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Abstract

In this paper, we introduce a new embedding001
model called M3-Embedding, which is distin-002
guished for its versatility in Multi-Linguality,003
Multi-Functionality, and Multi-Granularity. It004
provides a uniform support for the semantic re-005
trieval of more than 100 working languages. It006
can simultaneously accomplish the three com-007
mon retrieval functionalities: dense retrieval,008
multi-vector retrieval, and sparse retrieval. Be-009
sides, it is also capable of processing inputs010
of different granularities, spanning from short011
sentences to long documents of up to 8,192 to-012
kens. The effective training of M3-Embedding013
presents a series of technical contributions. No-014
tably, we propose a novel self-knowledge dis-015
tillation approach, where the relevance scores016
from different retrieval functionalities can be017
integrated as the teacher signal to enhance018
the training quality. We also optimize the019
batching strategy, which enables a large batch020
size and high training throughput to improve021
the discriminativeness of embeddings. M3-022
Embedding exhibits a superior performance in023
our experiment, leading to new state-of-the-art024
results on multilingual, cross-lingual, and long-025
document retrieval benchmarks.026

1 Introduction027

Embedding models are a critical form of DNN028

application in natural language processing. They029

encode the textual data in the latent space, where030

the underlying semantics of the data can be ex-031

pressed by the output embeddings (Reimers and032

Gurevych, 2019; Ni et al., 2022). With the ad-033

vent of pre-trained language models, the quality034

of text embeddings have been substantially im-035

proved, making them imperative components for036

the information retrieval (IR) system. One com-037

mon form of embedding-based IR application is038

dense retrieval, where relevant answers to the query039

can be retrieved based on the embedding similarity040

(Karpukhin et al., 2020; Xiong et al., 2020; Nee-041
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Figure 1: Characters of M3-Embedding.

lakantan et al., 2022; Wang et al., 2022; Xiao et al., 042

2023). Besides, the embedding model can also be 043

applied to other IR tasks, such as multi-vector re- 044

trieval where the fine-grained relevance between 045

query and document is computed based on the in- 046

teraction score of multiple embeddings (Khattab 047

and Zaharia, 2020), and sparse or lexical retrieval 048

where the importance of each term is estimated by 049

its output embedding (Gao et al., 2021a; Lin and 050

Ma, 2021; Dai and Callan, 2020). 051

Despite the widespread popularity of text em- 052

beddings, the existing methods are still limited in 053

versatility. First of all, most of the embedding mod- 054

els are tailored only for English, leaving few viable 055

options for the other languages. Secondly, the exist- 056

ing embedding models are usually trained for one 057

single retrieval functionality. However, typical IR 058

systems call for the compound workflow of multi- 059

ple retrieval methods. Thirdly, it is challenging to 060

train a competitive long-document retriever due to 061

the overwhelming training cost, where most of the 062

embedding models can only support short inputs. 063

To address the above challenges, we introduce 064

M3-Embedding, which is pronounced for its 065

breakthrough of versatility in working languages, 066

retrieval functionalities, and input granularities. 067

Particularly, M3-Embedding is proficient in multi- 068

linguality, which is able to support more than 100 069

world languages. By learning a common semantic 070

space for different languages, enables both multi- 071
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lingual retrieval within each language and cross-072

lingual retrieval between different languages. Be-073

sides, it is able to generate versatile embeddings to074

support different retrieval functionalities, not just075

dense retrieval, but also sparse retrieval and multi-076

vector retrieval. Finally, M3-Embedding is learned077

to process different input granularities, spanning078

from short inputs like sentences and passages, to079

long documents of up to 8,192 input tokens.080

The training of M3-Embedding poses a signifi-081

cant challenge. In our work, the following technical082

contributions are made to optimize the embedding083

quality. Firstly, we propose a novel self knowl-084

edge distillation framework, where the multiple085

retrieval functionalities can be jointly learned and086

mutually reinforced. In M3-Embedding, the [CLS]087

embedding is used for dense retrieval, while embed-088

dings from other tokens are used for sparse retrieval089

and multi-vector retrieval. Based on the principle090

of ensemble learning (Bühlmann, 2012), such het-091

erogenous predictors can be combined as a stronger092

predictor. Thus, we integrate the relevance scores093

from different retrieval functions as the teacher094

signal, which is used to enhance the learning pro-095

cess via knowledge distillation. Secondly, we op-096

timize the batching strategy to achieve a large097

batch size and high training throughput, which sub-098

stantially contributes to the discriminativeness of099

embeddings. Last but not least, we perform exten-100

sive and high-quality data curation. Our dataset101

includes three sources: 1) the extraction of unsuper-102

vised data from massive multi-lingual corpora, 2)103

the integration of closely related supervised data, 3)104

the synthesization of scarce training data. The three105

data sources are complement to each other and ap-106

plied to different training stages, which lays a solid107

foundation for the versatile text embeddings.108

M3-Embedding exhibits a remarkable versatil-109

ity in our experiments. It achieves superior re-110

trieval quality for a variety of languages, leading111

to state-of-the-art performances on popular multi-112

lingual and cross-lingual benchmarks like MIR-113

ACL (Zhang et al., 2023c) and MKQA (Longpre114

et al., 2021). It effectively learns the three retrieval115

functionalities, which can not only work individ-116

ually but also work together for an even stronger117

retrieval quality. It also well maintains its supe-118

rior capability across different input granularities119

within 8192 tokens, which outperforms the existing120

methods by a notable advantage.121

Our contributions are summarized as follows.122

1) We present M3-Embedding, which achieves un-123

precedented versatility in multi-linguality, multi- 124

functionality, and multi-granularity. 2) We propose 125

a novel training framework of self-knowledge dis- 126

tillation and optimize the batching strategy for effi- 127

cient training. We also create high-quality training 128

resource based on comprehensive data curation. 3) 129

Our model, code, and data will be publicly avail- 130

able, offering critical resources for both direct us- 131

age and future development of text embeddings. 132

2 Related Work 133

The related works are reviewed from three aspects: 134

general text embeddings, embedding models for 135

neural retrieval, embeddings of multi-linguality. 136

In the past few years, substantial progress has 137

been achieved in the field of text embedding. One 138

major driving force is the popularity of pre-trained 139

language models, where the underlying semantic 140

of the data can be effectively encoded by such pow- 141

erful text encoders (Reimers and Gurevych, 2019; 142

Karpukhin et al., 2020; Ni et al., 2022). In ad- 143

dition, the progress of contrastive learning is an- 144

other critical factor, especially the improvement of 145

negative sampling (Xiong et al., 2020; Qu et al., 146

2021) and the exploitation of knowledge distilla- 147

tion (Hofstätter et al., 2021; Ren et al., 2021; Zhang 148

et al., 2021a). On top of these well-established tech- 149

niques, it becomes increasingly popular to learn 150

versatile embedding models, which are able to uni- 151

formly support a variety of application scenarios. 152

So far, there have been many impactful methods in 153

the direction, like Contriever (Izacard et al., 2022), 154

LLM-Embedder (Zhang et al., 2023a), E5 (Wang 155

et al., 2022), BGE (Xiao et al., 2023), SGPT (Muen- 156

nighoff, 2022), and Open Text Embedding (Nee- 157

lakantan et al., 2022), which significantly advance 158

the usage of text embeddings for general tasks. 159

One major application of embedding models is 160

neural retrieval (Lin et al., 2022). By measuring 161

the semantic relationship with the text embeddings, 162

the relevant answers to the input query can be re- 163

trieved based on the embedding similarity. The 164

most common form of embedding-based retrieval 165

method is dense retrieval (Karpukhin et al., 2020), 166

where the text encoder’s outputs are aggregated 167

(e.g., via [CLS] or mean-pooling) to compute the 168

embedding similarity. Another common alternative 169

is known as multi-vecor retrieval (Khattab and Za- 170

haria, 2020; Humeau et al., 2020), which applies 171

fine-grained interactions for the text encoder’s out- 172

puts to compute the embedding similarity. Finally, 173
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the text embeddings can also be transformed into174

