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Abstract

The dynamic nature of information necessitates continuously updating large vision-
language models (LVLMs). While recent knowledge editing techniques hint at
promising directions, they often focus on editing a single modality (vision or lan-
guage) in isolation. This prevalent practice neglects the inherent multimodality of
LVLMs and the continuous nature of knowledge updates, potentially leading to
suboptimal editing outcomes when considering the interplay between modalities
and the need for ongoing knowledge refinement. To address these limitations, we
propose MemEIC, a novel method for Continual and Compositional Knowledge
Editing (CCKE) in LVLMs. MemEIC enables compositional editing of both visual
and textual knowledge sequentially. Our approach employs a hybrid external-
internal editor featuring a dual external memory for cross-modal evidence retrieval
and dual LoRA adapters that facilitate disentangled parameter updates for each
modality. A key component is a brain-inspired knowledge connector, activated
selectively for compositional reasoning, that integrates information across differ-
ent modalities. Experiments demonstrate that MemEIC significantly improves
performance on complex multimodal questions and effectively preserves prior
edits, setting a new benchmark for CCKE in LVLMs. Our project is available at
https://github.com/MemEIC/MemEIC.

1 Introduction

Large language models (LLMs) [1–3] can be knowledge edited—that is, updated to incorporate new
or corrected facts—without retraining from scratch [4–6]. This capability is crucial to keep LLMs
up-to-date with evolving information or correcting errors on the fly. Large vision–language models
(LVLMs) [7–9] combine textual and visual understanding, making knowledge editing even more
challenging. These models encode factual knowledge in both their textual and visual pathways, and
require mechanisms to update both modalities’ knowledge consistently. Efficiently editing LVLMs
is crucial for real-world applications, such as swiftly correcting critical visual recognition errors
(e.g., misidentifying Donald Trump as Boris Johnson as shown in Fig. 1(a)). However, research in
multimodal knowledge editing remains scarce compared to the extensive studies in textual LLMs.
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Figure 1: Description of Compositional Edit Task and Sequential Editing

Existing benchmarks for LVLM knowledge editing are limited in scope [10–13]. They typically focus
only on visual knowledge updates [10–13], overlooking scenarios where textual facts (e.g., attributes)
must also be updated. Furthermore, current benchmarks do not evaluate continual editing [10, 12, 13]—
performing multiple sequential knowledge updates—nor do they test a model’s ability to handle
compositional reasoning [14–16] over edited facts. This is a critical gap because real-world knowledge
updates often arrive incrementally and involve intertwined visual and textual information.

To address these shortcomings, we introduce Continual and Compositional Knowledge Editing
(CCKE), a new benchmark for multimodal knowledge editing. CCKE is the first to assess models
under continual knowledge editing [17] and compositional queries that require combining information
from both visual and textual edits. We also propose a metric called Compositional Reliability
(CompRel) to quantify how reliably a model can integrate multiple updated knowledge pieces when
answering such complex queries. Evaluating the leading LVLM editors from VLKEB using our
new CCKE benchmark (CCKEB) reveals that both external- and internal-memory methods face
fundamental challenges in multimodal knowledge editing.

External memory-based editor (e.g., SERAC [18], IKE [19]) store edited knowledge externally
and retrieve relevant information during inference without modifying model parameters, making
them suitable for long-term retention. However, current implementations transplant textual-based
retrieval strategies from LLMs directly, ignoring crucial visual cues necessary for accurate multimodal
query matching, significantly diminishing retrieval accuracy. Additionally, external memory methods
encounter an internalization issue, where models overly rely on its stale internal knowledge, especially
if the retrieved external information conflicts with what the model has learned, leading to incorrect
answers [20–23]. Conversely, internal memory-based methods [24–26] embed edits directly into
model parameters via fine-tuning or low-rank adaptation (LoRA) [25], viewing the feed-forward
network (FFN) itself as a key-value memory structure that inherently stores in-model knowledge [27].
Although beneficial for internalizing edits, these methods typically store visual and textual edits within
a unified representation space, resulting in cross-modal interference and representation collapse [28].
Moreover, sequential internal edits suffer from catastrophic forgetting [29–32], degrading previously
stored knowledge with successive updates [11].

In this work, we propose MemEIC, a novel multimodal knowledge editing framework integrating
external retrieval memory with internal model editing. MemEIC is designed specifically to handle
continual, compositional edits. It operates in several coordinated stages. First, MemEIC uses query
decomposition to automatically split each user query into its visual part and textual part. Next,
for each part, an external memory retrieval module fetches relevant information using both image
and text cues so that no crucial visual detail or textual context is missed. In parallel, we maintain
separate lightweight LoRA adapter modules as internal memory for visual and textual knowledge
within the model, inspired by brain lateralization [33–38]. This knowledge separation ensures that
editing a visual fact does not distort textual representations, and vice versa, preventing representation
collapse. Crucially, MemEIC introduces a brain-inspired knowledge connector—akin to a corpus
callosum [39, 40]—linking the visual and textual pathways. This connector (using LoRA-augmented
self-attention) fuses the edited knowledge from both modalities only when a query requires both to
answer. If the query is unimodal, the two streams remain separate. By selectively connecting edited
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visual and textual representations, MemEIC enables effective compositional reasoning and yields
robust answers even when external retrieval and the model’s internal knowledge conflict.

Our contributions are summarized as follows:

• CCKE Benchmark: We introduce CCKEB, the first benchmark for continual and composi-
tional multimodal knowledge editing (combining sequential visual and textual edits, with a
new reliability metric for evaluation).

• MemEIC Framework: We present MemEIC, a multimodal knowledge editing framework
that integrates external memory retrieval with internal model editing via modality-specific
adapters inspired by brain lateralization, coupled with a brain-inspired knowledge connector
to enable robust continual and compositional knowledge reasoning.

• Empirical Results: Extensive experiments show that MemEIC achieves interference-free
knowledge updates and outperforms prior methods on both edit success and compositional
reasoning tasks.

2 Problem Formulation and Benchmark Design

2.1 Preliminaries: Knowledge Editing for LVLM

Visual Knowledge Edit Visual edits [10, 11] involve updates to the recognized identity label of an
image. For an image i once labeled with entity e, the task is to change the label to a new entity e′:

(i, e) → (i, e′).

For example, changing a person’s visual identification from Boris Johnson to Donald Trump. Such
edits reflect common real-world updates, such as correction of misidentified individuals or subject
identity changes over time.

Textual Knowledge Edit Textual edits focus on changes in factual knowledge associated with
specific entities. We modify a 1-hop factual relation (e, r, o) by replacing the original factual object o
with a new object o′, simulating how factual statements can become outdated:

(e, r, o) → (e, r, o′).

For instance, updating facts like "Donald Trump is the 45th president" to "Donald Trump is the 47th
president". Such edits simulate real-world factual updates (e.g., job titles, affiliations, roles).

Single Editing vs Sequential Editing Most knowledge editing benchmarks assess only single
editing, overlooking real-world continual updates and potential forgetting. Sequential editing [11]
executes multiple updates sequentially and runs test queries in varying gaps, thereby probing a
model’s memory retention and robustness over time (see Fig. 1(b)).

2.2 Problem Formulation: Continual, Compositional Knowledge Editing (CCKE)

In real-world multimodal applications, entities often undergo interleaved visual and factual updates.
We define Continual, Compositional Knowledge Editing (CCKE) as the task of having an LVLM
accommodate a sequence of alternating visual and textual edits. For simplicity, we limit our ex-
periments to a paired setting where a visual edit is followed directly by its associated textual edit,
followed by pairs of unrelated edits:

visual edit︸ ︷︷ ︸
(i,e)→(i,e′)

→ textual edit︸ ︷︷ ︸
(e′,r,o)→(e′,r,o′)

→ . . .

During the continual editing process, retention of edited knowledge is evaluated at predefined intervals
(gaps). To measure a model’s ability to integrate multiple edits to answer a single compositional
query, we introduce the Compositional Reliability (CompRel) metric:

CompRel = E
(ie,vxe,vye)∼Dvisual edit
(txe,tye)∼Dtextual edit
(xc)∼C(vxe,txe)

[
I{f(ie, xc; θ

′) = tye}
]
, (1)
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Figure 2: Overall Structure of MemEIC for Continual and Compositional Edit

where Dvisual edit denotes the set of visual-edit examples (ie, vxe
, vye

) with ie the edited image, vxe

the visual-only query and vye
its ground-truth answer; Dtextual edit denotes the set of textual-edit

examples (txe
, tye

) with txe
the textual query and tye

its ground-truth answer; θ′ represent the model
parameters after editing and C denotes the operation that composes the visual-edit query vxe

, “Who is
in the photo?”, and the textual-edit query txe

, “What position did Donald Trump recently assume?”,
into a single compositional query xc, “What position did the person in the photo recently assume?”.

2.3 Extended Benchmark for Compositional Edit

Our new dataset CCKEB, Continual and Compositional Knowledge Editing Benchmark, extends
VLKEB by adding textual modifications to the existing visual edits, thereby forming a fully composi-
tional benchmark. Concretely, each image instance in CCKEB is paired with two coordinated edits:
(1) a visual edit that updates the image’s identity label, and (2) a textual edit that revises a factual
statement about the (new) entity depicted in the image. This design mirrors realistic applications
such as correcting outdated factual statements (e.g., becoming a new president) while simultaneously
fixing mislabeled or changed identities in an image.

Construction Process Following and extending VLKEB [11] construction protocol, we extract
knowledge triples and generate textual edits and QA pairs using the multimodal knowledge graph
MMKG [41] and GPT-4o [7]. See Appendix B for full details.

3 Methodology

In this section, we describe our proposed framework for CCKE. Our approach is designed to address
the limitations of existing methods by combining external and internal memory mechanisms while
leveraging query decomposition and controlled knowledge integration for improved compositionality.
Figure 2 provides an overview of the complete pipeline.

