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Abstract

Data quality and diversity are pivotal in con-
structing effective instruction-tuning datasets.
With the increasing availability of open-source
instruction-tuning datasets, it is advantageous
to automatically select high-quality and diverse
subsets from a vast amount of data. Existing
methods typically prioritize instance quality
and use heuristic rules to maintain diversity.
However, this absence of a comprehensive view
of the entire collection often leads to subopti-
mal results. Moreover, heuristic rules generally
focus on distance or clustering within the em-
bedding space, which fails to capture the intent
of complex instructions in semantic space ac-
curately. To bridge this gap, we propose a uni-
fied dataset information measurement method.
This method models the semantic space by con-
structing a label graph and quantifies diversity
based on the distribution of information within
the graph. Based on such measurement, we fur-
ther introduce an efficient sampling method that
selects data samples iteratively to Maximize the
Information Gain (MIG) in semantic space. Ex-
periments on various datasets and base models
demonstrate that MIG consistently outperforms
state-of-the-art methods. Notably, the model
fine-tuned with 5% Tulu3 data sampled by MIG
achieves comparable performance to the offi-
cial SFT model trained on the full dataset, with
improvements of +5.73% on AlpacaEval and
+6.89% on Wildbench. This finding shows the
potential for unified dataset measurement in
guiding instruction data selection. Code will
be available.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in following human
instructions in a wide range of tasks (Wang et al.,
2023). Through large-scale pretraining, these mod-
els acquire general knowledge and are subsequently
refined by instructing (Brown et al., 2020; Taori
et al., 2023; Chiang et al., 2023; Touvron et al.,

2023) to better align with diverse human inten-
tions (Zhou et al., 2023a). Instruct-tuning leverages
instruction-response pairs to supervise base models
to respond to human instructions accurately and
contextually appropriately. Recent research (Zhou
et al., 2023a; Chen et al., 2024) underscores the
importance of data quality over quantity for good
instruct-tuning. In particular, LIMA (Zhou et al.,
2023a) shows that a dataset of only 1000 human-
curated instructions can achieve performance com-
parable to much larger datasets. However, ini-
tial efforts are typically based on manually cu-
rated high-quality instruction datasets, which are
time-consuming and labor intensive (Chiang et al.,
2023).

More recently, a line of work (Chen et al., 2024;
Liu et al., 2024b) proposes methods to automati-
cally identify an optimal subset from a large data
pool by defining and selecting data points with
desirable properties. These methods (Bukharin
et al., 2024; Yu et al., 2024b) posit that quality
and diversity are essential attributes for an effec-
tive instruct-tuning dataset. They define these at-
tributes from various perspectives and iteratively
select samples that best fulfill such defined criteria.
Regarding quality, previous studies propose mea-
sures based on instruction complexity (Lu et al.,
2024; Zhao et al., 2024), model perplexity and un-
certainty (Li et al., 2024b), or scores assigned by
powerful external models (Chen et al., 2024; Liu
et al., 2024b). However, most existing methods
lack measurement of diversity and only maintain
it through heuristic rules, such as maximizing the
coverage of label set (Lu et al., 2024), applying
diversity filters to mitigate redundancy (Liu et al.,
2024b), or enforcing a fixed number of samples per
cluster (Ge et al., 2024; Yu et al., 2024b). Some ap-
proaches (Bukharin et al., 2024) quantify diversity
using submodular functions. However, they re-
quire computationally expensive iterative pairwise
embedding similarity calculations, making them



inefficient on large data pools. To solve these is-
sues, several essential questions are raised: 1) How
can we unify quality and diversity in dataset mea-
surement? 2) How do we efficiently select samples
based on such an evaluation?

To this end, we propose an information-based
measurement for instruction-tuning datasets and
a corresponding efficient sampling algorithm that
aims to Maximize the Information Gain (MIG).
The information within a dataset is distributed over
a set of semantic labels, and the total information is
the sum of the information associated with each la-
bel. Each data point contributes to the information
of its associated labels, the contribution being pro-
portional to its quality. To ensure a label-balanced
data distribution, the information for each label is
computed using a marginal diminishing function.
Additionally, we account for semantic correlations
between labels by propagating information along
the edge of the label graph to capture the informa-
tion distribution more accurately. To efficiently se-
lect a dataset that maximizes the total information,
we employ a greedy strategy that iteratively selects
data points that maximize the information gain ac-
cording to the current state of the label graph.

