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ABSTRACT

The rapid growth of Al conference submissions has created an overwhelming re-
viewing burden. To alleviate this, recent venues such as ICLR 2026 introduced a
reviewer nomination policy: each submission must nominate one of its authors as
a reviewer, and any paper nominating an irresponsible reviewer is desk-rejected.
We study this new policy from the perspective of author welfare. Assuming each
author carries a probability of being irresponsible, we ask: how can authors (or
automated systems) nominate reviewers to minimize the risk of desk rejections?
We formalize and analyze three variants of the desk-rejection risk minimization
problem. The basic problem, which minimizes expected desk rejections, is solved
optimally by a simple greedy algorithm. We then introduce hard and soft nomi-
nation limit variants that constrain how many papers may nominate the same au-
thor, preventing widespread failures if one author is irresponsible. These formula-
tions connect to classical optimization frameworks, including minimum-cost flow
and linear programming, allowing us to design efficient, principled nomination
strategies. Our results provide the first theoretical study for reviewer nomination
policies, offering both conceptual insights and practical directions for authors to
wisely choose which co-author should serve as the nominated reciprocal reviewer.

1 INTRODUCTION

Artificial Intelligence (AI) has developed at an unprecedented speed and has been applied on an
unprecedented scale. A key driving force behind this rapid progress is the role of top Al confer-
ences, which are held annually and have presented countless groundbreaking works, many of the
most influential papers of the 21st century. For example, AlexNet was presented at NeurIPS 2012
(Krizhevsky et al., 2012), the Adam optimizer at ICLR 2015 (Kingma & Ba, 2015), ResNet at
CVPR 2016 (He et al., [2016), and Transformers at NeurIPS 2017 (Vaswani et al., 2017). These
breakthroughs have made AI conferences essential engines of scientific discovery in Al, making
them highly impactful and globally important.

However, despite their impact, the dramatic growth in submissions to these conferences has raised
serious concerns about the overwhelming reviewing workload (Cao et al 2025} [Li et al., |2025;
Allen-Zhu & Xul 2025). To cope with this challenge, some conferences have begun exploring new
policies that distribute reviewing responsibilities by making authors serve as mandatory reviewers
(Committees), [2025azbj; 2026b). A notable recent example is the reviewer nomination policy intro-
duced at ICLR 2026 (Figure|[I)), which requires each submitted paper to nominate one of its authors
as a reviewer (Committees}, [2026a). If a nominated reviewer is later judged as an irresponsible re-
viewer, the paper that nominated them is desk-rejected. While this mechanism aims to encourage
responsible reviewing, it also raises new concerns about how the nomination choices of authors can
directly affect the fate of their submitted papers.

In this work, we study this timely and important problem from the perspective of author welfare.
We aim to answer the following research question:
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Question 1. Under reviewer nomination policies (like ICLR 2026), how can an author nominate
reciprocal reviewers in their submissions wisely to minimize the risk of desk rejections caused by
coauthors’ irresponsible reviews?
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Figure 1: Irresponsible-revew-related desk-rejection.

Specifically, we assume that each author has a certain probability of being irresponsible, and thus
potentially causing desk rejections for any papers nominating them. To investigate this, we for-
malize three core problems. The first (Definition focuses purely on minimizing expected desk
rejections and can be solved optimally by a simple greedy algorithm. The second and the third (Def-
inition [3.4] and Definition [3.9) introduce a constraint on how many papers may nominate the same
author, ensuring robust worst-case performance by preventing any single author’s irresponsibility
from affecting too many papers. Our formulations provide principled algorithmic foundations for
reviewer nomination, enabling strategies that significantly improve author welfare in this new policy
regime.

Our contributions are summarized as follows:

* Novel Problem Formulations. We introduce and formalize three variants of the desk-
rejection risk minimization problem, capturing how reviewer nomination strategies interact
with desk-rejection risks under new conference policies. Specifically, we study: (i) the
basic problem without limits (Definition [3.1)), (ii) the problem with hard per-author nomi-
nation limits (Definition [3.4), and (iii) the problem with soft per-author nomination limits
(Definition [3.9). These are the first formulations to analyze reviewer nomination policies
systematically from the authors’ perspective.

* Solution to the Original Problem (Definition 3.1). In Proposition we show that the
basic problem is separable across papers and can be solved optimally by a simple greedy
algorithm in O(nnz(a)) time, where nnz(a) is the number of author-paper incidences. This
provides a clean baseline and highlights the limitations of only minimizing expected risks.

* Solution to the Hard Nomination Limit Problem (Definition[3.4). We prove that the hard
limit formulation cannot be solved by naive greedy or random strategies, and that its LP
relaxation may yield fractional solutions. Importantly, in Theorem [4.3] we then establish
an exact equivalence between this problem and the classical minimum-cost flow problem,
ensuring access to modern minimum-cost flow algorithms that has optimality guarantee
and high efficiency.

* Solution to the Soft Nomination Limit Problem (Definition [3.9). We show that the soft
limit formulation is convex but non-smooth, making direct optimization difficult. To ad-
dress this, in Theorem[4.8] we design an equivalent linear program via auxiliary variables,
enabling the use of efficient LP solvers. We further provide a rounding scheme that converts
fractional LP solutions into integral assignments while preserving feasibility.

Roadmap. In Section [2| we review the relevant works of this paper. In Section 3] we formulate
three varuiants of the desk-rejection risk minimization problem. In Section[d] we present our main
results. In Section[5] we conclude our paper.

