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ABSTRACT

We propose a relative entropy gradient sampler (REGS) for sampling from unnor-
malized distributions. REGS is a particle method that seeks a sequence of simple
nonlinear transforms iteratively pushing the initial samples from a reference dis-
tribution into the samples from an unnormalized target distribution. To determine
the nonlinear transforms at each iteration, we consider the Wasserstein gradient
flow of relative entropy. This gradient flow determines a path of probability dis-
tributions that interpolates the reference distribution and the target distribution. It
is characterized by an ODE system with velocity fields depending on the density
ratios of the density of evolving particles and the unnormalized target density. To
sample with REGS, we need to estimate the density ratios and simulate the ODE
system with particle evolution. We propose a novel nonparametric approach to esti-
mating the logarithmic density ratio using neural networks. Extensive simulation
studies on challenging multimodal 1D and 2D mixture distributions and Bayesian
logistic regression on real datasets demonstrate that the REGS outperforms the
state-of-the-art sampling methods included in the comparison.

1 INTRODUCTION

Sampling from unnormalized distributions plays a fundamental role in statistical inference and
machine learning. This problem is frequently encountered in Bayesian statistics. Conducting
Bayesian analysis requires evaluation of multi-dimensional integrals where analytical expressions for
unnormalized posterior distributions are usually not available. Consequently, sampling is necessary
for Monte Carlo approximation of these integrals. In this work, we propose a general purpose
sampling algorithm for unnormalized distributions.

Markov chain Monte Carlo (MCMC) methods (Andrieu et al.| 2003 [Brooks et al.;,2011) are widely
used to sample from unnormalized distributions. Sampling with MCMC relies on defining an
appropriate transition kernel to construct a Markov chain whose equilibrium distribution is precisely
the target distribution. Based on rejection sampling, the Metropolis—Hastings algorithm (Metropolis
et al.,|1953; Hastings [1970; Tierneyl |1994; Dunson & Johndrow, 2019) provides a flexible framework
for general MCMC sampling. To implement a Metropolis—Hastings algorithm, one needs to specify a
proposal density and an acceptance policy. However, without a careful design of these two aspects,
the Metropolis—Hastings algorithm can be inefficient due to strong correlations, slow mixing, or low
acceptance rates, especially in the large-scale and high-dimensional settings. Moreover, proposals
through discretizing some continuous processes like Langevin diffusion and Hamiltonian dynamics
are introduced (Roberts & Tweediel |1996; Roberts & Stramer, 2002; |Duane et al., [1987; [Neal, [2011;,
Hoffman & Gelmanl 2014)) and further enhanced by stochastic gradient estimation (Welling & Teh,
2011;|Chen et al.l [2014).

Variational Bayesian inference (Beal, [2003)), often simply referred to as variational inference (VI)
(Wainwright & Jordan, 2008}, Blei et al.| [2017), is another prominent approach to sampling from
unnormalized distributions. VI approximates the unnormalized posterior distribution with a restricted
parametric variational posterior distribution by minimizing the Kullback-Leibler (KL) divergence
between them. Since the true posterior distribution is intractable, VI turns to maximize a surrogate
variational objective called the evidence lower bound (ELBO). However, one is required to trade off
the parameterization flexibility of variational posteriors against the optimization complexity of ELBO
1n practice.
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(a) 9 Gaussians (b) 25 Gaussians (c) 49 Gaussians (d) 81 Gaussians

Figure 1: Scatter plots of generated samples and histograms of generated sample counts according to
the nearest neighbor mode by REGS for mixtures of 9, 25, 49, and 81 Gaussians with equal weights.
As the plots indicate, generated samples by REGS cover every component of the mixture distributions
and are nearly equally allocated to all components.

In the spirit of VI, particle-based variational inference (ParVI) (Liu & Wang, |2016; |Chen et al.,
2018 |Zhu et al. 2020) iteratively optimizes a set of particles to mimic a functional gradient descent
for minimizing the KL divergence. ParVI seeks to move a variational distribution towards the
unnormalized target distribution, along a steepest descent direction of the KL divergence. In a
continuous view, these movements of variational distributions can be understood as a gradient flow in
probability measure spaces (Liu et al.| 2019agb). A key part of ParVI is how to estimate the desired
steepest descent direction (i.e., functional gradient) from the evolving random particles. An elegant
approach is the Stein variational gradient descent (SVGD) [Liu & Wang| (2016). In SVGD , the
functional gradient descent is embedded in a reproducing kernel Hilbert space (RKHS), which is
further recognized as a gradient flow under the Stein geometry (Liu, 2017; Lu et al.,[2019; |Duncan
et al.. 2019). A drawback of SVGD is that it tends to collapse at part of the modes of the target, due
to a negative correlation between the data dimensionality and the repulsive force in the RKHS (Zhuo
et al.,[2018)).

In this work, we propose a relative entropy gradient sampler (REGS) for sampling from unnormalized
target distributions. To approximate a target distribution, we consider the Wasserstein gradient flow
of relative entropy (or KL divergence), named relative entropy gradient flow. The relative entropy
gradient flow represents a path of probability distributions that follows the functional gradient descent
direction of relative entropy. There exists an ODE system of random particles that uniquely determines
the spatial and temporal dynamics of the relative entropy gradient flow. Therefore, to sample with
REGS, we only need to simulate the ODE system with particle evolution. Evaluating the velocity
fields of this ODE system can be transformed into estimating the logarithmic density ratio between
the density of evolving particles and the unnormalized target density. Based on this observation,
we propose a novel logarithmic density ratio estimation method for unnormalized distributions. By
alternating between particle evolution and velocity field estimation, we can collect a set of stable
particles which are approximately distributed as the target distribution. Our contributions can be
summarized as follows:

(1) Building upon the relative entropy gradient flow, we propose the relative entropy gradient sampler
(REGS) for unnormalized target distributions. REGS preserves high efficiency and strong stability
with respect to increasing singularity in mixtures of Gaussians, when the number of components
increases (as shown in Figure E]), the variance of each component decreases, and the distance
between any two components increases.

(2) We propose to directly estimate velocity fields of the relative entropy gradient flow as gradients
of logarithmic density ratios, that is computationally stable and efficient.

(3) We develop a nonparametric approach to estimating the density ratio between an unnormalized
density and an underlying density represented by samples, which is of independent interest.