term weights, which facilitates sparse or lexical re-175

trieval (Luan et al., 2021; Dai and Callan, 2020; Lin176

and Ma, 2021). Typically, the above retrieval meth-177

ods are realized by different embedding models.178

To the best of our knowledge, no existing method179

is able to unify all these functionalities.180

Despite the substantial technical advancement,181

most of the existing text embeddings are devel-182

oped only for English, where other languages are183

lagging behind. To mitigate this problem, contin-184

ual efforts are presented from multiple directions.185

One is the development of pre-trained multi-lingual186

text encoders, such as mBERT (Pires et al., 2019),187

mT5 (Xue et al., 2021), XLM-R (Conneau et al.,188

2020). Another one is the curation of training and189

evaluation data for multi-lingual text embeddings,190

e.g., MIRACL (Zhang et al., 2023c), mMARCO191

(Bonifacio et al., 2021), Mr. TyDi (Zhang et al.,192

2021b), MKQA (Longpre et al., 2021). At the same193

time, the multi-lingual text embeddings are contin-194

ually developed from the community, e.g., mDPR195

(Zhang et al., 2023b), mContriever (Izacard et al.,196

2022), mE5 (Wang et al., 2022), etc. However,197

the current progress is still far from enough given198

the notable gap with English models and the huge199

imbalance between different languages.200

3 M3-Embedding201

M3-Embedding realizes three-fold versatility. It202

supports a wide variety of languages and handles203

input data of different granularities. Besides, it204

unifies the common retrieval functionalities of text205

embeddings. Formally, given a query q in an arbi-206

trary language x, it is able to retrieve document d in207

language y from the corpus Dy: dy ← fn∗(qx, Dy).208

In this place, fn∗(·) belongs to any of the functions:209

dense, lexical, or multi-vector retrieval; y can be210

another language or the same language as x.211

3.1 Data Curation212

M3-Embedding calls for a large-scale and diverse213

multi-lingual dataset. In this work, we perform214

comprehensive data collection from three sources:215

the unsupervised data from unlabeled corpora, the216

fine-tuning data from labeled corpora, and the fine-217

tuning data via synthesization (shown as Table 8).218

The three data sources complement to each other,219

which are applied to different stages of the train-220

ing process. Particularly, the unsupervised data is221

curated by extracting the rich-semantic structures,222

e.g., title-body, title-abstract, instruction-output, 223

etc., within a wide variety of multi-lingual corpora, 224

including Wikipedia, S2ORC (Lo et al., 2020), 225

xP3 (Muennighoff et al., 2023), mC4 (Raffel et al., 226

2020), CC-News (Hamborg et al., 2017) and the 227

well-curated data from MTP (Xiao et al., 2023). To 228

learn the unified embedding space for cross-lingual 229

semantic matching, the parallel sentences are intro- 230

duced from two translation datasets, NLLB (NLLB 231

Team et al., 2022) and CCMatrix (Schwenk et al., 232

2021). The raw data is filtered to remove potential 233

bad contents and low-relevance samples. In total, 234

it brings in 1.2 billion text pairs of 194 languages 235

and 2655 cross-lingual correspondences. 236

Besides, we collect relatively small but diverse 237

and high-quality fine-tuning data from labeled 238

corpora. For English, we incorporate 8 datasets, 239

including HotpotQA (Yang et al., 2018), Trivi- 240

aQA (Joshi et al., 2017), NQ (Kwiatkowski et al., 241

2019), MS MARCO (Nguyen et al., 2016), COL- 242

IEE (Kim et al., 2023), PubMedQA (Jin et al., 243

2019), SQuAD (Rajpurkar et al., 2016), and NLI 244

data from SimCSE (Gao et al., 2021b). For Chi- 245

nese, we integrate 7 datasets, including DuReader 246

(He et al., 2018), mMARCO-ZH (Bonifacio et al., 247

2021), T2-Ranking (Xie et al., 2023), LawGPT1, 248

CMedQAv2 (Zhang et al., 2018), NLI-zh2, and 249

LeCaRDv2 (Li et al., 2023). For other languages, 250

we leverage the training data from Mr. Tydi (Zhang 251

et al., 2021b) and MIRACL (Zhang et al., 2023c). 252

Finally, we generate synthetic data to mitigate 253

the shortage of long document retrieval tasks and 254

introduce extra multi-lingual fine-tuning data (de- 255

noted as MultiLongDoc). Specifically, we sam- 256

ple lengthy articles from Wikipedia, Wudao (Yuan 257

et al., 2021) and mC4 datasets and randomly 258

choose paragraphs from them. Then we use GPT- 259

3.5 to generate questions based on these paragraphs. 260

The generated question and the sampled article con- 261

stitute a new text pair to the fine-tuning data. De- 262

tailed specifications are presented in Appendix A.2. 263

3.2 Hybrid Retrieval 264

M3-Embedding unifies the common retrieval func- 265

tionalities of the embedding model, i.e. dense re- 266

trieval, lexical (sparse) retrieval, and multi-vector 267

retrieval. The formulation is presented as follows. 268

• Dense retrieval. The input query q is trans- 269

formed into the hidden states Hq based on a text 270

encoder. We use the normalized hidden state of the 271

1. https://github.com/LiuHC0428/LAW-GPT
2. https://huggingface.co/datasets/shibing624/nli-zh-all
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Figure 2: Multi-stage training process of M3-Embedding with self-knowledge distillation.