2 RELATED WORKS

Optimization-based reviewer assignment. The rapid growth in submissions to major conferences
has brought increasing attention from the computer science community to improving reviewer as-
signment, addressing challenges such as bias (Tomkins et al., 2017; |Stelmakh et al., 2019agb), mis-
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calibration (Flach et al.| 2010; Roos et al, 2011} (Ge et al.l 2013 [Wang & Shah| 2019), person-
alism (Noothigattu et al., 2021), conflicts of interest (Balietti et al., 2016; | Xu et al., 2019), and
reviewer-author interactions (Miyao, 2019). To address these challenges, one line of work focuses
on bidding mechanisms (Shah et al., 2018; [Fiez et all |2020), which allow reviewers to express
preferences over papers.

Another central approach is optimization, which formalizes reviewer assignment as an optimization
problem with objectives such as maximizing similarity scores (Cook et al.,[2005; Long et al., 2013
Li & Hou, 2016; |/Aksoy et al., 2023), improving topic coverage (Karimzadehgan & Zhai, 2009;
Tayal et al., [2014; Kale et al.| 2015)), or enhancing fairness (Garg et al., 2010; [Kobren et al., 2019
Payan & Zickl 2022). Beyond these objectives, specialized strategies have been proposed for pre-
venting cycles and loops (Guo et al.l 2018 [Littman, 2021} [Leyton-Brown et al., |2024)), avoiding
torpedo reviewing (Alon et al.,[2011; |Jecmen et al., 2020; Dhull et al.|[2022)), and handling conflicts
of interest (Merelo-Guervos & Castillo-Valdivieso, 20045 [Yan et al., 2019; [Pradhan et al.| [2020).
Other work studies problem formulations, such as grouping strategies (Xu et al.,[2010; [Wang et al.,
2013; Das & Gocken, [2014) and two-stage reviewing (Leyton-Brown et al., |2024; Jecmen et al.,
2022). While these approaches improve aspects such as expertise matching and fairness, in this pa-
per we study a different problem for the first time: reducing desk-rejection risk for authors caused by
irresponsible reviewing, which addresses a new policy in leading Al conferences (e.g., [CLR 2026).

Desk-rejection policies. A number of different desk-rejection policies have been implemented to
decrease the reviewer load in the peer-review process (Ansell & Samuels| [2021). Among these
rules, the most widely used is rejecting papers that violate anonymity requirements (Jefferson et al.|
2002; Tennant, 2018), which is crucial for ensuring that reviewers from different institutions, career
stages, and interests can provide unbiased evaluations. Another common policy targets duplicate
and dual submissions (Stone, [2003; [Leopold, |2013), helping reduce redundant reviewer effort. Pla-
giarism (King & ChatGPT} 2023; |[Elali & Rachid, 2023)) is also a key reason for desk-rejection, as
it violates academic integrity, infringes on intellectual property, and undermines the credibility of
scientific contributions.

To address the rapid growth of Al conference submissions, additional desk-rejection policies have
been developed (Leyton-Brown et al., 2024). For example, IJICAI 2020 (Committees, [2020a)) and
NeurIPS 2020 (Committees) |2020b) adopted a fast-rejection method, allowing area chairs to make
desk-rejection decisions based on a quick review of the abstract and main content. Although de-
signed to reduce reviewer workload, this approach introduces unreliability and can misjudge promis-
ing work, leading to inappropriate desk-rejections, and thus is rarely adopted. A more widely used
strategy is author-level submission limits, where papers are desk-rejected if they include authors who
exceed a submission cap. Several conferences have implemented this submission-limit policy, and
recent studies examine its fairness and methods for minimizing desk-rejection under this rule (Cao
et al.,|2025; [Li et al.} 2025). Recently, ICLR (Committees| 2026a) announced a new desk-rejection
policy: a paper will be rejected if the nominated reviewer is deemed irresponsible. Similar poli-
cies can also be found in KDD (Committeesl [2026b) and NeurIPS (Committees), [2025c¢). Our work
provides a thorough analysis of this new type of desk-rejection policy.

3 PROBLEM FORMULATION

In Section we present the basic desk-rejection risk minimization problem. In Section we
extend it with a hard author nomination limit. In Section [3.3] we consider a soft author nomination
limit extension of the basic problem.

Notations. We use [n] := {1,2,...,n} to denote a set of consecutive positive integers. We use Z
to denote the set of all integers. Let nnz(A) be the number of non-zero entries in matrix A. We
use 1,, to denote the n-dimensional column vector with all entries equal to 1, and 0,, to denote the
n-dimensional column vector with all entries equal to 0.

3.1 DESK-REJECTION RISK MINIMIZATION

As shown in Figure [I] the ICLR 2026 policy requires each paper to nominate at least one of its
authors as a reciprocal reviewer. If a nominated reviewer behaves irresponsibly, then every paper
that nominated this author is desk-rejected. From an author’s perspective, this introduces a strategic
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risk: when submitting multiple papers, the choice of which co-authors to nominate directly affects
the probability that some papers will be desk-rejected. This risk is further amplified in recent years,
as authors tend to submit more papers and many submissions (e.g., large-scale LLM papers) involve
long author lists.

This motivates the following desk-rejection risk minimization problem: authors must carefully
choose their nominations across all papers to reduce the probability of desk-rejection caused by
irresponsible reviewers. We model this as an integer program.

Definition 3.1 (Desk-rejection risk minimization, integer program). Let n denote the number of
papers and m the number of authors. Let a € {0,1}"*"™ be the authorship matrix, where a; ; = 1
if paper i includes author j, and a; ; = 0 otherwise. Each author j € [m] is associated with a
probability p; € [0,1] of being an irresponsible reviewer, with p; = 1 indicating the author is
always irresponsible and p; = 0 indicating the author is always responsible.

