 2) ✓ ✗ O
(

log(K+1)√
K

)
✗

Decreasing (Theorem 2) ✗ ✓ O
(

1√
K

)
L1, B

Polyak (Theorem 3) ✓ ✗ G
√
B√

K

√
V0 B

Polyak (Theorem 3) ✗ ✓ 2L1B
K

V0 B

Table 2: Convergence rates of EF21-P with constant, decreasing and Polyak stepsizes for convex,
deterministic optimization. Here, V0, B are defined in Lemma 1. For nonsmooth problems, f has the
norm of its subgradient upper-bounded by G ≥ L0/2. For smooth problems, f has an L1-Lipschitz
continuous gradient. The O(1/

√
K) and O(1/K) convergence rate can be attained by constant and

Polyak stepsizes, unlike decreasing stepsizes. Polyak stepsizes, in contrast to constant stepsizes, do
not require to know Lipschitz parameters that are often inaccessible.

5.1 CONSTANT STEPSIZE

First, we provide the convergence for EF21-P with constant stepsizes, which are commonly used to
analyze optimization algorithms.
Theorem 1 (Constant stepsize for deterministic optimization). Consider the iterates {wk} gen-
erated by Algorithm 1 (EF21-P), where g(wk) is the subgradient of f at wk, for solving problem (1).
Let the assumptions invoked in Lemma 1 hold, and choose the stepsize

γk = γ > 0.

Here, B = 1 + λ + 1
λ

(1−α)(1+1/θ)
1−(1−α)(1+θ) , λ > 0 is arbitrarily chosen, and θ > 0 is any constant such

that (1− α)(1 + θ) ∈ (0, 1).

1. (Nonsmooth case). If f satisfies Assumption 3 with α = 0 (G-bounded norm of g(w) with
G ≥ L0/2), then for any γ > 0,

E

[
f

(
1

K

K−1∑
k=0

wk

)
− f(x⋆)

]
≤ V0

2γK
+

BG2γ

2
.

2. (Smooth case). If f satisfies Assumption 3 with α = 1 (L1-Lipschitzness of ∇f ) holds,
then for any 0 < γ < 1/(BL1),

E

[
f

(
1

K

K−1∑
k=0

wk

)
− f(x⋆)

]
≤ V0

2γ (1−BL1γ)K
.

From Theorem 1, EF21-P with the constant stepsize γk = γ achieves the O(1/K) convergence.
For nonsmooth problems, EF21-P attains the convergence up to the additive constant BG2γ/2
for any γ > 0. For smooth problems, EF21-P converges for 0 < γ < 1/(BL1). Our re-
sults hold for any initial iterates w0, w0 ∈ Rd, unlike Theorem D.1. and E.3. of Gruntkowska
et al. (2023) that assumes w0 = x0. Additionally, we can select γ > 0 to minimize the con-
vergence bounds for both problems. On the one hand, for nonsmooth problems, if we choose

γ⋆ = argminγ>0

(
V0

2γK + BG2γ
2

)
= 1√

K

√
V0

BG2 , then

E [f(ŵK)− f(x⋆)] ≤
G
√
B√
K

√
V0.

On the other hand, for smooth problems, if we select γ⋆ = argminγ>0γ(1−BL1γ) =
1

2BL1
, then

E [f(ŵK)− f(x⋆)] ≤
2BL1V0

K
.
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A primary drawback of employing constant stepsizes is the necessity for knowledge concerning
the number of iteration counts K, and two often inaccessible parameters: the Lipschitz parameters
L0, L1, and the Lyapunov function at the initial iterates V0 (given x⋆, w0, x0). Later, we show that
such rates achieved by these constant stepsizes can also be attained by the Polyak stepsize without
requiring these parameters in Section 5.3.

5.2 DECREASING STEPSIZE

Second, we present the convergence of EF21-P with decreasing step-sizes.
Theorem 2 (Decreasing stepsize for deterministic problems). Consider the iterates {wk} gener-
ated by Algorithm 1 (EF21-P), where g(wk) is the subgradient of f at wk, for solving problem (1).
Let the assumptions invoked in Lemma 1 hold, and choose the stepsize

γk =
γ0√
k + 1

with γ0 > 0.

Here, B = 1 + λ + 1
λ

(1−α)(1+1/θ)
1−(1−α)(1+θ) , λ > 0 is arbitrarily chosen, and θ > 0 is any constant such

that (1− α)(1 + θ) ∈ (0, 1).

1. (Nonsmooth case). If f satisfies Assumption 3 with α = 0 (G-bounded norm of g(w) with
G ≥ L0/2), then

E

[
f

(
1∑K−1

k=0 γk

K−1∑
k=0

γkwk

)
− f(x⋆)

]
≤ V0 + (2BG2)γ2

0 log(K + 1)

γ0
√
K

.

2. (Smooth case). If f satisfies Assumption 3 with α = 1 (L1-Lipschitzness of ∇f ) holds,
and γ0 ∈ (0, 1/(2BL1)], then

E

[
f

(
1∑K−1

k=0 γk

K−1∑
k=0

γkwk

)
− f(x⋆)

]
≤ 2V0

γ0
√
K

.

From Theorem 2, the decreasing stepsizes guarantee the EF21-P convergence at the O(log(K +

1)/
√
K) rate for nonsmooth problems, and at the O(1/

√
K) rate for smooth problems. These rates

however are slower than constant stepsizes from Section 5.1.

5.3 POLYAK STEPSIZE

Third, inspired by Polyak (1987), we show how to obtain the Polyak stepsize by using Lemma 1,
and applying the derivation provided by Hazan & Kakade (2019) for EF21-P. The subsequent result
establishes the convergence attained by the Polyak stepsize.
Theorem 3 (Polyak stepsize for deterministic problems). Consider the iterates {wk} generated
by Algorithm 1 (EF21-P), where g(wk) is the subgradient of f at wk, for solving problem (1). Let
the assumptions invoked in Lemma 1 hold, and choose the stepsize

γk =
f(wk)− f(x⋆)

B∥g(wk)∥2
.