(4) We present experimental comparisons on varieties of multi-mode synthetic data and benchmark
data and demonstrate that REGS is a more accurate sampler than the popular samplers including
ULA, MALA and SVGD.

Related work The proposed REGS is most related to sampling methods based on the relative entropy
gradient flow, in particular, the recently proposed SVGD (Liu & Wang, 2016; |Liu}, 2017)), which
estimates the velocity fields of the relative entropy gradient flow in a reproducing kernel Hilbert space.
See also [Korba et al.|(2020); |Salim et al.| (2021} 2020) for theoretical analysis of SVGD. In contrast,
REGS approximates the velocity fields based on a novel logarithmic density ratio estimation approach
with deep neural networks. The undesirable mode collapse feature of SVGD is not inevitable for
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REGS since the approximation and expressive powers of deep neural networks is known to surpass
those of kernel methods.

MCMC algorithms constructed from overdamped Langevin diffusion can be studied as discretization
of the relative entropy gradient flow (Jordan et al.,|1998). Based on the Euler-Maruyama discretization
of overdamped Langevin diffusion, unadjusted Langevin algorithm (ULA) (Roberts & Tweedie,|1996)
aims at generating samples from an approximation of the unnormalized target, but is biased for fixed
step size. When a Metropolis-Hastings step is included, Metropolis-adjusted Langevin algorithm
(MALA) (Roberts & Tweedie, |1996) is capable of correcting the bias, but leaves a large number of
intermediate samples rejected. In REGS, one only needs to estimate the deterministic velocity fields
of the relative entropy gradient flow, which differs from running ULA and MALA with randomness
from diffusion processes. All particles produced by REGS are generated from an approximation of
the target distribution.

Another line of work (Gao et al.,[2019; |2021) uses Wasserstein gradient flows of f-divergences for
generative learning with samples from the underlying target distribution. In their work, evaluating
velocity fields of gradient flows also boils down to estimating density ratios. However, our current
problem is to sample from an unnormalized target density. Furthermore, we propose a novel density
ratio estimation procedure when the target distribution is only known up to a normalizing constant.

Notation Let P, (X') be the space of Borel probability measures on a support space X C R with
a finite second moment, and let P§(X’) be a subspace of P2(X’) whose measures are absolutely
continuous w.r.t. the Lebesgue measure. All probability measures we considered thereinafter are
assumed to belong to P$(X'). To ease the notation, we use probability density functions such as
q(x),p(x),x € X to express probability distributions in P$(X). Let (P5(X'), W3) denote the metric
space P§(X) endowed with the 2-Wasserstein distance W5, which is referred to as the quadratic
Wasserstein space. We use V and Div to denote the gradient operator and the divergence operator,
respectively.

2 PROBLEM FORMULATION

Consider an unnormalized probability density function u : X — [0,00), where X C R? is the
support of u. Suppose u has an intractable normalizing constant Z = | ¢ u(x)dx < oo. Our goal is
to generate random samples from the underlying distribution p € P§(X), whose probability density
function is only known up to proportionality, i.e., p(x) = u(x)/Z,x € X. The basic idea is to
gradually optimize samples from a given distribution ¢ € P§(X) to approximate samples from p,
where it is easy to sample from ¢. Optimizing samples leads to functional optimization of distributions.
We then introduce the classical relative entropy as the functional optimization objective. The relative
entropy, a.k.a., the Kullback-Leibler divergence, for ¢, p € P§(X) is the average logarithmic density
ratio, which is defined as
q(x)

Dre(gllp) = /XQ(X) log (p(x)> dx. (1

It holds that Dy (¢||p) > 0 and Dy (g||p) = 0iff ¢(x) = p(x) a.e. x € X'. Moreover, we denote the
relative entropy functional as

FI] = Dre(-[lp) : P5(X) — [0,00]. 2

To sample from the unnormalized density © = pZ, we consider the functional minimization problem
min Flq|, 3

oun, [q] 3)

where F|g] is always minimized at the underlying target distribution p, i.e., ¢(x) = p(x) a.e. x € X.
In a nutshell, problem (3) is an energy functional minimization problem in a metric space. To
minimize the energy functional F, it suffices to move along the corresponding gradient flow in a
metric space until the flow converges. For example, a gradient flow in the Euclidean space refers to a
curve whose tangent space contains the steepest descent direction of a given function. Analogously, a
gradient flow in the space of probability measures means a curve that points in the steepest descent
direction of a given energy functional. When equipped with the 2-Wasserstein distance, minimization
of the energy functional F naturally corresponds to a continuous path on the quadratic Wasserstein
space of distributions, which is commonly known as a Wasserstein gradient flow of the relative
entropy. We call this flow a relative entropy gradient flow for briefness.
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3 RELATIVE ENTROPY GRADIENT FLOW

In this section, we briefly review the formulation of relative entropy gradient flow and its connections
to differential equations. We consider the properties of gradient flows in the quadratic Wasserstein
space (P§(X), W3). Recall that F in (2) is the relative entropy functional defined on (PS5 (X), Wa).
One can show that a curve {g; };>0 in (P35 (X), W5) is a relative entropy gradient flow of F if it
satisfies the continuity equation (Ambrosio et al.|(2008), page 295 and |Villani| (2008), page 631),

=)

0¢q; = Div (Qtv €]

0F[g¢]
0qt

where ¢, (x) = ¢(t, x) evolves over time, = log 1 is the first variation of the energy functional

F at ¢, and V‘s?—(ft] is the Euclidean gradient of 5?—5‘”]. Here, we identify the gradient as the relative
entropy gradient, which is defined by

5]:[%]
0qs

Moreover, the relative entropy F dissipates along the relative entropy gradient flow {g, };>¢ at the
rate (Ambrosio et al.| (2008), page 295)

OcFlar] = —Eq, [IVw, Flae] I7]- ©)

Therefore, the relative entropy gradient flow {¢; },>¢ eventually converges to the target distribution p
as t — oo. As pointed out in|/Ambrosio et al.[(2008) (Page 175), under mild conditions the continuity
equation (4) concerning {g; }+>o determines a time-inhomogeneous Markov process { X, };>¢ that
starts at a random particle Xy ~ qo and follows the particle evolution dynamics

he
dt

Vw,Fla) :=V

= Vlog at (5)
p

=vi(Xy), X¢ ~q, t > 0. (7
Note that the velocity fields
Vi = Vi Fla] = Vieg 2, >0 ®)
ai

drive the evolution of the particle X, in the Euclidian space, which results in the transport of ¢, in
(P$(X), Wa). An important observation is that

vt:V10g£:V10gg,t20. )
ai at

Therefore, the velocity fields do not involve the unknown normalizing constant Z. This is the key
motivation for us to use the relative entropy gradient flow in the proposed method.

