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Abstract

Data quality and diversity are pivotal in con-001
structing effective instruction-tuning datasets.002
With the increasing availability of open-source003
instruction-tuning datasets, it is advantageous004
to automatically select high-quality and diverse005
subsets from a vast amount of data. Existing006
methods typically prioritize instance quality007
and use heuristic rules to maintain diversity.008
However, this absence of a comprehensive view009
of the entire collection often leads to subopti-010
mal results. Moreover, heuristic rules generally011
focus on distance or clustering within the em-012
bedding space, which fails to capture the intent013
of complex instructions in semantic space ac-014
curately. To bridge this gap, we propose a uni-015
fied dataset information measurement method.016
This method models the semantic space by con-017
structing a label graph and quantifies diversity018
based on the distribution of information within019
the graph. Based on such measurement, we fur-020
ther introduce an efficient sampling method that021
selects data samples iteratively to Maximize the022
Information Gain (MIG) in semantic space. Ex-023
periments on various datasets and base models024
demonstrate that MIG consistently outperforms025
state-of-the-art methods. Notably, the model026
fine-tuned with 5% Tulu3 data sampled by MIG027
achieves comparable performance to the offi-028
cial SFT model trained on the full dataset, with029
improvements of +5.73% on AlpacaEval and030
+6.89% on Wildbench. This finding shows the031
potential for unified dataset measurement in032
guiding instruction data selection. Code will033
be available.034

1 Introduction035

Large Language Models (LLMs) have demon-036

strated remarkable capabilities in following human037

instructions in a wide range of tasks (Wang et al.,038

2023). Through large-scale pretraining, these mod-039

els acquire general knowledge and are subsequently040

refined by instructing (Brown et al., 2020; Taori041

et al., 2023; Chiang et al., 2023; Touvron et al.,042

2023) to better align with diverse human inten- 043

tions (Zhou et al., 2023a). Instruct-tuning leverages 044

instruction-response pairs to supervise base models 045

to respond to human instructions accurately and 046

contextually appropriately. Recent research (Zhou 047

et al., 2023a; Chen et al., 2024) underscores the 048

importance of data quality over quantity for good 049

instruct-tuning. In particular, LIMA (Zhou et al., 050

2023a) shows that a dataset of only 1000 human- 051

curated instructions can achieve performance com- 052

parable to much larger datasets. However, ini- 053

tial efforts are typically based on manually cu- 054

rated high-quality instruction datasets, which are 055

time-consuming and labor intensive (Chiang et al., 056

2023). 057

More recently, a line of work (Chen et al., 2024; 058

Liu et al., 2024b) proposes methods to automati- 059

cally identify an optimal subset from a large data 060

pool by defining and selecting data points with 061

desirable properties. These methods (Bukharin 062

et al., 2024; Yu et al., 2024b) posit that quality 063

and diversity are essential attributes for an effec- 064

tive instruct-tuning dataset. They define these at- 065

tributes from various perspectives and iteratively 066

select samples that best fulfill such defined criteria. 067

Regarding quality, previous studies propose mea- 068

sures based on instruction complexity (Lu et al., 069

2024; Zhao et al., 2024), model perplexity and un- 070

certainty (Li et al., 2024b), or scores assigned by 071

powerful external models (Chen et al., 2024; Liu 072

et al., 2024b). However, most existing methods 073

lack measurement of diversity and only maintain 074

it through heuristic rules, such as maximizing the 075

coverage of label set (Lu et al., 2024), applying 076

diversity filters to mitigate redundancy (Liu et al., 077

2024b), or enforcing a fixed number of samples per 078

cluster (Ge et al., 2024; Yu et al., 2024b). Some ap- 079

proaches (Bukharin et al., 2024) quantify diversity 080

using submodular functions. However, they re- 081

quire computationally expensive iterative pairwise 082

embedding similarity calculations, making them 083
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inefficient on large data pools. To solve these is-084