Here, B = 1 + λ + 1
λ

(1−α)(1+1/θ)
1−(1−α)(1+θ) , λ > 0 is arbitrarily chosen, and θ > 0 is any constant such

that (1− α)(1 + θ) ∈ (0, 1).

1. (Nonsmooth case). If f satisfies Assumption 3 with α = 0 (G-bounded norm of g(w) with
G ≥ L0/2), then

E

[
f

(
1

K

K−1∑
k=0

wk

)
− f(x⋆)

]
≤ G

√
B√
K

√
V0.

2. (Smooth case). If f satisfies Assumption 3 with α = 1 (L1-Lipschitzness of ∇f ) holds,
then

E

[
f

(
1

K

K−1∑
k=0

wk

)
− f(x⋆)

]
≤ 2L1B

K
V0.
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Figure 1: Convergence f(wk)−f(x⋆) w.r.t. iteration k of EF21-P in the deterministic and stochastic
setting for logistic regression over synthetic data with (n, d) = (1000, 10000) generated by Nutini
et al. (2022).

First known result for combining Polyak stepsize with error feedback. This theorem is the first
known result for EF21-P that uses the Polyak stepsize. This stepsize achieves the same convergence

rate for EF21-P as the constant stepsize γ⋆ = 1√
K

√
V0

BG2 for nonsmooth problems, and as γ⋆ =
1

2BL1
for smooth problems. Unlike these constant stepsizes, the Polyak stepsize does not require

Lipschitz parameters, except f(x⋆). Nonetheless, f(x⋆) can be estimated by its lower-bound (Hazan
& Kakade, 2019), which is often zero for unregularized logistic regression problems, and other
problems that satisfy the interpolation condition, as discussed later in Section 6.

6 ANALYSIS FOR CONVEX, STOCHASTIC OPTIMIZATION UNDER
INTERPOLATION

Next, we turn our attention to EF21-P for convex, stochastic optimization under interpolation. We
rather consider EF21-P that evaluates the subgradient of fik at wk, where ik is selected uniformly at
random from {1, 2, . . . , n}. To facilitate the analysis, we further assume the interpolation condition,
which holds when problem (1) is the problem of training an over-parameterized model, such as
a deep neural network, solving a consistent linear system, and learning a classifier over linearly
separable data, (Loizou et al., 2021).

Assumption 5. (Interpolation) Let x⋆ = argminx∈Rd f(x) := 1
n

∑n
i=1 fi(x). Then, ∇fi(x⋆) = 0

for i = 1, 2, . . . , n.

To this end, we prove the descent inequality for EF21-P in the stochastic setting.

Lemma 2 (Convex, stochastic optimization under interpolation). Consider problem (1), where
f satisfies Assumption 2 (existence of a minimizer), and Assumption 5 (interpolation). Also, let each
fi satisfy Assumption 1 (convexity), let Assumption 4 (contractivity) hold, and let the stepsizes {γk}
be constants conditional on xk and wk. Then the iterates {xk, wk} generated by Algorithm 1 (EF21-
P), where g(wk) is the subgradient of fik at wk, and ik is selected from {1, 2, . . . , n} uniformly at
random, satisfy the inequality/recursion

E [Vk+1|xk, wk] ≤ Vk − 2E [γk[fik(wk)− fik(x⋆)]|xk, wk] +BE
[
γ2
k∥g(wk)∥2

∣∣∣xk, wk

]
,

where the Lyapunov function Vk and constants B are given by

Vk := ∥xk − x⋆∥2+
1

λ (1− (1− α)(1 + θ))
∥wk − xk∥2, and B = 1+λ+

1

λ

(1− α) (1 + 1/θ)

1− (1− α)(1 + θ)
.

Above, λ > 0 can be chosen arbitrarily, and θ > 0 is any constant such that (1−α)(1+θ) ∈ (0, 1).

From this lemma, we derive the EF21-P convergence in the stochastic setting, thus leading to the
same rates and discussions as in the deterministic setting in Section 5. We present the results for the
constant, decreasing, and Polyak stepsizes in Theorem 4, 5 and 6 of Appendix D, respectively.
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7 NUMERICAL EXPERIMENTS

We verify our theory by evaluating the performance of EF21-P with constant, decreasing, and Polyak
stepsizes. We tested the algorithms for solving logistic regression over synthetic sparse data (see
Appendix F), and support vector machines over benchmarked data from LIBSVM (Chang & Lin,
2011), as described in the next section. For all experiments, we initialized the iterates x0 = w0 = 0,
and set B = 1+2λ⋆ with λ⋆ =

√
1−α

1−
√
1−α

. The results were obtained from the machine with 2.4 GHz
Intel Core i5 processor, and were averaged from three Monte Carlo runs for the stochastic setting.

7.1 SUPPORT VECTOR MACHINE PROBLEM OVER BENCHMARKED DATA

Next, we consider the support vector machines problem, i.e. problem (1) with fi(x) = max(0, 1−
bi⟨ai, x⟩) for each dataset {ai, bi}ni=1. This problem is convex but nonsmooth, and the subgradient
of each function is ∇fi(x) = −1bi⟨ai,x⟩≤1biai, where 1D is 1 if the condition D holds, and 0 other-
wise. We ran EF21-P with the Top-k sparsification, where k is 5% of the problem dimension, for the
problem over three benchmarked data from LIBSVM (Chang & Lin, 2011): madelon, rcv1binary,
and w5a. Here, we set the constant stepsize in {0.2, 5.0}, the decreasing stepsize with 5√

k+1
, and

the Polyak stepsize.