special token “[CLS]” for the representation of the272

query: eq = norm(Hq[0]). Similarly, we can get273

the embedding of passage p as ep = norm(Hp[0]).274

Thus, the relevance score between query and pas-275

sage is measured by the inner product between the276

two embeddings eq and ep: sdense ← ⟨ep, eq⟩.277

• Lexical Retrieval. The output embeddings278

are also used to estimate the importance of each279

term to facilitate lexical retrieval. For each term280

t within the query (a term is corresponding to a281

token in our work), the term weight is computed as282

wqt ← Relu(WT
lexHq[i])), where Wlex ∈ Rd×1283

is the matrix mapping the hidden state to a float284

number. If a term t appears multiple times in the285

query, we only retain its max weight. We use the286

same way to compute the weight of each term in287

the passage. Based on the estimation term weights,288

the relevance score between query and passage is289

computed by the joint importance of the co-existed290

terms (denoted as q ∩ p) within the query and pas-291

sage: slex ←
∑

t∈q∩p(wqt ∗ wpt).292

•Multi-Vector Retrieval. As an extension of293

dense retrieval, the multi-vector method utilizes294

the entire output embeddings for the representation295

of query and passage: Eq = norm(WT
mulHq),296

Ep = norm(WT
mulHp), where Wmul ∈ Rd×d is297

the learnable projection matrix. Following Col-298

Bert (Khattab and Zaharia, 2020), we use late-299

interaction to compute the fine-grained relevance300

score: smul ← 1
N

∑N
i=1maxMj=1Eq[i] · ET

p [j]; N301

and M are the lengths of query and passage.302

Thanks to the multi-functionality of the embed-303

ding model, the retrieval process can be conducted304

in a hybrid process. First of all, the candidate re-305

sults can be individually retrieved by each of the306

methods (the multi-vector method can be exempted307

from this step due to its heavy cost). Then, the final308

retrieval result is re-ranked based on the integrated 309

relevance score: srank ← sdense + slex + smul. 310

3.3 Self-Knowledge Distillation 311

The embedding model is trained to discriminate 312

the positive samples from the negative ones. For 313

each of the retrieval methods, it is expected to as- 314

sign a higher score for the query’s positive samples 315

compared with the negative ones. Therefore, the 316

training process is conducted to minimize the In- 317

foNCE loss, whose general form is presented by 318

the following loss function: 319

L = − log
exp(s(q, p∗)/τ)∑

p∈{p∗,P ′} exp(s(q, p)/τ)
. (1) 320

Here, p∗ and P ′ stand for the positive and negative 321

samples to the query q; s(·) is any of the functions 322

within {sdense(·), slex(·), smul(·)}. 323

The training objectives of different retrieval 324

methods can be mutually conflicting with each 325

their. Therefore, the native multi-objective train- 326

ing can be unfavorable to the embedding’s quality. 327

To facilitate the optimization of multiple retrieval 328

functions, we propose to unify the training pro- 329

cess on top of self-knowledge distillation. Partic- 330

ularly, based on the principle of ensemble learning 331

(Bühlmann, 2012), the predictions from different 332

retrieval methods can be integrated as a more ac- 333

curate relevance score given their heterogeneous 334

nature. In the simplest form, the integration can 335

just be the sum-up of different prediction scores: 336

sinter ← sdense + slex + smul. (2) 337

In previous studies, the training quality of embed- 338

ding model can benefit from knowledge distilla- 339

tion, which takes advantage of fine-grained soft la- 340

bels from another ranking model (Hofstätter et al., 341
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Figure 3: Efficient Batching. (Data is grouped and
sampled by length. Gradient-checkpointing and cross-
GPU broadcasting are enabled to save memory.)