3.1 Knowledge Separation

Query Decomposition. To effectively handle compositional queries, we introduce a dedicated
module that automatically classifies and decomposes the input textual query into its constituent visual
and textual knowledge parts. Formally, given an input query Q, the module computes:

(Qv, Qt) = f(Q)

where Qv and Qt denote the visual and textual components, respectively, and f(·) represents a query
decomposer. This decomposition not only reduces the complexity of the original query but also
enables specialized processing pipelines for each modality (Fig. 2(a)). For query decomposition, we
used GPT-4o [7]. See Appendix D and E for prompt and decomposition details.
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Modality-Aware External Memory (MEM-E). In recent LVLM knowledge editing bench-
marks [10, 11], external-memory editors directly adopt textual retrieval schemes originally developed
for language models, relying solely on textual cues for retrieval and yielding suboptimal visual editing
performance. To address this limitation, we propose Mem-E, a simple yet effective multimodal
external memory storing modality-specific edits in two separate memory storage units as illustrated
in Fig. 2(a):

Mt = {(qi, ai)}Nt
i=1, Mv = {(Ij , qj , aj)}Nv

j=1,

where Mt holds textual QA edits and Mv holds visual edits as (image I , question q, answer a) triples.
At inference, given a decomposed input textual query Qt = Qq

t and visual query Qv = (QI
v, Q

q
v),

Mem-E retrieves:

i∗ = arg max
1≤i≤Nt

cos
(
ϕt(Q

q
t ), ϕt(qi)

)
, Rt = (qi∗ , ai∗),

(2)

k∗ = arg max
1≤j≤Nv

[
α cos

(
ϕv(Q

I
v), ϕv(Ij)

)
+ (1− α) cos

(
ϕt(Q

q
v), ϕt(qj)

)]
, Rv = (qk∗ , ak∗),

(3)

where ϕt(·) denotes the [CLS] token representation obtained from DistilBERT [42], ϕv(·) is the CLIP
[43] image encoder’s [CLS] token representation, and we set α = 0.5. For compositional queries
composed of textual and visual sub-queries, we first retrieve the target entity a∗k using Qv . This entity
replaces the tagged placeholder in Qq

t , enabling more accurate retrieval from Mt.

Finally, for any query Q—textual, visual, or compositional, we define the retrieved context

R =


Rt, Q = Qt,

Rv, Q = Qv,

[Rv; Rt

]
, Q = (Qv, Qt),

where [; ] denotes simple text-level concatenation. This R is then prepended to the original query
when prompting the base LVLM, e.g., "Q: [Image] Who is the man in the picture? A: Donald
Trump, Q: What position did Donald Trump recently take on? A: He assumed the position of the 47th
president of the US. Q: What position did the person in the photo recently assume? A:"

Internal Separated Knowledge Integration (MEM-I). Existing internal memory–based editors
view the transformer’s feed-forward network (FFN) layers as implicit key–value memories, that
can be updated to store new knowledge. Unlike external memory methods, which attach edits
externally, these approaches embed all updates in a single shared embedding space. Under continual,
compositional knowledge editing, this unified space leads to severe cross-modal interference and
catastrophic forgetting as heterogeneous visual and textual updates accumulate.

To overcome these limitations, we propose Mem-I, a dual-stream internal memory inspired by human
brain lateralization as illustrated in Fig. 2(b). Neuroscience shows that the left hemisphere specializes
in language, while the right hemisphere processes visual and spatial information. Analogously,
Mem-I extends the FFN memory by two parallel LoRA adapters, connected to the frozen pre-trained
FFN weights θ that retain pre-edit knowledge:

• Visual adapter (θv) for visual knowledge updates—right hemisphere.
• Textual adapter (θt) for textual knowledge updates—left hemisphere.

During the forward pass, we activate modality-specific adapters based on the query type:

• Visual query (Qv): visual adapter θv and frozen FFN θ are activated.
• Textual query (Qt): textual adapter θt and frozen FFN θ are activated.
• Compositional query ((Qv, Qt)): both adapters and frozen FFN θ are activated.

Analogously, when adding new edits, only the adapter corresponding to the edit modality is updated.
As edits are assumed to be atomic, each edit alters either the visual or the textual adapter, never both
at once. Concretely, let
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θ′ = θ +

{
∆θv, visual edit,
∆θt, textual edit.

3.2 Knowledge Connector

The modality-specific adapters can selectively activate in response to relevant tokens in compositional
queries (Appendix E.2). However, when the same sequence contains modality-biased tokens (e.g.,
one token mainly shaped by the visual adapter, another by the textual), they interact poorly, limiting
the model’s ability to combine complementary facts during compositional reasoning (Sec. 4.5, Dual-
LoRA + RAG). To address this, we introduce a simple and effective Knowledge Connector, inspired
by the corpus callosum in the human brain, which enables information exchange between the two
hemispheres. The connector augments the self-attention module with LoRA adapters to facilitate
interaction between modality-based token representations (Fig. 2(c)).

Formally, a sequence’s hidden state at layer ℓ is given as:

hℓ = hℓ−1
f + Ivh

ℓ−1
v + Ith

ℓ−1
t , (4)

where hℓ−1
f is the frozen FFN hidden state, hℓ−1

v and hℓ−1
t are the visual and textual adapter states,

and Iv, It ∈ {0, 1} indicate modality-specific activations. To explicitly model when both adapters
are active, we define an indicator function:

Iv,t =

{
1, if Iv = 1 and It = 1,

0, otherwise.
(5)

Based on the indicator definition above, the Knowledge Connector extends the self-attention module
as follows:

Qℓ = hℓ
(
WQ + Iv,t ·∆W L

Q

)
, Kℓ = hℓ

(
WK + Iv,t ·∆W L

K

)
, V ℓ = hℓWV , (6)

where WQ,WK ,WV are pre-trained projection weights, and ∆WL
Q ,∆WL

K are LoRA adjustments.
In this formulation, the fused hidden state hℓ provides semantically related token representations
retrieved from the frozen FFN, allowing the Knowledge Connector to attend across modality-specific
information when both adapters are active. Finally, attention is computed as:

zℓ = Attention(Qℓ,Kℓ, V ℓ). (7)

This mechanism adaptively integrates information only when both modality-specific adapters are
activated, enabling effective interaction between separately maintained visual and textual knowledge
(Fig. 4). For unimodal queries, the connector defaults to an identity operation, preserving independent
modality representations.

4 Experiments

4.1 Experimental Setup

Fig. 3 illustrates the overall training and testing setup. Detailed configurations for the experimental
setup are provided in Appendix C, and model-specific details in Appendix D.

Training Stage 1: External Memory In the first stage, we freeze the parameters of the base LVLM
and train only the external memory module using the CCKEB training set. Each query is decomposed
into its visual and/or textual subcomponents through the query decomposition module, depending on
the modality required to answer it. The model then learns to retrieve and align each subquery with its
corresponding entry in the modality-specific external memory storage, thereby establishing accurate
associations between visual and textual evidence.
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Table 1: Visual, textual, and compositional reliability evaluated across two backbone models, LLaVA-
1.5 and MiniGPT4, on CCKEB testset. See Appendix G for detailed results.

Vis Rel (%) Text Rel (%) Comp Rel (%)

(a) LLaVA-1.5

(b) MiniGPT-4

Training Stage 2: Knowledge Connector In the second stage, we activate both the visual and
textual adapters and train the Knowledge Connector on the CCKEB training examples using an
adversarial retriever. Instead of directly relying on external memory, the retriever provides a mixture
of factual and counterfactual evidence to simulate realistic and noisy retrieval conditions. The
connector is optimized to fuse the outputs of the two adapters only when a compositional query
requires the integration of both visual and textual knowledge, thereby discouraging over-reliance on
external memory and encouraging selective integration of internal and external evidence.
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Figure 3: Training Stage and Testing

Testing: For Realistic Editing In deployment, users
rarely modify both visual and textual facts simultaneously;
rather, edits on different modalities often occur —for ex-
ample, a textual edit may later be followed by a visual edit
as new information becomes available. Hence, we freeze
the Knowledge Connector; when an edit targets internal
knowledge, we update the corresponding visual or textual
adapter, while new evidence is simply appended (stacked)
in the external memory store, leaving prior entries and the
connector frozen. At test time, we perform 500 editing
steps sequentially, evaluating edit retention at gaps of (0,
10, 20, 50, 100).

4.2 Main Results

Table 1 demonstrates the competitive performance of the proposed editor, MemEIC, in comparison to
four baselines on the CCKEB test set. Baselines include one external memory method, i.e., SERAC
[18], and four internal memory editing methods, i.e., FT (LLM), LoRA [25], MEND [24], WISE
[44]. Prior work [11] reported that MEND, when applied to sequential editing, caused model collapse
and NaN losses. To address this issue, we adopt a greedy interpolation strategy that blends previous
weights with newly edited ones. Two baseline candidates, IKE [19] and KE [45], are excluded as
they require edit data at test time, which is impractical given evolving knowledge.

External Memory Methods Retrieval-based approaches, such as SERAC, store new information
externally without modifying any model during edit step, effectively preserving previously learned
knowledge. As such, no major performance difference can be observed between the 0 gap and 100
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gap setting. However, good reliability depends on correct retrieval. SERAC’s text-only retrieval
strategy fails to reliably locate visual edits, resulting in lower visual reliability across both backbone
models. Additionally, because external methods do not internalize new facts into the model, retrieved
facts remain isolated, unable to effectively interact with one another or with the model’s internal
knowledge, thereby hindering coherent reasoning and leading to diminished compositional reliability.

Internal Memory Methods Fine-tuning or LoRA-based approaches rapidly internalize new knowl-
edge by embedding edited facts into a single shared parameter space, leading to perfect visual and
textual reliability in the 0-gap setting. However, when exposed to long sequences of edits, they over-
write previously learned knowledge, causing a drop of nearly 30 points in visual and textual reliability.
This is caused by storing heterogeneous visual and textual edits within the same parameters, which
leads to representation collapse and severe cross-modal interference. As a result, their compositional
reasoning performance degrades substantially as edits accumulate.

To alleviate such forgetting, WISE introduces side-FFN memory slots and a router that interpolates
between the original and edited parameters. This design mitigates forgetting and maintains relatively
stable performance across sequential gaps. Nevertheless, because edited knowledge is stored as
isolated parameter fragments and the router operates primarily on textual activations, WISE remains
limited in handling visual edits and fails to fuse visual and textual edits for compositional queries.

MemEIC—Ours MemEIC integrates external and internal memory mechanisms, addressing
the limitations of both external-only and internal-only methods. Externally, an image–text retrieval
memory reliably stores factual evidence. Internally, lightweight, modality-specific adapters internalize
visual and textual edits independently, preventing conflicts with existing knowledge and cross-modal
interference. As a result, MemEIC achieves significantly higher performance compared to all
baselines and maintains stability across varying edit-test gaps, exhibiting strong robustness against
catastrophic forgetting and representation collapse.

Quantitatively, averaged across all edit–test gaps, MemEIC outperforms WISE by +16.94 in visual
reliability and by +32.35 in compositional reliability on LLaVA-1.5, demonstrating that temporal
robustness alone is insufficient without explicit multimodal fusion. The gap-averaged visual and
textual reliability for LLaVA-1.5 reaches 98.93 and 92.48, respectively. This substantial improvement
is largely attributed to the brain-inspired Knowledge Connector, which dynamically fuses visual and
textual representations only when multimodal reasoning is required. With this mechanism, MemEIC
achieves an average of 80.56 in compositional reliability, an +18.51 points improvement over the best
baseline, LoRA (62.05).