Figure 2 indicates the superior performance of using the Polyak stepsize over other stepsize sched-
ules for EF21-P in the deterministic setting. The Polyak stepsize attains the higher solution accuracy
than the constant stepsize γ = 5.0 roughly by an order of magnitude at iteration k = 4, 000 for
madelon and by four orders of magnitude at iteration k = 2, 000 for rcv1binary.

8 CONCLUSION

We have presented a comprehensive analysis of EF21-P, a useful error feedback algorithm, for
smooth and nonsmooth convex regimes. Our analysis allows EF21-P to employ constant, decreasing,
and Polyak stepsizes for deterministic and stochastic interpolation problems. Specifically, EF21-P
with the Polyak stepsizes enjoys convergence at the O(1/

√
K) rate for nonsmooth regimes, and at

the O(1/K) rate for smooth regimes. This marks the first successful incorporation of the Polyak
stepsize into error feedback algorithms, which is useful for solving problems, where Lipschitz pa-
rameters are inaccessible. Finally, our experiments on logistic regression and support vector ma-
chines indicate significant convergence improvements achieved by EF21-P using our Polyak stepsize
compared to constant and decreasing stepsizes.

Future works. There are many interesting extensions of our work. By the current analysis frame-
work in this paper, we can investigate how other adaptive stepsize strategies affect the convergence of
EF21-P, e.g. Adagrad (Duchi et al., 2011), gradient diversity (Horváth et al., 2022), Armijo (Armijo,
1966), and Nonnegative Gauss-Newton stepsizes (Orvieto & Xiao, 2024). Another challenging ex-
tension of our analysis is to generalize EF21-P to minimize nonsmooth and (generalized) smooth
nonconvex functions. This extension requires us to revisit the Lyapunov function or to modify the
EF21-P update to prove its convergence for any stepsize strategies.
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A BASIC FACTS, IDENTITIES AND INEQUALITIES

We state the following useful facts from linear algebra: for any a, b ∈ Rd and any ζ > 0,

2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, (5)

∥a+ b∥2 ≤ (1 + ζ) ∥a∥2 +
(
1 + ζ−1

)
∥b∥2. (6)

Next we state the useful identity from probability. For any random variables X,Y , the tower prop-
erty of expectation (also known as the law of iterated expectation) says that

E [E [X|Y ]] = E [X] , (7)

while the Cauchy-Schwarz inequality states that

|E [XY ] | ≤
√
E [X2] E [Y 2] (8)

B CONTRACTIVE COMPRESSORS AND THEIR EXAMPLES

Compressors under Assumption 4 are not assumed to be unbiased, so they can be either determinis-
tic or stochastic. The associated contraction parameter α implies how close the compressed vector is
to its full-precision vector (i.e., α = 1 implies that the compressor is an identity operator). Examples
of α-contractive compressors include Top-k sparsification (Alistarh et al., 2018; Stich et al., 2018),
biased random sparsification (Beznosikov et al., 2023), adaptive random sparsification (Beznosikov
et al., 2023), scaled-sign quantization (Karimireddy et al., 2019) and biased exponential round-
ing (Beznosikov et al., 2023). Table 3 summarizes examples of these α-contractive compressors,
each of which includes its type and contraction parameter.

Compression Operator Type Contraction parameter α
Top-k sparsification Deterministic k/d
Biased random sparsification Stochastic q = mini pi
Adaptive random sparsification Stochastic 1/d
Scaled-sign quantization Deterministic 1/d
Biased exponential rounding Deterministic 4b/(1 + b)2

Table 3: Examples of α-contractive compressors. For more examples of α-contractive compressors,
we refer to the works by Beznosikov et al. (2023), Safaryan et al. (2022b), and Albasyoni et al.
(2020).

Furthermore, some compressors that may not be contractive can be made α-contractive by scaling
with a properly chosen positive scalar. In particular, (1+ω)−1C(x) is a 1

1+ω -contractive compressor
if C(x) is a compressor that satisfies

E [C(x)] = x and E
[
∥C(x)∥2

]
≤ ω∥x∥2 (9)

for ω > 0 and x ∈ Rd. Here, we can show that E
[
∥C(x)− x∥2

]
≤ (ω − 1)∥x∥2, thus implying

that C(x) is unbiased but not α-contractive for ω > 2.

C PROOF OF EF21-P FOR DETERMINISTIC OPTIMIZATION

C.1 PROOF OF LEMMA 1

We prove Lemma 1 in three steps.
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Step 1: Bound E
[
∥wk+1 − xk+1∥2

∣∣∣xk, wk

]
. From the definition of the Euclidean norm,

E
[
∥wk+1 − xk+1∥2

∣∣∣xk, wk

]
Update of wk+1

= E
[
∥Ck(xk+1 − wk)− (xk+1 − wk)∥2

∣∣∣xk, wk

]
(4)

≤ (1− α)E
[
∥xk+1 − wk∥2

∣∣∣xk, wk

]
Update of xk+1

= (1− α)E
[
∥xk − wk − γkg(wk)∥2

∣∣∣xk, wk

]
= (1− α)∥xk − wk − γkg(wk)∥2,

where g(wk) is the subgradient of f at wk. Next, by (6), and by the fact that the stepsize γk > 0 is
conditioned on xk, wk

E
[
∥wk+1 − xk+1∥2

∣∣∣xk, wk

]
≤ (1−α)(1+θ)∥xk − wk∥2+(1−α)

(
1 +

1

θ

)
γ2
k∥g(wk)∥2, (10)

where θ > 0 can be chosen arbitrarily.