The objective is to minimize the expected number of desk-rejected papers by solving:

n m
min E E TiiDi
ze{0,1}nxm 43Pi

i=1 j=1

m
s.t. Zai’jxm =1,Vi € [n]
j=1

where x; ; = 1 indicates that paper i nominates author j as its reciprocal reviewer.

In the definition above, the constraint Z;n:l a; jx;; = 1 ensures that each paper nominates exactly
one reciprocal reviewer. Since nominating more authors only increases the risk of desk-rejection
without benefit, this formulation naturally restricts each paper to a single nomination.

Remark 3.2 (Difference from reviewer assignment problems). The desk-rejection risk minimiza-
tion problem in Definition |3. 1| fundamentally differs from prior work on reviewer-paper matching
systems (Yan et al.| 2019} |Pradhan et al.| 2020; |Fiez et al.| |2020), which focus on expertise match-
ing or conflict of interest avoidance. Our formulation instead takes the author’s perspective, aiming
to minimize the risk that a nomination leads to desk-rejection due to irresponsible review behaviors.

Despite its novelty and importance, this formulation only considers the expected number of desk-
rejections, while ignoring worst-case risks (e.g., if the least-risk author still turns out irresponsible).
Moreover, the problem is computationally trivial, as shown below.

Proposition 3.3 (Optimal greedy solution for Definition [3.1] informal version of Proposition B.T).
There exists a greedy algorithm that, for each paper, selects the co-author with the smallest irre-
sponsibility probability, and this algorithm solves the desk-rejection risk minimization problem in

Definition[3.1]in O(nnz(a)) time.

This problem is not only technically less challenging but leads to an undesirable worst-case scenario:
if the author with the smallest p; turns out to be irresponsible, then a large number of papers may be
rejected. This motivates the need for more robust problem formulations.

3.2 DESK-REJECTION RISK MINIMIZATION WITH HARD AUTHOR NOMINATION LIMITS

While the basic problem in Section [3.1] captures the expected risk of desk-rejection, it does not
prevent cases where the same “most reliable’ author is repeatedly nominated across too many papers.
In practice, such a strategy is risky: if that author turns out to be irresponsible, then a large fraction
of the submissions may be desk-rejected simultaneously. Thus, we introduce a stricter formulation
that enforces a hard limit on the number of papers any single author can be nominated for.

Definition 3.4 (Desk-rejection risk minimization with hard author nomination limits, integer pro-
gram). Let n denote the number of papers and m the number of authors. Let a € {0,1}"*™ be
the authorship matrix, where a; ; = 1 if paper @ includes author j, and a; ; = 0 otherwise. Each
author j € [m] is associated with an irresponsibility probability p; € [0,1]. Let b € N, denote the
maximum number of papers for which an author can be nominated as reviewer.
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The objective is to minimize the expected number of desk-rejected papers by solving:

n m
min E E TiiDi
ze{0,1}nxm 2L

i=1 j=1

m
s.t. Zaiiji"j =1,Vi € [n]
j=1

Zai’jxi’j < b,Vj c [m]

=1

where x; ; = 1 indicates that paper i nominates author j as its reciprocal reviewer.

This problem strictly generalizes the formulation in Section[3.1]and is technically more challenging:
simple random or greedy algorithms no longer guarantee feasibility.

Remark 3.5 (Degeneration case of the hard nomination limit problem). When the nomination limit
b is sufficiently large (e.g., b > n), Definition reduces to the original problem in Definition
In this case, the hard limit never works and every feasible solution of the original problem remains
feasible under the limit formulation.

Proposition 3.6 (Failure of random and greedy algorithms under hard nomination limits, informal
version of Proposition[B.2). There exist instances of Definition[3.4|that has feasible solutions, while
both the simple random algorithm (Algorithm [3) and the greedy algorithm (Algorithm {) fail to
return a feasible solution.

The hard-limit formulation is desirable because it balances risk minimization against catastrophic
worst-case outcomes. In Section we present theoretical results and algorithms for solving this
hard-limit problem efficiently.

However, it still suffers from a structural limitation: for certain inputs, no feasible solution exists.
We illustrate this with the following statement:

Fact 3.7 (Existence of infeasible instances). There exist choices of n,m,a,b,p in Definition
such that no feasible solution exists.

Proof. Consider any n > 2 with b < n, and let m = 1 with ¢ = 1,,. Constraint 1 requires x = 1,,
i.e., every paper nominates the only author. But then

n
E ;i 1T51 =1 > b7
=1

violating Constraint 2. Thus, no feasible solution exists. O

This fact can be illustrated by the following concrete example:

Example3.8. Letn =5 m =1,a = [1,1,1,1,1]T, and b = 2. This corresponds to an author with
5 single-authored papers but a nomination limit of 2. If the author is nominated in only 2 papers,
Constraint 1 fails. If the author is nominated in all 5 papers, Constraint 2 fails. Hence, the instance
is infeasible.

To avoid such impractical cases, we next introduce the soft author nomination limit problem. This
relaxation enforces nomination limits in expectation while always guaranteeing the existence of a
feasible solution.

3.3 DESK-REJECTION RISK MINIMIZATION WITH SOFT AUTHOR NOMINATION LIMITS

The hard-limit formulation in Section [3.2] prevents over-reliance on a single “reliable” author but
may result in cases that have no feasible solutions, as shown earlier. To overcome this issue, we
relax the hard constraint into a penalty term, allowing every instance to admit a solution while still
discouraging excessive nominations of the same author. This leads to the soft author nomination
limit problem.