4.3 Ablation on External Memory: Visual & Textual Cues in Retrieval

Table 2: Performance Average on VLKEB under Sequential Editing for LLaVA-1.5.
Textual Visual Add Rel T-Gen I-Gen T-Loc I-Loc Port

SERAC ✓ – ✓ 75.00 45.19 75.29 99.99 1.91 38.50
Mem-E (tex) ✓ – – 48.02 50.74 48.22 99.99 4.02 45.08
Mem-E (tex+vis) ✓ ✓ – 96.51 93.42 79.90 99.99 57.10 62.09

Table 2 compares our external memory-based editing approach (Mem-E) with the SERAC baseline.
SERAC [18] relies solely on textual information, i.e., a [CLS] token representation obtained from
BERT [46], for retrieving edited knowledge. If a query falls within the scope of an edit, the retrieved
information is passed to a separate counterfactual model that "adds" the retrieved information on top
of the base model. In contrast, our method uses information retrieved from external memory directly
without employing any extra model. We examine two retrieval variants: Mem-E (tex), using textual
cues only, and Mem-E (tex+vis), combining textual and visual cues.

As expected, Mem-E (tex) performs worse than SERAC due to the absence of the additional model.
However, incorporating visual cues into retrieval (Mem-E (tex+vis)) significantly enhances perfor-
mance across key metrics. Reliability (Rel) improves markedly from 48.02 to 96.51, indicating that
visual features help retrieve edited knowledge more accurately. Text generality (T-Gen) also shows a
major gain, increasing from 50.74 to 93.42, demonstrating how visual context can effectively disam-
biguate queries that are semantically similar. Most notably, image locality (I-Loc) jumps dramatically
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from 4.02 to 57.10, underscoring the crucial role of visual retrieval in correctly distinguishing edited
from unedited visual information. Detailed results are in Appendix G.2.

4.4 Ablation on Internal Memory: Separated Knowledge Integration

Table 3: Knowledge separation (Mem-I) results on CCKEB validation dataset
Visual Edit Textual Edit

Rel T-Gen I-Gen T-Loc I-Loc Rel Gen Loc

Mem-I (Dual-LoRA, r:8 x 2) 74.73 71.57 74.61 80.93 12.45 77.24 73.73 68.22

Mem-I (Single-LoRA, r:16) 74.60 71.50 74.49 63.16 9.59 74.54 70.49 63.16
Difference -0.13% -0.07% -0.12% -17.77% -2.86% -2.70% -3.24% -5.06%

Mem-I (Single-LoRA, r:8) 74.06 71.02 74.08 60.42 7.90 72.12 68.29 60.42
Difference -0.67% -0.55% -0.53% -20.51% -4.55% -5.12% -5.44% -7.80%

* p < 0.05 (paired t-test)

Table 3, we test the hypothesis that mimicking the brain’s hemispheric specialization [33–38]—by
maintaining separate internal memory spaces for visual and textual information—can substantially
improve the precision and overall effectiveness of knowledge editing in LVLMs. To ensure robustness,
each experiment is repeated five times and results are averaged. We hold the total parameter budget
constant across conditions: Mem-I (Dual-LoRA, r = 8 + 8) maintains separate low-rank memories
for each modality, whereas Mem-I (Single-LoRA, r = 16) uses a shared memory.

In a detailed performance analysis, Mem-I (Dual-LoRA) shows modality-specific advantages. For
visual edits, while the mean differences in some metrics (Rel, T-Gen, I-Gen) appear small, a paired
t-test confirms these improvements are statistically significant (p < 0.05). However, the clearest
evidence lies in the much larger gains in localized editing metrics such as T-Loc (+17.77%) and
I-Loc (+2.86%), confirming that modality-specific memory separation precisely confines edits to their
targets. For textual edits, Dual-LoRA consistently outperforms Single-LoRA across all metrics—Rel
(+2.70%), Gen (+3.24%), and Loc (+5.06%). Notably, reducing the rank in Single-LoRA (r = 8)
markedly degrades performance relative to r = 16, showing that our observed improvements are not
artifacts of rank selection. Overall, our results suggest that distinct separation of visual and textual
memories during CCKE effectively mitigates representation collapse, enabling precise, localized
editing of multimodal knowledge. For a detailed breakdown of performance at each individual
sequential gap, refer to Appendix E.2

4.5 Ablation on Internal Memory: Knowledge Connector

Figure 4 reports that separating knowledge into internal and external memories and then re-combining
them through a dedicated Knowledge Connector is the key to stable compositional reasoning.
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Figure 4: Compositional reliability of five editing
variants on LLaVA-1.5 (7B) on CCKEB testset.

External retrieval enhances stability, but can-
not integrate facts by itself. Even under the
highly favorable assumption of perfect oracle
retrieval (Base+RAG), where all relevant edits
are correctly fetched, the model’s compositional
reliability still levels off at just 64.93%. The
reason is simple: the freshly retrieved facts sit
side-by-side with one another and the model’s
old, still-stored facts, and the two sets often dis-
agree. With no mechanism to integrate them,
this caps performance, showing that perfect re-
trieval alone is not enough.

Modality–specific adapters integrate facts, but limit interaction between modalities. When
retrieval is combined with modality-separated adapters (Dual-LoRA+RAG), reliability increases to
78.16 % at gap=0. Nevertheless, performance declines to 63.39 % at gap=100. This decline arises
from the absence of alignment between the heterogeneous representations produced by the two
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adapters. In comparison to Single-LoRA, Dual-LoRA does not offer a consolidated latent space, that
would allow for easy interaction between facts across modalities. This is supported by the observation
that Dual-LoRA achieves a compositional reliability of 70.05% at gap=0, falling short of the 77.47%
attained by Single-LoRA.

Knowledge Connector unifies modalities for near-oracle reliability. Augmenting Dual-
LoRA+RAG with our attention-based Knowledge Connector raises compositional reliability to
99.21 % at gap=0 and maintains it at 97.01 % at gap=100. These results demonstrate that our
Connector effectively combines modality-specific adapters, sustaining near-oracle long-term compo-
sitional reasoning.

To evaluate CompRel in a controlled setting, we assumed an oracle external memory that always
retrieves the correct knowledge. However, in more realistic scenarios—such as when Mem-E retrieves
counterfactual knowledge—conflicts can arise between externally retrieved information and internally
edited facts. Even in such cases, our model avoids over-relying on incorrect external knowledge and
maintains robust performance (Appendix E.3.2). Also, we explored various connector designs and
found that inserting LoRA into the attention projection consistently led to the best performance on
the CCKEB (Appendix E.3.4). This finding suggests that LoRA within the attention pathways allows
the model to compositionally integrate internally edited knowledge from lower FFN layers, thereby
strengthening cross-memory reasoning. The results for MiniGPT-4 are provided in E.3.

5 Conclusion

In this paper, we propose CCKEB, a novel continual and compositional knowledge editing benchmark
designed to evaluate multimodal consistency over extended edits. We also introduce MemEIC, an
integrated memory system that leverages external retrieval, modality-specific dual-LoRA adapters,
and a brain-inspired Knowledge Connector for robust multimodal editing. Extensive evaluations
demonstrate that MemEIC outperforms existing methods by effectively handling continual updates,
preserving previous edits, and achieving significant compositional reliability.

Acknowledgements

This work was supported by the Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea Government (MSIT) (No. RS-2023-00216011,
Development of Artificial Complex Intelligence for Conceptually Understanding and Inferring like
Human). It was also supported by the IITP grant funded by the Korea Government (MSIT) (No.
RS-2024-00338140, Development of learning and utilization technology to reflect sustainability of
generative language models and up-to-dateness over time).

References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, and et al. Jared Kaplan.

Language models are few-shot learners, 2020.

[2] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
and et al. Nikolay Bashlykov. Llama 2: Open foundation and fine-tuned chat models, 2023.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, and et al. Xiaodong Deng. Qwen
technical report, 2023.

[4] Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
editing for large language models: A survey. ACM Comput. Surv., 57(3), November 2024.

[5] Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi, Yunzhi Yao, Ziwen Xu, Mengru Wang,
Shengyu Mao, Xiaohan Wang, Siyuan Cheng, Kangwei Liu, Yuansheng Ni, Guozhou Zheng,
and Huajun Chen. EasyEdit: An easy-to-use knowledge editing framework for large language
models. In Yixin Cao, Yang Feng, and Deyi Xiong, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations),
pages 82–93, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

10



[6] Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities.
arXiv preprint arXiv:2305.13172, 2023.

[7] OpenAI. Gpt-4 technical report, 2024.

[8] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 19730–19742. PMLR, 23–29 Jul 2023.

[9] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhanc-
ing vision-language understanding with advanced large language models. In ICLR, 2024.

[10] Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen, Yongheng Wang, Huajun Chen, and
Ningyu Zhang. Can we edit multimodal large language models? In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 13877–13888, Singapore, December 2023. Association
for Computational Linguistics.

[11] Han Huang, Haitian Zhong, Tao Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Vlkeb:
A large vision-language model knowledge editing benchmark. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural
Information Processing Systems, volume 37, pages 9257–9280. Curran Associates, Inc., 2024.

[12] Jiaqi Li, Miaozeng Du, Chuanyi Zhang, Yongrui Chen, Nan Hu, Guilin Qi, Haiyun Jiang,
Siyuan Cheng, and Bozhong Tian. Mike: A new benchmark for fine-grained multimodal entity
knowledge editing. In ACL (Findings), 2024.

[13] Zhen Zeng, Leijiang Gu, Xun Yang, Zhangling Duan, Zenglin Shi, and Meng Wang. Visual-
oriented fine-grained knowledge editing for multimodal large language models. arXiv preprint
arXiv:2411.12790, 2024.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate, 2016.

[15] Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, and et al.
Sergii Kashubin. Measuring compositional generalization: A comprehensive method on realistic
data, 2020.

[16] Xindi Wu, Hee Seung Hwang, Polina Kirichenko, and Olga Russakovsky. Compact: Composi-
tional atomic-to-complex visual capability tuning, 2025.

[17] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[18] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning.
Memory-based model editing at scale. In International Conference on Machine Learning, 2022.

[19] Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang.
Can we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 4862–4876, Singapore, December 2023. Association for Computa-
tional Linguistics.

[20] Yufang Hou, Alessandra Pascale, Javier Carnerero-Cano, Tigran Tchrakian, Radu Marinescu,
Elizabeth Daly, Inkit Padhi, and Prasanna Sattigeri. Wikicontradict: A benchmark for evaluating
llms on real-world knowledge conflicts from wikipedia. Advances in Neural Information
Processing Systems, 37:109701–109747, 2024.