Step 2: Bound E
[
∥xk+1 − x⋆∥2

∣∣∣xk, wk

]
. Since xk+1 = xk−γkg(wk), by expanding the square

∥xk+1 − x⋆∥2, we get

E
[
∥xk+1 − x⋆∥2

∣∣∣xk, wk

]
= E

[
∥xk − γkg(wk)− x⋆∥2

∣∣∣xk, wk

]
= E

[
∥xk − x⋆∥2 − 2γk ⟨g(wk), xk − x⋆⟩+ γ2

k∥g(wk)∥2
∣∣∣xk, wk

]
= ∥xk − x⋆∥2 − 2γk ⟨g(wk), wk − x⋆⟩

+2γk ⟨g(wk), wk − xk⟩+ γ2
k∥g(wk)∥2. (11)

We now use the inequality 2 ⟨a, b⟩ = 2
〈√

ta, b√
t

〉
≤ t∥a∥2 + 1

t ∥b∥
2, which holds for t > 0 and

all a, b ∈ Rd. In particular, we use it with a = g(wk), b = wk − xk and t = λγk, where λ > 0 is
chosen arbitrarily, and obtain the bound

2γk ⟨g(wk), wk − xk⟩ = γk · 2 ⟨g(wk), wk − xk⟩

≤ γk

(
t∥g(wk)∥2 +

1

t
∥wk − xk∥2

)
= λγ2

k∥g(wk)∥2 +
1

λ
∥wk − xk∥2. (12)

Plugging the bound (12) into (11) leads to

E
[
∥xk+1 − x⋆∥2

∣∣∣xk, wk

]
≤ ∥xk − x⋆∥2 − 2γk ⟨g(wk), wk − x⋆⟩

+
1

λ
∥wk − xk∥2 + (1 + λ) γ2

k∥g(wk)∥2. (13)

Step 3: Derive the descent inequality using Vk = ∥xk − x⋆∥2 + A∥wk − xk∥2 with A > 0.
Defining Vk = ∥xk − x⋆∥2 +A∥wk − xk∥2 with A > 0, we can write

E [Vk+1|xk, wk]
(10)+ (13)

≤ ∥xk − x⋆∥2 +
(
1

λ
+A(1− α)(1 + θ)

)
∥wk − xk∥2

−2γk ⟨g(wk), wk − x⋆⟩+Bγ2
k∥∇f(wk)∥2,

where B = 1 + λ + A(1 − α)
(
1 + θ−1

)
. If we choose θ so that (1 − α)(1 + θ) ∈ (0, 1), and

A = 1
λ

1
1−(1−α)(1+θ) , then 1

λ +A(1− α)(1 + θ) = A and hence

E [Vk+1|xk, wk] ≤ Vk − 2γk ⟨g(wk), wk − x⋆⟩+Bγ2
k∥g(wk)∥2.

Since g(wk) is the subgradient of f at wk, and f is convex, i.e. f(wk)−f(x⋆) ≥ ⟨g(wk), wk − x⋆⟩,
we get

E [Vk+1|xk, wk] ≤ Vk − 2γk (f(wk)− f(x⋆)) +Bγ2
k∥g(wk)∥2.
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C.2 PROOF OF THEOREM 1

By Theorem 1, by the tower property of expectation (7) and by choosing γk = γ > 0,

E [Vk+1] ≤ E [Vk]− 2γE [f(wk)− f(x⋆)] +Bγ2E
[
∥g(wk)∥2

]
. (14)

Proof for the nonsmooth case. Suppose that f also satisfies Assumption 3 with α = 0. This is
equivalent to the condition that ∥g(w)∥ ≤ G with G ≥ L0/2 for all w ∈ Rd. By (14),

E [Vk+1] ≤ E [Vk]− 2γE [f(wk)− f(x⋆)] +BG2γ2. (15)

Next, define ŵK = 1
K

∑K−1
k=0 wk. Then, by the convexity of f , we get

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [f(wk)− f(x⋆)]

(15)

≤ E [V0]− E [VK ]

2γK
+

BG2γ

2
VK≥0

≤ V0

2γK
+

BG2γ

2
.

Proof for the smooth case. Suppose that f also satisfies Assumption 3 with α = 1. By the fact
that f is convex and has L1-Lipschitz continuous gradient, i.e

∥∇f(wk)∥2 ≤ 2L1 (f(wk)− f(x⋆)) ,

and by (14) we get
E [Vk+1] ≤ E [Vk]− 2γ(1−BL1γ)E [f(wk)− f(x⋆)] . (16)

If 0 < γ < 1
BL1

, then 2γ(1 − BL1γ) > 0. Next, by defining ŵK = 1
K

∑K−1
k=0 wk, and by the

convexity of f ,

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [f(wk)− f(x⋆)]

(16)

≤ E [V0]− E [VK ]

2γ(1−BL1γ)K
VK≥0

≤ V0

2γ(1−BL1γ)K
.

C.3 PROOF OF THEOREM 2

By Lemma 1, and by the tower property of expectation (7),

E [Vk+1] ≤ E [Vk]− 2γkE [f(wk)− f(x⋆)] +Bγ2
kE
[
∥∇f(wk)∥2

]
. (17)

Proof for the nonsmoooth case. Suppose that f also satisfies Assumption 3 with α = 0. This is
equivalent to the conditon that ∥g(w)∥ ≤ G with G ≥ L0/2 for all w ∈ Rd. By (17),

E [Vk+1] ≤ E [Vk]− 2γkE [f(wk)− f(x⋆)] +BG2γ2
k. (18)

Next by defining w̄K = 1∑K−1
k=0 γk

∑K−1
k=0 γkwk and by using the convexity of f ,

f(w̄K)− f(x⋆) ≤ 1∑K−1
k=0 γk

K−1∑
k=0

γk[f(wk)− f(x⋆)]

(18)

≤
(E [V0]− E [VK ]) + (BG2)

∑K−1
k=0 γ2

k

2
∑K−1

k=0 γk

VK≥0

≤
V0 + (BG2)

∑K−1
k=0 γ2

k

2
∑K−1

k=0 γk
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

If γk = γ0√
k+1

with γ0 > 0, then

K−1∑
k=0

γk ≥ γ0
√
K

2
, and

K−1∑
k=0

γ2
k ≤ 2γ2

0 log(K + 1).