2021). In this place, we simply employ the inte-342

gration score sinter as the teacher, where the loss343

function of each retrieval method is modified as:344

L′∗ ← −p(sinter) ∗ log p(s∗). (3)345

Here, p(·) is the softmax activation; s∗ is any of the346

members within sdense, slex, and smul. We further347

integrate and normalize the modified loss function:348

L′ ←
(
L′dense + L′lex + L′mul

)
/3. (4)349

Finally, we derive the final loss function for self-350

knowledge distillation with the linear combination351

of L and L′: Lfinal ← L+ L′.352

The training process constitutes a multi-stage353

workflow (Figure 2). In the first place, the text en-354

coder (an XLM-RoBERTa (Conneau et al., 2020)355

model adapted by RetroMAE (Xiao et al., 2022)356

method) is pre-trained with the massive unsuper-357

vised data, where only the dense retrieval is trained358

in the basic form of contrastive learning. The359

self-knowledge distillation is applied to the second360

stage, where the embedding model is fine-tuned to361

establish the three retrieval functionalities. Both362

labeled and synthetic data are used in this stage,363

where hard negative samples are introduced for364

each query following the ANCE method (Xiong365

et al., 2020). (See Appendix B.1 for more details.)366

3.4 Efficient Batching367

The embedding model needs to learn from diverse368

and massive multi-lingual data to fully capture the369

general semantic of different languages. It also370

needs to keep the batch size as large as possible371

(introducing a huge amount of in-batch negatives)372

to ensure the discriminativeness of text embed-373

dings. Given the limitations on GPU’s memory374

and computation power, people usually truncate the375

input data into short sequences for high through-376

put of training and a large batch size. However,377

the common practice is not a feasible option for 378

M3-Embedding because it needs to learn from both 379

short and long-sequence data to effectively handle 380

the input of different granularities. In our work, 381

we improve the training efficiency by optimizing 382

the batching strategy, which enables high training 383

throughput and large batch sizes. 384

Particularly, the training data is pre-processed 385

by being grouped by sequence length. When pro- 386

ducing a mini-batch, the training instances are sam- 387

pled from the same group. Due to the similar se- 388

quence lengths, it significantly reduces sequence 389

padding (Figure 3, marked in red) and facilitates a 390

more effective utilization of GPUs. Besides, when 391

sampling the training data for different GPUs, the 392

random seed is always fixed, which ensures the 393

load balance and minimizes the waiting time in 394

each training step. Besides, when handling long- 395

sequence training data, the mini-batch is further 396

divided into sub-batches, which takes less memory 397

footprint. We iteratively encode each sub-batch 398

using gradient checkpointing (Chen et al., 2016) 399

and gather all generated embeddings. This method 400

can significantly increase the batch size. For ex- 401

ample, when processing text with a length of 8192, 402

the batch size can be increased by more than 20 403

times. (see Appendx B.3 for more details.) Finally, 404

the embeddings from different GPUs are broad- 405

casted, allowing each device to obtain all embed- 406

dings in the distributed environment, which notably 407

expands the scale of in-bath negative samples. 408

For users who are severely limited in computa- 409

tion or data resource, we present an even simpler 410

method called MCLS (Multi-CLS), which simply 411

inserts multiple CLS tokens to the long document 412

during inference, and takes the average of all CLS 413

embeddings as the ultimate embedding of the docu- 414

ment. Despite simplicity, it is surprisingly effective 415

in practice. (See Appendix B.2 for more details.) 416

4 Experiment 417

In this section, we investigate M3-Embedding’s per- 418

formance in terms of multi-lingual retrieval, cross- 419

lingual retrieval, and long-doc retrieval. We also 420

explore the impact of its technical factors. 421

4.1 Multi-Lingual Retrieval 422

We evaluate the multi-lingual retrieval performance 423

with MIRACL (Zhang et al., 2023c), which con- 424

sists of ad-hoc retrieval tasks in 18 languages. 425

Each task is made up of query and passage pre- 426
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Model Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo
Baselines (Prior Work)
BM25 31.9 39.5 48.2 26.7 7.7 28.7 45.8 11.5 35.0 29.7 31.2 37.1 25.6 35.1 38.3 49.1 17.5 12.0 56.1
mDPR 41.8 49.9 44.3 39.4 47.8 48.0 47.2 43.5 38.3 27.2 43.9 41.9 40.7 29.9 35.6 35.8 51.2 49.0 39.6
mContriever 43.1 52.5 50.1 36.4 41.8 21.5 60.2 31.4 28.6 39.2 42.4 48.3 39.1 56.0 52.8 51.7 41.0 40.8 41.5
mE5large 65.4 76.0 75.9 52.9 52.9 59.0 77.8 54.5 62.0 52.9 70.6 66.5 67.4 74.9 84.6 80.2 56.0 56.4 56.5
E5mistral-7b 62.2 73.3 70.3 57.3 52.2 52.1 74.7 55.2 52.1 52.7 66.8 61.8 67.7 68.4 73.9 74.0 54.0 54.0 58.8
OpenAI-3 54.9 - - - - - - - - - - - - - - - - - -
M3-Embedding (Our Work)
Dense 67.8 78.4 80.0 56.9 55.5 57.7 78.6 57.8 59.3 56.0 72.8 69.9 70.1 78.6 86.2 82.6 61.7 56.8 60.7
Sparse 53.9 67.1 68.7 43.7 38.8 45.2 65.3 35.5 48.2 48.9 56.3 61.5 44.5 57.9 79.0 70.9 36.3 32.2 70.0
Multi-vec 69.0 79.6 81.1 59.4 57.2 58.8 80.1 59.0 61.4 58.2 74.5 71.2 71.2 79.0 87.9 83.0 62.7 57.9 60.4
Dense+Sparse 68.9 79.6 80.7 58.8 57.5 59.2 79.7 57.6 62.8 58.3 73.9 71.3 69.8 78.5 87.2 83.1 62.5 57.6 61.8
All 70.0 80.2 81.5 59.8 59.2 60.3 80.4 60.7 63.2 59.1 75.2 72.2 71.7 79.6 88.2 83.8 63.9 59.8 61.5

Table 1: Multi-lingual retrieval performance on the MIRACL dev set (measured by nDCG@10).

sented in the same language. Following the of-427

ficial benchmark, we evaluate our method using428

Pyserini (Lin et al., 2021), and use nDCG@10 as429

the primary evaluation metric (Recall@100 is also430

measured and reported in Appendix C.1). We incor-431

porate the following baselines in our experiment:432

the lexical retrieval method: BM25 (Robertson433

and Zaragoza, 2009); the dense retrieval methods:434

mDPR3 (Zhang et al., 2023b), mContriever4 (Izac-435

ard et al., 2022), mE5large (Wang et al., 2022) and436

E5mistral-7b (Wang et al., 2023). To make the BM25437

and M3 more comparable, in the experiment, we438

use the same tokenizer as M3 (i.e., the tokenizer of439

XLM-Roberta) for BM25. Using the same vocabu-440

lary from XLM-Roberta can also ensure that both441

approaches have the same retrieval latency. The re-442

sults of BM25 with different tokenizers are shown443

in Appendix C.2. We also make a comparison with444

Text-Embedding-3-Large(abbreviated as OpenAI-445

3), which was recently released by OpenAI5.446

We can make the following observations accord-447

ing to the experiment result in Table 1. Firstly, M3-448

Embedding already achieves a superior retrieval449

performance with only its dense retrieval function-450

ality (denoted as Dense). It not only outperforms451

other baseline methods in the average performance,452

but also maintains a consistent empirical advantage453

in most of individual languages. Even compared454

with E5mistral-7b, which leverages a much larger455

Mistral-7B model as the text encoder and specifi-456

cally trained with English data, our method is able457

to produce a similar result in English and notably458

higher results in the other languages. Besides, the459

sparse retrieval functionality (denoted as Sparse)460

is also effectively trained by M3-Embedding, as461

it outperforms the typical BM25 methods in all462

3. https://huggingface.co/castorini/mdpr-tied-pft-msmarco
4. https://huggingface.co/facebook/mcontriever-msmarco
5. https://platform.openai.com/docs/guides/embeddings

languages. We can also observe the additional im- 463

provement from multi-vector retrieval6 (denoted as 464

Mult-vec), which relies on fine-grained interactions 465

between query and passage’s embeddings to com- 466

pute the relevance score. Finally, the collaboration 467

of dense and sparse method, e.g., Dense+Sparse7, 468

leads to a further improvement over each individual 469

method; and the collaboration of all three methods8 470

(denoted as All) brings forth the best performance. 471

4.2 Cross-Lingual Retrieval 472

We make evaluation for the cross-lingual retrieval 473

performance with the MKQA benchmark (Longpre 474

et al., 2021), which includes queries in 25 non- 475

English languages. For each query, it needs to 476

retrieve the ground-truth passage from the English 477

Wikipedia corpus. In our experiment, we make 478

use of the well-processed corpus offered by the 479

BEIR9 (Thakur et al., 2021). Following the previ- 480

ous study (Karpukhin et al., 2020), we report Re- 481

call@100 as the primary metric (Recall@20 is re- 482

ported as an auxiliary metric in the Appendix C.1). 483

The experiment result is shown in Table 2. Sim- 484

ilar to our observation in multi-lingual retrieval, 485

M3-Embedding continues to produce a superior 486

performance, where it notably outperforms other 487

baseline methods purely with its dense retrieval 488

functionality (Dense). The collaboration of dif- 489

ferent retrieval methods brings in further improve- 490

ments, leading to the best empirical performance 491

of cross-lingual retrieval. Besides, we can also ob- 492

serve the following interesting results which are 493

unique to this benchmark. Firstly, the performance 494

gaps are not as significant as MIRACL, where com- 495

6. Mult-vec is used to re-rank the top-200 candidates from Dense for effi-
cient processing.

7. Retrieve the top-1000 candidates with dense and sparse method; then
re-rank using the sum of two scores.

8. Re-rank based on the sum of all three scores.
9. https://huggingface.co/datasets/BeIR/nq

6

https://huggingface.co/castorini/mdpr-tied-pft-msmarco
https://huggingface.co/facebook/mcontriever-msmarco
https://platform.openai.com/docs/guides/embeddings
https://huggingface.co/datasets/BeIR/nq


Baselines (Prior Work) M3-Embedding (Our Work)
BM25 mDPR mContriever mE5large E5mistral-7b OpenAI-3 Dense Sparse Multi-vec Dense+Sparse All

ar 18.9 48.2 58.2 68.7 59.6 65.6 71.1 23.5 71.4 71.1 71.5
da 49.3 67.4 73.9 77.4 77.8 73.6 77.2 55.4 77.5 77.4 77.6
de 35.4 65.8 71.7 76.9 77.0 73.6 76.2 43.3 76.3 76.4 76.3
es 43.4 66.8 72.6 76.4 77.4 73.9 76.4 50.6 76.6 76.7 76.9
fi 46.3 56.2 70.2 74.0 72.0 72.7 75.1 51.1 75.3 75.3 75.5
fr 45.3 68.2 72.8 75.5 78.0 74.1 76.2 53.9 76.4 76.6 76.6
he 26.9 49.7 63.8 69.6 47.2 58.1 72.4 31.1 72.9 72.5 73.0
hu 38.2 60.4 69.7 74.7 75.0 71.2 74.7 44.6 74.6 74.9 75.0
it 45.2 66.0 72.3 76.8 77.1 73.6 76.0 52.5 76.4 76.3 76.5
ja 24.5 60.3 64.8 71.5 65.1 71.9 75.0 31.3 75.1 75.0 75.2
km 27.8 29.5 26.8 28.1 34.3 33.9 68.6 30.1 69.1 68.8 69.2
ko 27.9 50.9 59.7 68.1 59.4 63.9 71.6 31.4 71.7 71.6 71.8
ms 55.9 65.5 74.1 76.3 77.2 73.3 77.2 62.4 77.4 77.4 77.4
nl 56.2 68.2 73.7 77.8 79.1 74.2 77.4 62.4 77.6 77.7 77.6
no 52.1 66.7 73.5 77.3 76.6 73.3 77.1 57.9 77.2 77.4 77.3
pl 40.8 63.3 71.6 76.7 77.1 72.7 76.3 46.1 76.5 76.3 76.6
pt 44.9 65.5 72.0 73.5 77.5 73.7 76.3 50.9 76.4 76.5 76.4
ru 33.2 62.7 69.8 76.8 75.5 72.0 76.2 36.9 76.4 76.2 76.5
sv 54.6 66.9 73.2 77.6 78.3 74.0 76.9 59.6 77.2 77.4 77.4
th 37.8 53.8 66.9 76.0 67.4 65.2 76.4 42.0 76.5 76.5 76.6
tr 45.8 59.1 71.1 74.3 73.0 71.8 75.6 51.8 75.9 76.0 76.0
vi 46.6 63.4 70.9 75.4 70.9 71.1 76.6 51.8 76.7 76.8 76.9
zh cn 31.0 63.7 68.1 56.6 69.3 70.7 74.6 35.4 74.9 74.7 75.0
zh hk 35.0 62.8 68.0 58.1 65.1 69.6 73.8 39.8 74.1 74.0 74.3
zh tw 33.5 64.0 67.9 58.1 65.8 69.7 73.5 37.7 73.5 73.6 73.6
Avg 39.9 60.6 67.9 70.9 70.1 69.5 75.1 45.3 75.3 75.3 75.5

