
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT TIME SERIES PROCESSING FOR TRANS-
FORMERS AND STATE-SPACE MODELS THROUGH TO-
KEN MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer architectures have shown promising results in time series process-
ing. However, despite recent advances in subquadratic attention mechanisms
or state-space models, processing very long sequences still imposes significant
computational requirements. Token merging, which involves replacing multiple
tokens with a single one calculated as their linear combination, has shown to
considerably improve the throughput of vision transformer architectures while
maintaining accuracy. In this work, we go beyond computer vision and perform
the first investigations of token merging in time series analysis on both time se-
ries transformers and state-space models. We further introduce local merging, a
domain-specific token merging algorithm that selectively combines tokens within a
local neighborhood, achieving two major benefits: a) Local merging can adjust its
the computational complexity from quadratic to linear based on the neighborhood
size to effectively scale token merging to long sequences; b) Local merging is
the first causal merging scheme enabling token merging in transformer decoders.
Our comprehensive empirical evaluation demonstrates that token merging offers
substantial computational benefits with minimal impact on accuracy across various
models and datasets. On the recently proposed Chronos foundation model, we
achieve accelerations up to 5400% with only minor accuracy degradations.

1 INTRODUCTION

INTERNAL

31 2 4 65

1

3

5

2 4 6 8

7

k

Sloc ={ }
k=1

Sloc ={ }
k=2

Figure 1: Local token merg-
ing: Computing token similar-
ity on a subset Sloc under lo-
cality constraint k reduces to-
ken merging’s quadratic com-
plexity to linear.

Since their inception in NLP (Vaswani et al., 2017), transformers
have extended their influence into various domains, including com-
puter vision with Vision Transformers (ViTs) (Dosovitskiy et al.,
2021), graphs (Yun et al., 2019), and time series processing (Li
et al., 2019). However, the computational complexity of the stan-
dard attention mechanism used in transformer architectures scales
quadratically with the number of input tokens, resulting in high
memory requirements. This scalability issue becomes especially
pronounced in time series processing, where sequences frequently
comprise thousands of tokens (Godahewa et al., 2021). Conse-
quently, recent foundational models in time series, such as Chronos,
exhibit impressive zero-shot generalization capabilities but demand
substantial computational resources (Ansari et al., 2024).

Recently, state-space models have emerged as a solution to mitigate
the computational burden of transformers. Their complexity scales
subquadratically with the sequence length (Poli et al., 2023), which
allows them to process millions of tokens (Nguyen et al., 2023).
However, even in state-space models, very long sequences will
impose considerable memory and computational demands.

Bolya et al. (2023), have shown that the efficiency of ViTs can be substantially improved by merging
tokens throughout the transformer architecture. Specifically, they compute similarity scores between

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tokens and combine them into single tokens through a convex combination. However, they only
explore token merging for ViT architectures.

In this empirical study, we for the first time explore token merging within the time series domain.
We introduce a novel local token merging algorithm whose computational complexity varies from
quadratic to linear, based on the neighborhood considered for each token merge. This allows
token merging to scale to long sequences. Further, local merging preserves causality and therefore
enables token merging in transformer decoders. The algorithm is illustrated in figure 1. Through
comprehensive empirical evaluations, we analyze the impact of token merging on various time series
transformer models and state-space models. Our key contributions are as follows:

- Token merging in time series We present first studies on token merging in time series analysis,
exploring its application beyond transformer architectures to include state-space models. For this
purpose, we propose a domain-specific token merging algorithm that combines tokens within a local
neighborhood around each token, preserving causality. Adjusting the size of the neighborhood
allows the complexity of the algorithm to range from quadratic to linear. We show that this
adaptability improves upon classical token merging for long-sequence modeling tasks. Further, we
present first token merging in transformer decoders using our causal merging algorithm.

- Model acceleration Our findings from both pretrained models and those trained with token
merging reveal substantial computational savings with only slight reductions in accuracy across
five time series transformer architectures and datasets. We also assess five different model sizes
per architecture, noting greater relative accelerations in larger models.

- Token merging in foundation models Foundation models are becoming increasingly relevant
in time series processing, showing superior zero-shot capabilities compared to existing meth-
ods (Garza & Mergenthaler-Canseco, 2023; Das et al., 2023; Rasul et al., 2023; Woo et al., 2024;
Ansari et al., 2024). In this context, we enhance the throughput of the time series foundation
model Chronos by up to 54.76×, with a marginal quality drop of 3% in relative MSE using token
merging. Across four out of five datasets, we identify Pareto optimal points where token merging
simultaneously boosts throughput and increases accuracy. For example, on the ETTh1 dataset,
token merging achieves a 14.17× acceleration while the MSE improves by 6%.

- Token merging patterns Our analysis of token merging’s effects identifies three distinct patterns:
1) a consistent decline in performance with an increasing number of merged tokens, 2) initial
improvements in accuracy with few merged tokens followed by a drop as merging increases, and 3)
scenarios where accuracy remains unchanged regardless of the token merging rate. We investigate
all patterns and find different explanations for all behaviors.

2 RELATED WORK

Time series transformers In recent years, many transformer architectures with inductive biases for
time series have been proposed, successfully outperforming classical and other deep-learning-based
methods in time series forecasting quality like recurrent neural networks (Li et al., 2019). Most of
them focus on reducing complexity by modifying the attention mechanism. LogTrans uses LogSparse
attention (Li et al., 2019), while Informer focuses only on the most relevant queries using ProbSparse
attention (Zhou et al., 2021). Additionally, many architectures adopt decomposition techniques
to model trend and seasonal patterns (Woo et al., 2022; Wu et al., 2021; Zhou et al., 2022; Liu
et al., 2022b). Autoformer leverages autocorrelation as a sequence-based similarity measure in the
attention mechanism (Wu et al., 2021). FEDformer uses the frequency domain to model time series
effectively (Zhou et al., 2022). Non-stationary Transformers further mitigate the effect of the time
series distribution changing over time (Liu et al., 2022b). PatchTST embeds subsequences as tokens
to capture local semantic information and reduce complexity (Nie et al., 2023). Other works apply
hierarchical attention (Liu et al., 2022a; Cirstea et al., 2022) or leverage attention between the time
series variates to better model multivariate patterns (Zhang & Yan, 2023; Liu et al., 2023).
Due to their success in the vision and NLP domain, transformer-based foundation models have
recently emerged for time series, often used in zero-shot settings. Many works focus on training
transformers directly on large and diverse time series datasets, usually with billions of tokens (Garza
& Mergenthaler-Canseco, 2023; Das et al., 2023; Rasul et al., 2023; Woo et al., 2024). Inspired by
the success of foundation models in NLP, the recently proposed Chronos model converts continuous
time series data into a fixed vocabulary and is trained on both real-world and synthetic data (Ansari
et al., 2024). Besides, other research branches focus on fine-tuning vision or NLP models for time

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

series (Zhou et al., 2023) and on applying large language models directly on time series data (Gruver
et al., 2023).