sues, several essential questions are raised: 1) How085

can we unify quality and diversity in dataset mea-086

surement? 2) How do we efficiently select samples087

based on such an evaluation?088

To this end, we propose an information-based089

measurement for instruction-tuning datasets and090

a corresponding efficient sampling algorithm that091

aims to Maximize the Information Gain (MIG).092

The information within a dataset is distributed over093

a set of semantic labels, and the total information is094

the sum of the information associated with each la-095

bel. Each data point contributes to the information096

of its associated labels, the contribution being pro-097

portional to its quality. To ensure a label-balanced098

data distribution, the information for each label is099

computed using a marginal diminishing function.100

Additionally, we account for semantic correlations101

between labels by propagating information along102

the edge of the label graph to capture the informa-103

tion distribution more accurately. To efficiently se-104

lect a dataset that maximizes the total information,105

we employ a greedy strategy that iteratively selects106

data points that maximize the information gain ac-107

cording to the current state of the label graph.108

Through extensive experiments with data pools109

of varying sizes and LLMs of different families,110

namely Llama (Touvron et al., 2023) and Mis-111

tral (Jiang et al., 2023), MIG demonstrates its effec-112

tiveness in both human-preference and knowledge-113

based evaluations. Notably, on the Tulu3 (Lam-114

bert et al., 2024) pool, MIG achieves average im-115

provements of +1.49% on six knowledge-based116

benchmarks (Clark et al., 2018; Suzgun et al., 2022;117

Hendrycks et al., 2021; Chen et al., 2021; Cobbe118

et al., 2021; Zhou et al., 2023b) and +1.96% on119

three human-preference benchmarks (Zheng et al.,120

2023; Dong et al., 2024; Lin et al., 2024) com-121

pared to previous state-of-the-art data selection122

methods (Liu et al., 2024b; Bukharin et al., 2024).123

When combining both evaluations, MIG achieves124

average improvements of +2.20% compared to the125

second-best method (Bukharin et al., 2024), and126

even outperforms the model trained on the full127

Tulu3 data by +1.73%, with a substantial boost128

in human-preference based evaluations (+4.59%129

on average). MIG also outperforms other meth-130

ods on the Openhermes2.5 (Teknium, 2023) and131

Xsota (Lu et al., 2024; Liu et al., 2024b), further132

demonstrating its generalizability across different133

settings. Additionally, MIG shows significant effi-134

ciency, making it particularly suited for sampling135

on large-scale data pools. 136

In summary, our contributions are as follows: 137

• We design an instruction-tuning dataset informa- 138

tion measurement via label graph. It comprehen- 139

sively evaluates dataset quality and diversity. 140

• We propose an efficient and effective sampling 141

algorithm, MIG, to select samples that maximize 142

the information gain on the label graph iteratively. 143

• Extensive experiments on various data pools and 144

models demonstrate that MIG enhances the quality 145

and diversity of sampled data and improves model 146

performance on comprehensive human-preference 147

and knowledge-based benchmarks. The correlation 148

between parameters in MIG and the attributes of 149

sampled data is well studied. 150

2 Related Work 151

Data Selection for Instruction Tuning. 152

Instruction-tuning data can significantly en- 153

hance base LLMs. Increasing data quality and 154

diversity rather than quantity has been shown to 155

more effectively induce instruction-following abili- 156

ties. Consequently, data selection strategies aim 157

to identify the most optimal data subsets. These 158

methodologies generally fall into two categories: 159

(1) Quality-based approaches prioritize high- 160

quality data points, where high quality is defined 161

through various perspectives, such as instruction 162

complexity and response quality. INSTRUCT- 163

MINING (Cao et al., 2024) identifies key natural 164

language metrics as indicators for high-quality 165

instruction data. Instruction-Following Difficulty 166

(IFD) (Li et al., 2024b) highlights inconsistencies 167

between a model’s anticipated responses and 168

its self-generated outputs. Nuggets (Li et al., 169

2023b) measures quality based on the disparity 170

between one-shot and zero-shot performance. 171

LESS (Xia et al., 2024a) uses gradient features 172

to select samples based on their similarity to a 173

few representative examples. SelectIT (Liu et al., 174

2024a) selects high-quality data based on the 175

intrinsic uncertainty reflected by LLMs from token, 176

sentence, and model levels. Additionally, some 177

methods employ external LLMs to assess data 178

quality, such as ALPAGASUS (Chen et al., 2024), 179

which uses a well-designed prompt applied to 180

ChatGPT to assess the quality of each data tuple. 181

(2) Diversity-based approaches aim to select 182

data subsets with board coverage of the data pool. 183

DiverseEvol (Wu et al., 2023) maintains high 184

diversity within selected subsets by progressively 185
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Figure 1: Illustration of (a) Data Selection Pipeline and (b) MIG Sampler. Given the raw data pool, our pipeline
first applies a tagger and scorer to annotate the data. Next, MIG constructs the label graph based on the tag set and
iteratively selects the data point that maximizes the information gain, considering the current state of the label graph.
The selected data are then used for supervised fine-tuning (SFT) training of LLMs.