Table 2: Cross-lingual retrieval performance on MKQA (measured by Recall@100).

Max Length Avg ar de en es fr hi it ja ko pt ru th zh
Baselines (Prior Work)
BM25 8192 53.6 45.1 52.6 57.0 78.0 75.7 43.7 70.9 36.2 25.7 82.6 61.3 33.6 34.6
mDPR 512 23.5 15.6 17.1 23.9 34.1 39.6 14.6 35.4 23.7 16.5 43.3 28.8 3.4 9.5
mContriever 512 31.0 25.4 24.2 28.7 44.6 50.3 17.2 43.2 27.3 23.6 56.6 37.7 9.0 15.3
mE5large 512 34.2 33.0 26.9 33.0 51.1 49.5 21.0 43.1 29.9 27.1 58.7 42.4 15.9 13.2
E5mistral-7b 8192 42.6 29.6 40.6 43.3 70.2 60.5 23.2 55.3 41.6 32.7 69.5 52.4 18.2 16.8
text-embedding-ada-002 8191 32.5 16.3 34.4 38.7 59.8 53.9 8.0 46.5 28.6 20.7 60.6 34.8 9.0 11.2
jina-embeddings-v2-base-en 8192 - - - 37.0 - - - - - - - - - -
M3-Embedding (Our Work)
Dense 8192 52.5 47.6 46.1 48.9 74.8 73.8 40.7 62.7 50.9 42.9 74.4 59.5 33.6 26.0
Sparse 8192 62.2 58.7 53.0 62.1 87.4 82.7 49.6 74.7 53.9 47.9 85.2 72.9 40.3 40.5
Multi-vec 8192 57.6 56.6 50.4 55.8 79.5 77.2 46.6 66.8 52.8 48.8 77.5 64.2 39.4 32.7
Dense+Sparse 8192 64.8 63.0 56.4 64.2 88.7 84.2 52.3 75.8 58.5 53.1 86.0 75.6 42.9 42.0
All 8192 65.0 64.7 57.9 63.8 86.8 83.9 52.2 75.5 60.1 55.7 85.4 73.8 44.7 40.0
M3-w.o.long
Dense-w.o.long 8192 41.2 35.4 35.2 37.5 64.0 59.3 28.8 53.1 41.7 29.8 63.5 51.1 19.5 16.5
Dense-w.o.long (MCLS) 8192 45.0 37.9 43.3 41.2 67.7 64.6 32.0 55.8 43.4 33.1 67.8 52.8 27.2 18.2

Table 3: Evaluation of multilingual long-doc retrieval on the MLDR test set (measured by nDCG@10).

petitive baselines like E5mistral-7b is able to produce496

similar or even better results on some of the testing497

languages. However, the baselines are prone to bad498

performances in many other languages, especially499

the low-resource languages, such as ar, km, he, etc.500

In contrast, M3-Embedding maintains relatively501

stable performances in all languages, which can502

largely be attributed to its pre-training over compre-503

hensive unsupervised data. Secondly, although M3-504

Embedding (Sparse) is still better than BM25, it505

performs badly compared with other methods. This506

is because there are only very limited co-existed507

terms for cross-lingual retrieval as the query and508

passage are presented in different languages.509

4.3 Multilingual Long-Doc Retrieval 510

We evaluate the retrieval performance with longer 511

sequences with two benchmarks: MLDR (Multi- 512

lingual Long-Doc Retrieval), which is curated by 513

the multilingual articles from Wikipedia, Wudao 514

and mC4 (see Table 7), and NarrativeQA (Kočiský 515

et al., 2018; Günther et al., 2023), which is only 516

for English. In addition to the previous baselines, 517

we further introduce JinaEmbeddingv2 (Günther 518

et al., 2023), text-embedding-ada-002 and text- 519

embedding-3-large from OpenAI given their out- 520

standing long-doc retrieval capability. 521

The evaluation result on MLDR is presented in 522

Table 3. Interestingly, M3 (Sparse) turns out to be a 523
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Model Max Length nDCG@10
Baselines (Prior Work)
mDPR 512 16.3
mContriever 512 23.3
mE5large 512 24.2
E5mistral-7b 8192 49.9
text-embedding-ada-002 8191 41.1
text-embedding-3-large 8191 51.6
jina-embeddings-v2-base-en 8192 39.4
M3-Embedding (Our Work)
Dense 8192 48.7
Sparse 8192 57.5
Multi-vec 8192 55.4
Dense+Sparse 8192 60.1
All 8192 61.7

Table 4: Evaluation on NarrativeQA (nDCG@10).

more effective method for long document retrieval,524

which achieves another about 10 points improve-525

ment over the dense method. Besides, the multi-526

vector retrieval is also impressive, which brings527

5.1+ points improvement over M3 (Dense). Finally,528

the combination of different retrieval methods leads529

to a remarkable average performance of 65.0.530

To explore the reason for M3-Embedding’s com-531

petitiveness in long-document retrieval, we perform532

the ablation study by removing the long document533

data from the fine-tuning stage (denoted as w.o.534

long). After this modification, the dense method,535

i.e. Dense-w.o.long, can still outperform the ma-536

jority of baselines, which indicates that its empiri-537

cal advantage has been well established during the538

pre-training stage. We also propose a simple strat-539

egy, MCLS, to address this situation (no data or no540

GPU resource for document-retrieval fine-tuning).541

Experimental results indicate that MCLS can sig-542

nificantly improve the performance of document543

retrieval without training (41.2→ 45.0).544

We make further analysis with NarrativeQA (Ta-545

ble 4), where we can make a similar observation546

as MLDR. Besides, with the growth of sequence547

length, our method gradually expands its advantage548

over baseline methods (Figure 5), which reflects its549

proficiency in handling long inputs.550

4.4 Ablation study551

Self-knowledge distillation. The ablation study is552

performed to analyze the impact of self-knowledge553

distillation (skd). Particularly, we disable the dis-554

tillation processing and have each retrieval method555

trained independently (denoted as M3-w.o.skd).556

According to our evaluation on MIRACL (Ta-557

ble 5), the original method, i.e. M3-w.skd, is able558

to achieve better performances than the ablation559

Model MIRACL

M3-w.skd
Dense 67.8
Sparse 53.9
Multi-vec 69.0

M3-w.o.skd
Dense 67.2
Sparse 36.7
Multi-vec 67.8

Table 5: Ablation study of self-knowledge distillation
on the MIRACL dev set (nDCG@10).