Through extensive experiments with data pools
of varying sizes and LLMs of different families,
namely Llama (Touvron et al., 2023) and Mis-
tral (Jiang et al., 2023), MIG demonstrates its effec-
tiveness in both human-preference and knowledge-
based evaluations. Notably, on the Tulu3 (Lam-
bert et al., 2024) pool, MIG achieves average im-
provements of +1.49% on six knowledge-based
benchmarks (Clark et al., 2018; Suzgun et al., 2022;
Hendrycks et al., 2021; Chen et al., 2021; Cobbe
et al., 2021; Zhou et al., 2023b) and +1.96% on
three human-preference benchmarks (Zheng et al.,
2023; Dong et al., 2024; Lin et al., 2024) com-
pared to previous state-of-the-art data selection
methods (Liu et al., 2024b; Bukharin et al., 2024).
When combining both evaluations, MIG achieves
average improvements of +2.20% compared to the
second-best method (Bukharin et al., 2024), and
even outperforms the model trained on the full
Tulu3 data by +1.73%, with a substantial boost
in human-preference based evaluations (+4.59%
on average). MIG also outperforms other meth-
ods on the Openhermes2.5 (Teknium, 2023) and
Xsota (Lu et al., 2024; Liu et al., 2024b), further
demonstrating its generalizability across different
settings. Additionally, MIG shows significant effi-
ciency, making it particularly suited for sampling

on large-scale data pools.
In summary, our contributions are as follows:

e We design an instruction-tuning dataset informa-
tion measurement via label graph. It comprehen-
sively evaluates dataset quality and diversity.

e We propose an efficient and effective sampling
algorithm, MIG, to select samples that maximize
the information gain on the label graph iteratively.
o Extensive experiments on various data pools and
models demonstrate that MIG enhances the quality
and diversity of sampled data and improves model
performance on comprehensive human-preference
and knowledge-based benchmarks. The correlation
between parameters in MIG and the attributes of
sampled data is well studied.

2 Related Work

Data Selection for Instruction Tuning.
Instruction-tuning data can significantly en-
hance base LLMs. Increasing data quality and
diversity rather than quantity has been shown to
more effectively induce instruction-following abili-
ties. Consequently, data selection strategies aim
to identify the most optimal data subsets. These
methodologies generally fall into two categories:
(1) Quality-based approaches prioritize high-
quality data points, where high quality is defined
through various perspectives, such as instruction
complexity and response quality. INSTRUCT-
MINING (Cao et al., 2024) identifies key natural
language metrics as indicators for high-quality
instruction data. Instruction-Following Difficulty
(IFD) (Li et al., 2024b) highlights inconsistencies
between a model’s anticipated responses and
its self-generated outputs. Nuggets (Li et al.,
2023b) measures quality based on the disparity
between one-shot and zero-shot performance.
LESS (Xia et al., 2024a) uses gradient features
to select samples based on their similarity to a
few representative examples. SelectIT (Liu et al.,
2024a) selects high-quality data based on the
intrinsic uncertainty reflected by LLMs from token,
sentence, and model levels. Additionally, some
methods employ external LLMs to assess data
quality, such as ALPAGASUS (Chen et al., 2024),
which uses a well-designed prompt applied to
ChatGPT to assess the quality of each data tuple.
(2) Diversity-based approaches aim to select
data subsets with board coverage of the data pool.
DiverseEvol (Wu et al.,, 2023) maintains high
diversity within selected subsets by progressively
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Figure 1: Ilustration of (a) Data Selection Pipeline and (b) MIG Sampler. Given the raw data pool, our pipeline
first applies a tagger and scorer to annotate the data. Next, MIG constructs the label graph based on the tag set and
iteratively selects the data point that maximizes the information gain, considering the current state of the label graph.
The selected data are then used for supervised fine-tuning (SFT) training of LLMs.

choosing data points that are distant from existing
ones in the current embedding space of the model.
ZIP (Yin et al.,, 2024) prioritizes subsets with
low compression ratios. (3) Comprehensive
approaches aim to balance both quality and
diversity. #InsTag (Lu et al., 2024) employs
ChatGPT to generate detailed open-ended tags
for instructions and prioritize complex data with
more tags while maximizing topic coverage.
DEITA (Liu et al., 2024b) prioritizes high-quality
data points while avoiding duplicates in the
embedding space. CaR (Ge et al., 2024) and
kMQ (Yu et al., 2024b) clusters and samples
from each cluster according to quality. However,
these methods lack a comprehensive and unified
measure for subsets and rely on heuristic rules to
balance quality and diversity.