4 SAMPLING AS PARTICLE EVOLUTION

As indicated by the energy dissipation of relative entropy F in (), running the relative entropy
gradient flow {g; }+>0 dynamics can provide a nice approximate solution to the functional minimiza-
tion problem (3) when time ¢ is large enough. Therefore, to sample from the target distribution p,
it is appropriate to simulate the relative entropy gradient flow {q; }+c[o,7) With the time horizon T'
sufficiently large. A natural strategy is to discretize the particle evolution form of relative entropy
gradient flow in with forward Euler iterations (LeVequel |[2007) as follows,

Xpr1 = X + svi(Xi), Xo~qo, k=0,1,..., K — 1, (10)
with the velocity field at step k
p
iv

where s > 0 is a tunable small step size, K = |T/s]| is the number of iterations and gy, is the
corresponding discretized gradient flow at step k, i.e., X} ~ qx. Combining the expressions in (I10]
and (TT)), we have that the iterations progress according to

Vi = —Vw, Flax] = Vlog (11)

Xpp1 = Xp +sViog L, Xo~qo, k=0,1,..., K —1. (12)
gk

4
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In principle, it is necessary to evaluate the velocity field v, = V log(p/qx) each iteration in (12). By
[©), the velocity field of the relative entropy gradient flow can be simplified to

vi=Vieg L =Vlog L, k=0,1,...,K —1, (13)
qdk qk

where u = Zp is the given unnormalized density of the target distribution p. Then only the density
qr, remains unknown for evaluating the velocity field. Ideally, g;, can be estimated by evolving a
large number of particles { X/} ,. However, direct estimation of g is difficult due to the curse
of dimensionality and the potential expensive computation cost for different ks. Our solution is to
approximate the velocity field (I3) as a whole.

Assuming a nice approximation vy, of the velocity field is provided, then one can implement the
following iterations for approximately sampling from gy with no effort,

Xk—l-l:)?k“i’svk(jzk)v XONqu kioala"'aKfl' (14)
Through the iterations above, we can collect )?k ~ g~ qe, k=1,2,..., K. We will discuss
approximation of the velocity field v = Vlog(u/qy) from the perspective of estimating the

logarithmic density ratio log(u/gy) in the next section.

5 LOGARITHMIC DENSITY RATIO ESTIMATION AND THE RELATIVE ENTROPY
GRADIENT SAMPLER

In this section, we first propose a novel estimation procedure of the logarithmic density ratio log(u/q)
based on an unnormalized density v and random samples from gq.

We use a model ratio R : X — [0,00) to fit the true ratio R, = u/q between a density ¢ and
an unnormalized density u. Let g : R — R be a differentiable and strictly convex function. A
Bregman score (Dawid, 2007 (Gneiting & Raftery| 2007; Kanamori & Sugiyama, 2014) with the
base probability measure ¢ € P35 (') to measure the discrepancy between R and R}, is defined by

BUR) = Exagls (ROOIRCE) - a(ROO) - B | 25/ (R

where w € Pg(X) is an introduced and reference distribution for calculating the integral involving
u. It should be easy to sample from w and the support of u should be included in the support of w.
Additionally, B(R) > B (R}, ), where the equality holds iff R(x) = R}, (x) (¢,u)-a.e.x € X.

In this work, we take g(x) = xlog(x) — 2. We use this function for two reasons: (a) convexity, this
is to satisfy the basic requirement of the Bregman score; (b) cancellation of the unknown normalizing
constant Z of u. Simple calculation shows that B(R) can be written as

X)

B(R) = Ex~q[ROX)] — Exnuy Z((X)logm(X)) - (15)

Recall that the true density ratio R}, can be factorized as R}, = u/q = Z(p/q). Thus the numerical
scale of the true density ratio R, hinges on two factors, i.e., the normalizing constant Z of u and
the standard density ratio p/q. Since numerical scales of these factors are difficult to determine in
applications, the induced numerical instability can deteriorate the density ratio estimate. In order
to prevent the density ratio estimation from such instability, we consider the model ratio R on the
logarithmic scale. This will also release the nonnegative constraint on R as a byproduct.

From now on, we denote Dy, = log(R;;,), D =log(R) : X — R. Then B(D) can be rewritten as
u(X)
w(X)
It can be shown that the logarithmic density ratio D7 is identifiable at the population level by
minimizing with respect to D.

Theorem 1. For B(D) defined in @ we have D}, € argminp B(D). In addition, for any D with

Ex o [Z(())?)D(X)] < 00, B(D) > B(D2,), with equality iff D(x) = Dy (x) (g, u)-a.e.x € X.

B(D) = Bxoxp(DIX))] - Exn | 203D00)|. (16)
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Algorithm 1: REGS: Relative entropy gradient sampler

Input: v = Zp // unnormalized target density

step size s > 0, an integer K > 0, // step size, maximum loop count

XO ~gqo,1=1,2,...,n // initial particles

w € P (X) // reference distribution

k<0

while k < K do
Y, ~w,i=1,2,...,n // reference samples
= . i u(Y; . .
Dy, € argming, s [exp(D¢(Xk)) w<(Y’3> D¢(Yk)] // log density ratio
Vk( ) = VD¢k( ) // velocity field
Xk+1 Xi+s(X)).i=1,2,...,n // update particles
k+—k+1

end

Output: Xi- ~ g ~p,i=1,2,...,n // output particles

Based on Theoreml we can estimate the unknown logarithmic density ratio D}, = log(u/qx) with
a deep neural network D with parameter ¢ through the sample version of (16)). Let {X I beidd.
samples from Gy, =~ qi, and {Y;'}7_ | be i.i.d. samples from a reference distribution w. We solve the
following deep nonparametric estimation problem via stochastic gradient descent (SGD) for D¢ X

n

Dy, € argmln‘B Dy)=—-Y_ [ p(Dy(X})) — %DMY@} . (17)
Dy i=1 k

3\'*

With the logarithmic density ratio estimator ZA)¢ .» the velocity field vy, in can be approximately
computed by Vi, = VD,, . By considering sampling as a particle evolution process discussed in
Section REGS updates the initial particles { X} ; with iterations in as follows:

Xi =X} +sV(X})), Xb~qo, i=1,2,...,m, k=0,1,...,K — 1. (18)

We summarize the proposed REGS for sampling from an unnormalized density in Algorithm|[I]

6 NUMERICAL EXPERIMENTS

We evaluate REGS on a large number of 1D and 2D mixture distributions and test its stability in the
high-dimensional setting with multivariate Gaussian distributions. We also use REGS to perform
Bayesian logistic regression on benchmark datasets. For comparison, we consider three existing
methods including SVGD (Liu & Wang] |2016)), ULA (Roberts & Tweedie, 1996) and MALA (Roberts
& Tweedie, |1996). All experiments are done using a NVIDIA Tesla K80 GPU and common CPU
computing resources. The neural network architecture, hyperparameter values, dataset descriptions,
and additional experimental results are given in the appendix. The python code of REGS is available
athttps://github.com/anonymous/REGS.