choosing data points that are distant from existing186

ones in the current embedding space of the model.187

ZIP (Yin et al., 2024) prioritizes subsets with188

low compression ratios. (3) Comprehensive189

approaches aim to balance both quality and190

diversity. #InsTag (Lu et al., 2024) employs191

ChatGPT to generate detailed open-ended tags192

for instructions and prioritize complex data with193

more tags while maximizing topic coverage.194

DEITA (Liu et al., 2024b) prioritizes high-quality195

data points while avoiding duplicates in the196

embedding space. CaR (Ge et al., 2024) and197

kMQ (Yu et al., 2024b) clusters and samples198

from each cluster according to quality. However,199

these methods lack a comprehensive and unified200

measure for subsets and rely on heuristic rules to201

balance quality and diversity.202

Submodular function for Diversity Measure-203

ment. Submodular functions are effective for mod-204

eling information in subsets. Maximizing a sub-205

modular function, such as facility location, graph206

cut, or log determinant, is equivalent to identifying207

non-redundant subsets. Leveraging this property,208

QDIT (Bukharin et al., 2024) measures diversity us-209

ing the facility location function (Cornuéjols et al.,210

1983), combining it linearly with quality scores.211

Similarly, DPP (Wang et al., 2024) employs the 212

Log Determinant Distance to quantify subset di- 213

versity and introduces a hyperparameter to con- 214

trol the relative importance of diversity and quality. 215

Although this NP-hard problem can be approxi- 216

mated with a greedy algorithm (Nemhauser et al., 217

1978; Minoux, 2005), real-world SFT scenarios 218

present significant challenges due to the high stor- 219

age and computational costs of calculating pairwise 220

instance distances in the embedding space. 221

3 Method 222

3.1 Preliminary 223

Task. Given a data pool DP , a budget N , and an 224

information measure E(D) over any dataset D, the 225

goal is to select a subset DS ⊂ DP of size N that 226

maximizes E(D). Formally, 227

DS = argmax
D⊂DP ,|D|=N

E(D) (1) 228

Data. Each data point is formed as: 229

di = {(qji , r
j
i )

M
j=1, Li, si} (2) 230

where (qji , r
j
i )

M
j=1 represents M rounds of query- 231

response pairs used for training, Li is the set of 232

labels (e.g., task category, knowledge domain, and 233
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other meta information) associated with di, and si234

is the quality score.235

3.2 Information Measurement236

Label Graph. Previous studies (Lu et al., 2024;237

Ge et al., 2024; Yu et al., 2024b) assume that238

data labels (including embedding-based clusters)239

are independent, ignoring the semantic relation-240

ships among them. However, such label associa-241

tions are crucial for label-balance sampling. Intu-242

itively, we can model labels as nodes, their associa-243

tions as edges, and the intensity of associations as244

edge weights, thus forming an undirected weighted245

graph GL = (L,EL), where L represents the la-246

bel set with a size of K and EL represents edges.247

Specifically, we use the similarity in the embedding248

space as edge weights and remove edges whose249

weights are below a threshold T to ensure computa-250

tional efficiency. EL can be formed as a weighted251

adjacency matrix WL ∈ RK×K with elements:252

wpq = σ[w(lp, lq) ≥ T ] · w(lp, lq) (3)253

where w(lp, lq) represents similarity between label254

lp and lq, and σ(·) returns 1 when the input is True.255

Data Point Information. We first define the infor-256

mation contributed by a single data point and then257

generalize it to the entire dataset. Under the label258

set L, a data point di can be formed as a binary259

label vector with its associated labels Li:260

vi = {vik = σ(lk ∈ Li)}Kk=1 (4)261

The information of di is distributed over Li and is262

proportional to its quality score si. Thus, the raw263

information of di can be formed as:264

Ei = si · vi (5)265

Beyond directly contributing to the information of266

Li, a data point also influences its neighboring la-267

bels through a propagation process along the edges268

of the label graph. Formally, the propagation from269

lp to lq is:270

apq =
αwpq

wp + α
∑

k,k ̸=pwpk
(6)271

where wp equals 1 and α is a hyper-parameter con-272

trolling the intensity of information propagation.273

Let A be the propagation matrix, then the propa-274

gated information vector of di is:275

Êi = AEi (7)276

Dataset Information. To promote a diverse distri- 277

bution of labels within the label graph, we apply a 278

monotonically increasing yet upper-convex func- 279

tion ϕ to compute the label information instead of 280

a simple summation. The diminishing marginal 281

information gain is negatively correlated with the 282

existing information on a label. Thus, information 283

gains on labels with less information are prioritized. 284

Formally, the information of the dataset is defined 285

as: 286
E(D) = Φ(

∑
i∈D

AEi) = Φ(A
∑
i∈D

sivi) (8) 287

where Φ is an element-wise operation that applies 288

ϕ on each vector element. 289

3.3 MIG Sampling 290

Directly selecting DS from DP is computationally 291

infeasible as the combination CN
|DP | grows quickly. 292

Therefore, we propose a greedy strategy, iteratively 293

selecting the data point that yields the maximum 294

information gain: 295

dk = argmax
d∈Dk

P

{E(Dk
S ∪ {d})− E(Dk

S)} (9) 296

where Dk
S and Dk

P denote the selected subset and 297

remaining candidate pool at iteration k. We approx- 298

imate the information gain in Eq. 9 via a gradient- 299

based approach: 300

Gk =
∂E(Dk

S)