Under review as a conference paper at ICLR 2026

Definition 3.9 (Desk-rejection risk minimization with soft author nomination limits, integer pro-
gram). Let n denote the number of papers and m the number of authors. Let a € {0,1}"*™ be the
authorship matrix, where a; ; = 1 if paper i includes author j, and a; ; = 0 otherwise. Each author
J € [m] is associated with an irresponsibility probability p; € [0,1]. Let b € N be the nomination
limit, and \ > 0 be a regularization parameter controlling the penalty weight.

The objective is to minimize the expected number of desk-rejected papers by solving:

n m

m n
min E E i D5 + A max{0, E a; ;%;; — b}
$6{071}'rLX7rL ! j—l o1

i=1 j=1

m
s.t. Zai’inJ‘ = 1,Vz € [n]

j=1

In the definition above, the additional term

m n
)y Z max{0, Z a;jri; — b}
j=1 =1

acts as an /1 penalty on each author j € [m], proportional to the number of nominations exceeding
the limit b. Intuitively, when A is large, this enforces behavior similar to the hard-limit formulation
in Definition while still guaranteeing feasibility because violations incur a penalty rather than
being strictly forbidden.

Remark 3.10 (Degeneration under large nomination limits). When the nomination limit b is suffi-
ciently large (e.g., b > n), Definition[3.9 reduces to the original formulation in Definition [3.1|

In Section f.2] we present theoretical results and algorithms for solving this soft-limit problem
efficiently.

4 MAIN RESULTS

In Section we present our theoretical results on solving the hard author nomination limit prob-
lem. In Section[4.2] we extend our theoretical results to the soft nomination limits.

4.1 SOLVING HARD AUTHOR NOMINATION LIMITS

Linear Program Relaxation. To solve the hard author nomination problem in Definition a
natural first step is to relax the integer program into a linear program:

Definition 4.1 (Desk-rejection risk minimization with hard author nomination limits, relaxed linear
program). Let n denote the number of papers and m the number of authors. Let a € {0,1}"*™ be
the authorship matrix, where a,; ; = 1 if paper i includes author j, and a; ; = 0 otherwise. Each
author j € [m] is associated with an irresponsibility probability p; € [0,1]. Let b € N, denote the
maximum number of papers for which an author can be nominated as reviewer.

The objective is to minimize the expected number of desk-rejected papers by solving:
n m
min i iDj
z€l0,1]nxm Z Z i3Pi

i=1 j=1

m

s.t. Zaiijw =1,Vie [’I’L]

j=1

Zaiijm < b,Vj € [m]

i=1

Although linear programs can be solved efficiently, the relaxation may yield fractional solutions that
are not valid assignments in the original integer problem. In Proposition we showed that such
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fractional optima indeed exist. This motivates us to search for an exact combinatorial algorithm with
guaranteed integrality.

Proposition 4.2 (Existence of fractional optima for the relaxed hard nomination problem, informal
version of Proposition [C.1). There exists an instance of Definition whose optimal solution x is
fractional (i.e., there exist indices i € [n] and j € [m] such that x; j ¢ {0,1}).

Minimum-Cost Flow Equivalence. The hard author nomination limit problem can be reformulated
as a minimum-cost circulation problem, and hence as a special case of the minimum-cost flow
problem. The intuition is straightforward:

* Each paper i € [n] corresponds to a demand of exactly one unit of flow (since it must
nominate exactly one reviewer).

* Each author j € [m] corresponds to a capacity-limited supply node, where the outgoing
flow cannot exceed the nomination limit b.

» Edges between authors and papers encode the author-paper matrix (i.e., a; ; = 1), with
cost equal to the irresponsibility probability p;.

* By routing n units of flow from a source vertex through authors into papers and then to a
sink vertex, we enforce both feasibility and the per-paper nomination requirement.

This construction transforms Definition[3.4]into a network flow instance with integral capacities and
costs. A key property of minimum-cost flow is that whenever capacities and demands are integral,
the problem always admits an optimal integral solution. Thus, unlike the LP relaxation, the flow-
based formulation guarantees feasibility and integrality without the need for rounding.

Therefore, we obtain the following result:

Theorem 4.3 (Equivalence to minimum-cost flow, informal version of Theorem |C.2). The hard
author nomination problem in Definition is equivalent to a minimum-cost flow problem, and
therefore always admits an optimal integral solution whenever a feasible assignment exists.

The minimum-cost flow problem has been studied extensively, with polynomial-time algo-
rithms (Edmonds & Karpl [1972; |Goldberg & Tarjan, [1990; |Daitch & Spielman, 2008) available
since 1972. Our result in Theorem 4.3|enables the hard-limit problem to be solved not only by these
classical algorithms, many of which already have mature off-the-shelf implementations, but also by
the most recent state-of-the-art methods.

Remark 4.4 (Efficiency and practical implications). Recent state-of-the-art results achieve O(N +
M1'5)[1J time for minimum-cost flow problems with N vertices and M edges (Brand et al., |2021).
For large Al conferences such as ICLR, where both N and M scale on the order of 10* (Li et al.|
2025|), the hard nomination limit problem in Definition|3.4|can be solved efficiently in practice while
remaining exact and optimal integer solutions.

4.2 SOLVING SOFT AUTHOR NOMINATION LIMITS

Relaxing the Integer Program. Hard nomination limits can make some instances infeasible. A
natural remedy is to “soften” the limit by penalizing nomination overloads rather than totally forbid-
ding them in the constraints. This preserves feasibility while discouraging solutions that concentrate
nominations on a few authors. To solve the soft author nomination limit problem in Definition
we first relax the original integer program into a continuous form.