11



[21] Haoang Chi, He Li, Wenjing Yang, Feng Liu, Long Lan, Xiaoguang Ren, Tongliang Liu,
and Bo Han. Unveiling causal reasoning in large language models: Reality or mirage? In
A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors,
Advances in Neural Information Processing Systems, volume 37, pages 96640–96670. Curran
Associates, Inc., 2024.

[22] Cheng-Han Chiang and Hung-yi Lee. Do metadata and appearance of the retrieved webpages
affect LLM‘s reasoning in retrieval-augmented generation? In Proceedings of the 7th Black-
boxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 389–406,
Miami, Florida, US, November 2024. Association for Computational Linguistics.

[23] Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
Neurobiologically inspired long-term memory for large language models. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[24] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. CoRR, 2021.

[25] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[26] Kevin Meng, David Bau, Aitor Lewkowycz, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In International Conference on Learning Representations (ICLR), 2022.

[27] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 5484–5495, 2021.

[28] Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin, and Xueqi Cheng. The butterfly effect of
model editing: Few edits can trigger large language models collapse. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics:
ACL 2024, pages 5419–5437, Bangkok, Thailand, August 2024. Association for Computational
Linguistics.

[29] Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
editing in a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 18564–18572, 2024.

[30] Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li, Chengyu Wang, Longtao Huang, et al.
Lifelong knowledge editing for llms with retrieval-augmented continuous prompt learning. In
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pages 13565–13580, 2024.

[31] Dongfang Li, Zetian Sun, Xinshuo Hu, Baotian Hu, and Min Zhang. Cmt: A memory compres-
sion method for continual knowledge learning of large language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pages 24413–24421, 2025.

[32] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning, 2025.

[33] Goulven Josse and Nathalie Tzourio-Mazoyer. Hemispheric specialization for language. Brain
Research Reviews, 44(1):1–12, 2004.

[34] Marlene Behrmann and David C. Plaut. A vision of graded hemispheric specialization. Annals
of the New York Academy of Sciences, 1359(1):30–46, 2015.

[35] Laurent Cohen and Stanislas Dehaene. Specialization within the ventral stream: the case for the
visual word form area. NeuroImage, 22(1):466–476, 2004.

[36] Michael C. Corballis. Left brain, right brain: Facts and fantasies. PLOS Biology, 12(1):1–6, 01
2014.

12



[37] Norman Geschwind. Specializations of the human brain. Scientific American, 241(3):180–201,
1979.

[38] R. W. Sperry. Hemisphere deconnection and unity in conscious awareness. the american
psychologist. Brain, 23(10):723–733, 1968.

[39] Michael S. Gazzaniga. Cerebral specialization and interhemispheric communication: Does the
corpus callosum enable the human condition? Brain, 123(7):1293–1326, 07 2000.

[40] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are comple-
mentary learning systems in the hippocampus and neocortex: insights from the successes and
failures of connectionist models of learning and memory. Psychological review, 102(3):419,
1995.

[41] Ye Liu, Hui Li, Alberto Garcia-Duran, Mathias Niepert, Daniel Onoro-Rubio, and David S.
Rosenblum. Mmkg: Multi-modal knowledge graphs, 2019.

[42] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter, 2020.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Proceed-
ings of the 38th International Conference on Machine Learning (ICML 2021), volume 139 of
Proceedings of Machine Learning Research, pages 8748–8763, 2021.

[44] Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei
Huang, and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing
of large language models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing Systems,
volume 37, pages 53764–53797. Curran Associates, Inc., 2024.

[45] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 6491–6506, Online and Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics.

[46] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[47] Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun
Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge
editing for large language models. arXiv preprint arXiv:2401.01286, 2024.

[48] Muhao Chen, Weijia Shi, Ben Zhou, and Dan Roth. Cross-lingual entity alignment with
incidental supervision, 2021.

[49] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J. ACM,
61(1), January 2014.

[50] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In C.J. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013.

13



Appendix
In the Appendix, we introduce more details along with additional experimental results, discussions,
and related works:

• Appendix A: Related Works
• Appendix B: Dataset Details
• Appendix C: Experimental Setup
• Appendix E: Additional Experimental Results
• Appendix F: Limitations and Broader Impacts
• Appendix G: Original Results

A Related Works

Benchmarks for LVLM Knowledge Editing Early research on knowledge editing focused on
text-based LLMs, aiming to correct factual errors or update information without full retraining [4–
6, 47]. To extend knowledge editing into large vision language models (LVLMs), benchmarks such
as MMEdit and VLKEB [10, 11] have been introduced to enable multimodal information updates.
However, these benchmarks largely target visual-only edits: MMEdit relies on artificial tasks (e.g.,
editing objects not present in the image) and focuses solely on single-edit scenarios, where the
model is reinitialized after each update—an impractical approach for continuous real-world settings.
Moreover, VLKEB does not fully support compositional edits that require joint updates of both visual
and textual knowledge. This gap highlights the need for a comprehensive framework capable of
handling continuous and compositional knowledge updates.

Knowledge Editing Methods A key distinction in knowledge editing is whether updates are stored
externally or integrated within a model’s parameters. Retrieval-based methods use external memory
to preserve long-term edits without altering model parameters but tend to inherit a text-centric bias,
limiting the effective use of visual cues [18]. In contrast, internal memory-based methods embed
updates directly into the model, enabling flexible inference [24]; however, they suffer catastrophic
forgetting and risk representation collapse when visual and textual characteristics are stored together in
a single layer [40]. These limitations underscore the need for approaches that support compositional,
continuous knowledge editing in realistic settings.

B Dataset Details

Our new benchmark CCKEB, an extended version of VLKEB [11]—originally focused on visual
editing—by enabling compositional edits that involve both visual and textual modalities. CCKEB
augments 5,000 visual editing instances from the VLKEB training split with their corresponding
textual edits, resulting in 5,000 visual-textual training pairs. The same procedure is applied to the
evaluation split, resulting in 1,278 compositional evaluation pairs.

B.1 Construction Process

To construct the textual edits, we follow the data construction process of VLKEB by leveraging the
multi-modal knowledge graph MMKG [41]. Where necessary, we retrieve new knowledge triples
(e′, r, o), and then generate new textual edits by modifying the object entity o → o′ within existing
and new triples.

Knowledge Triples Extraction Unlike the VLKEB evaluation set, which includes explicit knowl-
edge triples and associated QA pairs, included to evaluate portability, the 5,000 training instances
in VLKEB do not provide annotated knowledge triples (e′, r, o). To address this gap, we extract
candidate triples for the training set using the DB15K [48] knowledge base, which was also used in
constructing the VLKEB evaluation set.

Among the 5,000 training samples, we successfully extract knowledge triples for 4,428 instances,
using a total of 187 relation types in DB15K. In cases where multiple candidate triples were identified,
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we prioritize more informative and sparse relations (e.g., location, birthPlace, creator) to select the
most salient triple. For the remaining 572 instances where relation triples could not be extracted
automatically, we manually align entity mentions with DB15K entries when partially matched. If the
entity was entirely missing from DB15K, we manually supplement it by referencing Wikipedia.

Object Pairs Selection Given the relational triples (e′, r, o), we perform object replacement by
substituting the original object o with a new object o′.

Following the data construction process of VLKEB, we apply maximum weight bipartite match-
ing [49] to identify object pairs (o, o′) with the highest similarity, based on shared relations. The goal
of this process is to ensure that o and o′ belong to the same or similar semantic categories, thereby
making the substitution o → o′ contextually valid. To facilitate this, we extract the set of relations
associated with each object using the FB15K [50] and DB15K [48] knowledge graphs, in that order.
We then compute the number of shared relations between every possible object pair and use this count
as edge weights in a bipartite graph. Maximum weight bipartite matching is subsequently applied to
select the most semantically similar object pairs. In cases where suitable pairs could not be retrieved
from the dataset, we generated candidate object replacements using GPT-4o.

For the evaluation set, all object pairs (o, o′) are manually reviewed to ensure data quality. This
includes identifying and correcting cases where o = o′, where duplicate answers are generated, or
where a relation (e.g., timeZone, birthPlace) should yield a single answer but multiple answers are
produced.

Compositional & Textual Rel, Gen and Loc Data Construction For Textual Reliability and
Textual Generality, we generate two semantically equivalent questions q1 and q2 using GPT-4o, based
on the knowledge triples (e′, r, o) and the selected object pairs (o, o′).

For Textual Locality, since this metric evaluates whether unrelated knowledge remains unchanged
before and after the edit, we reuse the original textual locality data from the VLKEB dataset without
additional data generation.

For Compositional Reliability, the VLKEB evaluation set already includes questions aligned with the
knowledge triples (e′, r, o). To generate compositional QA pairs for the newly generated triples in
the train set, we leverage the extracted knowledge triples and the corresponding object pairs (o, o′),
to formulate a QA pair using GPT-4o.

B.2 Prompt Templates

This subsection presents the prompt templates used in this study for data generation, using GPT-4o as
the underlying model.

Table 4 presents the prompt template used to generate candidate objects and corresponding QA
pairs for Textual Reliability and Textual Generality in cases where suitable object pairs could not be
retrieved during the object pair selection process.

Table 5 illustrates the prompt template used to generate QA pairs for Textual Reliability and Textual
Generality, given a knowledge triple (e′, r, o′).

Table 6 shows the prompt template designed to generate Compositional Reliability QA pairs in the
training set.
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Table 4: Prompt template used to generate o′ via GPT-4o.
Prompt Template for Generating o′

System:
You are a counterfactual entity generator and question creator.

The input triple may contain ‘null‘ in the object position, representing a missing or unmatchable entity.
Your job is to:
1. Replace each ‘null‘ with a new counterfactual entity that fits the subject and relation.
2. The new entity must:

- Be of the correct semantic type (e.g., person, location, organization)
- Be factually incorrect (i.e., not real-world truth)
- Be plausible and coherent in context

3. Generate two paraphrased questions and one answer based on the modified triple.

Examples:
Example 1
Triple: ("Amy Irving", "spouse", [null])
Modified: [null] -> ["Steve Jobs"]
Q1: Who is Amy Irving married to?
Q2: Who is the spouse of Amy Irving?
A: Steve Jobs

[6 in-context demonstrations abbreviated]

User:
Triple:("Fort Smith, Arkansas", "timeZone", [null])

System:
Modified: [null] -> ["Pacific Time Zone"]
Q1: What time zone does Fort Smith, Arkansas observe?
Q2: In which time zone is Fort Smith, Arkansas located?
A: Pacific Time Zone
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Table 5: Prompt template used to generate Textual Reliability, Generality QA pairs via GPT-4o.
Prompt Template for Textual Reliability, Generality QA Generation

System:
You are a question generator specializing in single-hop Counterfactual QA. Users will provide a triple in the
format (subject, relation, object). Each triple intentionally contradicts real-world knowledge.
Your task is to generate two rephrased questions and one answer from the triple, while following the instructions
below:

Task Rules
1. Always treat the input triple as counterfactual, i.e., it intentionally represents incorrect factual knowledge.
2. Do NOT attempt to correct the triple to match real-world knowledge.
3. Do NOT modify the object if the triple is already:

- Semantically plausible, Syntactically coherent
- And type-consistent with the relation.