Submodular function for Diversity Measure-
ment. Submodular functions are effective for mod-
eling information in subsets. Maximizing a sub-
modular function, such as facility location, graph
cut, or log determinant, is equivalent to identifying
non-redundant subsets. Leveraging this property,
QDIT (Bukharin et al., 2024) measures diversity us-
ing the facility location function (Cornuéjols et al.,
1983), combining it linearly with quality scores.

Similarly, DPP (Wang et al., 2024) employs the
Log Determinant Distance to quantify subset di-
versity and introduces a hyperparameter to con-
trol the relative importance of diversity and quality.
Although this NP-hard problem can be approxi-
mated with a greedy algorithm (Nemhauser et al.,
1978; Minoux, 2005), real-world SFT scenarios
present significant challenges due to the high stor-
age and computational costs of calculating pairwise
instance distances in the embedding space.

3 Method

3.1 Preliminary

Task. Given a data pool Dp, a budget NV, and an
information measure £(D) over any dataset D, the
goal is to select a subset Dg C Dp of size N that
maximizes F(D). Formally,

Ds = argmax FE(D) (1)
DCDp,|D|=N
Data. Each data point is formed as:
di = {(q/,v))}L,, Li, s} )

where (qg , rg ) jj‘il represents M rounds of query-

response pairs used for training, L; is the set of
labels (e.g., task category, knowledge domain, and



other meta information) associated with d;, and s;
is the quality score.

3.2 Information Measurement

Label Graph. Previous studies (Lu et al., 2024;
Ge et al., 2024; Yu et al., 2024b) assume that
data labels (including embedding-based clusters)
are independent, ignoring the semantic relation-
ships among them. However, such label associa-
tions are crucial for label-balance sampling. Intu-
itively, we can model labels as nodes, their associa-
tions as edges, and the intensity of associations as
edge weights, thus forming an undirected weighted
graph G, = (L, Er), where L represents the la-
bel set with a size of K and E, represents edges.
Specifically, we use the similarity in the embedding
space as edge weights and remove edges whose
weights are below a threshold 7" to ensure computa-
tional efficiency. F';, can be formed as a weighted
adjacency matrix Wy, € RE*K with elements:

Wpq = ow(lp, lg) > T] - w(lp,ly) €))

where w(l, [,) represents similarity between label
l, and [,, and o (-) returns 1 when the input is True.
Data Point Information. We first define the infor-
mation contributed by a single data point and then
generalize it to the entire dataset. Under the label
set L, a data point d; can be formed as a binary
label vector with its associated labels L;:

vi ={vp = o(ly € L)} ey “

The information of d; is distributed over L; and is
proportional to its quality score s;. Thus, the raw
information of d; can be formed as:

Ei=si-v; (&)

Beyond directly contributing to the information of
L;, a data point also influences its neighboring la-
bels through a propagation process along the edges
of the label graph. Formally, the propagation from
I, tolg is:

QWpq

wp + Zk,k;ﬁp Wpk

(6)

Apg =

where wy, equals 1 and « is a hyper-parameter con-
trolling the intensity of information propagation.
Let A be the propagation matrix, then the propa-
gated information vector of d; is:

~

E;, = AFE; @)

Dataset Information. To promote a diverse distri-
bution of labels within the label graph, we apply a
monotonically increasing yet upper-convex func-
tion ¢ to compute the label information instead of
a simple summation. The diminishing marginal
information gain is negatively correlated with the
existing information on a label. Thus, information
gains on labels with less information are prioritized.
Formally, the information of the dataset is defined
as:

E(D)=®(>  AE) =®(AY_ sivi) (8)
€D €D
where ® is an element-wise operation that applies
¢ on each vector element.