Definition 4.5 (Desk-rejection risk minimization with soft author nomination limits, relaxed prob-
lem). Let n denote the number of papers and m the number of authors. Let a € {0, 1}"*™ be the
authorship matrix, where a; j = 1 if paper i includes author j, and a; ; = 0 otherwise. Each author
J € |m] is associated with an irresponsibility probability p; € [0,1]. Let b € N be the nomination
limit, and \ > 0 be a regularization parameter controlling the penalty weight.

The objective is to minimize the expected number of desk-rejected papers by solving:

n m m n
min TiiDi + A max{0 a; iTi i —b
vef0a]nxm E ,§ , ijPj + § {0, E i.%i; — b}
’ j=1 i=1

i=1 j=1

"The O-notation omits the N°™) and M°™) factors.
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m
s.t. Zai,jxi’j = ].,V’L S [n}
j=1
Fact 4.6 (Convexity of Definition[d.5). Problem[.3]is a convex optimization problem.

Proof. The objective is a sum of a linear term and a sum of convex functions composed with affine
maps. The constraints are linear equalities together with box constraints 0 < x; ; < 1,Vi € [n],j €
[m], so the feasible set is convex. Therefore, the problem is convex, which finishes the proof. O

Although the relaxed soft author nomination limit problem is convex, it is still algorithmically non-
straightforward. The second term introduces non-smoothness in the objective, and unlike standard
smooth—non-smooth decompositions, it is not separable from the linear part. Combined with the
equality constraints, this coupling makes the problem harder to solve directly.

Linear Program Re-formulation. To address these challenges, we propose a linear programming
reformulation inspired by the epigraph trick (Boyd & Vandenberghe, |2004), which removes non-
smoothness through auxiliary variables and facilitates the use of efficient LP solvers with robust
theoretical guarantees and practical implementations.

Definition 4.7 (Desk-rejection risk minimization with soft author nomination limits, linear pro-
gram). Let n denote the number of papers and m the number of authors. Let a € {0,1}"*™ be the
authorship matrix, where a; j = 1 if paper i includes author j, and a; ; = 0 otherwise. Each author
J € [m] is associated with an irresponsibility probability p; € [0,1]. Let b € N be the nomination
limit, and \ > 0 be a regularization parameter controlling the penalty weight.

Let y € R’ denote the penalty for nominating an author in too many papers. The objective is to
minimize the expected number of desk-rejected papers by solving:

n m m
min E g x»»p~+)\§ Yj
z€l0,1]7Xm yeR™ B — /
j=

+ =1 j=1

m
s.t. Zai)jxm =1,Vi € [n]

j=1

n
y; > Zai,jxi,j —b,j € [m]

i=1

Theorem 4.8 (Equivalence of the convex and linear program formulations for the soft nomination
limit problem, informal version of Theorem|[C.3). The relaxed soft author nomination limit problem
in Definition .3 and its linear program reformulation in Definition are equivalent with respect
to the assignment variable x.

This LP reformulation enables us to solve the soft author nomination limit problem in Definition[3.9]
using modern linear programming solvers, which provide both strong optimality guarantees and
high practical efficiency. To assess the computational efficiency of such solvers, we first discuss
sparsification and then present complexity considerations.

Remark 4.9 (Sparsification of decision variables). In practice, the optimization variables x; ; only
need to be maintained for entries with a; ; = 1. For all pairs (i, j) € [n] x [m] with a; ; = 0, we can
fix x; ; = 0 without affecting feasibility or optimality. Thus, the total number of decision variables
reduces from O(nm) to O(nnz(a)).

Remark 4.10 (Complexity of solving the LP reformulation). The time complexity of solving the LP

in Definition.7|aligns with the performance of modern linear programming methods. For example,
using the stochastic central path method (Cohen et al.| |202 1} Jiang et al.| 2021} |Dong et al.| [2021),

the problem can be solved in O(K*37 log(K/6)) tim where K is the number of decision variables
and ¢ is the relative accuracy parameter of a (1 + §)-approximation guarantee.

2The O-notation omits the K°*) factors.
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Remark 4.11 (Practical implications). Empirical statistics from recent Al conferences (e.g., ICLR)
show that nnz(a) typically scales to the order of 10* (Li et al., [2025). At this scale, the LP refor-
mulation can be solved efficiently within available computational resources. This ensures that our
formulation is not only theoretically sound but also practical for real-world conference applications.

Rounding. Solving the LP relaxation (Deﬁnition of the soft author nomination problem (Defi-
nition [3.9) provides a (possibly) fractional solution = € [0, 1]"*™. While this fractional solution is
optimal in the relaxed space, it is not directly implementable in practice because reviewer nomina-
tions must be integral: each paper must nominate exactly one author, not a weighted combination
of several authors. Thus, rounding is required to transform the LP’s fractional solution into a valid
integer solution that respects the feasibility constraints of the original problem.

The rounding algorithm in Algorithm [T achieves this by selecting, for each paper, the author with
the largest fractional assignment and setting the corresponding decision variable to 1, ensuring that
every paper nominates exactly one reviewer.

Algorithm 1 Rounding Algorithm for Desk-Rejection Risk Minimization with Soft Author Nomi-
nation Limit (Definition

1: procedure ROUNDINGSOFT(a € {0,1}"*™ z € [0,1]"*™ n,m,be N, ,p e (0,1)™)

2 T+ 0hxm

3 for i € [n] do

4: Jx ¢ rgmMax;e(m] Ti,j > pick the largest fractional value in row %
5: %i,j* —1

6 end for

7 return =

8: end procedure

Proposition 4.12 (Correctness and efficiency of rounding algorithm). Algorithm|l|produces a fea-
sible solution T € {0,1}"*™ to the integer soft nomination limit problem in Definition 3.9| in
O(nnz(a)) time.