Therefore,

E [f(w̄K)− f(x⋆)] ≤ V0 + (2BG2)γ2
0 log(K + 1)

γ0
√
K

.

Proof for the smoooth case. Suppose that f also satisfies Assumption 3 with α = 1. By the fact
that f is convex and has L1-Lipschitz continuous gradient, i.e

∥∇f(wk)∥2 ≤ 2L1[f(wk)− f(x⋆)],

and by (17) we have

E [Vk+1] ≤ E [Vk]− 2γk(1−BL1γk)E [f(wk)− f(x⋆)] .

If γk = γ0√
k+1

with γ0 ∈ (0, 1/(2BL1)], then γk ∈ (0, 1/(2BL1)] and

E [Vk+1] ≤ E [Vk]− γkE [f(wk)− f(x⋆)] . (19)

Next by defining ŵK = 1∑K−1
k=0 γk

∑K−1
k=0 γkwk, and by the convexity of f ,

E [f(w̄K)− f(x⋆)] ≤ 1∑K−1
k=0 γk

K−1∑
k=0

γkE [f(wk)− f(x⋆)]

(19)

≤ E [V0]− E [VK ]∑K−1
k=0 γk

VK≥0

≤ V0∑K−1
k=0 γk

.

Since γk = γ0√
k+1

with γ0 > 0, which yields

K−1∑
k=0

γk ≥ γ0
√
K

2
,

we get

E [f(w̄K)− f(x⋆)] ≤ 2V0

γ0
√
K

.

C.4 PROOF OF THEOREM 3

From Lemma 1 choose the stepsize such that

γk = argminγ
(
Vk − 2γ[f(wk)− f(x⋆)] +Bγ2∥g(wk)∥2

)
=

f(wk)− f(x⋆)

B∥g(wk)∥2
,

which hence yields

E [Vk+1|xk, wk] ≤ Vk − (f(wk)− f(x⋆))
2

B∥g(wk)∥2
. (20)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof for the nonsmooth case. Suppose that f also satisfies Assumption 3 with α = 0. This is
equivalent to the condition that ∥g(w)∥ ≤ G with G ≥ L0/2 for all w ∈ Rd. Therefore, from (20)

E [Vk+1|xk, wk] ≤ Vk − 1

BG2
(f(wk)− f(x⋆))

2
.

By applying the tower property of expectation (7),

E [Vk+1] ≤ E [Vk]−
1

BG2
E
[
(f(wk)− f(x⋆))

2
]
. (21)

Next define ŵK = 1
K

∑K−1
k=0 wk. Then, by the convexity of f ,

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [f(wk)− f(x⋆)] .

By Cauchy-Schwartz inequality (8) with X = f(wk)− f(x⋆) and Y = 1,

E [f(ŵK)− f(x⋆)] ≤ 1√
K

√√√√K−1∑
k=0

E
[
(f(wk)− f(x⋆))

2
]

(21)

≤ G
√
B√
K

√
E [V0]− E [VK ]

VK≥0

≤ G
√
B√
K

√
V0.

Proof for the smooth case. Suppose that f also satisfies Assumption 3 with α = 1. By the fact
that f(x) is convex and has L1-Lipschitz continuous gradient, i.e

∥∇f(wk)∥2 ≤ 2L1[f(wk)− f(x⋆)],

and next by the tower property of expectation (7) and by (20),

E [Vk+1] ≤ E [Vk]−
E [f(wk)− f(x⋆)]

2L1B
. (22)

Next define ŵK = 1
K

∑K−1
k=0 wk. Then, by the convexity of f ,

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [f(wk)− f(x⋆)]

(22)

≤ 2L1B

K
(E [V0]− E [VK ])

VK≥0

≤ 2L1B

K
V0.
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D THEORY OF EF21-P FOR STOCHASTIC OPTIMIZATION UNDER
INTERPOLATION

In this section we provide the convergence of EF21-P for convex, stochastic optimization under
interpolation regimes. The following theorems are analogous to deterministic optimization, and
apply for constant, decreasing and Polyak stepsizes.
Theorem 4 (Fixed stepsize for stochastic problems). Consider the iterates {wk} generated by
Algorithm 1 (EF21-P), where gk is the subgradient of fik at wk, and ik is selected from {1, 2, . . . , n},
for problem (1). Let the assumptions invoked in Lemma 2 hold, and choose the stepsize

γk = γ > 0.

Here, B = 1 + λ + 1
λ

(1−α)(1+1/θ)
1−(1−α)(1+θ) , λ > 0 is arbitrarily chosen, and θ > 0 is any constant such

that (1− α)(1 + θ) ∈ (0, 1).

1. (Nonsmooth case). If each fi satisfies Assumption 3 with α = 0 (G-bounded norm of g(w)
with G ≥ L0/2), then

E

[
f

(
1

K

K−1∑
k=0

wk

)
− f(x⋆)

]
≤ V0

2γK
+

BG2γ

2
.

2. (Smooth case). If each fi satisfies Assumption 3 with α = 1 (L1-Lipschitzness of ∇fi),
and γ < 1

BL1
, then

E

[
f

(
1

K

K−1∑
k=0

wk

)
− f(x⋆)

]
≤ V0

2γ(1−BL1γ)K
.

Theorem 5 (Decreasing stepsize for stochastic problems). Consider the iterates {wk} gener-
ated by Algorithm 1 (EF21-P), where gk is the subgradient of fik at wk, and ik is selected from
{1, 2, . . . , n}, for solving problem (1). Let the assumptions invoked in Lemma 2 hold, and choose
the stepsize

γk =
γ0√
k + 1

with γ0 > 0.

Here, B = 1 + λ + 1
λ

(1−α)(1+1/θ)
1−(1−α)(1+θ) , λ > 0 is arbitrarily chosen, and θ > 0 is any constant such

that (1− α)(1 + θ) ∈ (0, 1).