3.3 MIG Sampling

Directly selecting Dg from Dp is computationally
infeasible as the combination C’ﬁ;P‘ grows quickly.
Therefore, we propose a greedy strategy, iteratively
selecting the data point that yields the maximum
information gain:

di = argmax{E(D5 U {d}) — E(D5)}  (9)

k
deDk,

where Dg and D;% denote the selected subset and
remaining candidate pool at iteration k. We approx-
imate the information gain in Eq. 9 via a gradient-
based approach:

_ 9B(DY)

Gr =~ = A®/(A > E) (10)

; k
€D

where ®’ represents the derivative of ®. By itera-
tively selecting points that maximize the incremen-
tal gain:

dp = argmax G Fy (11)
deD¥,

we efficiently sample a subset Dg that balances
both label diversity and data quality. The whole
sampling process is detailed in Alg. 1.

3.4 Data Selection Pipeline

As illustrated in Fig. 1, starting from the raw data
pool, we first utilize a tagger and scorer to annotate
the data. Then, we perform tag normalization fol-
lowing (Lu et al., 2024), which includes frequency
filtering and semantic aggregation, resulting in the
label set L. Next, we compute the similarity be-
tween labels to construct the label graph and the
propagation matrix. MIG then performs iterative
sampling to obtain the final subset.



Algorithm 1: MIG Sampling

Data: Initial Data Pool Dp, Label Sets L,
Sample Budget N

Result: The Sampled Dataset Dg

1 Initialize Empty Dg;

2 Initialize Propagation Matrix A;

3 while |Dg| < N do

4 G+ (A eps i)

5 d; < argmaxy. cp, GEj;

6 Dg <+ DgU {di};

7 D p < D P \ {dl},

8 return Dg

4 [Experiments

4.1 Setups

Datasets. To investigate data selection across var-
ious scenarios and demonstrate the robustness of
MIG, we use three distinct data pools:

e Tulu3 (Lambert et al., 2024): A large-scale, real-
world SFT dataset presented by Ai2, containing a
million-level records across a wide variety of sub-
jects, including mathematics, programming, and
user dialogues.

e Openhermes2.5 (Teknium, 2023): With over 1
million data, sourced from 16 distinct origins, in-
cluding MetaMath (Yu et al., 2024a), Camel Al (Li
et al., 2023a), and others.

e X.tq, a combined data pool following (Lu et al.,
2024; Liu et al., 2024b): A combined data pool
consisting primarily of high-quality conversations
from datasets such as WizardLM (Alpaca), Wiz-
ardLM (ShareGPT), UltraChat (Ding et al., 2023),
and ShareGPT (Chiang et al., 2023), totaling 300K
data points.

Benchmarks. We use both human-preference and
knowledge-based benchmarks to evaluate align-
ment performance comprehensively.

e Human-preference = Benchmarks: MT-
bench (Zheng et al., 2023) and AlpacaEval (Dubois
et al., 2024) and Wildbench (Lin et al., 2024),
which features challenging, real-world user
queries.

o Knowledge-based Benchmarks: We evaluate
across six tasks. For natural language reasoning,
we use ARC (Clark et al., 2018) and Big-Bench-
Hard(BBH) (Suzgun et al., 2022). For world knowl-
edge, we evaluate using MMLU (Hendrycks et al.,
2021), a dataset of multiple-choice academic ques-

tions. For code generation, we utilize the Hu-
manEval (Chen et al., 2021) benchmark, consisting
of 164 coding problems, to assess LLMs’ code-
writing abilities. For mathematical reasoning, we
use GSMS8Kk (Cobbe et al., 2021), which includes
1319 grade school math problems. For instruction-
following evaluation, we employ IFEval (Zhou
et al., 2023b).

Baselines. We compare our methods against six
strong data selection approaches: IFD (Li et al.,
2024b), ZIP (Yin et al., 2024), #InsTag (Lu et al.,
2024), DEITA (Liu et al., 2024b), CaR (Ge et al.,
2024), and QDIT (Bukharin et al., 2024). Addi-
tionally, random selection (Xia et al., 2024b) is
also considered a strong baseline, especially for
comprehensive knowledge-based evaluations.
Implementation Details. For the Tulu3 data pool,
we conduct a grid search to determine the data
bucket size of 50K, with training for three epochs.
For Openhermes?2.5, we follow the settings in (Xia
et al., 2024b), sampling 50K data points and train-
ing for three epochs. For X, we sample 6K data
points and train for six epochs following (Lu et al.,
2024; Liu et al., 2024b).