State-space models Due to the quadratic scaling of the attention mechanism, transformer archi-
tectures suffer from significant computational cost when processing very long input sequences.
Recently, state-space models have shown promising results in overcoming the quadratic complexity
of transformers with respect to input length. Linear state-space layers solve the sequential processing
requirement of RNNs through linear state-space representations (Gu et al., 2021). The S4 model
reduces memory requirements by conditioning the state-space matrix with a low-rank correction (Gu
et al., 2022). By using implicit convolutions and a data-aware gating mechanism, Hyena (Poli et al.,
2023) became one of the first state-space model architectures to match transformers on NLP tasks.
Later work uses hardware-aware algorithms to improve the performance of state-space models on
modern accelerators (Gu & Dao, 2023).

Reducing tokens Many works reduce the number of processed tokens to increase the efficiency of
transformer architectures in computer vision and NLP, often by pruning (Meng et al., 2022; Goyal
et al., 2020). Marin et al. (2021) merge tokens in ViT architectures to reduce the loss of information
associated with pruning. Bolya et al. (2023) enhance the token merging algorithm, which they
successfully apply to already trained encoder-only models. Besides initial work on classification
tasks (Bolya et al., 2023), subsequent work applies token merging to diffusion models (Bolya &
Hoffman, 2023). Kim et al. (2024) combine merging and pruning, while other work investigates
optimal merging and pruning rates (Bonnaerens & Dambre, 2023; Chen et al., 2023). Concurrent
work adapts token merging to preserve the spectral properties of the token space (Tran et al., 2024).
However, their merging algorithm still has quadratic complexity, making it unsuitable for long
sequence processing.

Sparse attention and token skipping Besides reducing the number of tokens, sparse atten-
tion (Child et al., 2019; Li et al., 2019; Zhou et al., 2021; Wu et al., 2021) and token skipping (Raposo
et al., 2024) also decrease the computational requirements of transformer models. Sparse attention
computes a subset of the attention matrix. Therefore, it can only accelerate the attention mechanism
itself and not the subsequent MLP, in contrast to reducing the number of tokens during token merging.
According to Marin et al. (2021), this MLP can take over 60% of the total computation in a ViT layer.
Further, altering the network architecture from full attention to sparse attention requires a retraining
of the model. Concurrent work, such as token skipping (Raposo et al., 2024), involves the selection
of a subset of tokens to be processed in a transformer layer. However, it has only been shown in
NLP when training from scratch. In contrast to sparse attention and token skipping, token merging
can accelerate already trained models and does not require any training data or fine-tuning. This is
especially important for recent foundation models, which are expensive to train. In our experiments
in sections 5.1 and 5.2, token merging successfully accelerates Informer and Autoformer, which
already employ sparse attention. We therefore consider token merging as an orthogonal approach.

Here, we propose a token merging algorithm for the time series domain, which extends beyond
previous investigations of token merging in ViTs (Bolya et al., 2023; Bolya & Hoffman, 2023). We
systematically evaluate the potential to reduce computational effort in time-series-specific transformer
architectures and state-space models.

3 TOKEN MERGING

Despite recent advances in efficient transformers, processing long input sequences still induces
considerable memory requirements and computational effort. To address this, we propose local
merging, an efficient token merging algorithm for state-space models and long sequence processing.
Finally, we introduce causal merging as a special case of local merging to allow for token merging in
decoder architectures.

(Global) Token merging in computer vision Let a neural network f(x) = ΦL◦ΦL−1◦· · ·◦Φ1(x)
consist of L layers denoted as Φl, where each layer takes the output of the previous layer as input. We
assume that the input xl ∈ Rtl×d consists of tl tokens with dimension d. Thereby, the input tokens
are generated by a tokenizer g : Rz → Rt×d out of z-dimensional input data u. In the computer
vision domain, u usually takes the form u ∈ Rw×h×c, where w, h, c are the width, height, and
channels of the input image, respectively, and w · h · c = z.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To improve the computational efficiency of a given model, Bolya et al. (2023) combine the r most
similar tokens in each layer, reducing the tokens to be processed in layer l+1 to tl+1 = tl − r.
Therefore, they split the set of all tokens into two disjoint subsets A,B in alternation to avoid merging
conflicts and allow for a parallelized computation of merging correspondences. Here A and B contain
tl/2 elements each, denoted as ai and bj respectively. The authors compute the cosine similarity
between all tokens in both subsets S = (sij) and merge the top r most similar correspondences by
averaging the tokens accordingly. This results in a global token merging algorithm with quadratic
complexity. Lastly, the authors use a fixed r to enable batch processing without needing to pad
individual batch elements to the same shape after token reduction.

(Local) Token merging for time series In this work, we design token merging mechanisms for
time series architectures and demonstrate run-time and even performance improvements over various
datasets and models. We assume that the input u consists of m time stamps with n variates.

Previous work on token merging in image processing explored global merging schemes, where
every token of each subset A and B could be merged with each other (Bolya et al., 2023; Bolya &
Hoffman, 2023). However, computing the similarity S ∈ Rtl/2× tl/2 between both sets of tokens
has a complexity of O(t2l /4), which is suboptimal for sequential data often consisting of long
token sequences (Godahewa et al., 2021; Grešová et al., 2023), and state-space models featuring
subquadratic complexity (Poli et al., 2023; Nguyen et al., 2023).
Therefore, we propose local merging - a superset of token merging - by introducing k ∈ N, 1 ⩽
k ⩽ tl/2 as a locality constraint where we compute the similarity only on a local subset of tokens
Sloc = {sij | 1 ⩽ i, j ⩽ tl/2, |i − j| < k}. Figure 1 illustrates the proposed merging algorithm.
The locality constraint reduces the complexity to O(tl/2 + (k − 1)(tl − k)). Varying the locality,
we achieve linear complexity by considering only neighboring tokens for merging up to quadratic
complexity by considering a global merging pool, possibly exploiting more redundancy. For efficient
computation, we refactor Sloc into a rectangular tensor. An upper bound for the resulting speed up
can be given by speed up ⩽ 3L 4L−1 · (4L−1)−1. The acceleration of deeper models is expected to
increase as more subsequent layers can profit from already merged tokens. Local merging additionally
preserves order and locality as an inductive bias for sequence processing.
Some time series transformers use processing mechanisms that require a minimum number of tokens
in the forward pass. To universally enable token merging in these architectures, we further introduce
q as the minimum number of remaining tokens. When encountering odd numbers of tokens tl, we
exclude the most recent token with the latest positional embedding from merging as we expect it to
contain the most relevant information.
We derive the complexity of the token merging procedures in appendix A.1.