1. (Nonsmooth case). If each fi satisfies Assumption 3 with α = 0 (G-bounded norm of g(w)
with G ≥ L0/2), then

E

[
f

(
1∑K−1

k=0 γk

K−1∑
k=0

γkwk

)
− f(x⋆)

]
≤ V0 + γ2

0(2BG2) log(K + 1)

γ0
√
K

.

2. (Smooth case). If each fi satisfies Assumption 3 with α = 1 (L1-Lipschitzness of ∇fi),
and γ0 ∈ (0, 1/(2BL1)], then

E

[
f

(
1∑K−1

k=0 γk

K−1∑
k=0

γkwk

)
− f(x⋆)

]
≤ 2V0

γ0
√
K

.

Theorem 6 (Polyak stepsize for stochastic problems). Consider the iterates {wk} generated by
Algorithm 1 (EF21-P), where gk is the subgradient of fik at wk, and ik is selected from {1, 2, . . . , n}
for problem (1). Let the assumptions invoked in Lemma 2 hold, and choose the stepsize

γk =
fik(wk)− fik(x⋆)

B∥∇fik(wk)∥2
.

Here, B = 1 + λ + 1
λ

(1−α)(1+1/θ)
1−(1−α)(1+θ) , λ > 0 is arbitrarily chosen, and θ > 0 is any constant such

that (1− α)(1 + θ) ∈ (0, 1).
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1. (Nonsmooth case). If each fi satisfies Assumption 3 with α = 0 (G-bounded norm of g(w)
with G ≥ L0/2), then

E

[
f

(
1

K

K−1∑
k=0

wk

)
− f(x⋆)

]
≤ G

√
B√
K

√
V0.

2. (Smooth case). If each fi satisfies Assumption 3 with α = 1 (L1-Lipschitzness of ∇fi),
then

E

[
f

(
1

K

K−1∑
k=0

wk

)
− f(x⋆)

]
≤ 2L1B

K
V0.

E PROOF OF EF21-P FOR STOCHASTIC OPTIMIZATION UNDER
INTERPOLATION

E.1 PROOF OF LEMMA 2

We prove Lemma 2 in three steps.

Step 1: Bound E
[
∥wk+1 − xk+1∥2

∣∣∣xk, wk

]
. From the definition of the Euclidean norm,

E
[
∥wk+1 − xk+1∥2

∣∣∣xk, wk

]
Update for wk+1

= E
[
∥Ck(xk+1 − wk)− (xk+1 − wk)∥2

∣∣∣xk, wk

]
(4)

≤ (1− α)E
[
∥xk+1 − wk∥2

∣∣∣xk, wk

]
Update for xk+1

= (1− α)E
[
∥xk − wk − γkg(wk)∥2

∣∣∣xk, wk

]
,

where g(wk) is the subgradient of fik at wk where ik is selected from {1, 2, . . . , n} uniformly at
random. By (6), and by the fact that the stepsize γk > 0 is conditioned on xk, wk

E
[
∥wk+1 − xk+1∥2

∣∣∣xk, wk

]
≤ (1− α)(1 + θ)∥xk − wk∥2

+(1− α)(1 + 1/θ)E
[
γ2
k∥g(wk)∥2

∣∣∣xk, wk

]
. (23)

Step 2: Bound E
[
∥xk+1 − x⋆∥2

∣∣∣xk, wk

]
. From the definition of the Euclidean norm and by the

update for xk+1,

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 − 2γk ⟨g(wk), xk − x⋆⟩+ γ2
k∥g(wk)∥2

= ∥xk − x⋆∥2 − 2γk ⟨g(wk), wk − x⋆⟩+ 2γk ⟨g(wk), wk − xk⟩+ γ2
k∥g(wk)∥2.

Next, we use the inequality 2 ⟨a, b⟩ ≤ 1
t ∥a∥

2
+ t∥b∥2 that holds for t > 0 and for a, b ∈ Rd. In

particular, we use it with a = wk − xk, b = g(wk) and t = λγk, and hence obtain

2γk ⟨g(wk), wk − xk⟩ = γk · 2 ⟨g(wk), wk − xk⟩

≤ γk

(
1

λγk
∥wk − xk∥2 + λγk∥g(wk)∥2

)
≤ 1

λ
∥wk − xk∥2 + λγ2

k∥g(wk)∥2.

Therefore,

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2γk ⟨g(wk), wk − x⋆⟩

+
1

λ
∥wk − xk∥2 + (1 + λ)γ2

k∥g(wk)∥2
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Suppose that Assumption 5 (interpolation) and the convexity of each fi hold. By the fact that g(wk)
is the subgradient of fik at wk,

⟨g(wk), wk − x⋆⟩ = ⟨g(wk)− g(x⋆), wk − x⋆⟩
≥ fik(wk)− fik(x⋆).

Therefore,

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2γk[fik(wk)− fik(x⋆)]

+
1

λ
∥wk − xk∥2 + (1 + λ)γ2

k∥g(wk)∥2.

By taking the conditional expectation on xk, wk and by the fact that the stepsize γk is conditioned
on xk, wk,

E
[
∥xk+1 − x⋆∥2

∣∣∣xk, wk

]
≤ ∥xk − x⋆∥2 − 2E [γk[fik(wk)− fik(x⋆)]|xk, wk]

+
1

λ
∥wk − xk∥2 + (1 + λ)E

[
γ2
k∥g(wk)∥2

∣∣∣xk, wk

]
. (24)

Step 3: Derive the descent inequality using Vk = ∥xk − x⋆∥2 + A∥wk − xk∥2 with A > 0.
Define Vk = ∥xk − x⋆∥2 +A∥wk − xk∥2 with A > 0. Then,

E [Vk+1|xk, wk]
(23)+ (24)

≤ ∥xk − x⋆∥2 + (1/λ+A(1− α)(1 + θ))∥wk − xk∥2

−2E [γk[fik(wk)− fik(x⋆)]|xk, wk] +BE
[
γ2
k∥g(wk)∥2

∣∣∣xk, wk

]
,

where B = 1 + λ+A(1− α)(1 + 1/θ).