Model (Dense) MIRACL
Fine-tune 59.3
RetroMAE + Fine-tune 64.8
RetroMAE + Unsup + Fine-tune 67.8

Table 6: Ablation study of multi-stage training on the
MIRACL dev set (nDCG@10).

method in all settings, i.e., Dense, Sparse, Multi- 560

vec. Notably, the impact is more pronounced for 561

sparse retrieval. Such a result also reflects the in- 562

compatibility between dense and sparse retrieval 563

methods. With skd, the incompatibility can be 564

largely overcome. (More detailed results are avail- 565

able in Appendix C.1.) 566

Impact of multi-stage training. We also make 567

explorations for the impacts from different training 568

stages. Fine-tuning indicates the direct fine-tuning 569

from XLM-RoBERTA (Conneau et al., 2020); 570

RetroMAE+Fine-tuning refers to the fine-tuning 571

on the pre-trained model from RetroMAE (Xiao 572

et al., 2022). Meanwhile, RetroMAE+Unsup+Fine- 573

tuning involves fine-tuning on a model trained with 574

RetroMAE and then pre-trained on unsupervised 575

data. The results are presented in Table 6. We can 576

observe that RetroMAE can significantly improve 577

the retrieval performance, and pre-training on un- 578

supervised data can further enhance the retrieval 579

quality of the embedding model. (More detailed 580

results are available in Appendix C.1.) 581

5 Conclusion 582

In this paper, we introduce M3-Embedding, which 583

substantially advances the versatility of text em- 584

beddings in terms of supporting multi-lingual re- 585

trieval, handling input of diverse granularities, and 586

unifying different retrieval functionalities. M3- 587

Embedding presents three technical contributions: 588

self-knowledge distillation, efficient batching, and 589

high-quality curation of data. The effectiveness 590

of M3-Embedding is empirically verified, where 591

it leads to superior performances on multi-lingual 592

retrieval, cross-lingual retrieval, and multi-lingual 593

long-document retrieval tasks. 594
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Limitations595

First of all, while our proposed M3-Embedding596

model achieves state-of-the-art performance on597

popular multi-lingual and cross-lingual bench-598

marks such as MIRACL and MKQA, it is impor-599

tant to acknowledge that the generalizability of600

our approach to diverse datasets and real-world601

scenarios needs to be further investigated. Dif-602

ferent datasets may have varying characteristics603

and challenges that could affect the performance604

of our model. Secondly, while M3-Embedding605

is designed to process inputs of different granu-606

larities, including long documents of up to 8192607

tokens, we acknowledge that processing extremely608

long documents could pose challenges in terms of609

computational resources and model efficiency. The610

performance of our model on very long documents611

or documents exceeding the specified token limit612

needs to be further investigated. Furthermore, we613

claim support for more than 100 working languages614

in M3-Embedding. However, the potential varia-615

tions in performance across different languages are616

not thoroughly discussed. Further analysis and eval-617

uation on a broader range of languages are neces-618

sary to understand the robustness and effectiveness619

of our model across different language families and620

linguistic characteristics.621

Ethics Consideration622

Our work proposes a new embedding model called623

M3-Embedding, which is distingulished for its ver-624

sality in multi-linguality, multi-functionality and625

multi-granularity. Because our model will be pub-626

licly avaliable, it is influenced by the inherent im-627

pacts of open-source model. Moreover, we use the628

multilingual data including all kinds of languages629

in the training of M3-Embedding. However, due to630

the uneven distribution of training data for differ-631

ent languages, the model’s performance may vary632

across languages, which could potentially be seen633

as discriminatory or unfair. We ensure that our634

work is conformant to the ACL Ethics Policy10.635
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Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris 758
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed- 759
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A Details of Datasets995

A.1 Collected Data996

The language and length distribution (the number997

of tokens) of the unsupervised data are illustrated998

in Figure 4.999

We observed that for long texts (e.g., the news1000

in cc-news), the initial sentences tend to be sum-1001

marizing statements, and the model can rely solely1002

on the information presented in these initial sen-1003

tences to establish relevant relationships. To pre-1004

vent the model from focusing solely on these start-1005

ing sentences, we implemented a strategy of ran-1006

domly shuffling the order of segments within entire1007

texts. Specifically, we divided the text into three1008

segments, shuffled their order randomly, and re-1009

combined them. This approach allows relevant text1010

segments to appear randomly at any position within1011

the long sequence. During training, we applied this1012

operation to passages with a probability of 0.2%.1013

A.2 Synthetic Data1014

The prompt for GPT3.5 is “You are a curious AI1015

assistant, please generate one specific and valuable1016

question based on the following text. The generated1017

question should revolve around the core content of1018

this text, and avoid using pronouns (e.g., ”this”).1019

Note that you should generate only one question,1020

without including additional content:”. The details1021

of generated dataset are shown in Table 7.1022

B Implementation Details1023

B.1 Experimental Hyperparameters1024

We adopt a further pre-trained XLM-RoBERTa111025

as the foundational model. We extend the max po-1026

sition to 8192 and update the model via the Retro-1027

MAE (Xiao et al., 2022) method. The data com-1028

prises Pile (Gao et al., 2020), Wudao (Yuan et al.,1029

2021), and mC4 (Raffel et al., 2020) datasets. We1030

sampled a total of 184 million text samples from1031

these sources, covering 105 languages. The maxi-1032

mum sequence length is 8192 and the learning rate1033

is 7 × 10−5. The batch size is set to 32 and we1034

accumulate the gradient over 16 steps. Pre-training1035

is conducted on 32 A100(40GB) GPUs for 20,0001036

steps.1037

For the pre-training with the massive unsuper-1038

vised data, the max length of query and passage is1039

set to 512 and 8192, respectively. The learning rate1040

is 5× 10−5, the warmup ratio is 0.1 and the weight1041

11. https://huggingface.co/FacebookAI/xlm-roberta-large

decay is 0.01. This training process takes 25,000 1042

steps. For training data with different sequence 1043

length ranges (e.g., 0-500, 500-1000, etc.), we use 1044

different batch sizes. The details are represented 1045

in Table 9. The second stage is conducted on 96 1046

A800(80GB) GPUs. 1047

In the fine-tuning stage, we sample 7 negatives 1048

for each query. Refer to Table 9 for the batch size. 1049

In the initial phase, we employed approximately 1050

6000 steps to perform warm-up on dense embed- 1051

ding, sparse embedding and multi-vectors. Subse- 1052

quently, we conducted unified training with self- 1053

knowledge distillation. These experiments were 1054

carried out on 24 A800(80GB) GPUs. 1055

B.2 MCLS Method 1056

The fine-tuning using long text can be constrained 1057

due to the absence of long text data or computation 1058

resources. In this situation, we propose a simple 1059

but effective method: MCLS(Multiple CLS) to en- 1060

hance the model’s ability without fine-tuning on 1061

long text. The MCLS method aims to utilize multi- 1062

ple CLS tokens to jointly capture the semantics of 1063

long texts. Specifically, we insert a CLS token for 1064

every fixed number of tokens (in our experiments, 1065

we insert a “[CLS]” for each 256 tokens), and each 1066

CLS token can capture semantic information from 1067

its neighboring tokens. Ultimately, the final text 1068

embedding is obtained by averaging the last hidden 1069

states of all CLS tokens. 1070

B.3 Split-batch Method 1071

Algorithm 1 Pseudocode of split-batch.