∂E
= AΦ′(A

∑
i∈Dk

S

Ei) (10) 301

where Φ′ represents the derivative of Φ. By itera- 302

tively selecting points that maximize the incremen- 303

tal gain: 304

dk = argmax
d∈Dk

P

GkEd (11) 305

we efficiently sample a subset DS that balances 306

both label diversity and data quality. The whole 307

sampling process is detailed in Alg. 1. 308

3.4 Data Selection Pipeline 309

As illustrated in Fig. 1, starting from the raw data 310

pool, we first utilize a tagger and scorer to annotate 311

the data. Then, we perform tag normalization fol- 312

lowing (Lu et al., 2024), which includes frequency 313

filtering and semantic aggregation, resulting in the 314

label set L. Next, we compute the similarity be- 315

tween labels to construct the label graph and the 316

propagation matrix. MIG then performs iterative 317

sampling to obtain the final subset. 318
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Algorithm 1: MIG Sampling
Data: Initial Data Pool DP , Label Sets L,

Sample Budget N
Result: The Sampled Dataset DS

1 Initialize Empty DS ;
2 Initialize Propagation Matrix A;
3 while |DS | < N do
4 G← Φ′(A

∑
k∈DS

Ek);
5 di ← argmaxdi∈DP

GEi;
6 DS ← DS ∪ {di};
7 DP ← DP \ {di};
8 return DS

4 Experiments319

4.1 Setups320

Datasets. To investigate data selection across var-321

ious scenarios and demonstrate the robustness of322

MIG, we use three distinct data pools:323

• Tulu3 (Lambert et al., 2024): A large-scale, real-324

world SFT dataset presented by Ai2, containing a325

million-level records across a wide variety of sub-326

jects, including mathematics, programming, and327

user dialogues.328

• Openhermes2.5 (Teknium, 2023): With over 1329

million data, sourced from 16 distinct origins, in-330

cluding MetaMath (Yu et al., 2024a), CamelAI (Li331

et al., 2023a), and others.332

• Xsota, a combined data pool following (Lu et al.,333

2024; Liu et al., 2024b): A combined data pool334

consisting primarily of high-quality conversations335

from datasets such as WizardLM (Alpaca), Wiz-336

ardLM (ShareGPT), UltraChat (Ding et al., 2023),337

and ShareGPT (Chiang et al., 2023), totaling 300K338

data points.339

Benchmarks. We use both human-preference and340

knowledge-based benchmarks to evaluate align-341

ment performance comprehensively.342

• Human-preference Benchmarks: MT-343

bench (Zheng et al., 2023) and AlpacaEval (Dubois344

et al., 2024) and Wildbench (Lin et al., 2024),345

which features challenging, real-world user346

queries.347

• Knowledge-based Benchmarks: We evaluate348

across six tasks. For natural language reasoning,349

we use ARC (Clark et al., 2018) and Big-Bench-350

Hard(BBH) (Suzgun et al., 2022). For world knowl-351

edge, we evaluate using MMLU (Hendrycks et al.,352

2021), a dataset of multiple-choice academic ques-353

tions. For code generation, we utilize the Hu- 354

manEval (Chen et al., 2021) benchmark, consisting 355

of 164 coding problems, to assess LLMs’ code- 356

writing abilities. For mathematical reasoning, we 357

use GSM8k (Cobbe et al., 2021), which includes 358

1319 grade school math problems. For instruction- 359

following evaluation, we employ IFEval (Zhou 360

et al., 2023b). 361

Baselines. We compare our methods against six 362

strong data selection approaches: IFD (Li et al., 363

2024b), ZIP (Yin et al., 2024), #InsTag (Lu et al., 364

2024), DEITA (Liu et al., 2024b), CaR (Ge et al., 365

2024), and QDIT (Bukharin et al., 2024). Addi- 366

tionally, random selection (Xia et al., 2024b) is 367

also considered a strong baseline, especially for 368

comprehensive knowledge-based evaluations. 369

Implementation Details. For the Tulu3 data pool, 370

we conduct a grid search to determine the data 371

bucket size of 50K, with training for three epochs. 372