Existing merging schemes are not suitable for causal operations, as global token merging over
arbitrary ranges breaks causality. To remedy this limitation and enable token merging in transformer
decoders, such as for recent decoder-only foundation models (Das et al., 2023) and encoder-decoder
architectures (Ansari et al., 2024), we propose a special case of local merging: By restricting the
merging neighborhood to only adjacent tokens with k = 1, local merging preserves causality.
However, many architectures require a fixed number of decoder output tokens or fixed dimensions for
linear projection output layers. To maintain a constant output dimensionality while merging tokens to
speed up the decoder, we unmerge all tokens in a final step. Coherent to our causal merging operation,
we clone a previously merged token into two neighboring identical ones, to unmerge it. Bolya &
Hoffman (2023) propose an unmerging algorithm for computer vision. However, they only leverage
non-causal global token merging. Moreover, they immediately unmerge after every merge, which
makes it unsuitable for long sequence processing, as it is unable to utilize the cumulative effect of
reducing tokens.

4 EXPERIMENTS

We systematically explore token merging in diverse settings on 5 time series datasets and 5 model
architectures in 5 different sizes each. Additionally, we investigate token merging in large foundation
models using Chronos in a zero-shot setting (Ansari et al., 2024). Finally, we demonstrate that token
merging can be applied to state-space models for long sequence processing by using a novel local
merging algorithm featuring subquadratic complexity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Datasets We use time series forecasting datasets including ETTh1, ETTm1, Weather, Electricity
and Traffic for our transformer experiments. For state-space models, we use the long-range Dummy
Mouse Enhancers Ensembl dataset. See appendix A.2 for more details.

Model architectures For our main experiments, we use 5 architectures, including Autoformer,
FEDformer, Informer, Non-stationary Transformer, and the vanilla Transformer (Vaswani et al.,
2017) as reference. For each model, we evaluate token merging for different model sizes with L ∈
{2, 4, 6, 8, 10} encoder layers, which we train doing hyperparameter optimization (see appendix A.2).
We use an input length of m = 192, following the results of Nie et al. (2023), and a prediction
horizon p = 96 samples. Longer sequences would generally benefit token merging.
For experiments on the foundation model Chronos, we use the default input length of m = 512 and
prediction horizon p = 64 (Ansari et al., 2024). We compute the median from Chronos probabilistic
forecasts and report the MSE.
For our experiments on state-space models, we use HyenaDNA medium, a genomic foundation
model (Nguyen et al., 2023) based on the Hyena architecture (Poli et al., 2023). We use a large
input length of m = 16 000 nucleotides utilizing Hyenas subquadratic complexity. We chose Hyena
over Mamba (Gu & Dao, 2023) to avoid specialized CUDA kernels and hope to make more general
statements about the capabilities of token merging.

Applying token merging In our experiments, we generally find it beneficial to allow self-attention
to transfer information between tokens before merging them. Therefore, we apply token merging
between self-attention and the MLP in all transformer encoders as Bolya et al. (2023). For our main
experiments, we also apply our casual local merging with k = 1 in the transformer decoders between
self-attention and cross-attention and finally unmerge all decoder tokens. In architectures utilizing
additional tensors like attention masks or positional biases, we merge them using the same correspon-
dences. Many transformers exhibit quadratic attention, imposing considerable computational cost. As
a result, we do not find the token merging algorithm to introduce a substantially additional overhead.
Thus, we choose k = tl/2 to profit from a global merging pool for transformer encoders. Therefore,
we utilize different merging strategies in transformer encoders and decoders. In state-space models,
we merge tokens after the Hyena operator and choose k = 1 to not introduce an operation with
quadratic complexity into the architecture.

Reproducibility of measurements We report all results on the same Nvidia A6000 GPU. For
training, we utilize Nvidia V100 and A100 GPUs (see appendix A.2). We measure the end-to-end
inference time of the models using 2 warm-ups and 2 measurement runs per batch. The standard
deviation of the execution time is generally < 2% in our experiments. Besides the inference time as
practically most relevant quantity, we report FLOPs as a more hardware independent measure using
the thop library (Zhu, 2022). We choose the maximum possible batch size and standardize the results.

5 RESULTS

We first present our main results for token merging on pretrained models and models trained with
token merging. We then explore token merging in transformer foundation models. Subsequently,
we ablate different merging patterns, investigate why token merging improves prediction quality,
analyze dependencies on input length, explore the redundancy of input tokens and investigate dynamic
merging schemes. Finally, we demonstrate first token merging for state-space models.

5.1 TOKEN MERGING IN PRETRAINED MODELS

We investigate token merging in both the encoder and decoder on diverse time series transformer
models with different inductive biases. All models are trained on the target dataset and token merging
is applied only during inference time, as accelerating already trained models is of high practical
relevance. We choose token merging hyperparameters as described in appendix A.2, selecting the
fastest token merging trial on the validation set that is within an 0.01 increase in MSE compared to
the reference without token merging. If we do not find a trial with token merging satisfying these tight
criteria, we report results without token merging, mimicking how token merging might be applied in
practice. We perform all selections on the validation set and report all results on the test set.
The vanilla and Non-stationary Transformers have quadratic attention mechanisms, while the remain-
ing architectures feature subquadratic attention complexities of O(tl · log(tl)) for Autoformer and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Informer and O(tl) for FEDformer. Regardless, our local token merging in the encoder together with
our casual token merging in the decoder substantially increase the throughput of most models, up to
3.80×, often with no change in forecasting quality, as table 1 shows. In some experiments, token
merging even improves the MSE. In line with the formal analysis of potential speed up from token
merging conducted in section 3, we generally observe higher accelerations for larger models, as more
subsequent layers can profit from already merged tokens. Independent of model size, token merging
finds Pareto optimal points in 17 of 25 settings and has no negative effect in the remaining cases.
In some cases, we do not find a model with decent forecasting quality satisfying our criteria. Here,
token merging during test only has a larger impact on model accuracy, such as for Autoformer on the
Traffic dataset. We address this issue when training with token merging in section 5.2.

Table 1: Token merging speeds up (Accel.) various pretrained transformer architectures of different
sizes on several multivariate time series datasets. Merging induces minimal change in quality (MSE∆)
compared to the reference without token merging (MSE).