We use the widely adopted LLaMA3.1-8B (Tou-
vron et al., 2023) and Mistral-7B (Jiang et al., 2023)
as our base models and fine-tune them using the
Llama-Factory framework (Zheng et al., 2024).
Please refer to Appx. A.1 for detailed training and
evaluation setup.

To replicate baselines on Tulu3 and Openher-
mes2.5, we adjust certain parameters to fit the large-
scale datasets. Specifically, for IFD computation,
we directly use base models following (Li et al.,
2024a). For #InsTag and the label set in MIG,
we utilize the released InsTagger. To avoid the
high cost of scoring millions of samples with Chat-
GPT (Chen et al., 2024), we adopt DEITA scores
for the quality assessment of CaR, QDIT, and MIG
as described in Sec 4.3.

4.2 Main Results

Main Comparison. Table 1 presents the perfor-
mance of MIG for instruction data selection com-
pared to several baselines across various bench-
marks. All data selection methods are applied to se-
lect SOK samples, as detailed in the grid search ex-
periment in Sec 4.3. Based on Llama3.1-8B, MIG
outperforms all baselines on most tasks, with av-
erage improvements of +1.49% and +1.96% over
state-of-the-art selection methods on knowledge-



Table 1: Comparison with data selection methods on the Tulu3 pool. Avg,,,; and Avg, represent the average of the normalized
knowledge-based and human-preference benchmark scores, respectively. AVG is the mean of Avg . and Avg . MIG achieves
the best performance on Avg,,., Avg . and AVG on both Llama3.1-8B and Mistral-7B.

Base Model ‘ Method  Data Size ‘ ARC  BBH GSM8K HumanEval MMLU IFEval Avgg, ‘ AlpacaEval MTbench ~ Wildbench — Avg, ‘ AVG
Pool 939K | 69.15 63.88 83.40 63.41 65.77 67.10  68.79 | 8.94 6.86 -24.66 3840 | 53.59
Random 50K 7424 64.80 70.36 51.22 63.86 61.00  64.25 8.57 7.06 -22.15 39.36 | 51.81
ZIP 50K 77.63  63.00 52.54 35.98 65.00 61.00  59.19 6.71 6.64 -32.10 35.69 | 47.44
Llama3.1-8B IFD 50K 7593  63.56 61.03 49.39 64.39 53.60  61.32 123 7.03 -20.20 40.83 | 51.08
: #InsTag 50K 72.54  64.80 69.83 48.17 63.50 6599 64.14 6.58 6.84 -20.70 38.21 | 51.17
DEITA 50K 78.98  66.11 74.07 49.39 64.00 64.33  66.15 10.19 6.83 -19.95 39.50 | 52.83
CaR 50K 78.98  69.04 71.42 52.44 65.15 56.75  65.63 12.55 6.95 -20.67 40.57 | 53.10
QDIT 50K 79.66  65.42 70.74 53.05 65.06 57.30  65.21 15.78 6.76 -20.56 41.03 | 53.12
MIG 50K | 80.00 66.39 72.02 57.93 64.44 65.06  67.64 | 14.66 7.32 -17.77 4299 | 5532
Random 50K 67.80 56.90 66.34 42.07 60.34 6543  59.81 5.84 6.84 -25.20 37.21 | 48.51
z1p 50K 72.88 56.73 33.21 3.05 61.68 63.03 4843 5.34 6.57 -36.17 34.32 | 41.37
#InsTag 50K 76.27 57.15 66.34 40.85 61.80 6322  60.94 8.20 6.91 -21.66 38.82 | 49.88
Mistral-7B DEITA 50K 7593 57.72 64.82 11.59 61.41 64.51  56.00 8.82 6.96 -20.51 39.39 | 47.69
CaR 50K 64.41  58.65 63.76 9.15 61.95 55.64 5226 11.93 7.03 -17.82 41.11 | 46.58
QDIT 50K 5492  58.68 59.97 42.68 62.46 5823  56.16 15.03 6.84 -17.74 41.52 | 48.84
MIG 50K | 7525 56.19 66.94 45.12 60.23 6470 6141 | 13.66 717 -18.39 42,05 | 51.73
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Figure 2: (a) Derivative of Information Score Functions. (b) Avgobi on Different Information Score Functions. (c) Avg, on

Different Quality Scores.