4. Only modify the object if it is:
- Semantically incoherent (e.g., wrong type)
- Syntactically awkward (e.g., meaningless structure)

5. Avoid generating absurd, random, or nonsensical substitutions.
6. The two questions (Q1, Q2) must:

- Ask about the same information
- Use different wording or phrasing
- Not explicitly mention the relation or object

7. The answer (A) must exactly match the object entity.
8. If you modify the object, indicate the change with Modified:[original_object]->[new_object].

Valid Counterfactual Examples (No Modification Required)
Triple: ("Barack Obama", "jobTitle", ["Astronaut"])
Q1: What is Barack Obama’s profession?
Q2: What job does Barack Obama hold?
A: Astronaut
[3 in-context demonstrations abbreviated]

Unnatural Triple Examples (Require Modification)
Triple: ("Eiffel Tower", "location", ["Albert Einstein"])
Modified: ["Albert Einstein"] -> ["Japan"]
Q1: Where is the Eiffel Tower located?
Q2: In which country is the Eiffel Tower situated?
A: Japan
[2 in-context demonstrations abbreviated]

User:
Triple:("Fort Smith, Arkansas", "timeZone", "Pacific Time Zone")

System:
Q1: What time setting does Fort Smith, Arkansas follow?
Q2: Which time zone does Fort Smith, Arkansas observe?
A: Pacific Time Zone
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Table 6: Prompt template used to generate Compositional Reliability QA pairs via GPT-4o.
Prompt Template for Compositional Reliability QA Generation

System:
You are a multimodal question generator. Your task is to create a new question (Q) and a corresponding answer
(A) based on the triple, edit_q, and edit_a provided by the user.

Important Guidelines:
1. Your task is to generate Q and A only, using the input triple and edit_q&a as a guide. Do not modify or
recreate edit_q or edit_a.
2. Ensure that:

- The generated question (Q) is contextually relevant to the triple and avoids explicitly including the answer.
- The generated answer (A) aligns accurately with the triple and edit_a.

3. Always output in this exact format:
Q: [Generated question]
A: [Generated answer]

Examples:
Example 1:
Triple: ("Fort Smith, Arkansas", "timeZone", "Central Time Zone")
edit_q: What time zone is Fort Smith in?
edit_a: Central Time Zone
Output:
Q: What is the time zone of the location shown in the picture?
A: Central Time Zone

[3 in-context demonstrations abbreviated]

User:
Triple: ("Fort Smith, Arkansas", "timeZone", "Pacific Time Zone")
edit_q: In which time zone is Fort Smith, Arkansas located?
edit_a: Pacific Time Zone

System:
Q: What time zone does the city shown in the image belong to?
A: Pacific Time Zone

B.3 Example of Compositional Editing

Here we present an example table 7 for compositional editing that includes both textual and visual
edit, along with evaluation metrics including visual reliability, textual reliability, and compositional
reliability.

C Experiment Details

C.1 Metrics

We evaluate knowledge editing methods based on three established criteria from prior work: Reliabil-
ity, Generality, and Locality.

Let f denote a vision-language model that maps an input x, optionally accompanied by an image
input i, to an output y. Here, θ and θ′ represent the model parameters before and after the editing
operation, respectively.

Reliability Reliability measures the extent to which the edited model produces the desired target
output ye instead of the original output yo. It is computed as the average accuracy across all edited
instances.
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Table 7: An example of Visual, Textual, Compositional Reliability

Visual Edit
Q: What animated film is featured in this image?
Original: Ratatouille_(film)
Target: Finding Nemo

Textual Edit
Q: Which company distributed the film Finding Nemo?
Original: Walt Disney Studios Motion Pictures
Target: Warner Bros.

Visual Reliability
Q: What animated film is featured in this image?
A: Finding Nemo

Textual Reliability
Q: Which company distributed the film Finding Nemo?
A: Warner Bros.

Compositional Reliability
Q: Which company distributed the movie shown in the picture?
A: Warner Bros.

VisRel = E(ie,xe,ye)∼Dvisual edit

[
I{f(ie, xe; θ

′) = ye}
]
, (8)

TextRel = E(xe,ye)∼Dtextual edit

[
I{f(xe; θ

′) = ye}
]
, (9)

Here, Dvisual edit and Dtextual edit denotes the dataset used for visual editing and textual editing, respec-
tively.

Generality Generality evaluates whether the edited model can generalize beyond the specific edit
case to semantically equivalent inputs across modalities. It is measured by the model’s accuracy on
perturbed neighbors of the original input, such as rephrased text or modified images.

ImageGen = E (ie,xe,ye)∼Dedit
ir∼T (ie)

[
I{f(ir, xe; θ

′) = ye}
]
, (10)

TextGen = E ([ie,]xe,ye)∼Dedit
xr∼T (xe)

[
I{f([ie, ]xr; θ

′) = ye}
]
, (11)

where T (xe) and T (ie) represent perturbed or semantically modified versions of xe and ie. Since
textual generality can also be evaluated within textual edits, ie is treated as optional in the TextGen
setting.
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Locality Locality measures the extent to which the edited model preserves its behavior on inputs
unrelated to the edit. It is evaluated by comparing the outputs of the original and edited models on
out-of-neighbor examples, using both textual (TextLoc) and visual (ImageLoc) probes.

ImageLoc = E(il,xl,yl)∼Dimage
loc

[
I{f(il, xl; θ

′) = f(il, xl; θ)}
]
, (12)

TextLoc = E(xl,yl)∼Dtext
loc

[
I{f(xl; θ

′) = f(xl; θ)}
]
, (13)

where Dtext
loc and Dimage

loc represent locality datasets.

C.2 LVLM Details

The experiments in this study were conducted using two LVLMs: LLaVA-1.5 and MiniGPT4. LLaVA-
1.5 employs Vicuna-7B-v1.5 as the language model and ViT-L (0.3B) as the vision encoder, while
MiniGPT4 utilizes Vicuna-7B for the language model and ViT-g (1B) for the vision encoder.

C.3 Knowledge Editing Methods

FT (Fine-tune) In our Fine-tuning (FT) setup, model parameters are updated via gradient descent
applied to the designated target layers. Before editing, we store the current weights of these layers to
allow restoration after a single-edit operation. We use the AdamW optimizer and configure it such
that gradients are computed and applied only to the specified fine-tuning parameters.

LoRA Low-Rank Adaptation (LoRA) [25] provides a parameter-efficient alternative to full fine-
tuning by introducing a pair of low-rank trainable matrices into the weight update path of selected
layers—typically the query–key–value projections or feed-forward blocks. During training, the
original pre-trained weights are frozen, and only the low-rank matrices are optimized, yielding a
drastic reduction in the number of trainable parameters and memory footprint. At inference time, the
low-rank updates are linearly combined with the frozen base weights, producing an adapted model
that preserves the generalization ability of the original network while incorporating task-specific
knowledge.

MEND Model Editor Networks with Gradient Decomposition (MEND) [24] offers an intrinsic
editing approach that efficiently updates parameters in large language models (LLMs) embedded
within vision-language models (LVLMs). Rather than modifying the entire model, MEND trains
compact auxiliary networks that apply localized edits based on a single input-output example. These
edits are performed by transforming fine-tuning gradients using a low-rank decomposition, enabling
scalable and generalizable updates without compromising the model’s performance on unrelated
tasks.

SERAC Semi-Parametric Editing with a Retrieval-Augmented Counterfactual (SERAC) [18] is a
memory-based framework composed of an explicit memory cache—along with an associated scope
classifier—and a counterfactual model. The trained scope classifier determines whether an incoming
query falls within the editing scope. If the query is in scope, the system forwards the original input
together with the retrieved edits from the explicit memory to the counterfactual model; otherwise,
the input is passed unchanged to the underlying base model. In our experiments, the scope classifier
is instantiated with a BERT encoder(distilbert-base-cased), while the counterfactual model
varies across LVLMs.

WISE WISE [44] introduces a dual parametric memory for lifelong editing: a main memory that
preserves pretrained weights and a side memory (a copied FFN value matrix) that stores edits. A
routing activation module decides at inference which memory to use, enabling edited knowledge to
be applied only when in scope and preventing collateral changes elsewhere. For continual streams,
WISE performs knowledge sharding where different sets of edits reside in distinct and orthogonal
subspaces of parameters. Then it merges them to integrate edits without destructive interference;
it can also maintain multiple side memories and retrieve by activation (WISE-Retrieve). This
routing–sharding–merging design balances reliability, locality, and generalization, overcoming the
trade-offs of purely parametric or retrieval-based editors.
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C.4 Experiment Resources and Parameters

All experiments are performed on an NVIDIA A100 80GB GPU utilizing the PyTorch framework.
The parameters used in the experiments are summarized in Table 8, and detailed configuration files
are available in the code repository. For detailed parameters and configurations specific to MemEIC,
please refer to Section D.3.

Table 8: Hyper-parameter settings for LLaVA-1.5 and MiniGPT4 across editing methods

Method Model Steps/ MaxIter Edit Layer Optimizer LR

FT-LLM MiniGPT-4 10 31st layer of Vicuna-7B AdamW 1e-4
LLaVA-1.5 10 31st layer of Vicuna-7B-v1.5 AdamW 1e-4

LoRA MiniGPT-4 10 all layer of Vicuna-7B AdamW 1e-6
LLaVA-1.5 10 all layer of Vicuna-7B-v1.5 AdamW 1e-6

WISE MiniGPT-4 20 27th layer of Vicuna-7B SGD 1e-1
LLaVA-1.5 20 27th layer of Vicuna-7B-v1.5 SGD 1e-1

MEND MiniGPT-4 40000 layer 29, 30, 31 of Vicuna-7B Adam 1e-6
LLaVA-1.5 40000 layer 29, 30, 31 of Vicuna-7B-v1.5 Adam 1e-6

SERAC MiniGPT-4 50000 31st layer of Vicuna-7B Adam 5e-5
LLaVA-1.5 50000 31st layer of Vicuna-7B-v1.5 Adam 1e-5

D Model Details

D.1 Query Decomposition

We automatically classify and decompose each query into its visual and textual components via query
decomposition. To perform this step, we utilize GPT-4o, and Table 9 presents the prompt template
used for this process.