6.1 MIXTURE DISTRIBUTIONS

We run REGS and SVGD, ULA and MALA to generate 2000 particles for mixtures of 2, 8 and 9
Gaussians (see Scenarios 4, 5, 6 in Appendix B), and 5000 particles for a mixture of 25 Gaussians
(see Scenario 9 in Appendix B). The sampling qualities of these algorithms are compared by scatter
plots with density contours of target mixture distributions. We classify all scatter points with labels
according to the nearest mode, and plot the histograms of the label counts.


https://github.com/anonymous/REGS
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Figure 2: Mixtures of 8 Gaussians with equal weights: scatter plots and histograms of generated
samples by (a) REGS, (b) SVGD, (c) ULA with 50 chains, and (d) MALA with 50 chains. From left
to right in each subfigure, the variance of Gaussians varies from 02 = 0.2 (first column), o2 = 0.1
(second column), 2 = 0.05 (third column), to o2 = 0.03 (fourth column).

Gaussian mixtures with equal weights Figure[2]shows the scatter plots and histograms of samples
generated by (a) REGS, (b) SVGD, (c) ULA with 50 chains, and (d) MALA with 50 chains from
mixtures of 8 Gaussians with equal weights. It shows that REGS is able to explore all the components
in the mixture distribution nearly equally. However, SVGD is only able to find part of the modes, as
indicated in Figures[2(b)] Figures and2(d)]show that MALA and ULA with 50 chains find all
modes but with unequal weights, especially as the variance of each component decreases.

" (a) REGS ‘ ‘ " (b) SVGD

[ 1
| 4
(c) ULA with 50 chains i ) (d) MALA with 50 chains

Figure 3: Mixtures of 8 Gaussians with unequal weights: scatter plots and histograms of generated
samples by (a) REGS, (b) SVGD, (c) ULA with 50 chains, and (d) MALA with 50 chains. From left
to right in each subfigure, the variance of Gaussians varies from 02 = 0.2 (first column), o2 = 0.1
(second column), 2 = 0.05 (third column), to o2 = 0.03 (fourth column).

Gaussian mixtures with unequal weights Figure 3] shows the scatter plots and histograms of
samples generated by (a) REGS, (b) SVGD, (c) ULA with 50 chains, and (d) MALA with 50 chains
from mixtures of 8 Gaussians with unequal weights (1,1,1,1,3,3,3,3)/16. Figure[3(a)| shows that
the samples generated by REGS have the correct weights. Figures and [3(d)|indicate that ULA
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Figure 4: Monte Carlo estimates of E[h(X)] versus d for d-dimensional multivariate Gaussian
distributions of X, For d increasing from 10 to 300 with lag 10. From left to right, h(z) = oz,
(aTx)?, exp(a’x), and 10 cos(a’z + 1/2) with a € R ||a|ls = 1. The curves represent the
estimates using the target samples ("true", blue solid line) and the generated samples by REGS (red
solid line), SVGD (green dash line), ULA_1: gray dotted line, MALA_1: pink dotted line, ULA_50:

oringe dotted line, and MALA_50: orchid dotted line.

and MALA assign particles to modes with incorrect weights. Moreover, the quality of the samples
generated by SVGD, ULA and MALA deteriorates as the number of modes increases, while the
performance of REGS remains stable. We also included the results from ULA and MALA with a
single chain in Figures 7 and 10 in Appendix D, which show that these samplers have difficulty with
multimodal distributions if only a single chain is used.

To further analyze the performance, we report the Monte Carlo estimates of E[h(X)] using a test
function A in Table[1} where h(z) = o'z, (aTz)?, and 10 cos(aTz + 1/2) with @ € R2, ||af|» = 1,
and X is distributed as various Gaussian mixtures with unequal weights. By comparing the Monte
Carlo estimates of E[h(X)] using the samplers with the values based on target samples, we see
that REGS performs better and is more stable than SVGD, ULA and MALA, especially when
h(x) = 10 cos(a’x + 1/2). We include additional numerical results including more scatter plots and
histograms (Figure 6-10) and Monte Carlo estimates with equal wieights (Table 6) in Appendix D.

Table 1: Monte Carlo estimates of E[h(X )] with four samplers for 2D mixtures of Gaussians random
vectors X with unequal weights. “Target" denotes the Monte Carlo estimate with target samples.
ULA_k and MALA_FK denote the ULA and MALA with k chains, respectively.

hr)=a'z h(r) = (aTz) h(z) = 10cos(a’x + 1/2)

Target REGS SVGD ULA_I MALA 1 ULA 50 MALA 50 Target REGS SVGD ULA_I MALA 1 ULA 50 MALA 50 Target REGS SVGD ULA_1 MALA_I ULA 50 MALA_50

2

Distributions ¢

Jgaussian 0.2 071 061 005 286 285 046 0.00 220 220 3240 839 835 816 824 339 308 7192 642 629 73 743
01 071 -047 007 283 2.8 045 0.00 212 210 3220 811 8.09 8.10 8.13 349 280 811 654 639 810 781
005 071 -048 -003 -284 284 045 -0.00 207 205 3210 810 815 8.05 8.10 358 291 816 675  -660  -832 794
003 070 -052 003 282 283 045 - 203 203 3190 798 818 8.04 - 360 308 825 670  -629 -840 -