Table 2: Results on different data pools, Openhermes2.5 and
Xsota, based on Llama3.1-8B. MIG outperforms all baselines
across both data pools. Please refer to Table 5 6 in Appx. A.3

Table 3: Grid search of appropriate data size and training
epochs on the Tulu3 pool. We report the AVG score here.

for detailed scores on all benchmarks.

Random

MIG

‘Epoch2 Epoch3  Epoch4 ‘ Epoch2 Epoch3 Epoch4

10K | 46.76 49.42 50.39 49.23 51.54 52.50
20K | 48.23 50.36 51.08 50.98 52.87 52.84
50K | 49.78 51.81 50.68 52.69 54.22 54.02

| Openhermes2.5 | Xsota
‘ Data Size  Avgg, Avg,; AVG ‘ Data Size  Avgy, Avg, AVG
All ‘ M 3691 6149 4920 ‘ 300K 31.51 52.88 4219
Random 50K 3299 55.69 4434 6K 29.94 49.69 3981
#InsTag 50K 3623 5412 4517 6K 31.89  46.19 39.04
DEITA 50K 36.80 57.36 47.08 6K 31.60 48.70 40.15
CaR 50K 37.51 5557 46.54 6K 31.86 4843 40.15
QDIT 50K 37.90 57.71 47.80 6K 3252 49.10 4081
MIG ‘ 50K 38.12 5830 48.21 6K 3298 50.63 41.80

based and human-preference evaluations, respec-
tively. When considering both knowledge-based
and human-preference evaluations combined, MIG
surpasses the second-best method, QDIT, by
+2.20% on AVG score, highlighting the high qual-
ity and diversity of its sampled data. Notably, MIG
is the only method that outperforms the model
trained on the full Tulu3 pool, a comprehensive
and high-quality SFT training dataset directly ap-
plicable to real-world scenarios, on AVG, despite
utilizing only 50K samples. Specifically, MIG de-
livers substantial gains in human-preference perfor-
mance, with an average improvement of +4.59 %

across three benchmarks while maintaining com-
parable performance on knowledge-based bench-
marks. Previous research (Yuan et al., 2023; Dong
et al., 2024) indicates that mathematical capabil-
ity improves with the increasing training dataset
size without plateauing. This explains the under-
performance of 50K sample model compared to
the model trained on the full pool on the GSM8K
benchmark. Additionally, among methods that bal-
ance quality and diversity, MIG demonstrates su-
perior efficiency on large pools. It is more effi-
cient than DEITA and QDIT, as it eliminates the
need for iterative pairwise similarity calculations in
the embedding space. For detailed sampling times
and efficiency analysis, please refer to Table 4 in
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Appx. A.2.

Transferability on Models. To assess the general-
izability of MIG, we additionally conduct experi-
ments on Mistral-7B. As shown in Table 1, MIG
outperforms all baseline methods with an improve-
ment of +1.85% on AVG. Notably, the second-best
selection method varies among different base mod-
els. Some strong baselines from Llama3.1-8B ex-
perience performance degradation when applied to
Mistral-7B, further demonstrating the robustness
of MIG.

Transferability on Data Pools. We conduct ex-
periments on the comprehensive Openhermes2.5
pool and the relatively small, high-quality pool
Xsota (Lu et al., 2024; Liu et al., 2024b) to further
evaluate the robustness of MIG. Results in Table 2
show that MIG outperforms all baseline selection
methods across different data pools and sample
data sizes, Specifically, MIG improves AVG by
+3.87% and +1.99% compared to random selec-
tion on the two data pools, and by +0.41% and
+0.99% compared to previous SOTA methods. No-
tably, on the X, all baseline methods exhibit
performance degradation on knowledge-based eval-
uations, consistent with the findings in (Xia et al.,
2024b). We hypothesize that quality metrics, such
as DEITA scores and the number of tags, are biased
toward multi-round, long samples, which tend to
enhance subjective dialogue abilities and general
knowledge. However, samples in specific domains,
such as math and code, are typically single-turn.
MIG mitigates this bias through its upper-convex
information score function, providing a more effec-
tive selection for such domain-specific tasks.