For Openhermes2.5, we follow the settings in (Xia 373

et al., 2024b), sampling 50K data points and train- 374

ing for three epochs. For Xsota, we sample 6K data 375

points and train for six epochs following (Lu et al., 376

2024; Liu et al., 2024b). 377

We use the widely adopted LLaMA3.1-8B (Tou- 378

vron et al., 2023) and Mistral-7B (Jiang et al., 2023) 379

as our base models and fine-tune them using the 380

Llama-Factory framework (Zheng et al., 2024). 381

Please refer to Appx. A.1 for detailed training and 382

evaluation setup. 383

To replicate baselines on Tulu3 and Openher- 384

mes2.5, we adjust certain parameters to fit the large- 385

scale datasets. Specifically, for IFD computation, 386

we directly use base models following (Li et al., 387

2024a). For #InsTag and the label set in MIG, 388

we utilize the released InsTagger. To avoid the 389

high cost of scoring millions of samples with Chat- 390

GPT (Chen et al., 2024), we adopt DEITA scores 391

for the quality assessment of CaR, QDIT, and MIG 392

as described in Sec 4.3. 393

4.2 Main Results 394

Main Comparison. Table 1 presents the perfor- 395

mance of MIG for instruction data selection com- 396

pared to several baselines across various bench- 397

marks. All data selection methods are applied to se- 398

lect 50K samples, as detailed in the grid search ex- 399

periment in Sec 4.3. Based on Llama3.1-8B, MIG 400

outperforms all baselines on most tasks, with av- 401

erage improvements of +1.49% and +1.96% over 402

state-of-the-art selection methods on knowledge- 403
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Table 1: Comparison with data selection methods on the Tulu3 pool. Avgobj and Avgsub represent the average of the normalized
knowledge-based and human-preference benchmark scores, respectively. AVG is the mean of Avgobj and Avgsub. MIG achieves
the best performance on Avgobj, Avgsub, and AVG on both Llama3.1-8B and Mistral-7B.

Base Model Method Data Size ARC BBH GSM8K HumanEval MMLU IFEval Avgobj AlpacaEval MTbench Wildbench Avgsub AVG

Llama3.1-8B

Pool 939K 69.15 63.88 83.40 63.41 65.77 67.10 68.79 8.94 6.86 -24.66 38.40 53.59

Random 50K 74.24 64.80 70.36 51.22 63.86 61.00 64.25 8.57 7.06 -22.15 39.36 51.81
ZIP 50K 77.63 63.00 52.54 35.98 65.00 61.00 59.19 6.71 6.64 -32.10 35.69 47.44
IFD 50K 75.93 63.56 61.03 49.39 64.39 53.60 61.32 12.3 7.03 -20.20 40.83 51.08

#InsTag 50K 72.54 64.80 69.83 48.17 63.50 65.99 64.14 6.58 6.84 -20.70 38.21 51.17
DEITA 50K 78.98 66.11 74.07 49.39 64.00 64.33 66.15 10.19 6.83 -19.95 39.50 52.83

CaR 50K 78.98 69.04 71.42 52.44 65.15 56.75 65.63 12.55 6.95 -20.67 40.57 53.10
QDIT 50K 79.66 65.42 70.74 53.05 65.06 57.30 65.21 15.78 6.76 -20.56 41.03 53.12

MIG 50K 80.00 66.39 72.02 57.93 64.44 65.06 67.64 14.66 7.32 -17.77 42.99 55.32

Mistral-7B

Random 50K 67.80 56.90 66.34 42.07 60.34 65.43 59.81 5.84 6.84 -25.20 37.21 48.51
ZIP 50K 72.88 56.73 33.21 3.05 61.68 63.03 48.43 5.34 6.57 -36.17 34.32 41.37

#InsTag 50K 76.27 57.15 66.34 40.85 61.80 63.22 60.94 8.20 6.91 -21.66 38.82 49.88
DEITA 50K 75.93 57.72 64.82 11.59 61.41 64.51 56.00 8.82 6.96 -20.51 39.39 47.69

CaR 50K 64.41 58.65 63.76 9.15 61.95 55.64 52.26 11.93 7.03 -17.82 41.11 46.58
QDIT 50K 54.92 58.68 59.97 42.68 62.46 58.23 56.16 15.03 6.84 -17.74 41.52 48.84

MIG 50K 75.25 56.19 66.94 45.12 60.23 64.70 61.41 13.66 7.17 -18.39 42.05 51.73

(a) (b) (c)

Figure 2: (a) Derivative of Information Score Functions. (b) Avgobj on Different Information Score Functions. (c) Avgsub on
Different Quality Scores.

Table 2: Results on different data pools, Openhermes2.5 and
Xsota, based on Llama3.1-8B. MIG outperforms all baselines
across both data pools. Please refer to Table 5 6 in Appx. A.3
for detailed scores on all benchmarks.