Dataset Layers L Transformer Autoformer FEDformer Informer Nonstationary

MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆

ETTh1

2 0.75 1.38× 0% 0.42 1.00× 0% 0.38 1.29× 0% 0.87 1.40× 0% 0.55 1.36× 0%
4 0.71 1.81× 0% 0.40 1.39× 1% 0.39 1.74× 0% 0.92 1.30× 1% 0.47 1.82× 2%
6 0.66 2.33× 0% 0.44 2.12× 0% 0.38 2.27× 0% 0.93 2.39× 0% 0.46 2.39× 0%
8 0.84 2.90× 0% 0.41 2.68× −5% 0.39 2.81× 0% 1.23 2.20× 9% 0.48 2.93× 0%

10 0.69 3.51× 0% 0.39 3.14× 0% 0.38 3.36× 0% 1.16 2.45× 4% 0.57 3.56× 0%

ETTm1

2 0.52 1.35× 0% 0.44 1.00× 0% 0.36 1.00× 0% 0.65 1.40× 0% 0.42 1.36× 0%
4 0.58 1.85× 2% 0.43 1.00× 0% 0.37 1.76× 2% 0.60 1.78× −1% 0.48 1.72× 0%
6 0.62 2.11× 4% 0.45 1.00× 0% 0.38 1.00× 0% 0.59 2.16× −1% 0.38 2.52× 0%
8 0.60 3.09× 1% 0.58 2.60× 0% 0.33 1.00× 0% 0.61 1.61× 0% 0.46 2.10× −2%

10 0.62 3.72× 0% 0.54 1.69× 0% 0.36 1.00× 0% 0.57 1.00× 0% 0.41 3.80× 0%

Weather

2 0.25 1.44× −1% 0.28 1.10× 0% 0.27 1.37× −2% 0.35 1.43× −1% 0.19 1.46× 1%
4 0.28 1.95× 0% 0.24 1.00× 0% 0.26 1.74× 0% 0.24 1.89× 2% 0.19 1.95× 0%
6 0.28 2.19× 9% 0.26 2.03× 2% 0.27 2.42× 0% 0.21 2.19× 2% 0.20 2.54× 0%
8 0.32 2.20× 5% 0.26 1.56× 4% 0.27 2.88× 0% 0.30 1.56× 1% 0.20 3.14× 0%

10 0.35 2.49× 8% 0.26 1.72× 3% 0.24 1.00× 0% 0.31 1.69× 1% 0.19 3.76× 0%

Electricity

2 0.25 1.30× 0% 0.18 1.00× 0% 0.20 1.24× 0% 0.30 1.23× 8% 0.17 1.31× 0%
4 0.26 1.75× 0% 0.19 1.00× 0% 0.19 1.64× 0% 0.30 1.60× 7% 0.17 1.73× 1%
6 0.25 2.29× 0% 0.19 1.00× 0% 0.20 2.22× 0% 0.29 1.00× 0% 0.17 2.26× 0%
8 0.25 2.84× 0% 0.19 1.00× 0% 0.20 2.72× 0% 0.31 1.00× 0% 0.17 2.76× 0%

10 0.25 3.31× 0% 0.18 1.00× 0% 0.20 3.33× 0% 0.30 1.00× 0% 0.18 2.53× 7%

Traffic

2 0.66 1.28× 1% 0.63 1.00× 0% 0.59 1.21× 0% 0.68 1.19× 6% 0.60 1.27× 2%
4 0.66 1.56× 3% 0.60 1.00× 0% 0.58 1.65× 0% 0.68 1.00× 0% 0.59 1.68× 1%
6 0.64 2.13× 1% 0.61 1.00× 0% 0.57 2.10× 0% 0.69 1.00× 0% 0.62 1.58× 2%
8 0.68 2.67× 0% 0.60 1.00× 0% 0.59 2.61× 0% 0.71 1.00× 0% 0.59 2.69× 1%

10 0.67 3.25× −1% 0.59 1.00× 0% 0.58 3.12× 0% 0.69 1.00× 0% 0.59 3.16× 0%

5.2 TOKEN MERGING DURING TRAINING

Here, we apply token merging during training to reduce the model’s sensitivity to the algorithm at
inference time. As shown in figure 2, models trained with token merging often outperform those
trained without it, even if token merging is not applied during testing. This approach enables us to
accelerate models such as Autoformer on the Traffic dataset without sacrificing accuracy, which was
previously not feasible when applying token merging only during inference. Additionally, token
merging accelerates the training process itself by up to 2.27× for Autoformer on the Traffic dataset.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.4 0.6
Model execution time standardized [ms]

0.600

0.625

0.650

0.675

0.700

M
SE

Non-stationary Transformer 6 layers on Traffic

Test only
+ Training
No merging

2 4 6 8 10
Number of layers L

1×

2×

3×

A
cc

el
er

at
io

n

Autoformer on Traffic

Test only
+ Training

1

9

17

To
ke

n
m

er
gi

ng
 r
tr
a
in

Figure 2: (Left) Training with different token merging rtrain fractions compared to applying token
merging only during inference. Even if token merging is not applied during testing (no merging),
models trained with token merging achieve better MSE. (Right) Additionally, models that showed
high MSE degradation with token merging without training show high accelerations while maintaining
MSE (increases up to 6%) when enabling token merging during training.

Table 2: Token merging acceleration (Accel.) for all Chronos foundation models from tiny to large,
measured for zero-shot forecasting of different univariate time series. Applying token merging, we
aim for two objectives: the best MSE and the fastest acceleration. Among all Chronos models,
we choose the best without token merging as reference (MSE). As token merging improves MSE
(negative MSE∆) while speeding up the model, we are able to choose small Chronos models while
surpassing forecasting quality of larger models.

Dataset MSE Best Fastest

Accel. MSE∆ Accel. MSE∆

ETTh1 0.45 14.17× −6% 32.76× 2%
ETTm1 0.41 1.23× −4% 6.47× 3%
Weather 0.17 1.16× −1% 54.76× 3%
Electricity 0.14 1.02× 0% 2.91× 3%
Traffic 0.61 1.16× −9% 2.91× 1%

5.3 SCALING TO LARGE MODELS

Foundation models are getting more relevant across domains, including NLP (Touvron et al., 2023),
computer vision (Kirillov et al., 2023), and time series processing (Das et al., 2023). However,
these models have high computational requirements. Therefore, accelerating foundation models
without the need for additional fine-tuning is especially important. Thus, we investigate token
merging for foundation models on Chronos, a univariate probabilistic model, in zero-shot forecasting
setting (Ansari et al., 2024). We apply token merging during inference only, as training Chronos from
scratch is not within the scope of this work.
In all our experiments, we find Pareto optimal points with token merging. For four out of five datasets,
token merging improves both accuracy and throughput simultaneously (see appendix A.3). Our
results demonstrate that it is often beneficial to choose a larger Chronos model with token merging
over a smaller one without, as in figure 3. We report our results in table 2, choosing the best Chronos
model without token merging as reference. We illustrate two cases: 1) Selecting the token merging
setting that provides the best MSE, 2) selecting the setting with the fastest throughput. For 2), we
constrain the MSE of token merging trials to be lower than the second-best model without token
merging. In addition, we allow a maximum increase in MSE of 3% compared to the reference. In
our experiments, we can improve Chronos MSE by up to 9% and speed up inference by 54.76×.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.00 0.02 0.04 0.06 0.08 0.10
Model execution time standardized [s]

0.40

0.45

0.50

0.55

0.60

0.65

M
SE

ETTh1

0.00 0.02 0.04 0.06 0.08 0.10
Model execution time standardized [s]

0.2

0.3

0.4

0.5

M
SE

Electricity

Chronos tiny
Chronos mini
Chronos small
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 3: MSE for different token merging in Chronos models during zero-shot testing on two
datasets. Choosing larger models with token merging is beneficial compared to smaller ones without.