4.3 Analysis

Study of Information Score Function ®. The
information score function @ is crucial in MIG
sampling as it balances quality and diversity. Based
on the principles outlined in Sec. 3.2, ® is expected
to be monotonically increasing with a diminishing
rate of increase. In our experiments, we evaluate
two candidate functions:

dzx)y=1—e"" (a>0) (12)

P(zx)=z"" (O<a<l) (13)

Fig. 2(a) compares the decreasing rate in the deriva-
tive of these functions under varying parameter set-
tings. Functions that decay rapidly tend to favor
diverse label distributions as the information on any
given label converges quickly. In contrast, slower
decaying functions prioritize high-quality samples.
Fig. 2(b)(c) present the quantitative performance
on various benchmarks, with ®(z) = 2%-® achiev-
ing the best results across both human-preference
and knowledge-based evaluations, effectively bal-
ancing quality and diversity.

Study of Quality Measurement. Given the large
scale of data pools in our experiments, reproducing
methods from (Chen et al., 2024; Bukharin et al.,
2024), which rely on computationally expensive
external models such as ChatGPT for quality scor-
ing, is impractical. Therefore, we implement three
alternative quality measurement approaches: the
number of tags (Lu et al., 2024), the IFD score (Li
et al., 2024b), and the DEITA score (Liu et al.,
2024b), to investigate their impact on information
measurement. Fig. 3 compares these three quality
metrics with a baseline score that assigns a con-
stant value to all samples. The DEITA scores con-
sistently outperform the other quality metrics in
both evaluation settings. Therefore, we adopt the
DEITA scores as the default quality measurements
for MIG and other baseline selection methods.
Study of Label Graph. An essential question
in MIG is how to determine an appropriate label
graph, including its nodes (label set) and edges (la-
bel relationships). Increasing the number of nodes
leads to a more granular label set, thereby providing
broader coverage of knowledge topics. However,
excessively large label sets inevitably include out-
liers or low-quality labels. Similarly, increasing
edge density between labels enhances the compre-
hensiveness of label relationships, but overly dense
graphs may result in computational inefficiencies
and noises from the embedding model. There is
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no universally optimal solution, as the ideal label
graph depends on the characteristics of the data
pool and potentially other parameters in MIG. To
explore the relationship between the label graph
and the downstream performance of trained models,
we conduct an empirical experiment on the Tulu3
pool. Fig. 4(a) shows the downstream performance
from a set of node counts in the label graph, ranging
from 839 to 6738, while Fig. 4(b) presents perfor-
mance across varying edge densities, with thresh-
olds between 0.8 and 0.94. The observed trends
align with our initial analysis, showing an unimodal
performance curve in both experiments. For the
Tulu3 pool, the optimal label graph is achieved
with a label set size of 4531 and an edge similarity
threshold of 0.9.

Study of Information Propagation. We conduct
a series of experiments to study the impact of in-
formation propagation intensity in MIG sampling.
Appropriate information propagation results in ac-
curate information measurement over the label set.
Specifically, we experiment with various values
of a in Eq. 6, where a higher « corresponds to
stronger information propagation and no propa-
gation occurs when a@ = 0. Fig 4(c) shows that
a = 1.0 yields the best performance, with an aver-
age improvement of 2.76 over the non-propagation.
Notably, results with information propagation sig-
nificantly outperform those without, indicating that
information propagation effectively captures the
relationship between labels, thereby improving the
accuracy of information measurement on the label
graph.

Grid Search for Data Size. To identify an appro-
priate data bucket within the Tulu3 pool for the
main comparison and investigate the data scaling
effects of MIG, we perform a grid search using

various data budgets and training epochs. Table 3
shows that MIG consistently outperforms random
selection across different data volumes, demonstrat-
ing its effectiveness. For the default setting in the
Tulu3 pool, we select SOK samples with three train-
ing epochs, as both random and MIG sampling
achieve the best performance under this configura-
tion.

5 Conclusion

In this paper, we introduce a novel instruction-
tuning dataset measurement method in semantic
space. It models both the quality and diversity of
the dataset information and balances these aspects
through an upper-convex information score func-
tion. Additionally, it accurately captures the infor-
mation distribution over label graph through infor-
mation propagation. Accordingly, we propose an
efficient sampling algorithm, MIG, that iteratively
selects samples that maximize the information gain
on the label graph. MIG demonstrates effectiveness
across various data pools and base models, show-
casing its robustness and adaptability. Our research
bridges the gap between instance-level quality as-
sessment and global dataset evaluation, offering a
unified approach to dataset measurement. We hope
our results can inspire dataset measurement design
in the future.