Proof. Part 1. Correctness. For each paperi € [n],letS; := {j € [m] : a; ; = 1} denote its author
set. By the constraints of the linear program, we have x; ; = 0 for j ¢ S; and ) jes; Tig = L.
Algorithmselects J« € argmaxjeg, ;; and sets 7; ;, = 1 and ;; = 0 for j # j,. Hence,
exactly one author in S; is chosen and none outside .5;, i.e.,

m

2017]’%1"]' = 1,Vi S [n]

j=1
This satisfies the per-paper nomination constraint, which is the only constraint in Definition
Thus, we can conlude that 7 is feasible.

Part 2. Running Time. For each paper i, the algorithm scans .S; once to find j,, which takes
O(nnz(a; )) time. Summing over all papers gives total time

O(Z nnz(a; .)) = O(nnz(a)).

Therefore, Algorithm |I{runs in O(nnz(a)) time. O

5 CONCLUSION

This paper provides the first systematic study of reviewer nomination policies from the perspec-
tive of author welfare. By formulating the desk-rejection risk minimization problem and analyzing
three variants, we establish clean theoretical foundations and efficient algorithms for mitigating
nomination-related desk rejections. Our results show that while the basic problem admits a simple
greedy solution, the hard and soft nomination limit problems connect naturally to well-studied op-
timization paradigms such as minimum-cost flow and linear programming, allowing us to leverage
decades of algorithmic progress.
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Appendix

Roadmap. In Section |Al we explain some background knowledge on network flow problems. In
Section[B] we show the missing proofs in Section[3] In Section[C] we supplement the missing proofs
in Sectionfd] In Section[D] we present several useful baseline algorithms for the soft nomination limit
problems.

A BACKGROUNDS ON NETWORK FLOW

We introduce the minimum-cost flow problem in Section and then introduce the equivalent
minimum-cost circulation problem in Section[A.2]

A.1 MINIMUM-COST FLOW PROBLEM

Definition A.1 (Feasible flow, implicit in page 296 of (Ahuja et al.,[1993)). Let G := (V, E) be a
directed graph, where V' := [N] is the vertex set and E := {(i1,j1), (i2,72)s- -, (inr,dar) } is the
edge set. For each (i,j) € E, we define a capacity c(i,j) € Z>o, and a cost w(i,j) € R. Each
vertex v € V is associated with a supply/demand value b(v) € Z such that ), b(v) = 0.

We say that a function f : E — Rxq is a feasible flow if f satisfies:
* 0< f(i,) < (i, ), V(i j) € B,

‘ Zk:(q;,k)eE f(vv k) - Zk;(k,q;)eE f(k,?)) = b(v),Vv ev.

Definition A.2 (Minimum-cost flow problem, implicit in page 296 of (Ahuja et al.| [1993))). Given a
feasible flow f as in Definition the minimum-cost flow problem is to find a feasible flow f that
minimizes

> w(i,g) - f(i, ).
(i,4)eE
A.2 MINIMUM-COST CIRCULATION PROBLEM

Definition A.3 (Circulation, implicit in page 194 of (Ahuja et al, [1993)). Let G := (V, E) be a
directed graph, where V' := [N] is the vertex set and E = {(i1,j1), (i2,72),-- -, (irr,G0) } is the
edge set. For all (i,7) € E, we define a demand d(i,j) € Z>¢ and a capacity c(i,j) € Z>q such
that 0 < d(i,7) < e(i, 7).

We say that a function f : E — Rxq is a circulation if f satisfies:
* d(i,g) < f(1,5) < c(i,5),¥(i,)) € E,

* Ykmer f(6k) =k wner f(k,),Vi € [N].

Definition A.4 (Minimum-cost circulation problem, implicit in page 1 of (Williamson, 2007)).
Given a feasible circulation f as in Definition the minimum-cost flow problem is to find a
circulation f that minimizes

> w(i,g) - i, 9).

(i.j)€E

Lemma A.5 (Equivalence of minimum-cost circulation and minimum-cost flow, Theorem 1 on page
2 of (Williamsonl 2007)). The minimum-cost flow problem in Deﬁnitionand the minimum-cost
circulation problem in Definition are equivalent.

B MISSING PROOFS IN SECTION 3]

We first supplement the proof for Proposition

14



Under review as a conference paper at ICLR 2026

Proposition B.1 (Optimal greedy solution for Definition Proposition formal version of Propo-
sition [3.3). There exists a greedy algorithm that, for each paper, selects the co-author with the
smallest irresponsibility probability, and this algorithm solves the desk-rejection risk minimization

problem in Definition[3.1)in O(nnz(a)) time.

Proof. We present the greedy algorithm in Algorithm [2]and finish the proof in two parts.

Part 1: Optimality. The objective value for any feasible assignment x € {0,1}™*™ is
Dy Z;"Zl %5 jpj, which is separable across papers. Thus, the choice of a reviewer for paper ¢
does not affect the choices for papers ¢ + 1,7 + 2, ..., n. Minimizing the overall objective therefore
reduces to independently minimizing each paper’s contribution.

For a fixed paper ¢ € [n], the objective is minimized by selecting any author j € [m] such that
a;; = 1 and p; is minimized. Algorithm[Z]implements exactly this strategy: it identifies the set of
minimizers

Smin = {J € San : pj = kggr:ll Dk},
and then chooses one k € Spn, setting z; ;, = 1. Since the problem is separable, independently
minimizing each term yields a globally optimal solution.