Sgaussian 0.2 -120  -120 006 049  -172 0.09 -130 823 820 805 993 863 756 8.54 306 316 146 524 570 271 348
01 121 <115 002 000  -0.68 040 022 811 808 830 010 208 7.94 8.63 331 -330 133 835 463 330 329
005 -121 <112 -001 000 283 050 027 806 801 809 005 8.09 805 8.24 341 <335 145 854 653 356 243
003 -121  -L12 003 000 266 050 028 805 800 810 003 795 803 8.55 346 340 141 864 522 359 304

25gaussian 0.2 100 100 164  LI7 094 090 092 805 804 943 6802 4848  7.62 7.88 021 017 012 074 033 027 022
01 100 100 004 211 091 098 085 797 794 204 5303 5155 729 779 018 018 356 -141 028 052 033
005 100 091 007 142 116 0.03 046 790 783 107 1369 4761 479 782 019 017 507 330  -0.08 053 041
003 100 081 -002 000 027 0.1 027 787 770 096 020 5318 475 743 017 016 568 864  -0.02 0.08 -001

6.2 MULTIVARIATE GAUSSIAN DISTRIBUTION

Let the target distribution be a d-dimensional Gaussian distribution with mean 1 = (1,1,--- ,1) € R?
and covariance matrix ¥ € R¥*4 %, ; = pl*=7l with p = 0.7. We consider four test functions h(x),
i.e., h(z) = Tz (the first moment), h(z) = (aTx)? (the second moment), h(z) = exp(aTz) (the
moment generating function), and h(z) = 10cos(a’x + 1/2) with a € R? satisfying ||a|| = 1.
For reference, we provide the Monte Carlo estimates of E[h(X )] using target samples. We compare
REGS with SVGD, ULA_1, MALA_1, ULA_50, MALA_50 in Figure[z_fl, the number of particles
is 5000 for each sampler, where ULA_k and MALA_k denote the ULA and MALA with k chians.
For ULA and MALA, because of large variations of the estimates, we repeat the process 10 times
and compute the average as the final estimate. Figure 4] presents these Monte Carlo estimates as d
increases from 10 to 300 with step size 10. The logarithm of the estimated E[exp(aT X )] is shown. As
shown in Figure ] the estimates using REGS and SVGD have smaller fluctuations than those using
ULA and MALA, although all four methods can estimate E[aT X] and E[(a” X)?] well. Moreover,
the third and the fourth panels in Figure ] show that REGS outperforms SVGD, ULA and MALA
when h(z) = exp(aTz) or 10 cos(a’z + 1/2).
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6.3 BAYESIAN LOGISTIC REGRESSION

We apply REGS to Bayesian logistic regression for binary classification on five datasets, including
Banana, German, Image, Ringnorm, and Covertype. These datasets were analyzed in|Liu & Wang
(2016) and the first four datasets had been analyzed in |Gershman et al|(2012). We consider a
similar setting to that in (Liu & Wang, [2016; (Gershman et al.l [2012), which assigns a Gaussian
prior 7(B|a) = N (0, a~'I) to the regression coefficient 3 (including the intercept). We specify the
prior of o as m(a) = Gamma(1,0.01). For comparison, we consider SVGD, ULA and MALA. The
inference is based on the posterior 7(3|data).

These datasets are partitioned randomly into two parts, the training sets (80%) and the test sets (20%).
We repeats the random partition 10 times. We evaluate the classification accuracy on test data with
5000 particles from the posterior. Table 2] lists the averages and standard errors (in parenhteses) of
test accuracy. From Table 2] we can see that REGS is comparable with SVGD, ULA and MALA. For
the Covertype dataset, MALA failed to converge, so no results from it are included in Table 2}

Table 2: Averages and standard errors (in parenhteses) of classification accuracy on test data from
five datasets, d: number of features, N : sample size.

0y
datasets d N Averages of Accuracy (%)

REGS SVGD ULA_L MALA_1 ULA_50 MALA_50
Banana 2 5300 541(3.1)  555(29)  55.1(19)  552(1.9)  55.1(L.9) 552 (1.9)
German 20 1000 772022) 756(12)  765(1.8) 76622  76.6(2.0) 76.6 (2.1)
Image 18 2086 $34(15)  828(L7)  82.7(23)  829(23)  82.8(2.3) 82.8 (2.3)
Ringnorm 20 7400 763(09)  759(1.0)  75.7(14)  757(14)  757(lL4) 75.2(1.4)
Covertype 54 581012  75.0(L2)  75.6(0.8)  74.1(0.3) - 742 (0.4) -

6.4 DISCUSSION OF THE EXPERIMENTAL RESULTS

The experimental results reported above and in the appendix indicate that REGS is capable of
generating better quality samples than SVGD, ULA and MALA from Gaussian mixture distributions.
Also, the results suggest that particles generated by REGS can cross valleys in the landscape of a
multimodal distribution even if they are initialized in a different regions. An intuitive explanation is
as follows. The movement of the REGS particles is determined by the velocity field. If the velocity
field is not zero at a particle, the particle will continue to evolve towards the target distribution.
Moreover, all particles interact with each other through the velocity field, which is beneficial in
sampling from multimodal distributions. For ULA and MALA, there are no interactions among
particles or incentives for particles to cross valleys between two modes, thus it is more difficult for
these methods to sample from multimodal distributions. A possible remedy is to use multiple chains
as we did in the above experiments. To some extend, this alleviates the problem encountered in
sampling from multimodal distributions. However, the success of this strategy depends on the initial
samples being near the modes as well as having the correct proportions of the initial samples being
close to each mode. In comparison, REGS uses a principled way to move particles from an initial
reference distribution to a multimodal distribution, albeit with a higher computational cost.

7 CONCLUSION

We have introduced REGS, a novel gradient flow based method for sampling from unnormalized
distributions. Extensive numerical experiments demonstrate that REGS performs better than several
existing popular sampling methods in the setting of challenging multimodal mixture distributions.
In future work, we hope to establish the convergence properties of REGS generated sampling
distributions as the numbers of iterations and particles increase.

As with any sampling algorithms, there is a trade-off between sampling quality and computational
efficiency. On one hand, as our numerical experiments demonstrate, REGS can generate samples
with better quality than the three existing methods we considered in the challenging mixture model
settings. On the other hand, REGS is computationally more expensive, as it involves neural network
training in the iterations, compared with existing methods such as ULA and MALA that can be
implemented more quickly. As computational power continues to increase rapidly, REGS can be a
useful addition to the toolkit of sampling methods for multimodal distributions.
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A APPENDIX

In this appendix, we prove Theorem 1, give a detailed description of the models in the numerical
experiments, the neural network architecture used in implementing REGS, and additional numerical
results.