Openhermes2.5 Xsota

Data Size Avgsub Avgobj AVG Data Size Avgsub Avgobj AVG

All 1M 36.91 61.49 49.20 300K 31.51 52.88 42.19

Random 50K 32.99 55.69 44.34 6K 29.94 49.69 39.81
#InsTag 50K 36.23 54.12 45.17 6K 31.89 46.19 39.04
DEITA 50K 36.80 57.36 47.08 6K 31.60 48.70 40.15

CaR 50K 37.51 55.57 46.54 6K 31.86 48.43 40.15
QDIT 50K 37.90 57.71 47.80 6K 32.52 49.10 40.81

MIG 50K 38.12 58.30 48.21 6K 32.98 50.63 41.80

based and human-preference evaluations, respec-404

tively. When considering both knowledge-based405

and human-preference evaluations combined, MIG406

surpasses the second-best method, QDIT, by407

+2.20% on AVG score, highlighting the high qual-408

ity and diversity of its sampled data. Notably, MIG409

is the only method that outperforms the model410

trained on the full Tulu3 pool, a comprehensive411

and high-quality SFT training dataset directly ap-412

plicable to real-world scenarios, on AVG, despite413

utilizing only 50K samples. Specifically, MIG de-414

livers substantial gains in human-preference perfor-415

mance, with an average improvement of +4.59%416

Table 3: Grid search of appropriate data size and training
epochs on the Tulu3 pool. We report the AVG score here.

Random MIG

Epoch2 Epoch3 Epoch4 Epoch2 Epoch3 Epoch4

10K 46.76 49.42 50.39 49.23 51.54 52.50
20K 48.23 50.36 51.08 50.98 52.87 52.84
50K 49.78 51.81 50.68 52.69 54.22 54.02

across three benchmarks while maintaining com- 417

parable performance on knowledge-based bench- 418

marks. Previous research (Yuan et al., 2023; Dong 419

et al., 2024) indicates that mathematical capabil- 420

ity improves with the increasing training dataset 421

size without plateauing. This explains the under- 422

performance of 50K sample model compared to 423

the model trained on the full pool on the GSM8K 424

benchmark. Additionally, among methods that bal- 425

ance quality and diversity, MIG demonstrates su- 426

perior efficiency on large pools. It is more effi- 427

cient than DEITA and QDIT, as it eliminates the 428

need for iterative pairwise similarity calculations in 429

the embedding space. For detailed sampling times 430

and efficiency analysis, please refer to Table 4 in 431
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Figure 3: Quantitative results on different quality metrics.
DEITA scores achieve the best performance on both human-
preference and knowledge-based evaluations.