5.4 MERGING PATTERNS

We observe three distinct merging patterns when combining tokens in transformer architectures.

Increasing MSE As the number of merged token increases, the MSE increases almost monotonically
(see figure 3). This behavior can be explained due to a loss of information when combining multiple
tokens and also occurs in the vision domain (Bolya et al., 2023).

0.2 0.4 0.6
Model execution time standardized [ms]

0.65

0.70

0.75

0.80

M
SE

2 Layers
4 Layers
6 Layers
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 4: Transformer models on ETTh1
show constant MSE, independent of the
amount of token merging r.

Constant MSE For the vanilla Transformer on ETTh1
and for FEDformer on ETTh1, Weather, Electricity, and
Traffic, we observe a constant MSE when applying to-
ken merging as shown in figure 4. For the Transformer
model, we find all tokens to be similar after the first
attention block. Thus, token merging does not affect
the model performance. Nevertheless, we find that in
most cases, these models still provide reasonable fore-
casts. In our experiments, transformer models trained
on larger or more complex datasets containing more
variates do not show this behavior. We argue that this
might be a limitation of transformers on small time se-
ries datasets (Zeng et al., 2023; Li et al., 2023). Still,
token merging successfully improves the throughput
while maintaining accuracy for these models.

Decreasing MSE Token merging increases forecast-
ing quality, most prominently in Chronos models as in
figure 3. We explain this behavior in section 5.5.

5.5 WHEN DOES TOKEN MERGING IMPROVE MODEL PERFORMANCE

In our experiments, applying token merging sometimes improves MSE. Our hypothesis is that
averaging similar tokens smoothes the time series, reducing noise and acting as a low-pass filer. To
validate our hypothesis, we low-pass filter the input time series using Gaussian kernels without token
merging in figure 5. On ETTh1 and Traffic, both token merging and Gaussian filtering improve the
MSE. On the Electricity dataset, token merging and Gaussian filtering do not positively impact the
MSE. All of these observations are in line with our hypothesis. Applying token merging together
with the Gaussian kernel leads to the best results. Other averaging kernels were significantly worse.
We show additional results on ETTm1 and Weather in appendix A.4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2
Gaussian filter σ

0.40

0.42

0.44

0.46

0.48
M

SE

ETTh1

0 1 2 3
Gaussian filter σ

0.20

0.25

0.30

0.35

0.40
Electricity

No merging
Gaussian filter
Token merging
Gaussian+merging

0 1 2 3
Gaussian filter σ

0.6

0.7

0.8

0.9
Traffic

Figure 5: Comparison of the effects of low-pass filtering the input time series with a Gaussian filter
and token merging for Chronos small. The Gaussian filter has a similar effect on MSE as token
merging, supporting our hypothesis that token merging selectively low-pass filters data. Besides
improving MSE, token merging accelerates the model unlike the Gaussian filter.

5.6 DEPENDENCIES ON INPUT LENGTH

Token merging effectively reduces the number of tokens in a transformer layer. Here, we explore if
we can achieve similar accelerations while maintaining the same prediction quality by varying the
number of input samples m. For better comparison, we keep the predicted time series snippet fixed
and only vary the input sequence.
Our results demonstrate that varying the input length cannot replace token merging (see also ap-
pendix A.5). In figure 6, we investigate input length dependence for two objectives in more detail:
First, we explore the token merging setup that leads to the best MSE and compare the results to
the model without merging. Here, token merging yields considerable throughput increases while
improving predictive quality at the same time. Secondly, we compare the fastest model with token
merging, which shows no quality decreases, to a standard model. We find models with token merging
to scale favorable to long sequences compared to models without merging.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Model execution time standardized [s]

0.4

0.5

0.6

M
SE

Input 128
Input 256
Input 512
Input 768
No merging

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f t
ok

en
s m

er
ge

d

0 512 1024 1536 2048
Input lenght m

0.0

0.2

0.4

Ti
m

e
[s

]

Fastest execution time

No merging
Token merging
Acceleration

1.2

1.4

1.6

1.8

A
cc

el
er

at
io

n

0 512 1024 1536 2048
Input lenght m

0.45

0.50

0.55

M
SE

Best MSE

Figure 6: Effect of different input lengths on forecasting quality (left) and model execution time
(right) for token merging in Chronos small models on ETTh1.

5.7 REDUNDANCY OF INPUT TOKENS

Token merging exploits similarities in data. Intuitively, the number of tokens that can be merged
without affecting predictive performance should depend on the redundancy of the tokens. We explore
factors influencing the redundancy of input tokens, including their number and positional embeddings.
In the following, we use Autoformer’s time stamp positional embedding for our ablation.
First, we investigate whether scaling the number of input tokens increases average redundancy on the
ETTh1 dataset. As demonstrated in figure 7a, the same relative number of tokens are merged for a
given merging threshold, independent of input length. Therefore, we suggest scaling the number of
merged tokens in each layer r linearly with the input length. Positional embeddings add information
about the location of a token within a sequence. As a result, two identical tokens without positional

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

embeddings may show considerable differences when positional embeddings are included, potentially
preventing merging. However, figure 7a shows that this effect on token merging is only marginal.
It is worth noting that the attention of the transformer acts as a high dimensional low-pass filter,
effectively generating more redundancy throughout the transformer layers, as Marin et al. (2021) show.
Therefore, token merging not only relies on redundancy of the input data but exploits redundancy
that is generated by the transformer itself.