To ensure consistent and controlled evaluation across various experimental conditions, we preprocess
all train and evaluation queries using the query decomposition module. Specifically, query decompo-
sition is performed in advance, resulting in a static set of decomposed queries. However, in practical
deployment scenarios, query decomposition must be performed on-the-fly, requiring a full inference
pass through the query decomposer such as GPT-4o for each incoming query.

For the performance evaluation of the Query Decomposition Module, please refer to Section E.1

D.2 External Memory

In the External Memory module (Mem-E), we used distilbert-base-cased as a text classifier
to compute textual similarity with the stored text edits, and CLIP-L/336px as an image encoder to
assess visual similarity.

For a detailed description of the parameters and configurations used in the external module training,
refer to Section D.3.

D.3 Training Stage Details

Stage 1: External Memory In the first training stage, we train the text and image classifiers of
the external memory module. To prevent temporal interference during classifier training, this stage
is conducted under a single-edit setting rather than a continual-edit scenario. The external retrieval
module is trained on a datset of 5,000 examples, and Table 10 summarizes the hyperparameter
configurations used for LLaVA-1.5 and MiniGPT4. The training objective for the external component
is defined as the average binary cross-entropy loss computed over the training dataset.

Stage 2: Knowledge Connector In the second training stage, the Knowledge Connector—
implemented as LoRA increments on the self-attention q/k projections of a dedicated fusion layer—is
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Table 9: Prompt template for Query Decomposition
Prompt Template for Query Decomposition

System:
Task Definition
You are a powerful query classifier and generator.

Please decompose the question given by the user into image level and text level subquestions using the following
steps.
1. Identify the type of the question (e.g., Who, What, Where, When).
2. Identify the key entity or entities relevant to the question.
3. Generate the image level subquestion by focusing on the visual entity(e.g. city featured in the image, person
in the picture) in the question. DON’T CHANGE THE MEANING OF THE ORIGINAL QUESTION.
4. Generate the text level subquestion only if additional non-visual information is needed to fully address the
query. If not, return ’None’.

Examples:
Question: What city is featured in the image?
Image Level: What [city is featured in the image]?
Text Level: None

Question: What is the time zone of the location shown in the picture?
Image Level: What’s [the location shown in the picture]?
Text Level: What is the time zone of [the location shown in the picture]?

[20 in-context demonstrations abbreviated]

User:
Question: Which league is associated with the club in the picture?

System:
Image Level: What [club is in the picture]?
Text Level: Which league is associated with [the club in the picture]?

Table 10: Training configuration for Stage 1

Models MaxIter Optimizer LR
LLaVA-1.5 50000 Adam 1e-5
MiniGPT-4 50000 Adam 1e-5

trained jointly with the dual-LoRA adapters. These adapters, positioned in the feed-forward network
(FFN) sub-layers of every transformer block, are simultaneously updated whenever an edit occurs.
Although not the primary target of fine-tuning, the adapters serve to maintain a consistent feature
space for the connector. Training is conducted on the 500 samples of CCKEB train split containing
visual, textual, and compositional edits. At each edit step, the relevant adapter(s) and the connector
are co-activated and jointly optimized.

To simulate an adversarial retrieval scenario, external-memory hit rates are capped at 70% for
LLaVA-1.5 and 50% for MiniGPT-4. The resulting adapter weights are carried over to Stage 3 so
that inference receives feature representations drawn from the same distribution observed during
training. For both models, we employ the AdamW optimizer with a learning rate of 1e− 6.

E Additional Experiments

E.1 Results on Query Decomposition

To assess the performance of the Query Decomposition Module, we conducted experiments using
a decomposed query set, which was conducted by preprocessing queries from the training and
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evaluation sets. The evaluation was performed along two axes: Decomposition Accuracy and
Semantic Quality.

Decomposition Accuracy measures whether compositional queries are correctly decomposed into
both image-level and text-level sub-queries, and whether visual-only queries are classified solely
into image-level components, without being incorrectly decomposed into image-level and text-level
sub-queries. Queries that do not include visual components (images) are classified solely as text-level
and are therefore excluded from the evaluation. Semantic Quality evaluates the quality and semantic
validity of the generated image-level and text-level sub-queries.

Table 11: Percentage distribution of decomposed query types across training and test sets.

Image & Text Level Image Level Text Level
Qc (Train) 96.06% 3.82% 0.12%
Qv (Train) 4.98% 94.99% 0.03%
Qc (Test) 97.81% 2.03% 0.16%
Qv (Test) 3.26% 96.69% 0.05%

Decomposition Accuracy Table 11 presents the percentage distribution of decomposed query
types for Compositional Queries (Qc) and Visual Queries (Qv). For both training and test sets, over
96% of Qc instances are successfully decomposed into both image-level and text-level components,
indicating reliable modality separation. Similarly, for Qv, more than 94% of the instances are
accurately decomposed into image-level components only, demonstrating the robustness of the
decomposition strategy for visual-only queries.

Table 12: Average scores of decomposed queries evaluated by BERTScore and sBERT similarity

BERTScore sBERT
Qc (Train) 93.68 85.69
Qv (Train) 98.44 96.54
Qc (Test) 92.92 85.71
Qv (Test) 99.06 97.98

Semantic Quality Table 12 reports the results of our semantic quality evaluation, presenting the
average BERTScore and SBERT cosine similarity between the reference answers and the generated
queries for both compositional queries (Qc) and visual queries (Qv). For reference answers, we
adopt the original visual reliability questions for image-level compositional queries, and the original
compositional queries for text-level cases. For visual queries, the original visual queries are used
as reference at the image level. We compute BERTScore using the distilbert-base-uncased
model and SBERT similarity using the all-mpnet-base-v2 model, both based on cosine similarity.

As shown in Table 12, compositional queries (Qc) achieve BERTScores above 92 and sBERT
scores around 85 on both training and test sets, indicating that the decomposed queries exhibit
a relatively high degree of semantic similarity to the reference answers. Due to their structure
involving both visual- and text-level sub-queries, compositional queries introduce more variability
in expression, which likely contributes to the larger gap observed between BERTScore and sBERT.
Visual queries (Qv) consistently yield higher semantic similarity scores across both metrics and data
splits, suggesting that queries decomposed from visual queries are more semantically aligned with
the ground-truth answers. Moreover, the semantic similarity scores remain stable between training
and test sets, indicating the query decomposition module’s generalization capability.

E.2 Results on Internal Memory: Knowledge Separation

Table 13 provides a detailed breakdown of CCKEB performance across varying sequential gaps in the
experiments described in Section 4.4. As the gap between the initial edit and subsequent evaluations
grows, the Internal Memory–based approach exhibits a pronounced decline in accuracy—evidence of
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Table 13: Knowledge separation (Mem-I) results (averaged over 5 runs) for CCKEB validation set

(a) Visual Edit

Gap Rel T-Gen I-Gen T-Loc I-Loc

Mem-I (Dual-LoRA, r:8 x 2)

0 99.96 95.53 99.96 82.53 14.62
10 80.02 75.41 80.75 78.09 11.70
20 76.08 73.87 75.52 82.88 16.26
50 72.61 69.93 72.70 81.68 13.67
100 70.24 67.09 69.50 81.07 8.17
Average 74.73 71.57 74.61 80.93 12.45

Mem-I (Single-LoRA, r:16)

0 99.52 95.41 99.50 67.27 9.15
10 80.69 75.71 80.87 70.17 11.54
20 75.88 72.56 75.75 59.83 8.65
50 72.15 70.14 72.14 64.64 8.59
100 69.68 67.61 69.20 58.00 6.81
Average 74.60 71.50 74.49 63.16 9.59
Difference -0.13% -0.07% -0.12% -17.77% -2.86%

Mem-I (Single-LoRA, r:16)

Average 74.06 71.02 74.08 60.42 7.90
Difference -0.67% -0.55% -0.53% -20.51% -4.55%

(b) Textual Edit

Gap Rel Gen Loc

Mem-I (Dual-LoRA, r:8 x 2)

0 99.99 99.03 69.66
10 87.34 82.87 68.19
20 84.64 80.70 68.63
50 74.26 70.65 73.36
100 62.72 60.73 62.70
Average 77.24 73.73 68.22

Mem-I (Single-LoRA, r:16)

0 99.99 99.25 67.27
10 88.81 83.25 70.17
20 74.14 69.76 59.83
50 71.34 68.30 64.64
100 63.87 60.68 58.00
Average 74.54 70.49 63.16
Difference -2.70% -3.24% -5.06%

Mem-I (Single-LoRA, r:8)

Average 72.12 68.29 60.42
Difference -5.12% -5.44% -7.80%
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severe catastrophic forgetting when multiple edits accumulate in a shared parameter space. In contrast,
our knowledge separation strategy (Mem-I (Dual-LoRA)) sustains robust internal knowledge editing
under identical parameter budgets: both Visual Edit and Textual Edit tasks maintain high reliability,
generality, and locality metrics, demonstrating the effectiveness of modality-specific memory division
in mitigating forgetting.

Visual Adapter  Textual Adapter

𝑄!

𝑄"

Figure 5: Activation Visualization
of Knowledge Separation

Activation Visualization Figure 5 presents a heatmap illus-
trating the impact of each adapter on layer activations in re-
sponse to different input queries, visual query (Qv) and textual
query (Qt). When a Qv is provided as input, the activations of
the Visual Adapter exhibit a pronounced increase, whereas the
Textual Adapter demonstrates stronger activation when a Qt is
supplied. This observation indicates that the model effectively
leverages the appropriate adapter depending on the modality
of the input, selectively utilizing visual and textual information
accordingly.

E.3 Additional Results on Knowledge Connector

E.3.1 Performance Comparison on MiniGPT4
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Dual-LoRA (MEM-I)
Base + RAG (MEM-E)
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Dual-LoRA + RAG (MEM-EI, w/Conn.)

Figure 6: Performance comparison of compositional editing methods methods in Minigpt4.

Edit configurations We group the five systems into three memory regimes:

Mem-E (Internal Memory) LoRA adapters are the sole repository of new knowledge.

• Single-LoRA – visual and textual edits share a single feature space.
• Dual-LoRA – visual and textual edits occupy separate feature spaces.

Mem-I (External Memory) No parameters are updated; edited knowledge is retrieved at test time.

• Base + RAG - Minigpt4 with a oracle retriever that always returns the correct visual
and textual memories.

Mem-EI (External & Internal) Internal LoRA adapters are augmented with retrieval.