If (1− α)(1 + θ) ∈ (0, 1) and A = 1
λ

1
1−(1−α)(1+θ) , then 1/λ+A(1− α)(1 + θ) = A and

E [Vk+1|xk, wk] ≤ Vk − 2E [γk[fik(wk)− fik(x⋆)]|xk, wk] +BE
[
γ2
k∥g(wk)∥2

∣∣∣xk, wk

]
.

E.2 PROOF OF THEOREM 4

We first choose γk = γ > 0. Then, from Lemma 2,

E [Vk+1|xk, wk] ≤ Vk − 2γE [ [fik(wk)− fik(x⋆)]|xk, wk] +Bγ2E
[
∥g(wk)∥2

∣∣∣xk, wk

]
= Vk − 2γ[f(wk)− f(x⋆)] +Bγ2E

[
∥g(wk)∥2

∣∣∣xk, wk

]
. (25)

Proof for the nonsmoooth case. Suppose that each fi also satisfies Assumption 3 with α = 0.
This is equivalent to the condition that ∥g(w)∥ ≤ G with G ≥ L0/2 for all w ∈ Rd. From (25)

E [Vk+1|xk, wk] ≤ Vk − 2γ[f(wk)− f(x⋆)] +BG2γ2.

By the tower property of expectation (7),

E [Vk+1] ≤ E [Vk]− 2γE [f(wk)− f(x⋆)] +BG2γ2. (26)

Next define ŵK = 1
K

∑K−1
k=0 wk. Then, by the convexity of f (due to the convexity of each fi),

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [f(wk)− f(x⋆)]

(26)

≤ E [V0]− E [VK ]

2γK
+

BG2γ

2
VK≥0

≤ V0

2γK
+

BG2γ

2
.
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Proof for the smoooth case. Suppose that each fi also satisfies Assumption 3 with α = 1. By As-
sumption 5, by the L1-Lipschitz continuity of g(w), and by the fact that g(wk) is the subgradient of
fik at wk

∥g(wk)∥2 = ∥g(wk)− g(x⋆)∥2

≤ 2L1[fik(wk)− fik(x⋆)].

From (25),

E [Vk+1|xk, wk] ≤ Vk − 2γ[f(wk)− f(x⋆)] + 2BL1γ
2E [fik(wk)− fik(x⋆)|xk, wk]

= Vk − 2γ[f(wk)− f(x⋆)] + 2BL1γ
2[f(wk)− f(x⋆)].

By the tower property of expectation (7),

E [Vk+1] ≤ E [Vk]− 2γ(1−BL1γ)E [f(wk)− f(x⋆)] . (27)

If 0 < γ < 1/(BL1), then 2γ(1− BL1γ) > 0. Next, by defining ŵK = 1
K

∑K−1
k=0 wk, and by the

convexity of f ,

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [f(wk)− f(x⋆)]

(27)

≤ E [V0]− E [VK ]

2γ(1−BL1γ)K
VK≥0

≤ V0

2γ(1−BL1γ)K
.

E.3 PROOF OF THEOREM 5

We prove the results for nonsmooth and smooth cases.

Proof for the nonsmoooth case. Suppose that f also satisfies Assumption 3 with α = 0. This is
equivalent to the condition that ∥g(w)∥ ≤ G with G ≥ L0/2 for all w ∈ Rd. If γk = γ0√

k+1
with

γ0 > 0, then from Lemma 2,

E [Vk+1|xk, wk] ≤ Vk − 2γkE [fik(wk)− fik(x⋆)|xk, wk] +BG2γ2
k

= Vk − 2γk[f(wk)− f(x⋆)] +BG2γ2
k.

By the tower property of expectation (7),

E [Vk+1] ≤ E [Vk]− 2γkE [f(wk)− f(x⋆)] +BG2γ2
k. (28)

Next by defining ŵK = 1∑K−1
k=0 γk

∑K−1
k=0 γkwk, and by the convexity of f (due to the convexity of

each fi),

E [f(w̄K)− f(x⋆)] ≤ 1∑K−1
k=0 γk

K−1∑
k=0

γkE [f(wk)− f(x⋆)]

(28)

≤
E [V0]− E [VK ] + (BG2)

∑K−1
k=0 γ2

k

2
∑K−1

k=0 γk

VK≥0

≤
V0 + (BG2)

∑K−1
k=0 γ2

k

2
∑K−1

k=0 γk
.

Since γk = γ0√
k+1

with γ0 > 0, which yields

K−1∑
k=0

γk ≥ γ0
√
K

2
, and

K−1∑
k=0

γ2
k ≤ 2γ2

0 log(K + 1),

we get

E [f(w̄K)− f(x⋆)] ≤ V0 + γ2
0(2BG2) log(K + 1)

γ0
√
K

.
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Proof for the smooth case. Suppose each fi satisfies Assumption 3 with α = 1. By Assumption 5,
by the L1-Lipschitz continuity of g(w), and by the fact that g(wk) is the subgradient of fik at wk

∥g(wk)∥2 = ∥g(wk)− g(x⋆)∥2

≤ 2L1[fik(wk)− fik(x⋆)].

Next, if γk = γ0√
k+1

with γ0 ∈ (0, 1/(2BL1)], then γk ∈ (0, 1/(2BL1)], then from Lemma 2

E [Vk+1|xk, wk] ≤ Vk − 2γk(1−BL1γk)E [fik(wk)− fik(x⋆)|xk, wk]

= Vk − 2γk(1−BL1γk)[f(wk)− f(x⋆)]

γk≤1/(2BL1)

≤ Vk − γk[f(wk)− f(x⋆)].