5.8 DYNAMIC MERGING

A fixed merging objective allows for batch processing without needing to pad individual time series to
the same length. However, it enforces a fixed r among independent batch elements, which might not
always be optimal. Determining the number of tokens to be merged dynamically using a similarity
threshold might increase quality as no dissimilar tokens are combined. Here, we leverage the single-
sample case to explore dynamic merging in optimal conditions. From a practical perspective, this
case might be relevant for on-device applications like smartphones or automated driving.
In figure 7b, we compare token merging utilizing a fixed r to dynamic merging varying the cosine
similarity threshold. Dynamic merging improves quality slightly in most settings. Therefore, we
suggest using a fixed merging schedule for batch applications and dynamic merging just for the
single-sample case. There is no equivalent r to dynamic merging schedules as they are similarity-
based and strongly layer-dependent. We report FLOPs as we observe substantial execution overhead
in time measurements.

5.9 TOKEN MERGING IN STATE-SPACE MODELS

Table 3: Comparison of global and lo-
cal token merging for HyenaDNA on
the long sequence Dummy Mouse En-
hancers Ensembl dataset. Best, second.

Token merging Accel. Accuracy

No merging 1.00× 78.9 %
Local mergingfastest 3.62× 74.0 %
Local mergingbest 1.68× 80.6 %
Global mergingfastest 2.93× 69.4 %
Global mergingbest 1.15× 80.2 %

State-space models can process very long sequences with millions
of tokens due to their subquadratic complexity. Our proposed
local merging algorithm is specifically designed to match this
subquadratic complexity, enabling effective token merging in
state-space models. Additionally, it preserves locality and order
as inductive bias for sequence processing.
We compare local and global token merging in Hye-
naDNA (Grešová et al., 2023), for two objectives: the largest
speed up and the best prediction quality. We use a classification
task, where the data consists of long genomic sequences with
16 000 nucleotides each. Our local merging with k = 1 featuring
linear complexity and locality bias outperforms global merging
with k = tl/2 and quadratic complexity. Table 3 illustrates that
local merging achieves substantially larger speed up and better accuracy than global merging. This experiment
indicates that architecture and domain-specific biases are important when applying token merging. Local merging
accelerates HyenaDNA up to 3.62× with a 4.9% decrease in accuracy, whereas global merging substantially
reduces the accuracy by 9.5%. Utilizing less aggressive merging schemes, local merging even boosts accuracy

0 2000 4000 6000
Number of input tokens t

0

1000

2000

3000

N
um

be
r o

f s
im

ila
r t

ok
en

s Merging limit
Raw tokens
+ Pos. embed.

4 5 6 7
Model execution FLOPs 1e10

0.45

0.50

0.55

M
SE

Fixed merging
Dynamic merging

0.87

0.90

0.93

0.96

0.99

Si
m

ila
rit

y
th

re
sh

ol
d

(a) Token redundancy

0 2000 4000 6000
Number of input tokens t

0

1000

2000

3000

N
um

be
r o

f s
im

ila
r t

ok
en

s Merging limit
Raw tokens
+ Pos. embed.

4 5 6 7
Model execution FLOPs 1e10

0.45

0.50

0.55

M
SE

Fixed merging
Dynamic merging

0.87

0.90

0.93

0.96

0.99

Si
m

ila
rit

y
th

re
sh

ol
d

(b) Dynamic merging

Figure 7: (a) Relative number of redundant tokens for different similarity thresholds on ETTh1 with
and without added positional embedding. (b) Comparison of dynamic merging based on a similarity
threshold with fixed r merging in single-sample settings for Chronos small on ETTh1.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

by 1.7% while still accelerating HyenaDNA 1.68×. To the best of our knowledge, this is the first study that
investigates merging individual states in state-space models to improve their sequence modeling performance.

6 CONCLUSION

In this work, we explore token merging in the time series domain for the first time. We conduct an extensive
empirical study on transformer architectures and state-space models in diverse settings using various models and
datasets. We demonstrate that token merging can successfully accelerate pretrained models and sometimes even
improve their prediction quality. We further introduce a domain-specific local merging algorithm with variable
complexity and illustrate its effectiveness on the Hyena model. On the long-range Dummy Mouse Enhancers
Ensembl dataset, this method outperforms traditional token merging approaches in throughput and accuracy.
Additionally, local merging is the first causal token merging scheme, which we successfully demonstrate in
transformer decoders. Finally, we conduct several ablation studies to investigate when token merging is most
effective, including sequence length, positional embedding, and single-sample inference settings.
We hope that token merging will have a positive effect on reducing the resource consumption and environmental
impact of time series models.

Limitations In our work, we divide all tokens into two sets and restrict merging to occur only between tokens
from different sets. Future work can explore more flexible merging schemes for time series-specific architectures.
Moreover, we do not conduct ablations on all possible hyperparameters due to the large number of architectures
and datasets evaluated in this work. Additionally, future work might prioritize past merges or extend locality of
merging to periods of the time series. However, the latter leads to non-causal merging. Besides for the time
series domain, locality and the linear merging complexity might especially be relevant for high resolution images
or videos, which future work can investigate.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Olek-
sandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner,
Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael
Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the language of time series. arXiv:2403.07815,
2024.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. CVPR Workshop on Efficient Deep
Learning for Computer Vision, 2023.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy Hoffman.
Token merging: Your vit but faster. In International Conference on Learning Representations, 2023.

Maxim Bonnaerens and Joni Dambre. Learned thresholds token merging and pruning for vision transformers.
Transactions on Machine Learning Research, 2023.

Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji, Yu Qiao, and
Ping Luo. Diffrate: Differentiable compression rate for efficient vision transformers. In IEEE International
Conference on Computer Vision, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers.
arXiv:1904.10509, 2019.

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan. Triformer:
Triangular, variable-specific attentions for long sequence multivariate time series forecasting–full version.
arXiv:2204.13767, 2022.

Alexander Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys Griffiths,
Alexandre Maravel, Jianye Hao, Jun Wang, Jan Peters, and Haitham Bou Ammar. Hebo: Pushing the limits
of sample-efficient hyperparameter optimisation. In Journal of Artificial Intelligence Research, 2022.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for time-series
forecasting. arXiv:2310.10688, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations, 2021.

Azul Garza and Max Mergenthaler-Canseco. Timegpt-1. arXiv:2310.03589, 2023.

Rakshitha Wathsadini Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. In Neural Information Processing Systems Datasets and
Benchmarks Track, 2021.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sabharwal, and
Ashish Verma. Power-bert: Accelerating bert inference via progressive word-vector elimination. In Interna-
tional Conference on Machine Learning, 2020.

Katarína Grešová, Vlastimil Martinek, David Čechák, Petr Šimeček, and Panagiotis Alexiou. Genomic bench-
marks: a collection of datasets for genomic sequence classification. In BMC Genomic Data, 2023.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot time series
forecasters. In Advances in Neural Information Processing Systems, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv:2312.00752,
2023.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Combining
recurrent, convolutional, and continuous-time models with linear state space layers. In Advances in Neural
Information Processing Systems, 2021.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state spaces.
In International Conference on Learning Representations, 2022.

Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridging the gap
between token pruning and token merging. In IEEE Winter Conference on Applications of Computer Vision,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy L. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick. Segment anything. In IEEE
International Conference on Computer Vision, 2023.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. In Advances in
Neural Information Processing Systems, 2019.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An investigation on
linear mapping. arXiv:2305.10721, 2023.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar. Pyraformer:
Low-complexity pyramidal attention for long-range time series modeling and forecasting. In International
Conference on Learning Representations, 2022a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the
stationarity in time series forecasting. In Advances in Neural Information Processing Systems, 2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. Itransformer:
Inverted transformers are effective for time series forecasting. arXiv:2310.06625, 2023.

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and Oncel Tuzel.
Token pooling in vision transformers. arXiv:2110.03860, 2021.

Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim.
Adavit: Adaptive vision transformers for efficient image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2022.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes, Stefano
Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, Stefano Ermon, Christopher Ré, and Stephen
Baccus. Hyenadna: Long-range genomic sequence modeling at single nucleotide resolution. In Advances in
Neural Information Processing Systems, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers. In International Conference on Learning Representations, 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano
Ermon, and Christopher Re. Hyena hierarchy: Towards larger convolutional language models. In International
Conference on Machine Learning, 2023.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language models.
arXiv:2404.02258, 2024.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian Khorasani,
Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir Hassen, Marin Biloš, Sahil
Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin, Valentina Zantedeschi, Yuriy Nevmy-
vaka, and Irina Rish. Lag-llama: Towards foundation models for probabilistic time series forecasting.
arXiv:2310.08278, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. arXiv:2302.13971,
2023.

Hoai-Chau Tran, Duy M. H. Nguyen, Duy M. Nguyen, Trung-Tin Nguyen, Ngan Le, Pengtao Xie, Daniel
Sonntag, James Y. Zou, Binh T. Nguyen, and Mathias Niepert. Accelerating transformers with spectrum-
preserving token merging, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential smoothing
transformers for time-series forecasting. arXiv:2202.01381, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Unified training
of universal time series forecasting transformers. arXiv:2402.02592, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. In Advances in Neural Information Processing Systems,
2021.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer networks.
In Advances in Neural Information Processing Systems, 2019.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In
AAAI Conference on Artificial Intelligence, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate
time series forecasting. In International Conference on Learning Representations, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer:
Beyond efficient transformer for long sequence time-series forecasting. In AAAI Conference on Artificial
Intelligence, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced
decomposed transformer for long-term series forecasting. In International Conference on Machine Learning,
2022.

Tian Zhou, Peisong Niu, xue wang, Liang Sun, and Rong Jin. One fits all: Power general time series analysis by
pretrained lm. In Advances in Neural Information Processing Systems, 2023.

Ligeng Zhu. Thop: Pytorch-opcounter. https://github.com/Lyken17/pytorch-OpCounter,
2022.

14

https://github.com/Lyken17/pytorch-OpCounter

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

Supplementary material such as derivations, further details and additional results are listed below.

A.1 DERIVATIONS

In the following, we derive our theoretical results in section 3.

Complexity of local merging To compute Sloc for local merging we need to compute the main diagonal
of S ∈ Rtl/2× tl/2 and depending on k also secondary diagonals which are symmetrical but shorter than the
main diagonal for k > 1. We derive the complexity of local merging depending on k in the following:

complexity Sloc =
tl
2
+ 2

k∑
p=2

tl
2
−(p− 1)

=
tl
2
+ 2

k−1∑
p=1

tl
2
− p

=
tl
2
+ 2

(
(k − 1) tl

2
−

k−1∑
p=1

p

)

=
tl
2
+ 2

(
(k − 1) tl

2
− (k − 1)

k

2

)
=

tl
2
+ (k − 1)(tl − k)

Merging speed up bound We roughly estimate the upper bound of the speed up we can achieve by merging
tokens in a L-layer transformer model. Therefore, we only consider attention due to its quadratic scaling with
tl. We disregard additional effects reducing speed up such as merging overhead to estimate the upper bound.
Further, we assume merging half of the tokens in each layer. The attention in the first layer is unaffected by
merging, as we apply token merging between the attention and MLP.

speed up ⩽
L t2

t2 +
(
t
2

)
2 +

(
t
4

)
2 + · · ·+

(
t

2L−2

)
2 +

(
t

2L−1

)
2

=
L∑L−1

p=0

(
1
2p

)2
=

L∑L−1
p=0

(
1
4

)p using geometric series
S∑

s=0

vs =
1− vS+1

1− v
for v ̸= 1

⇒
L
(
1− 1

4

)
1−

(
1
4

)L
= 3L 4L−1 · (4L − 1)−1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 EXPERIMENTS

Here we list additional information concerning our experimental settings and resources.

Datasets We base our experiments on 5 commonly used multivariate time series datasets covering different
forecasting applications: ETTh1 and ETTm1 consist of 7 variates measuring the power load and temperature
of electric transformers in hourly and quarter-hourly granularity (Zhou et al., 2021). Weather consists of 21
meteorological quantities such as air temperature and is recorded every 10 minutes in 2020.1 Electricity measures
the energy demand of 321 consumers every hour (Godahewa et al., 2021). Traffic consists of 862 sensors in the
San Francisco Bay Area measuring the road occupancy hourly (Godahewa et al., 2021). We use the same data
splits for training, validation and test as Wu et al. (2021) for consistency.
Since the Chronos foundation model operates univariately and requires considerable computational resources,
we randomly sample the same 7000 time series from the test set for all Chronos evaluations. For the ETTh1
dataset, we do not observe relevant differences when comparing the results to the full test set.
To explore token merging in an additional sequence-based domain and on a second task, we use the Dummy
Mouse Enhancers Ensembl dataset (Grešová et al., 2023) for classifying genomic data. It contains very long
sequences of nucleotides from a mouse.

Hyperparameter optimization For each transformer architecture, model size, and dataset we train 32 models
without token merging doing hyperparameter tuning of learning rate and dropout using HEBO (Cowen-Rivers
et al., 2022). Here, we apply token merging during inference-time only. We choose the best model based on
its validation MSE. We train 17 models with the found hyperparameters, the minimum possible qtrain, and
different uniformly spaced rtrain until all tokens are merged. We again choose the best model based on the
MSE for further evaluation. We do 185 hyperparameter optimization trials of both chosen models, trained with
and without token merging, using HEBO to find token merging inference hyperparameters rtest and qtest on
the validation set. Please note that r and q might be different for local merging in the encoder and causal local
merging in the decoder. Finally, we evaluate once on the test set to report our results.