Part 2: Time Complexity. For each paper 4, let S, = {j € Z+ : a,, ji= 1} be the set of its authors.
Constructing this set requires O(nnz(a; .)) time, and computing mingesg,, pr and Sy, also takes
O(nnz(a; )). Therefore, the total time across all n papers is

Z nnz(a; ) = nnz(a).

Thus, the overall running time is O(nnz(a)).

Combining Part 1 and Part 2, we finish the proof.

O
Algorithm 2 Simple Greedy Algorithm for the Problem in Definition
1: procedure GREEDYASSIGN1(a € {0,1}**™, p € (0,1)™ ,n,m € Z4)
2 T 0pxm
3 for i € [n] do > Iterate all the papers
4 San <~ {j €Z4 1 a;; =1} > A set including all the authors for this paper
5: Smin <= {J € San : p; = mingeg,, Pk} > Keep the most responsible authors
6: Randomly choose an element k from Spin
7: Tk 1
8 end for
9 return x
10: end procedure

Next, we show the proof for Proposition [3.6]

Proposition B.2 (Failure of random and greedy algorithms under hard nomination limits, formal
version of Proposition[3.6). There exist instances of Definition that has feasible solutions, while
both the simple random algorithm (Algorithm [3) and the greedy algorithm (Algorithm {) fail to
return a feasible solution.

Proof. Let’s consider the following example: n = 2,m = 2,a = E (1)] ,b=1.
Part 1. Random Algorithm. In Algorithm [3| we first enter the for-loop with ¢ = 1. At line[5] we

get Sai = {1,2}, and at line[6| we get S<;, = {1, 2}. Suppose the algorithm randomly selects author
1 at line [T11
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Next, we enter the for-loop with i = 2. At this point, we have S,; = {1} at line However, author
1 already has one nomination, so Z?Zl a;1%;1 +1 =2 > b, which makes S<;, = 0} at line@ ie.,
|S<p| = 0. This triggers the if-branch at line@ setting the error flag to true.

Thus, the random algorithm cannot produce a valid solution.

Part 2. Greedy Algorithm. In Algorithm [4] we first enter the for-loop with ¢ = 1. At line[3 we
get Sai = {1,2}, and at line 6] we get S, = {1,2}. Since both authors are valid and we have
p1 = P2, linereturns two equivalently “most responsible” authors, i.e., Spax = {1,2}. Suppose
line[T2]then randomly selects author 1.

Next, we enter the for-loop with i = 2. Now S,; = {1} at line [5| but author 1 already has one
nomination. Hence E?Zl a;1¢;1 +1 = 2 > b, which makes S, = () at line@ triggering the
if-branch at line[9and setting the error flag to true.

Thus, the greedy algorithm also fails to produce a valid solution.

Finally, by combining Parts 1-2 of the proof, we can finish the proof. O

Algorithm 3 Simple Random Algorithm for Desk-Rejection Risk Minimization with Hard Author
Nomination Limit Problem in Definition 3.4]

1: procedure RANDASSIGNHARD(a € {0,1}"*™, n,m,b € Z,)

2: T+ 0,xm
3: err < false > Error flag
4: for i € [n] do > Iterate all the papers
5: Sant < {j € [m]:a;; =1} > A set including all the authors for this paper
6: Scp < {j € San: > g aikxir +1<b} > Authors nominated by less than b times
7 if |S<p| = 0 then > Cannot obtain a valid choice of author
8: Randomly choose an element & from S,
9: err < true
10: else > Has a valid choice of author
11: Randomly choose an element & from S}
12: end if
13: Ty < 1
14: end for
15: return x, err

16: end procedure

Algorithm 4 Simple Greedy Algorithm for Desk-Rejection Risk Minimization with Hard Author
Nomination Limit Problem in Definition 3.4]

1: procedure GREEDYASSIGNHARD(a € {0,1}"*™, n,m,b € Z,,p € (0,1)™)
2: T+ 0,xm

3: err < false > Error flag
4: for i € [n] do > Iterate all the papers
5: San <= {j € [m] 1 a;; =1} > A set including all the authors for this paper
6: Scp < {j € San > g aikxir +1<b} > Authors nominated by less than b times
7 if |S<p| = 0 then > Cannot obtain a valid choice of author
8: Randomly choose an element & from S,
9: err < true

10: else > Has a valid choice of author

11: Smin < {J € San : p; = minges_, pr} > Keep the most responsible authors

12: Randomly choose an element & from Sy,ax

13: end if

14: T f 1

15: end for

16: return x, err

17: end procedure
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C MISSING PROOFS IN SECTION [4]

We begin by showing the proof for Proposition

Proposition C.1 (Existence of fractional solution in relaxed hard author nomination limit problem,
formal version of Proposition[d.2)). There exists a global minimum x of the problem in Definition 4.1
such that 3i € [n], j € [m],x; ; ¢ {0,1}.

Proof. To establish existence, it suffices to construct an example that yields a fractional optimal

solution. Consider the case wheren = m =2,b=1,a = B ﬂ ,and p = B?g} .

The corresponding linear program for Definition . T]is:

2 2
mmin Zzgw”

i=1j=1
2
s.t. in,j = 1, Vi € [2],
j=1
OSxi,jSL ViE[Q],jG[Q],

2
Zwi?j <1, Vje [2]
i=1

This program is equivalent to:

mxin 6 (x11+x12+ 221 +T22)
st.x11+x12 = 1,
T2t w22 =1,
0<uz; <1, Vie[2],je€]2]
r11 + 221 < 1,
T12 +x22 < 1

Eliminating x; 2 and 22 » using the equality constraints, we have:

min 0
1,1,T2,1
s.t. 0 < T1,1 < 1,
0<xy71 <1,

T1,1 + 21 <1,
(1 — xl,l) + (1 — 1'2,1) S 1.