By the tower property of expectation (7),

E [Vk+1] ≤ E [Vk]− γkE [f(wk)− f(x⋆)] . (29)

Next by defining ŵK = 1∑K−1
k=0 γk

∑K−1
k=0 γkwk, and by the convexity of f (due to the convexity of

each fi),

E [f(w̄K)− f(x⋆)] ≤ 1∑K−1
k=0 γk

K−1∑
k=0

γkE [f(wk)− f(x⋆)]

(29)

≤ E [V0]− E [VK ]∑K−1
k=0 γk

VK≥0

≤ V0∑K−1
k=0 γk

.

Since γk = γ0√
k+1

with γ0 > 0, which yields

K−1∑
k=0

γk ≥ γ0
√
K

2
,

we get

E [f(w̄K)− f(x⋆)] ≤ 2V0

γ0
√
K

.

E.4 PROOF OF THEOREM 6

We first choose the stepsize

γk =
fik(wk)− fik(x⋆)

B∥g(wk)∥2
,

where B = 1 + λ+ 1
λ

(1−α)(1+1/θ)
1−(1−α)(1+θ) . Then, from Lemma 2

E [Vk+1|xk, wk] ≤ Vk − 2E [γk[fik(wk)− fik(x⋆)]|xk, wk] +BE
[
γ2
k∥g(wk)∥2

∣∣∣xk, wk

]
= Vk − E

[
[fik(wk)− fik(x⋆)]

2

B∥g(wk)∥2

∣∣∣∣∣xk, wk

]
.

By the tower property of expectation (7),

E [Vk+1] ≤ E [Vk]− E

[
[fik(wk)− fik(x⋆)]

2

B∥g(wk)∥2

]
. (30)
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Proof for the non-smooth case. Suppose that f also satisfies Assumption 3 with α = 0. This is
equivalent to the condition that ∥g(w)∥ ≤ G with G ≥ L0/2 for all w ∈ Rd. From (30)

E [Vk+1] ≤ E [Vk]−
1

BG2
E
[
[fik(wk)− fik(x⋆)]

2
]
. (31)

Next define ŵK = 1
K

∑K−1
k=0 wk. Then, by the convexity of f (due to the convexity of each fi),

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [f(wk)− f(x⋆)] .

Since

E [fik(wk)− fik(x⋆)]
(7)
= E [E [fik(wk)− fik(x⋆)|xk, wk]]

= E

[
1

n

n∑
i=1

fi(wk)− fi(x⋆)

]
= E [f(wk)− f(x⋆)] ,

we then have

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [fik(wk)− fik(x⋆)] .

By Cauchy-Schwartz inequality (8) with X = fik(wk)− fik(x⋆) and Y = 1,

E [f(ŵK)− f(x⋆)] ≤ 1√
K

√√√√K−1∑
k=0

E
[
(fik(wk)− fik(x⋆))

2
]

(31)

≤ G
√
B√
K

√
E [V0]− E [VK ]

VK≥0

≤ G
√
B√
K

√
V0.

Proof for the smooth case. Suppose each fi satisfies Assumption 3 with α = 1. By Assumption 5,
by the L1-Lipschitz continuity of g(w), and by the fact that g(wk) is the subgradient of fik at wk

∥g(wk)∥2 = ∥g(wk)− g(x⋆)∥2

≤ 2L1[fik(wk)− fik(x⋆)].

Therefore, from (30)

E [Vk+1] ≤ E [Vk]−
E [fik(wk)− fik(x⋆)]

2L1B
. (32)

Next define ŵK = 1
K

∑K−1
k=0 wk. Then, by the convexity of f (due to the convexity of each fi),

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [f(wk)− f(x⋆)] .

Since

E [fik(wk)− fik(x⋆)]
(7)
= E [E [fik(wk)− fik(x⋆)|xk, wk]]

= E

[
1

n

n∑
i=1

fi(wk)− fi(x⋆)

]
= E [f(wk)− f(x⋆)] ,

we then have

E [f(ŵK)− f(x⋆)] ≤ 1

K

K−1∑
k=0

E [fik(wk)− fik(x⋆)]

(32)

≤ 2L1B

K
(E [V0]− E [VK ])

VK≥0

≤ 2L1B

K
V0.
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Figure 2: Convergence f(wk) − f(x⋆) w.r.t. iteration k of EF21-P in the deterministic setting for
the support vector machines problem.

F ADDITIONAL EXPERIMENTS: LOGISTIC REGRESSION PROBLEM OVER
SYNTHETIC DATA

In this section, we benchmarked EF21-P for the deterministic and stochastic setting for the logistic
regression, i.e. problem (1) with fi(x) = log(1 + exp(−bi ⟨ai, x⟩)). This problem is convex
and smooth, and the upper-bound on the Lipschitz parameter of ∇fi(x) (and also of ∇f(x)) is
maxi=1,2,...,n ∥ai∥2/4. We generated sparse data with the number of examples n = 1, 000 and
dimension d = 10, 000, according to the procedure by Nutini et al. (2022). In this setup, the learning
model is overparameterized (i.e. ∇fi(x⋆) = 0). In these experiments, we chose the constant stepsize
γk = 1

2BL1
, the decreasing stepsize γk = 1

2BL1

√
k+1

, and the Polyak stepsize.

From Figure 1, the Polyak stepsize outperforms constant and decreasing stepsizes for EF21-P in
the deterministic and stochastic setting. For Top-k sparsification, EF21-P with the Polyak stepsize
achieves higher accurate solutions than constant and decreasing stepsizes approximately by two
orders of magnitude at iteration k = 10, 000 in the deterministic setting and by an order of magnitude
at k = 25, 000 in the stochastic setting. Moreover, coarser compressors (e.g. Top-k from k = 0.1d
to k = 0.05d in Figure 1a) lead to slower convergence for EF21-P with any stepsize schedule.
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