# enable gradient-checkpointing
M3.gradient_checkpointing_enable()

embs = []
for batch_data in loader:

# split the large batch into multiple sub-batch
for sub_batch_data in batch_data:

sub_emb = M3(sub_batch_data)
# only collect the embs
embs.append(sub_emb)

# concatenate the outputs to get final embeddings
embs = cat(embs)

Algorthm 1 provides the pseudo-code of the split- 1072

batch strategy. For the current batch, we partition 1073

it into multiple smaller sub-batches. For each sub- 1074

batch we utilize the model to generate embeddings, 1075

discarding all intermediate activations via gradient 1076

checkpointing during the forward pass. Finally, 1077

we gather the encoded results from all sub-batch, 1078

and obtain the embeddings for the current batch. 1079

It is crucial to enable the gradient-checkpointing 1080
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Language Source #train #dev #test #cropus Avg. Length of Docs
ar Wikipedia 1,817 200 200 7,607 9,428
de Wikipedia, mC4 1,847 200 200 10,000 9,039
en Wikipedia 10,000 200 800 200,000 3,308
es Wikipedia, mC4 2,254 200 200 9,551 8,771
fr Wikipedia 1,608 200 200 10,000 9,659
hi Wikipedia 1,618 200 200 3,806 5,555
it Wikipedia 2,151 200 200 10,000 9,195
ja Wikipedia 2,262 200 200 10,000 9,297
ko Wikipedia 2,198 200 200 6,176 7,832
pt Wikipedia 1,845 200 200 6,569 7,922
ru Wikipedia 1,864 200 200 10,000 9,723
th mC4 1,970 200 200 10,000 8,089
zh Wikipedia, Wudao 10,000 200 800 200,000 4,249

Total – 41,434 2,600 3,800 493,709 4,737

Table 7: Specifications of MultiLongDoc dataset.

Data Source Language Size

Unsupervised Data

MTP EN, ZH 291.1M

S2ORC, Wikipeida EN 48.3M

xP3, mC4,
CC-News Multi-Lingual 488.4M

NLLB, CCMatrix Cross-Lingual 391.3M

CodeSearchNet Text-Code 344.1K

Total – 1.2B

Fine-tuning Data

MS MARCO,
HotpotQA, NQ,

NLI, etc.
EN 1.1M

DuReader,
T2-Ranking,
NLI-zh, etc.

ZH 386.6K

MIRACL,
Mr.TyDi Multi-Lingual 88.9K

MultiLongDoc Multi-Lingual 41.4K

Table 8: Specification of training data.

strategy; otherwise, the intermediate activations1081

for each sub-batch will continuously accumulate,1082

ultimately occupying the same amount of GPU1083

memory as traditional methods.1084

In Table 10, we investigate the impact of split-1085

batch on batch size. It can be observed that, with1086

the split-batch enabled, there is a significant in-1087

crease in batch size. Simultaneously, the increase1088

becomes more pronounced with longer text lengths,1089

and in the case of a length of 8192, enabling split-1090

batch results in a growth of batch size by over 201091

times.1092

Length Range
Batch Size

Unsupervised Fine-tuning

0-500 67,200 1,152

500-1000 54,720 768

1000-2000 37,248 480

2000-3000 27,648 432

3000-4000 21,504 336

4000-5000 17,280 336

5000-6000 15,072 288

6000-7000 12,288 240

7000-8192 9,984 192

Table 9: Detailed total batch size used in training for
data with different sequence length ranges.

C More Results 1093

C.1 Additional Resutls 1094

In this section, we present additional evaluation 1095

results on the MIRACL and MKQA benchmarks. 1096

As shown in Table 12 and 13, M3-Embedding out- 1097

performs all baselines on average. 1098

The detailed results of ablation studies of self- 1099

knowledge distillation and multi-stage training on 1100

the MIRACL dev set are shown in Table 14 and 1101

Table 15. 1102

C.2 Different Tokenizer for BM25 1103

We investigate the impact of different tokenizers 1104

on the BM25 method, and the results are shown in 1105

Table 11. We can observe that: 1106

14



Figure 4: Language and sequence length distribution of unsupervised data

Use Split-batch
Max Length

1024 4096 8192

× 262 25 6
√

855 258 130

Table 10: Maximum batch size per device under differ-
ent experimental settings.

Figure 5: NarrativeQA with variant sequence length.

• Using the Analyzer from Lucene12 can sig-1107

nificantly enhance the effectiveness of BM25.1108

Lucene analyzer includes multiple steps typi-1109

cally including tokenization, stemming, stop-1110

word removal, etc, achieving better results1111

than directly using the tokenzier of XLM-1112

RoBERTa. Additionally, it’s worth noting1113

that the vocabulary size of the tokenizer from1114

XLM-RoBERTa is limited, resulting in fewer1115

12. https://github.com/apache/lucene/tree/main/lucene/analysis/common/src/java/org/apache/lucene/analysis

method tokenizer Miracl MKQA MLDR

BM25 Analyzer 38.5 40.9 64.1

BM25 XLM-RoBERTa 31.9 39.9 53.6

M3.Sparse XLM-RoBERTa 53.9 45.3 62.2

M3.All XLM-RoBERTa 70.0 75.5 65.0

Table 11: Comparison with the BM25 methods using
different tokenizers.

unique tokens after encoding documents (for 1116

example, on the MLDR dataset, the tokenizer 1117

of XLM-RoBERTa produces 1056 unique 1118

terms per article, while Lucene’s analyzer gen- 1119

erates 1451 unique terms, which is over 37% 1120

more and will increase retrieval latency). 1121

• M3 outperforms BM25 models using the same 1122

tokenizer on all datasets, indicating that the 1123

learned weights are significantly better than 1124

the weights calculated by BM25. 1125

• The sparse retrieval of M3 outperforms BM25 1126

on Miracl and MKQA datasets. In long docu- 1127

ment retrieval (MLDR), M3’s sparse doesn’t 1128

surpass BM25 but achieves competitive per- 1129

formance. This suggests that BM25 remains 1130

a highly competitive baseline model. Explor- 1131

ing tokenizers that perform better for sparse 1132

representation is a worthwhile topic for future 1133

research. 1134
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Model Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

Baselines (Prior Work)