Appx. A.2.432

Transferability on Models. To assess the general-433

izability of MIG, we additionally conduct experi-434

ments on Mistral-7B. As shown in Table 1, MIG435

outperforms all baseline methods with an improve-436

ment of +1.85% on AVG. Notably, the second-best437

selection method varies among different base mod-438

els. Some strong baselines from Llama3.1-8B ex-439

perience performance degradation when applied to440

Mistral-7B, further demonstrating the robustness441

of MIG.442

Transferability on Data Pools. We conduct ex-443

periments on the comprehensive Openhermes2.5444

pool and the relatively small, high-quality pool445

Xsota (Lu et al., 2024; Liu et al., 2024b) to further446

evaluate the robustness of MIG. Results in Table 2447

show that MIG outperforms all baseline selection448

methods across different data pools and sample449

data sizes, Specifically, MIG improves AVG by450

+3.87% and +1.99% compared to random selec-451

tion on the two data pools, and by +0.41% and452

+0.99% compared to previous SOTA methods. No-453

tably, on the Xsota, all baseline methods exhibit454

performance degradation on knowledge-based eval-455

uations, consistent with the findings in (Xia et al.,456

2024b). We hypothesize that quality metrics, such457

as DEITA scores and the number of tags, are biased458

toward multi-round, long samples, which tend to459

enhance subjective dialogue abilities and general460

knowledge. However, samples in specific domains,461

such as math and code, are typically single-turn.462

MIG mitigates this bias through its upper-convex463

information score function, providing a more effec-464

tive selection for such domain-specific tasks.465

4.3 Analysis 466

Study of Information Score Function Φ. The 467

information score function Φ is crucial in MIG 468

sampling as it balances quality and diversity. Based 469

on the principles outlined in Sec. 3.2, Φ is expected 470

to be monotonically increasing with a diminishing 471

rate of increase. In our experiments, we evaluate 472

two candidate functions: 473

Φ(x) = 1− e−αx (α > 0) (12) 474

475
Φ(x) = xαx (0 < α < 1) (13) 476

Fig. 2(a) compares the decreasing rate in the deriva- 477

tive of these functions under varying parameter set- 478

tings. Functions that decay rapidly tend to favor 479

diverse label distributions as the information on any 480

given label converges quickly. In contrast, slower 481

decaying functions prioritize high-quality samples. 482

Fig. 2(b)(c) present the quantitative performance 483

on various benchmarks, with Φ(x) = x0.8 achiev- 484

ing the best results across both human-preference 485

and knowledge-based evaluations, effectively bal- 486

ancing quality and diversity. 487

Study of Quality Measurement. Given the large 488

scale of data pools in our experiments, reproducing 489

methods from (Chen et al., 2024; Bukharin et al., 490

2024), which rely on computationally expensive 491

external models such as ChatGPT for quality scor- 492

ing, is impractical. Therefore, we implement three 493

alternative quality measurement approaches: the 494

number of tags (Lu et al., 2024), the IFD score (Li 495

et al., 2024b), and the DEITA score (Liu et al., 496

2024b), to investigate their impact on information 497

measurement. Fig. 3 compares these three quality 498

metrics with a baseline score that assigns a con- 499

stant value to all samples. The DEITA scores con- 500

sistently outperform the other quality metrics in 501

both evaluation settings. Therefore, we adopt the 502

DEITA scores as the default quality measurements 503

for MIG and other baseline selection methods. 504

Study of Label Graph. An essential question 505

in MIG is how to determine an appropriate label 506

graph, including its nodes (label set) and edges (la- 507

bel relationships). Increasing the number of nodes 508

leads to a more granular label set, thereby providing 509

broader coverage of knowledge topics. However, 510

excessively large label sets inevitably include out- 511

liers or low-quality labels. Similarly, increasing 512

edge density between labels enhances the compre- 513

hensiveness of label relationships, but overly dense 514

graphs may result in computational inefficiencies 515

and noises from the embedding model. There is 516

7



(a) (b) (c)

Figure 4: Analysis of Parameters in the Label Graph. The reported score is the average of Avgsub and Avgobj. (a) Comparison
of various node counts (label set size) in the label graph. (b) Comparison of different edge thresholds, with a lower threshold
indicating a dense graph. (c) Comparison of different propagation weights, where a smaller weight corresponds to weak
propagation.