B PROOF OF THEOREM 1

Proof. By the definition of Bregman score B(R) between u and g, it is easy to check

Ry, € arg mFiin B(R),

B(R) > B(R},) with equality iff R(x) = R}, (x) (q,u)-a.e.x € X.

Since D, = log(R},), D = log(R), B(R) = B(D), when Ex ., [z(())?)D(X)} < 00, we have

Dy, € arg mDin B(D),

B(D) > B(Dy,,) with equality iff D(x) = D} (x) (q,u)-a.e.x € X. [ ]

C GAUSSIAN MIXTURE DISTRIBUTIONS

Let the density of a d-dimensional multivariate Gaussian distribution with mean p € R? and
covariance matrix ¥ € R?*9 be

1 1
flz;p,X) = exp{ z— )8 e — }
(51, %) o)t 5@ —n) Bz~ p)
We consider several scenarios below for the unnormalized density function u(x).

Scenario 1. 2Gaussians_1dI. One-dimensional mixture of 2 Gaussians,

1 2
U’(‘/I") = gf(xhu’ho-%) + gf($§M270§)7

where iy = 1, g = —2, and 07 = 0.25, 03 = 2;

Scenario 2. 2Gaussians_1d2. One-dimensional mixture of 2 Gaussians,

1 2
U(.’L’) = gf(x,,ul,of) + gf($;/l270'§),

where iy = 3, i = —3, and 07 = 0.25, 0% = 2;

Scenario 3. 2Gaussians_1d3. One-dimensional mixture of 2 Gaussians,

1 2

where i1 = 3, up = —3, and o7 = 0.03, 03 = 0.03;

Scenario 4. 2Gaussians. Two-dimensional mixture of 2 Gaussians,
w(x) = f(x;p1, B1) + [ p2, B2),
where 11 = (r,0)T, g = (—r,0)T, and ©; = 3y = %L

Scenario 5. 8Gaussians. Two-dimensional mixture of 8 Gaussians,

u(z) = flaug, ),

j=1

where p; = r(sin(2(j — 1)7/8),cos(2(j — 1)7/8))T, and ¥; = oI forj =1,--- ,8.

12
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Scenario 6.

Scenario 7.

Scenario 8.

Scenario 9.

Scenario 10.

Scenario 11.

Scenario 12.

Scenario 13.

Scenario 14.

Scenario 15.

9Gaussians. Two-dimensional mixture of 9 Gaussians,

3 3
u(@) =D fs i, Sin),
j=1k=1
where pj = 4(j — 2,k — 2)T, ¥, = 0?Iforj=1,2,3and k = 1,2, 3.

16Gaussians_1c. Two-dimensional mixture of 16 Gaussians,
16
(@) = flasu, ),
j=1

where p; = 4(sin(2(j — 1)7/16),cos(2(j — 1)7/16))T, and ©; = 0.03I for j =
1,---,16.

16Gaussians_2c. Two-dimensional mixture of 16 Gaussians,

8 8
w(@) =Y fl@;p,55) + > f (w5 ks Sa),
j=1 k=1
where p; = 4(sin(2(j — 1)m/8),cos(2(j — L)w/8))", wr = 2(sin(2(j —
1)7/8),cos(2(j — 1)7/8))",and ; = &), = 0.03Lforj =1,--- ,8andk =1,--- ,8.

25Gaussians. Two-dimensional mixture of 25 Gaussians,

5 5
u(@) = >3 (@5 e D),
=1 k=1
where pij, = 2(j — 3,k —3)T, %, = o0?Iforj=1,--- ,bandk=1,--- 5.

49Gaussians. Two-dimensional mixture of 49 Gaussians,

77
u(z) :ZZf(xQNjkazjk)y
J=1 k=1
where 1, = 3(j — 4,k —4)T, 8, = 0.03Iforj=1,--- ,Tandk=1,---,7.

81Gaussians. Two-dimensional mixture of 81 Gaussians,

9 9
u(@) =3 (@5 e D),

j=1k=1
wherepjk:%(jf5,kf5)T,Ejk:0.03If0rj:1,~~ ,9andk=1,---,0.

Icircle. Let p; = 4(cos(2in/N),sin(2ir/N))T, i = 0,1,--- , N — 1 with N = 400.
Consider three noise to be added to each point p;, including the uniform distribu-
tion U(u;,1/30) on a disc with center at y; and radius 1/30, Gaussian distribution
N (u;,0.03I), and mixed these two distributions.

2circles. Let  puq; = 2(cos(2im/N),sin(2im/N))T and  po; =
4(cos(2im/N),sin(2ir/N)T, i = 0,1,---,N — 1 with N = 200. Consider
three noise to be added to each point px; including uniform distribution U (g, 1/30)
on a disc with center at p; and radius 1/30, Gaussian distribution NV (4, 0.03I), and
mixed these two distributions, & = 1, 2.

Ispiral. Let p; = %X cos(4in/N),sin(4in/N))T,i=0,1,--- , N — 1 with N = 400.
Consider three noise to be added to each point p;, including the uniform distribu-
tion U(u;,1/30) on a disc with center at p; and radius 1/30, Gaussian distribution
N (p;,0.03I), and mixed these two distributions.

2spirals. Let p1; = 2Z(cos(3ir/N),sin(3in/N))T and po =
— 3% (cos(3im /N),sin(3ir/N))T, i = 0,1,---,N — 1 with N = 200. Con-
sider three noise to be added to each point py; including uniform distribution
U(pri, 1/30) on a disc with center at py; and radius 1/30, Gaussian distribution
N (414,0.03I), and mixed these two distributions, k = 1, 2.

13
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Scenario 16. moons. Let uy; = (8i/N — 6,4sin(im/N))T and po; = (8i/N — 2,4sin(in/N))T,
1=0,1,--- , N — 1 with N = 200. Consider three noise to be added to each point p;
including uniform distribution U 11k, 1/30) on a disc with center at yx; and radius 1/30,
Gaussian distribution N (141, 0.03I), and mixed these two distributions, k = 1, 2.