BM25 67.3 78.7 90.0 63.6 25.4 68.1 81.2 50.2 73.8 71.8 73.6 70.1 56.4 69.9 73.3 87.5 55.1 42.8 80.1

mDPR 79.0 84.1 81.9 76.8 86.4 89.8 78.8 91.5 77.6 57.3 82.5 73.7 79.7 61.6 76.2 67.8 94.4 89.8 71.5

mContriever 84.9 92.5 92.1 79.7 84.1 65.4 95.3 82.4 64.6 80.2 87.8 87.5 85.0 91.1 96.1 93.6 90.3 84.1 77.0

mE5large 92.8 97.3 98.2 87.6 89.1 92.9 98.1 90.6 93.9 87.9 97.1 93.4 95.5 96.7 99.2 98.9 93.3 90.6 69.4

E5mistral-7b 91.3 96.0 96.0 90.2 87.5 88.0 96.7 92.8 89.9 88.4 95.1 89.4 95.0 95.5 95.1 96.5 90.1 88.6 73.3

M3-Embedding (Our Work)

Dense 93.8 97.6 98.7 90.7 90.1 89.6 97.9 93.1 94.2 90.5 97.5 95.5 95.9 97.2 99.4 99.1 95.7 90.8 74.2

Sparse 85.6 92.0 96.6 81.5 71.9 87.0 91.5 73.2 87.2 84.9 92.3 91.8 77.0 85.1 98.0 95.2 72.8 69.0 92.9
Multi-vec 94.5 97.8 98.9 91.6 91.3 90.5 98.2 95.4 94.9 92.5 98.0 95.9 96.5 97.3 99.4 99.2 96.2 92.3 74.6

Dense+Sparse 94.4 98.0 98.9 92.4 91.5 91.0 98.4 93.9 95.3 92.6 97.5 95.6 96.6 97.6 99.1 99.0 95.7 90.8 75.4

All 94.6 98.0 98.9 92.1 91.8 91.2 98.4 95.0 94.9 92.4 97.9 96.0 96.7 97.2 99.4 99.2 96.5 92.2 74.6

Table 12: Recall@100 on the dev set of the MIRACL dataset for multilingual retrieval in all 18 languages.

Baselines (Prior Work) M3-Embedding (Our Work)

BM25 mDPR mContriever mE5large E5mistral-7b OpenAI-3 Dense Sparse Multi-vec Dense+Sparse All

ar 13.4 33.8 43.8 59.7 47.6 55.1 61.9 19.5 62.6 61.9 63.0
da 36.2 55.7 63.3 71.7 72.3 67.6 71.2 45.1 71.7 71.3 72.0

de 23.3 53.2 60.2 71.2 70.8 67.6 69.8 33.2 69.6 70.2 70.4

es 29.8 55.4 62.3 70.8 71.6 68.0 69.8 40.3 70.3 70.2 70.7

fi 33.2 42.8 58.7 67.7 63.6 65.5 67.8 41.2 68.3 68.4 68.9
fr 30.3 56.5 62.6 69.5 72.7 68.2 69.6 43.2 70.1 70.1 70.8

he 16.1 34.0 50.5 61.4 32.4 46.3 63.4 24.5 64.4 63.5 64.6
hu 26.1 46.1 57.1 68.0 68.3 64.0 67.1 34.5 67.3 67.7 67.9

it 31.5 53.8 62.0 71.2 71.3 67.6 69.7 41.5 69.9 69.9 70.3

ja 14.5 46.3 50.7 63.1 57.6 64.2 67.0 23.3 67.8 67.1 67.9
km 20.7 20.6 18.7 18.3 23.3 25.7 58.5 24.4 59.2 58.9 59.5
ko 18.3 36.8 44.9 58.9 49.4 53.9 61.9 24.3 63.2 62.1 63.3
ms 42.3 53.8 63.7 70.2 71.1 66.1 71.6 52.5 72.1 71.8 72.3
nl 42.5 56.9 63.9 73.0 74.5 68.8 71.3 52.9 71.8 71.7 72.3

no 38.5 55.2 63.0 71.1 70.8 67.0 70.7 47.0 71.4 71.1 71.6
pl 28.7 50.4 60.9 70.5 71.5 66.1 69.4 36.4 70.0 69.9 70.4

pt 31.8 52.5 61.0 66.8 71.6 67.7 69.3 40.2 70.0 69.8 70.6

ru 21.8 49.8 57.9 70.6 68.7 65.1 69.4 29.2 70.0 69.4 70.0

sv 41.1 54.9 62.7 72.0 73.3 67.8 70.5 49.8 71.3 71.5 71.5

th 28.4 40.9 54.4 69.7 57.1 55.2 69.6 34.7 70.5 69.8 70.8
tr 33.5 45.5 59.9 67.3 65.5 64.9 68.2 40.9 69.0 69.1 69.6
vi 33.6 51.3 59.9 68.7 62.3 63.5 69.6 42.2 70.5 70.2 70.9
zh cn 19.4 50.1 55.9 44.3 61.2 62.7 66.4 26.9 66.7 66.6 67.3
zh hk 23.9 50.2 55.5 46.4 55.9 61.4 65.8 31.2 66.4 65.9 66.7
zh tw 22.5 50.6 55.2 45.9 56.5 61.6 64.8 29.8 65.3 64.9 65.6
Avg 28.1 47.9 56.3 63.5 62.4 62.1 67.8 36.3 68.4 68.1 68.8

Table 13: Recall@20 on MKQA dataset for cross-lingual retrieval in all 25 languages.
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Model Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

M3-w.skd

Dense 67.8 78.4 80.0 56.9 55.5 57.7 78.6 57.8 59.3 56.0 72.8 69.9 70.1 78.6 86.2 82.6 61.7 56.8 60.7

Sparse 53.9 67.1 68.7 43.7 38.8 45.2 65.3 35.5 48.2 48.9 56.3 61.5 44.5 57.9 79.0 70.9 36.3 32.2 70.0

Multi-vec 69.0 79.6 81.1 59.4 57.2 58.8 80.1 59.0 61.4 58.2 74.5 71.2 71.2 79.0 87.9 83.0 62.7 57.9 60.4

M3-w.o.skd

Dense 67.2 78.0 79.1 56.4 54.9 57.4 78.3 57.8 58.9 55.1 72.3 68.7 69.5 77.8 85.8 82.5 62.1 55.9 59.9

Sparse 36.7 48.2 52.1 24.3 20.3 25.9 48.6 16.9 30.1 32.1 33.0 43.1 27.1 45.3 63.8 52.0 22.6 16.5 59.4

Multi-vec 67.8 78.7 80.2 57.6 56.1 57.4 79.0 57.9 59.2 57.5 74.0 70.3 70.2 78.6 86.9 82.1 61.0 56.7 57.4

Table 14: Ablation study of self-knowledge distillation on the MIRACL dev set (nDCG@10).

Model Avg ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo

Fine-tune

Dense 59.3 71.0 72.5 47.6 46.1 49.1 72.3 50.7 48.8 48.9 65.7 60.4 60.9 71.8 81.3 74.8 53.6 48.6 43.8

RetroMAE + Fine-tune

Dense 64.8 75.8 77.9 54.5 53.2 55.6 76.7 54.6 57.0 53.9 70.1 66.9 66.9 74.8 86.0 79.5 61.0 52.8 49.0

RetroMAE + Unsup + Fine-tune

Dense 67.8 78.4 80.0 56.9 55.5 57.7 78.6 57.8 59.3 56.0 72.8 69.9 70.1 78.6 86.2 82.6 61.7 56.8 60.7

Table 15: Ablation study of multi-stage training on the MIRACL dev set (nDCG@10).
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