Limitation. Currently, the parameters in MIG are
static and depend on grid search to identify the opti-
mal values, which can not be extensively explored.
Future work could focus on developing methods
to automatically determine the parameters in MIG,
such as customizing the information score func-
tion for each label, to enhance the flexibility and
scalability of MIG.
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A Appendix
A.1 Training and Evaluation Setup

Training Recipes. For experiments on X4, We
follow the default settings in (Liu et al., 2024b).
Specifically, we set the batch size to 128, learning
rates at 2e-5, a warm ratio of 0.1, and a maximum
input length of 2048. For experiments on the Tulu3
pool, we follow the settings in (Lambert et al.,
2024). We set the batch size to 128, learning rates
at 5e-6, a warm ratio of 0.03, and a maximum input
length of 4096. For experiments on the Openher-
mes2.5 pool, we follow the settings in (Xia et al.,
2024b). We set the batch size to 128, learning rates
at 7e-6, a warm ratio of 0.01, and a maximum input
length of 4096.

Evaluation Setup. The evaluation of our experi-
ments is implemented on OpenCompass (Contribu-
tors, 2023).

Table 4: Efficiency comparison between different methods
on 50K sampling from the Tulu3 pool. The timing reported
here is measured by a single NVIDIA-L20Y.

Method  Time
InsTag 2.33

DEITA 81.56

QDIT  86.17
CaR 0.85
MIG 0.45

A.2 Efficiency Analysis

Table 4 presents the time used for SOK sampling
on the Tulu3 pool. Among methods that balance
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quality and diversity, MIG achieves the highest
efficiency. Notably, MIG is much more efficient
compared to QDIT (Bukharin et al., 2024) and
DEITA (Liu et al., 2024b), as it saves iterative
pairwise similarity computation in the embedding
space.

A.3 Detailed Results on Benchmarks

We provide detailed scores on full benchmarks in
Table 5 6.



Table 5: Full Results on the Openhermes2.5 Pool.

Method | ARC BBH GSMSK HumanEval MMLU IFEval Avg,, | AlpacaEval MTbench Wildbench —Avg, | AVG

Pool | 72.88  60.53 70.51 51.22 64.99 48.80  61.49 | 5.47 7.10 -31.51 36.91 | 49.20
Random | 75.25 60.20 51.40 50.00 51.23 46.03  55.69 4.72 6.63 -44.12 3299 | 44.34
InsTag | 70.85 68.64 56.25 43.90 45.70 4935 5412 5.09 7.14 -35.60 36.23 | 45.17
DEITA | 69.83 61.85 60.96 46.95 58.01 46.58  57.36 7.83 6.94 -33.69 36.80 | 47.08

CaR 62.71 63.73 55.42 44.51 64.37 42770  55.57 7.33 7.09 -31.43 37.51 | 46.54
QDIT 66.44  62.45 58.61 50.00 63.64 45.10 5771 9.19 6.99 -30.78 37.90 | 47.80

MIG | 7898 6333 51.55 45.73 63.81 4640  58.30 | 7.83 7.17 -30.34 38.12 | 48.21

Table 6: Full Results on the Xo¢q Pool.

Method | ARC BBH GSMSK HumanEval MMLU IFEval Avg,, | AlpacaEval MTbench Wildbench Avg, | AVG
Pool ‘ 7322 5412 40.49 45.12 61.05 43.25 52.88 ‘ 3.85 6.78 -54.21 31.51 ‘ 42.19
Random | 61.02 58.12 32.07 42.69 62.31 4196  49.69 3.60 6.34 -54.39 29.94 | 39.81
InsTag | 64.07 51.82 36.62 28.66 55.11 40.85  46.19 5.22 6.56 -50.28 31.89 | 39.04
DEITA | 71.86 50.82 27.67 40.24 63.36 38.26  48.70 4.22 6.48 -48.44 31.60 | 40.15
CaR 72.88  48.90 20.92 46.95 62.68 3826 4843 5.22 6.51 -49.46 31.86 | 40.15
QDIT | 71.53 51.48 29.95 41.46 63.22 3697  49.10 5.09 6.55 -46.05 32.52 | 40.81
MIG | 7458 51.93 31.54 43.90 62.24 3956 50.63 | 5.34 6.72 -47.18 32.98 | 41.80
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