Since combining the last two constraints gives x1,; + 2,1 = 1 and the objective function is a
constant, we can conclude that any solution of the form

T1,1 1—m1

1— 21 1 ,V.%‘Ll S [0, 1]

is a global minimum of the original problem. In particular, any choice with z1 1 € (0,1) yields a
fractional solution such that 3i € [n],j € [m],z, ; ¢ {0,1}.

This completes the proof. O

Next, we show the proof for Theorem |4.8]

Theorem C.2 (Equivalence to minimum-cost flow, formal version of Theorem . The hard author
nomination problem in Definition[3.4]is a minimum-cost flow problem in Definition

17



Under review as a conference paper at ICLR 2026

Proof. We construct a network G = (V, E) as follows. The vertex setis V' = [m+mn+2], consisting
of

e Source vertex 1,

 Target vertex 2,

* Author vertices {3,4,...,m + 2},

* Paper vertices {m +3,m+4,...,m+n+ 2}.

The edge set E is defined as:

* For each author j € [m], add an edge (1,7 + 2) withd(1,j +2) =0, ¢(1,5 +2) = b, and
w(l,j +2) = 0, encoding that each author can be nominated at most b times.

* For each (7,j) with ¢ € [n],j € [m] and a; ; = 1, add an edge (j + 2,¢ + m + 2) with
d(j+2,i+m+2)=0,c(j+2,i+m+2) =1,and w(j + 2,7+ m+2) = p;, encoding
the cost of nominating author j for paper :.

* For each paperi € [n], add an edge (i+m+2,2) withd(i+m—+2,2) = c(i+m+2,2) =1
and w(i + m + 2,2) = 0, enforcing that each paper must nominate exactly one reviewer.

* Add an edge (2, 1) with d(2,1) =0, ¢(2,1) = n, and w(2, 1) = 0, ensuring circulation of
total flow.

Let f be an optimal circulation of this network. Then the assignment matrix z € {0, 1
recovered from the author-paper edges as

}TLX’ITL 1S

zi;j=f(j+2,i+m+2), Vien]|jem

This shows that the hard author nomination problem is equivalent to a minimum-cost circulation
problem. By Lemma the minimum-cost circulation and minimum-cost flow problems are
equivalent, and thus the hard nomination limit problem is a minimum-cost flow problem.

Thus, we finish the proof. O

Then, we show the proof for the linear program re-formulation in Theorem

Theorem C.3 (Equivalence of the convex and linear program formulations for the soft nomination
limit problem, formal version of Theorem [.8). The optimal solution xopr,1 of the problem in
Deﬁnitionand the optimal solution (xopr,2, Yyopt) of the problem in Deﬁnitionis the same,

i.e.,, TOPT,1 = ZOPT,2-

Proof. Fix any j € [m]. Consider the global minimum yopr,; in Definition 4.7}

Case 1. If >1" | a; ;zopT,2,i,; — b > 0, the constraint y; > >""" | a; ;zopT,2,4,; — b is active. To
minimize the objective, yopr,; must equal this lower bound. Thus, we have

n
YOPT,j = E @i, j;TOPT,2,i,j —
=1
n
= max{0, ) _aizopr2i5 — b}
i=1
Case 2. If Z?:l a; jTOPT,2,i,; — b < 0, then the smallest feasible value for yopr ; is

YyopT,; = 0

n
= max{(), Z i, jTOPT,2,i,5 — b}

i=1
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Therefore, at any global minimum of Definition 4.7} we have

n
yopr,; = max{0, Zai7j$OPT,2,i,j — b}, Vj € [m].

i=1

Substituting yopr,;, V4 € [m] back into the objective of Deﬁnition we can eliminate the variable
y and result in the same problem as Definition[4.5] Thus, we finish the proof. O

D BASELINE ALGORITHMS FOR THE SOFT AUTHOR NOMINATION LIMIT
PROBLEM

In this section, we present two useful baselines for the soft author nomination limit problem de-
scribed in Section[3.3

Algorithm 5 Simple Random Algorithm for Desk-Rejection Risk Minimization with Soft Author
Nomination Limit Problem in Definition [4.7]

1: procedure RANDASSIGNSOFT(a € {0,1}"*™, n,m,b € Z,)

2: T < 0, xm
3 for i € [n] do > Iterate all the papers
4: Sant — {j € [m]:a;; =1} > A set including all the authors for this paper
5: Scp {j €San: > i aikwix+1<b} > Authors nominated by less than b times
6: if |S<p| = 0 then > Increase the penalty term
7 Randomly choose an element & from Sy,
8: else > No need to increase the penalty term
9: Randomly choose an element k from S,

10: end if

11: Tip <1

12: end for

13: return x

14: end procedure

Algorithm 6 Simple Greedy Algorithm for Desk-Rejection Risk Minimization with Soft Author
Nomination Limit (Definition

1: procedure GREEDYASSIGNSOFT(a € {0,1}"*™ n,m,b€ Z,p € (0,1)™)

2 Z < Onxm

3: for i € [n] do > Iterate over all papers
4 Sant < {j € [m]:a;; =1} > A set including all the authors for this paper
5 Define h(j) = pj + Amax{0,> ", a; jz; j +1 — b} > Cost increase if we assign to

author j

6 Smin < {J € San : A(j) = minges,, h(k)} > Authors with minimal cost increase
7: Randomly choose an element k from Spin

8: Tik 1

9: end for
10: return x

11: end procedure
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LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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