D EXPERIMENTAL SETTING

D.1 HYPERPARAMETER

We burn in the first 1000 particles for ULA and MALA in all experiments. We initialize the particles
in SVGD, ULA and MALA as zeros or random samples from Gaussians. We provide the step size
settings in Table [3| For SVGD, we use RBF kernel k(z,2') = exp(—+|lz — 2/[|3) and set the
bandwidth as h = med? /log n, where med is the median of pairwise distances between the particles
{z;}1_,. We set the learning rate of neural networks as 5e-4 for density ratio estimation in REGS.
The network structures are presented in Table [d] The initial particles in REGS are sampled from
Gaussian distributions.

Table 3: Step size settings for REGS, SVGD, ULA and MALA. "BGIR" denotes four datasets
including Banana, German, Image and Ringnorm.

Methods  2Gaussians  8Gaussians  9Gaussians  25Gaussians BGIR  Covertype

REGS Se-4 Se-4 Se-4 Se-4 2e-3 2e-3
SVGD 2e-2 2e-2 2e-2 2e-2 Se-2 Se-2
ULA 2e-2 Se-2 le-1 Se-2 le-3 le-4
MALA Se-2 2e-1 Se-1 Se-1 le-3 -

D.2 NEURAL NETWORK ARCHITECTURE

Table 4: Neural network architecture for log-density ratio estimation: feedforward neural networks
with equal-width hidden layers and Leaky ReLU activation. Depth ¢ = 3 for 2Gaussians_1d1,
2Gaussians_1d2, 2Gaussians_1d3, and 2Gaussians. ¢ = 4 for 8Gaussians, 9Gaussians, 1circle,
2circles, 1spiral, 2spirals, and moons. £ = 6 for 16Gaussians_1Ic, 16Gaussians_2c, 25Gaussians,
49Gaussians, and 81Gaussians.

Layer Details Output size
{i}sZ!  Linear, LeakyReLU (0.2) 128
L Linear 1

D.3 DATASETS

Covertype: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
binary.html Banana, German, Image, Ringnorm: http://theoval.cmp.uea.ac.uk/
matlab/default.html

E ADDITIONAL NUMERICAL RESULTS
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Table 5: Monte Carlo estimates of E[h(X)]. Here h(x) = oz, (aTz)?, and 10 cos(aTx + 1/2) with
a € R?, |lalls = 1. "true" denotes the Monte Carlo estimate with target samples.

Distributions h(z) = o'z h(z) = (a'z)? h(z) = 10cos(a’z +1/2)
true REGS true REGS true REGS
2Gaussians_1d1 -0.9886 -0.9887 3.7105 3.7093 0.46838 0.5418
2Gaussians_1d2 -0.9972  -1.1630 9.0032 9.0297 -8.3053 -8.2956
2Gaussians_1d3 -0.9602 -0.728 9.8727 9.8016 -6.3785 -6.1266
2Gaussians -0.0019 0.0448 8.0243 8.0225 -8.2351 -8.2513
8Gaussians -0.0021 -0.021 8.0118 8.0276 -3.3925 -3.3727
9Gaussians 0.0003  0.0100 10.6771  10.8063 0.7773 0.7532
16Gaussians_Ic -0.0008 -0.0077 8.0269 8.02889 -3.4393 -3.4325
16Gaussians_2c -0.0006 -0.0060 5.3544 5.2780 -1.4260 -1.3877
25Gaussians 0.0013  -0.0141 8.0276 8.0227 0.1248 0.1189
49Gaussians 0.0006  0.0001 9.0285 9.0215 0.2043 0.1990
81Gaussians -0.0011  -0.0009 15.0280  15.0261 0.4126 0.4196
8Gaussians r=5 -0.0011 -0.0037 12.5291 12.5356 -1.2160 -1.2214
8Gaussians r=10 0.0021  -0.0030 50.0278  49.4783 3.3872 3.4238
8Gaussians r=15 0.0003 -0.0306 112.5023 111.4456 -1.1116 -1.0930
2Gaussians o = 0.01 -0.0022  -0.0009 0.5119 0.5082 6.6390 6.6504
2Gaussians o® = 0.005 -0.0012  0.0027 0.5019 0.4976 6.6694 6.6718
2Gaussians o = 0.0001 0.0005  0.0034 0.5043 0.5049 6.6558 6.6406

Table 6: Monte Carlo estimates of E[h(X )] by four samplers for 2D mixtures of Gaussians of X
with equal weights. Here h(z) = oz, (aT2)? or 10 cos(aTz + 1/2) with a € R?, ||| = 1. "true"
denotes the Monte Carlo estimate with target samples. "ULA_k" and "MALA_k" denote the ULA
and MALA with k chains, respectively.

h(z) — o'z @) = (@ 2 () = W0cos(a’e + 1/2)

2
D 7 true. REGS SVGD ULA_1 MALA 1 ULA 50 MALA 50 wue REGS SVGD ULA_I MALA_1 ULA 50 MALA_50 true. REGS SVGD ULA_1 MALA_ 1 ULA 50 MALA_50
2gaussian 0.2 002 000 -001 -1.45 0.66 0.11 -0.34 256 250 250 2.62 227 8.24 8.25 097 106 1.09 4.54 -0.43 -7.64 -7.30
0.1 -0.00 -0.03  0.04 1.37 -1.38 0.11 -0.23 220 220 220 2.06 2.12 8.10 8.15 123 133 112 -2.62 571 -7.99 -1.71
0.05 000 002 006 1.42 -1.44 0.11 -0.23 210 210 212 2.10 2.19 8.04 8.10 130 123 1.05 -3.22 5.57 -8.20 -7.83
0.03 -001 002 010 -141 1.42 0.11 -0.23 202 205 201 2.04 2.10 8.03 8.18 142 128 112 5.98 -3.36 -8.29 -1.53
8gaussian 0.2 0.00 -0.01 000 -346 3.00 0.14 0.35 820 820 798 12.81 10.20 7.87 8.05 =305 -3.09 141 -7.20 -5.41 -2.95 271
0.1 <001 -0.02  0.02 2.83 2.84 -0.66 -0.02 811 812 812 8.11 8.23 8.09 8.52 -323 326 151 -9.35 -9.11 -3.54 =371
0.05 -0.01 -0.00 0.02 2.83 -2.83 -0.41 0.04 8.06 8.06 831 8.05 8.08 8.21 9.02 -333 2334 136 958 -6.51 -2.83 -4.37
0.03 000 -0.00 -001 -0.00 1.96 -0.41 0.18 8.04 8.05 805 0.02 6.19 8.19 8.40 -335 2335 157 8.68 -2.38 -2.86 -3.86
25gaussian 0.2 -0.00 000 -044 022 -0.45 0.02 0.02 8.18 820 946 8.02 7.96 8.31 8.10 0.10 011 075 0.53 0.15 0.05 0.13
0.1 0.00  0.00 0.04 0.15 0.59 -0.05 -0.05 811 809 211 7.42 8.09 8.19 7.97 010 011 344 0.99 -0.15 0.12 0.12
0.05 -0.00 -001 -0.00 036 -1.50 -0.33 -0.15 8.06 7.62 1.07 4.40 6.17 5.48 8.04 012 010 537 0.95 0.71 0.30 0.34
0.03  -0.00 -0.02 -0.01 0.14 -0.08 0.14 -0.04 8.04 758 0.8 8.11 6.97 295 741 0.11 009 556 -2.40 -091 1.62 0.08
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(¢) ULA with 50 chains (f) MALA with 50 chains
Figure 5: Scatter plots with contours of 1000 generated samples from unnormalized mixtures of 2
Gaussians with equal weights by (a) REGS, (b) SVGD, (c¢) ULA and (d) MALA with one chain, (e)
ULA and (f) MALA with 50 chains. From left to right in each subfigure, the variance of Gaussians