• Dual-LoRA + RAG – Mem-E + Mem-I, but without an knowledge connector.
• Dual-LoRA + RAG + Connector (MemEIC, Ours) – same as above, plus a frozen

attention-based Knowledge Connector that fuses the two LoRA streams.

Results Figure 6 shows Compositional Reliability (CompRel) across sequential gaps g ∈
{0, 10, 20, 50, 100}.
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• Mem-I (Internal Memory Only) Single-LoRA begins at 69% when g = 0, then drops
sharply to 56% by g = 10 and levels off around 53%, indicating severe cross-modal
interference. Dual-LoRA declines more gradually from 60% to 52%, but still cannot maintain
high compositional accuracy. This result highlights the inherent limitations of transformer-
based internal memory editing, where repeated edits lead to knowledge forgetting [29–31],
ultimately degrading compositional reasoning performance.

• Mem-E (External Memory Only) Retrieval without any parameter update (Base+RAG)
remains steady at 56% across all gaps, demonstrating that RAG alone cannot prevent perfor-
mance decay. This is primarily due to conflicts between externally retrieved knowledge and
the model’s internal knowledge, causing the baseline model to fail in effective compositional
reasoning [20–23].

• Mem-EI (Internal + External) Combining Dual-LoRA with retrieval yields a modest gain
to 62% at g = 0, but this falls to 57% by g = 10, reflecting unresolved conflicts between
visual and textual edits. Adding the Connector (MemEIC) boosts CompRel to 99% at g = 0
and sustains 96% at g = 100, a consistent 40% improvement over the best non-Connector
variant.

E.3.2 Noisy Retrieval Boosts Compositional Reliability

We train Knowledge Connector variants with fixed training–time retrieval accuracies of 50%, 70%,
and 100%, and then evaluate each connector under two test–time regimes: Test@50% (noisy
retrieval) and Test@100% (oracle retrieval). Figure 7 reports the compositional reliability (CompRel)
obtained by the two backbone LVLMs, LLaVA-1.5 and MiniGPT-4.
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Figure 7: Impact of Adversarial Retrieval on Connector Robustness. Compositional reliability
under noisy (Test@50%, red) and perfect (Test@100%, blue) retrieval, after training the knowledge
connector with oracle (100%), moderate-noise(70%), or heavy-noise(50%) prompts. Purple shading
indicates the robustness gap.

Results For LLaVA-1.5, the connector trained with moderate retrieval noise (70 % accuracy)
achieves the highest reliability in the noisy setting (86.3 %) while matching the smallest robustness
gap (12.0 %). The oracle-trained connector attains the highest ceiling (99.5 %) but suffers the largest
gap (14.5 %).

For MiniGPT-4 we observe the same qualitative trend, but the optimal trade-off is reached one
step earlier, at the 50 %-trained connector: it obtains the best noisy-case reliability (86.4 %) and
the narrowest robustness gap (11.4 %). Training with 70 % accuracy raises the oracle score slightly
(98.4 %) but increases the gap to 13.1 %, while oracle-only training again gives the highest ceiling
(98.0 %) at the cost of the largest gap (15.9 %).

Discussion Across both backbones, introducing a realistic amount of retrieval noise during connec-
tor training markedly improves the robustness–accuracy balance. With LLaVA-1.5, a 30% error rate
(70% training accuracy) is sufficient; the smaller MiniGPT-4 benefits from an even stronger signal,
peaking when trained with 50% accuracy. In both cases the connector learns to cross-check external
evidence against its internal memory: when the retriever is unreliable it falls back on the internal edits,

26



and when the retriever is correct it yields near-oracle performance. Conversely, training exclusively
with perfect retrieval encourages brittle over-reliance on the external prompt, while training with too
much noise depresses the attainable ceiling without further narrowing the robustness gap.

These findings confirm that moderate, task-realistic retrieval noise is a crucial ingredient for building
connectors that remain dependable when deployed in the wild, where external memories are often
incomplete or partly incorrect.

E.3.3 Examples for Connector Robustness

Edited Qv: "What is the title of the film in this scene?“
-> Raiders of the Lost Ark
Edited Qt: Text Editing Knowledge: Which company 
distributed the film "Raiders of the Lost Ark"? 
-> Virgin Records
-------------------------------------------------------------
Q: Which company distributed the movie related to the one 
shown in the picture?
A: Virgin Records (o)

Edited Qv: Which action film is featured in this image?
→ Cobra(1986 film)
Edited Qt: Who was the editor of ‘Cobra(1986 film)’?
→ George Pan Cosmatos (Counterfactual Retrieval)
-------------------------------------------------------------
Q: Who was involved in editing the film shown in the picture 
from 1986?
A: George Pan Cosmatos (x)

(a) without Knowledge Connector

Edited Qv: "What is the title of the film in this scene?“
-> Raiders of the Lost Ark
Edited Qt: Text Editing Knowledge: Which company 
distributed the film "Raiders of the Lost Ark"? 
-> Virgin Records
-------------------------------------------------------------
Q: Which company distributed the movie related to the one 
shown in the picture?
A: Virgin Records (o)

Edited Qv: Which action film is featured in this image?
→ Cobra(1986 film)
Edited Qt: Who was the editor of ‘Cobra(1986 film)’?
→ George Pan Cosmatos  (Counterfactual Retrieval)
-------------------------------------------------------------
Q: Who was involved in editing the film shown in the picture 
from 1986?
A: Christopher Nolan (o)

Retrieval from External Memory 

: success

        : failure 

(b) with Knowledge Connector

Figure 8: Model inference examples with and without the knowledge connector in adversarial retriever
setting

Figure 8 presents model inference examples with and without the knowledge connector. In the absence
of the knowledge connector, the model produces correct outputs when external memory retrieval is
accurate; however, it tends to rely on the retrieved information when the retrieval is incorrect. In
contrast, the model with the knowledge connector—trained with an adversarial retriever—leverages
internal knowledge alongside the retrieved information. This allows it to generate reliable outputs not
only when retrieval is accurate but also when the retrieved information is misleading or incomplete,
rather than relying on it solely.

E.3.4 Additional Results of the Knowledge Connector Selection

We investigate how various configurations of the Knowledge Connector influence the overall perfor-
mance, as summarized in Table 14, reporting both CompRel and UR for three connector types (MLP,
FFN, Attention) under Test@50 retrieval.

To quantify how much the connector improves over internal memory alone, we define the Knowledge
Utilization Ratio(KUR) as

KUR =
2× CompRelconn
Relvis +Reltex

, (14)

which measures the number of correct answers obtained via the connector relative to the average
correctness of the visual-only and textual-only internal adapters. A Ratio greater than 1 indicates that
the connector yields more correct answers than internal memory alone.
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Table 14: Comparison of different connection methods with Test@50% accuracy in CCKEB valida-
tion. Ratio indicates the Knowledge Utilization Ratio defined in Eq. 14.

Method Conn (MLP), w/ RAG 50%) Conn (FFN), w/ RAG 50%) Conn (Attention), (w/ RAG 50%)
CompRel Ratio (KUR) CompRel Ratio (KUR) CompRel Ratio (KUR)

Gap 0 87.25 1.00 93.85 1.00 89.25 1.00
10 5.25 0.07 83.13 1.12 86.02 1.28
20 3.17 0.04 80.27 1.17 84.79 1.34
50 0.23 0.00 76.37 1.24 81.69 1.33
100 0.11 0.00 78.61 1.36 78.36 1.38
Average 19.20 0.22 82.44 1.17 84.02 1.26

MLP-based Connector MLP-based Connector shows strong performance at the initial edit (gap=0:
87.25%) but rapidly loses its connection ability as the gap increases, resulting in an average CompRel
of only 19.20% (KUR = 0.22). This decline likely stems from its inability to track evolving dual-
LoRA features under continual updates, leading to a mismatch between input representations and
connector mapping.

FFN-based Connector FFN-based Connector maintains relatively high performance across gaps,
achieving an average CompRel of 82.44% (KUR = 1.17). However, the performance still drops
noticeably as the gap increases, suggesting limited robustness for long-term compositional reasoning
despite being a better connector than MLP.

Attention-based Connector implemented by injecting low-rank LoRA increments into the query
and key projections of the attention layer, achieves the highest average CompRel of 84.02% (KUR =
1.26). By adaptively extracting and fusing modality-specific features from the dual-LoRA modules,
the attention-based connector exhibits both higher compositional reliability and better utilization of
internal and external knowledge across sequential gaps. Notably, the performance gap at large edit
intervals remains minimal compared to FFN and MLP.

In summary, while all connectors play a role in bridging modality-specific memories, the attention-
based connector demonstrates superior robustness and knowledge integration, especially under
continual, compositional editing scenarios.

F Limitations and Broader Impacts

F.1 Limitations

Despite demonstrating strong empirical results, our approach has several limitations. First, our
framework currently focuses solely on multimodal knowledge editing scenarios involving visual
recognition and textual understanding, and it does not extend naturally to multimodal generation
tasks. Additionally, due to computational resource constraints, MemEIC has primarily been evaluated
on moderately sized vision–language models rather than extremely large-scale models; thus, its
performance on larger architectures remains unexplored.

F.2 Broader Impacts

In terms of societal impacts, our research advances the capability of continually updating LVLM
models, holding substantial benefits for applications requiring accurate, up-to-date visual and textual
knowledge in time-sensitive settings (e.g., misinformation prevention, timely fact correction). How-
ever, we acknowledge potential negative implications, such as the risk of malicious actors applying
this technology to rapidly propagate disinformation or harmful content. Therefore, we emphasize the
importance of deploying rigorous safeguards, monitoring mechanisms, and strong ethical guidelines
to ensure responsible use and mitigate the risk of misuse.

28



G Original Results

G.1 Original Results of Main Results on CCKEB

In Section 4.2, we present the main results of editing performance across varying gap sizes. Tables
15 and 16 report the original results for LLaVA-1.5 and MiniGPT4, respectively.

The first five metrics correspond to those proposed in the original VLKEB benchmark, while the
latter four—denoted as Extended Metrics—are introduced via the CCKEB benchmark. The VLKEB
metrics primarily assess performance on visual edits, whereas the newly constructed T-Rel, T-Gen,
and T-Loc metrics evaluate textual edits.

G.2 Original Results of Ablation Study on External Memory

In Section 4.3, we present the ablation experiment of External Memory. Tables 17 shows the original
results for the experiment.