no universally optimal solution, as the ideal label517

graph depends on the characteristics of the data518

pool and potentially other parameters in MIG. To519

explore the relationship between the label graph520

and the downstream performance of trained models,521

we conduct an empirical experiment on the Tulu3522

pool. Fig. 4(a) shows the downstream performance523

from a set of node counts in the label graph, ranging524

from 839 to 6738, while Fig. 4(b) presents perfor-525

mance across varying edge densities, with thresh-526

olds between 0.8 and 0.94. The observed trends527

align with our initial analysis, showing an unimodal528

performance curve in both experiments. For the529

Tulu3 pool, the optimal label graph is achieved530

with a label set size of 4531 and an edge similarity531

threshold of 0.9.532

Study of Information Propagation. We conduct533

a series of experiments to study the impact of in-534

formation propagation intensity in MIG sampling.535

Appropriate information propagation results in ac-536

curate information measurement over the label set.537

Specifically, we experiment with various values538

of α in Eq. 6, where a higher α corresponds to539

stronger information propagation and no propa-540

gation occurs when α = 0. Fig 4(c) shows that541

α = 1.0 yields the best performance, with an aver-542

age improvement of 2.76 over the non-propagation.543

Notably, results with information propagation sig-544

nificantly outperform those without, indicating that545

information propagation effectively captures the546

relationship between labels, thereby improving the547

accuracy of information measurement on the label548

graph.549

Grid Search for Data Size. To identify an appro-550

priate data bucket within the Tulu3 pool for the551

main comparison and investigate the data scaling552

effects of MIG, we perform a grid search using553

various data budgets and training epochs. Table 3 554

shows that MIG consistently outperforms random 555

selection across different data volumes, demonstrat- 556

ing its effectiveness. For the default setting in the 557

Tulu3 pool, we select 50K samples with three train- 558

ing epochs, as both random and MIG sampling 559

achieve the best performance under this configura- 560

tion. 561

5 Conclusion 562

In this paper, we introduce a novel instruction- 563

tuning dataset measurement method in semantic 564

space. It models both the quality and diversity of 565

the dataset information and balances these aspects 566

through an upper-convex information score func- 567

tion. Additionally, it accurately captures the infor- 568

mation distribution over label graph through infor- 569

mation propagation. Accordingly, we propose an 570

efficient sampling algorithm, MIG, that iteratively 571

selects samples that maximize the information gain 572

on the label graph. MIG demonstrates effectiveness 573

across various data pools and base models, show- 574

casing its robustness and adaptability. Our research 575

bridges the gap between instance-level quality as- 576

sessment and global dataset evaluation, offering a 577

unified approach to dataset measurement. We hope 578

our results can inspire dataset measurement design 579

in the future. 580

Limitation. Currently, the parameters in MIG are 581

static and depend on grid search to identify the opti- 582

mal values, which can not be extensively explored. 583

Future work could focus on developing methods 584

to automatically determine the parameters in MIG, 585

such as customizing the information score func- 586

tion for each label, to enhance the flexibility and 587

scalability of MIG. 588
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A Appendix832

A.1 Training and Evaluation Setup833

Training Recipes. For experiments on Xsota, we834

follow the default settings in (Liu et al., 2024b).835

Specifically, we set the batch size to 128, learning836

rates at 2e-5, a warm ratio of 0.1, and a maximum837

input length of 2048. For experiments on the Tulu3838

pool, we follow the settings in (Lambert et al.,839

2024). We set the batch size to 128, learning rates840

at 5e-6, a warm ratio of 0.03, and a maximum input841

length of 4096. For experiments on the Openher-842

mes2.5 pool, we follow the settings in (Xia et al.,843

2024b). We set the batch size to 128, learning rates844

at 7e-6, a warm ratio of 0.01, and a maximum input845

length of 4096.846

Evaluation Setup. The evaluation of our experi-847

ments is implemented on OpenCompass (Contribu-848

tors, 2023).849

Table 4: Efficiency comparison between different methods
on 50K sampling from the Tulu3 pool. The timing reported
here is measured by a single NVIDIA-L20Y.

Method Time

InsTag 2.33
DEITA 81.56
QDIT 86.17
CaR 0.85
MIG 0.45

A.2 Efficiency Analysis850

Table 4 presents the time used for 50K sampling851

on the Tulu3 pool. Among methods that balance852

quality and diversity, MIG achieves the highest 853

efficiency. Notably, MIG is much more efficient 854

compared to QDIT (Bukharin et al., 2024) and 855

DEITA (Liu et al., 2024b), as it saves iterative 856

pairwise similarity computation in the embedding 857

space. 858

A.3 Detailed Results on Benchmarks 859

We provide detailed scores on full benchmarks in 860

Table 5 6. 861
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Table 5: Full Results on the Openhermes2.5 Pool.

Method ARC BBH GSM8K HumanEval MMLU IFEval Avgobj AlpacaEval MTbench Wildbench Avgsub AVG

Pool 72.88 60.53 70.51 51.22 64.99 48.80 61.49 5.47 7.10 -31.51 36.91 49.20

Random 75.25 60.20 51.40 50.00 51.23 46.03 55.69 4.72 6.63 -44.12 32.99 44.34
InsTag 70.85 68.64 56.25 43.90 45.70 49.35 54.12 5.09 7.14 -35.60 36.23 45.17
DEITA 69.83 61.85 60.96 46.95 58.01 46.58 57.36 7.83 6.94 -33.69 36.80 47.08

CaR 62.71 63.73 55.42 44.51 64.37 42.70 55.57 7.33 7.09 -31.43 37.51 46.54
QDIT 66.44 62.45 58.61 50.00 63.64 45.10 57.71 9.19 6.99 -30.78 37.90 47.80

MIG 78.98 63.33 51.55 45.73 63.81 46.40 58.30 7.83 7.17 -30.34 38.12 48.21

Table 6: Full Results on the Xsota Pool.

Method ARC BBH GSM8K HumanEval MMLU IFEval Avgobj AlpacaEval MTbench Wildbench Avgsub AVG

Pool 73.22 54.12 40.49 45.12 61.05 43.25 52.88 3.85 6.78 -54.21 31.51 42.19

Random 61.02 58.12 32.07 42.69 62.31 41.96 49.69 3.60 6.34 -54.39 29.94 39.81
InsTag 64.07 51.82 36.62 28.66 55.11 40.85 46.19 5.22 6.56 -50.28 31.89 39.04
DEITA 71.86 50.82 27.67 40.24 63.36 38.26 48.70 4.22 6.48 -48.44 31.60 40.15

CaR 72.88 48.90 20.92 46.95 62.68 38.26 48.43 5.22 6.51 -49.46 31.86 40.15
QDIT 71.53 51.48 29.95 41.46 63.22 36.97 49.10 5.09 6.55 -46.05 32.52 40.81

MIG 74.58 51.93 31.54 43.90 62.24 39.56 50.63 5.34 6.72 -47.18 32.98 41.80
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