varies from o2 = 0.2 (first column), 62 = 0.1 (second column), ¢2 = 0.05 (third column), to
o2 = 0.03 (fourth column).
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Figure 6: Scatter plots with contours of 2000 generated samples from unnormalized mixtures of 8
Gaussians with equal weights by (a) REGS, (b) SVGD, (c¢) ULA and (d) MALA with one chain, (e)
ULA and (f) MALA with 50 chains. From left to right in each subfigure, the variance of Gaussians
varies from o2 = 0.2 (first column), 62 = 0.1 (second column), ¢2 = 0.05 (third column), to

o2 = 0.03 (fourth column).
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Figure 7: Scatter plots with contours of 5000 generated samples from unnormalized mixtures of 25
Gaussians with equal weights by (a) REGS, (b) SVGD, (c¢) ULA and (d) MALA with one chain, (e)
ULA and (f) MALA with 50 chains. From left to right in each subfigure, the variance of Gaussians

varies from o2 = 0.2 (first column), 62 = 0.1 (second column), ¢2 = 0.05 (third column), to
o2 = 0.03 (fourth column).
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Figure 8: Scatter plots with contours of 1000 generated samples from unnormalized mixtures of
2 Gaussians with unequal weights (0.75, 0.25) by (a) REGS, (b) SVGD, (c) ULA and (d) MALA
with one chain, (e) ULA and (f) MALA with 50 chains. From left to right in each subfigure, the
variance of Gaussians varies from o2 = 0.2 (first column), 02 = 0.1 (second column), 2 = 0.05
(third column), to o2 = 0.03 (fourth column).
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Figure 9: Scatter plots with contours of 2000 generated samples from unnormalized mixtures of 8
Gaussians with unequal weights (1,1, 1,1, 3,3,3,3)/16 by (a) REGS, (b) SVGD, (c) ULA and (d)
MALA with one chain, (e) ULA and (f) MALA with 50 chains. From left to right in each subfigure,
the variance of Gaussians varies from o2 = 0.2 (first column), o2 = 0.1 (second column), o2 = 0.05
(third column), to o2 = 0.03 (fourth column).

20



Under review as a conference paper at ICLR 2022

; S : : : » : » v s #® : & » : =
H :» ‘ || |“
(a) REGS (b) SVGD
® > *® %
s & % .
& & * - " * b
& LR =
il || il ! f: mlll & “
(c)'UL"A with one chain ’ (d) MALA with one chain
mm fmf N T S BT
i ] i LTI NI Il T
(e) ULA with 50 chains (f) MALA with 50 chains

Figure 10: Scatter plots with contours of 5000 generated samples from unnormalized mixtures of 25
Gaussians with unequal weight by (a) REGS, (b) SVGD, (c) ULA and (d) MALA with one chain, (e)
ULA and (f) MALA with 50 chains, where each of the first 12 components has weight 1/51, and
each of the rest has weight 3/51. From left to right in each subfigure, the variance of Gaussians varies
from o2 = 0.2 (first column), 02 = 0.1 (second column), o2 = 0.05 (third column), to ¢2 = 0.03
(fourth column).
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Figure 11: KDE plots for 1D mixtures of 2 Gaussians. Green lines stand for target samples and
pink areas represent generated samples by REGS. From left to right, the means and variances of the
components changed and the unnormalized densities are given in Scenarios 1, 2, 3 in Appendix B.
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Figure 12: KDE plots of target samples (first row) and generated samples (second row) for two-
dimensional mixtures of Gaussians with variance 0.03. The target samples are from unnormalized
density functions u(x) of mixtures of 2 Gaussians in Scenario 4, 8 Gaussians in Scenario 5 and 9
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Gaussians in Scenario 6.
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Figure 13: KDE plots of target samples (first row) and generated samples (second row) for 2D
mixtures of Gaussians with component variance 0.03. The corresponding unnormalized densities are
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presented in Scenarios 7, 8, 9 in Appendix B.
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Figure 14: Scatter plots of initial samples (first row), generated samples (second row) for two-
dimensional mixtures of 2 Gaussians, and scatter plots of target samples (last row). The target
samples are from unnormalized density functions u(x) of mixtures of 2 Gaussians with variance
02 = 0.01 (left column), 02 = 0.005 (middle column) and o2 = 0.001 (right column).
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Figure 15: Scatter plots of initial samples (first row), generated samples (second row) for two-
dimensional mixtures of multiple Gaussians with variance o> = 0.03, and scatter plots of target
samples (last row). The target samples are from unnormalized density functions u(z) of mixtures of
25 Gaussians (left column), 49 Gaussians (middle column) and 81 Gaussians (right column).
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Figure 16: Scatter plots of initial samples (first row), generated samples (second row) for two-
dimensional mixtures of 8 Gaussians with variance 0> = 0.03 and varying radius, and scatter plots
of target samples (last row). The target samples are from unnormalized density functions u(x) of
mixtures of Gaussians with radius being 5 (left column), 10 (middle column) and 15 (right column).
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Figure 17: Scatter plots from left to right are one circle (/circle, Scenario 12), two circles (2circles,
Scenario 13), one spiral (Ispiral, Scenario 14), two spirals (2spirals, Scenario 15), and moons (moons,
Scenario 16).
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