Table 15: Original results in LLaVA-1.5

Method Gap VLKEB Extended

Rel T-Gen I-Gen T-Loc I-Loc CompRel T-Rel T-Gen T-Loc

FT (LLM)

0 99.57 98.19 99.05 38.09 6.66 78.42 99.87 99.12 38.09
10 89.16 81.31 84.09 37.11 6.48 58.51 83.96 76.22 37.11
20 86.18 77.82 80.27 36.33 6.19 55.44 79.60 71.45 36.33
50 78.63 71.86 74.09 33.76 5.41 52.76 74.54 65.14 33.76

100 74.76 67.79 70.39 30.21 4.53 49.06 68.81 61.73 30.21

LoRA

0 99.32 95.77 99.33 68.34 9.56 80.14 99.92 98.96 68.34
10 78.20 74.63 78.16 65.04 9.07 62.03 78.20 75.50 65.04
20 72.30 70.03 72.20 62.35 8.96 57.28 68.21 64.85 62.35
50 69.12 68.77 68.89 60.06 6.82 55.29 66.58 64.92 60.06

100 67.14 65.95 66.56 65.41 8.25 53.37 63.18 60.73 65.41

MEND

0 8.37 7.82 8.21 15.75 5.60 5.04 7.55 7.19 15.75
10 6.22 5.31 5.89 12.64 3.48 3.43 5.85 6.11 12.64
20 4.76 4.20 4.56 12.01 2.11 2.22 5.40 4.86 12.01
50 1.41 1.37 1.41 6.13 0.65 0.85 2.35 2.40 6.13

100 0.33 0.57 0.30 2.09 0.08 0.06 0.98 0.50 2.09

SERAC

0 65.46 42.46 65.36 100.00 1.40 40.92 87.44 56.55 100.00
10 64.35 42.28 64.25 100.00 1.40 40.99 87.44 55.70 100.00
20 63.97 41.73 63.82 100.00 1.40 40.73 86.91 55.48 100.00
50 61.93 41.71 61.80 100.00 1.41 40.77 86.60 54.97 100.00

100 60.13 41.28 60.12 100.00 1.41 40.38 86.33 54.75 100.00

WISE

0 81.17 74.36 77.87 92.12 28.41 49.47 97.69 86.67 92.12
10 82.06 72.65 76.13 92.09 27.45 48.10 96.95 80.77 92.09
20 81.60 70.27 75.05 92.02 27.19 47.47 94.70 76.95 92.02
50 83.09 69.89 76.17 91.61 26.09 47.83 93.76 74.66 91.61

100 82.04 69.42 74.70 91.03 25.10 48.16 87.72 70.41 91.03

MemEIC

0 99.66 98.76 93.53 100.00 47.79 85.16 99.94 99.53 100.00
10 98.86 94.60 90.71 100.00 46.90 80.88 93.36 86.05 100.00
20 98.91 93.32 90.59 100.00 45.97 80.35 90.73 83.03 100.00
50 98.72 92.44 89.46 100.00 43.97 79.03 89.61 77.02 100.00

100 98.48 91.74 88.06 100.00 43.17 77.36 88.77 74.40 100.00

H Mathematical Validation of the Knowledge Connector

We now show three simple but important properties of our modality-aware connector, using the
notation from Section 3.2.
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Table 16: Original results in MiniGPT4

Method Gap VLKEB Extended

Rel T-Gen I-Gen T-Loc I-Loc CompRel T-Rel T-Gen T-Loc

FT (LLM)

0 99.83 99.79 99.49 44.06 4.67 47.42 99.99 97.67 44.06
10 76.46 74.74 73.69 42.87 4.30 44.24 91.20 75.41 42.87
20 73.29 72.20 70.96 42.26 4.03 41.63 86.42 69.87 42.26
50 67.73 66.94 66.04 40.22 3.26 39.35 80.83 64.90 40.22

100 64.80 63.62 62.59 36.05 2.54 36.12 77.70 62.46 36.05

LoRA

0 99.88 96.72 99.95 66.07 14.06 74.10 99.99 99.30 66.07
10 76.87 74.30 76.63 58.14 12.09 58.64 76.35 69.91 58.14
20 73.67 71.55 72.96 66.42 13.98 55.08 69.47 62.99 66.42
50 69.58 68.69 69.12 62.50 12.60 54.69 65.07 63.22 62.50

100 68.40 67.29 68.37 60.08 11.32 52.44 61.07 61.02 60.08

MEND

0 10.63 10.70 10.31 19.70 11.72 8.19 9.29 8.68 19.70
10 9.40 9.50 9.35 17.62 9.94 7.45 8.56 8.21 17.62
20 8.26 8.42 8.32 15.84 8.28 7.03 7.64 7.26 15.84
50 4.95 5.08 4.92 9.96 3.96 3.60 4.30 4.11 9.96

100 0.84 0.78 0.89 1.50 0.33 0.69 0.69 0.58 1.57

SERAC

0 45.32 47.77 44.90 100.00 3.77 41.29 44.51 39.48 100.00
10 44.52 47.35 44.28 100.00 3.76 40.62 43.71 39.51 100.00
20 44.53 47.28 44.19 100.00 3.78 40.56 43.23 39.51 100.00
50 45.08 47.16 44.53 100.00 3.78 40.38 42.49 39.62 100.00

100 44.74 46.86 44.44 100.00 3.74 40.79 42.61 38.68 100.00

WISE

0 81.52 79.81 81.87 94.36 18.52 44.42 89.27 70.55 94.36
10 65.71 63.40 64.16 94.40 17.58 44.22 91.53 68.97 94.40
20 61.76 61.04 60.86 94.25 17.08 43.51 92.06 67.31 94.25
50 60.94 59.65 59.34 93.98 16.47 43.77 93.15 69.62 93.98

100 60.66 60.00 59.49 94.27 15.99 43.58 94.35 70.54 94.27

MemEIC

0 99.52 97.61 94.31 99.98 50.99 78.05 99.85 97.94 99.98
10 96.40 88.58 87.22 99.98 50.20 76.25 93.34 85.02 99.98
20 95.67 88.07 86.31 99.98 49.41 74.78 91.74 80.93 99.98
50 95.35 85.95 84.33 100.00 46.93 72.61 90.87 76.48 100.00

100 96.42 85.48 85.12 100.00 45.89 70.96 88.64 73.41 100.00

Table 17: Experimental results for Sequential Edit in the VLKEB setting using LLaVA-1.5

Model Rel T-Gen I-Gen T-Loc I-Loc Port
Mem-E (Rv, w/ tex+vis) 0 96.51 93.42 80.10 99.43 61.57 62.09
Mem-E (Rv, w/ tex+vis) 10 96.51 93.42 80.27 99.41 58.78 62.09
Mem-E (Rv, w/ tex+vis) 20 96.51 93.42 80.27 99.39 56.70 62.09
Mem-E (Rv, w/ tex+vis) 50 96.51 93.42 80.27 99.41 58.78 62.09
Mem-E (Rv, w/ tex+vis) 100 96.51 93.42 78.60 99.28 49.70 62.09

Mem-E (Rv, w/ tex) 0 48.02 50.73 48.22 100.00 4.03 45.39
Mem-E (Rv, w/ tex) 10 48.02 50.73 48.22 100.00 4.03 45.21
Mem-E (Rv, w/ tex) 20 48.02 50.73 48.22 100.00 4.02 45.04
Mem-E (Rv, w/ tex) 50 48.02 50.73 48.22 100.00 4.02 44.98
Mem-E (Rv, w/ tex) 100 48.02 50.81 48.22 100.00 4.02 44.78

SERAC 0 77.10 46.91 77.65 99.99 1.94 38.39
SERAC 10 76.46 46.14 77.04 99.99 1.90 38.28
SERAC 20 76.12 45.69 76.24 99.99 1.90 38.95
SERAC 50 74.42 43.61 74.44 99.99 1.91 38.62
SERAC 100 70.92 43.64 71.12 99.99 1.90 38.30
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H.1 Commutativity of Adapter Updates

At layer ℓ, after self-attention and layer-norm we fuse the base FFN and two adapters:

h(ℓ+1) = h′(ℓ) + m
(ℓ)
0 + m(ℓ)

v + m
(ℓ)
t , (B.1)

where - h′(ℓ) is the hidden state entering the FFN block, - m(ℓ)
0 is the frozen FFN’s output, - m(ℓ)

v ,m
(ℓ)
t

are the visual/textual LoRA outputs. By basic vector-space algebra,

m(ℓ)
v +m

(ℓ)
t = m

(ℓ)
t +m(ℓ)

v , (B.2)

so the ordering of modality-specific increments does not change h(ℓ+1).

H.2 Direct-Sum Preservation

Assume the two adapter subspaces intersect only at zero:

span{m(ℓ)
v } ∩ span{m(ℓ)

t } = {0}. (B.3)

Then every combined update

x = m(ℓ)
v +m

(ℓ)
t

(
m(ℓ)

v ∈ Hv, m
(ℓ)
t ∈ Ht

)
has a unique decomposition, which by definition means

Hv +Ht
∼= Hv ⊕Ht. (B.4)

Thus, mixing the two adapters does not lose any representational capacity.

H.3 Gating Consistency

Recall we gate the connector by

α = 1{Iv = 1 ∧ It = 1}, (B.5)

and define the gated update

h̃(ℓ+1) = α
(
h′(ℓ) +m(ℓ)

v +m
(ℓ)
t

)
+ (1− α)

(
h′(ℓ) +m

(ℓ)
0

)
. (B.6)

When α = 0, this reduces to
h̃(ℓ+1) = h′(ℓ) +m

(ℓ)
0 , (B.7)

exactly recovering the vanilla FFN branch and ensuring backward compatibility.

31



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the proposed
method (MemEIC), benchmark (CCKE), and core contributions such as dual-memory
editing and a brain-inspired knowledge connector, which are consistently elaborated and
validated throughout the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses limitations such as task scope and scalability to larger
models in Appendix F.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We include all assumptions, numbered statements, proof sketches in Ap-
pendix H.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe dataset splits, model architectures, training hyperparameters, and
evaluation protocols in Section 4.1, Appendix C and D .
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to release the code and processed CCKE benchmark after acceptance,
but it is not publicly available at submission time.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 and Appendix D.3 and C report data splits, optimizer, batch size,
learning rate schedules, and all other hyper-parameters used for training and evaluation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Mainly becuase computational cost. Instead of multiple random seeds, we
measure performance across five independent gap settings (0, 10, 20, 50, 100), treating this
systematic variation as the source of experimental variability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All details are shown in C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All experiments rely on public datasets, involve no personal or sensitive data,
and fully adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the Broader Impacts in Appendix F.2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We release only training scripts and public-domain data, so the work introduces
no new misuse risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the MemEIC codebase, the CCKEB benchmark dataset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use GPT-4o exclusively for the Query Decomposition, a component of the
MemEIC pipeline; no other part of our method employs LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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