Hyperparameters In table 5 we list the most relevant hyperparameters we used for training the transformer
models including the vanilla Transformer, Autoformer, FEDformer, Informer and Non-stationary Transformer.
For training and testing HyenaDNA (Nguyen et al., 2023) and for testing Chronos (Ansari et al., 2024) we used
their default hyperparameters.

Computational effort We estimate the computational effort for reproducing our experiments in table 4. Please
note that we base some of our experiments on model checkpoints acquired in previous experiments.

Table 4: Computational effort to reproduce our experiments.

Experiment Accelerator GPU hours

Token merging in pretrained models A6000 100
V100 6720

Token merging during training A6000 50
V100 3840

Scaling to large models A6000 500
Token merging improves model performance A6000 30
Dependencies on input length A6000 80
Redundancy of input tokens A6000 5
Dynamic merging A6000 140

Token merging in state-space models A6000 40
A100 6

1https://www.bgc-jena.mpg.de/wetter/

16

https://www.bgc-jena.mpg.de/wetter/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameters for training the transformer models.

Hyperparameter Value

Training
Seed 2024
Optimizer Adam (Kingma & Ba, 2015)
Learning rate Search space loguniform[10−6, 10−2]
Learning rate decay Exponential, γ = 0.97
Dropout Search space uniform[0.0, 0.25]
Batch size 32
Epochs 100
Early stopping patience 7
Loss MSE

Model
Input length m = 192
Prediction horizon p = 96
Token dimension d = 512
Encoder layers L ∈ {2, 4, 6, 8, 10}
Decoder layers 1
Attention heads 8
MLP hidden dimension 2048
Activation GELU

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 SCALING TO LARGE MODELS

In this section, we show complete results on applying token merging to Chronos, a time series foundation model.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.40

0.45

0.50

0.55

0.60

0.65
M

SE
Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 8: Token merging in different Chronos models on ETTh1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 9: Token merging in different Chronos models on ETTm1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

M
SE

Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 10: Token merging in different Chronos models on Weather

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 11: Token merging in different Chronos models on Electricity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
SE

Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d
Figure 12: Token merging in different Chronos models on Traffic

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4 WHEN DOES TOKEN MERGING IMPROVE MODEL PERFORMANCE

We find token merging to have a smoothing effect improving MSE and show our results on all datasets here.

0 1 2
Gaussian filter σ

0.40

0.42

0.44

0.46

0.48

M
SE

ETTh1

0 1 2 3
Gaussian filter σ

0.20

0.25

0.30

0.35

0.40
Electricity

No merging
Gaussian filter
Token merging
Gaussian+merging

0 1 2 3
Gaussian filter σ

0.6

0.7

0.8

0.9
Traffic

0 1 2 3
Gaussian filter σ

0.400

0.425

0.450

0.475

M
SE

ETTm1

0 1 2 3
Gaussian filter σ

0.1725

0.1750

0.1775

0.1800

Weather

Figure 13: Comparing token merging to smoothing the input time series of Chronos small on different
datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.5 DEPENDENCIES ON INPUT LENGTH

Here we show an additional evaluation on applying token merging in Chronos models with different input
lengths.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Model execution time standardized [s]

0.4

0.5

0.6

M
SE

Input 128
Input 256
Input 512
Input 768
No merging

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f t
ok

en
s m

er
ge

d

0 512 1024 1536 2048
Input lenght m

0.0

0.2

0.4

Ti
m

e
[s

]

Fastest execution time

No merging
Token merging
Acceleration

1.2

1.4

1.6

1.8

A
cc

el
er

at
io

n

0 512 1024 1536 2048
Input lenght m

0.45

0.50

0.55
M

SE
Best MSE

Figure 14: Varying the input length of Chronos small on ETTh1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.6 TOKEN SIMILARITY MEASURES

Different distance measures can be utilized to determine simliar tokens for merging. Here, we explore the L1

and L2 norm as magnitude aware metrics and the cosine similarity measuring the angualar distance. Our results
show that the cosine similarity outperforms both, the L1 and L2 norm margnially. Bolya et al. (2023) further
ablate the similarity metric for the vision domain.

0.02 0.04 0.06 0.08
Model execution time standardized [s]

0.45

0.50

0.55

M
SE

Cosine similarity
L1 norm
L2 norm

Figure 15: Different token similarity metrics in Chronos small on ETTh1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.7 DATASET PROPERTIES

We find properties of the target dataset that are particularly amenable to token merging. This way we can predict
how well token merging will work on a new dataset and gain more insights in the behavior of token merging
itself. We find that improvement in forecasting quality due to token merging in table 2 correlate with the spectral
entropy of the dataset. Specifically, local merging achieves higher quality gains on high entropy datasets, such
as ETTh1, ETTm1 and Traffic (see table 6). We argue that local merging removes unnecessary information
from complex signals with high entropy using its selective smoothing ability (see section 5.5). This allows
the model to focus on only the relevant patterns of a signal and to achieve better prediction quality. Besides
the spectral entropy, the same correlation is evident in the total harmonic distortion. Local merging adaptively
low-pass-filters noisy distorted signals to condense the most relevant patterns and effectively improves the
signal-to-noise-ratio. The greater noise in ETTh1, ETTm1 and Traffic compared to Weather and Electricity
can also be visually inspected in the respective frequency spectrum figures 16 to 20. Therefore, we expect
larger improvement of prediction quality when applying local merging on high entropy signals with a low
signal-to-noise ratio.

Table 6: Quality improvement due to token merging on datasets with different signal properties.

Dataset MSE∆ Spectral entropy Total harmonic distortion

ETTh1 −6% 4.55 54.93
ETTm1 −4% 4.64 70.23
Weather −1% 1.64 13.15
Electricity 0% 2.24 15.77
Traffic −9% 2.96 19.78

0 500 1000 1500
Frequency

0

100

200

300

400

M
ag

ni
tu

de

Figure 16: Spectrum of ETTh1.

0 2000 4000 6000
Frequency

0

500

1000

1500

M
ag

ni
tu

de

Figure 17: Spectrum of ETTm1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 2000 4000
Frequency

0

500

1000

1500

2000

2500

M
ag

ni
tu

de

Figure 18: Spectrum of Weather.

0 1000 2000 3000
Frequency

0

500

1000

1500

M
ag

ni
tu

de

Figure 19: Spectrum of Electricity.

0 500 1000 1500 2000
Frequency

0

250

500

750

1000

1250

M
ag

ni
tu

de

Figure 20: Spectrum of Traffic.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.8 MODEL PROPERTIES

Across all datasets, we find properties of the model that are particularly amenable to local merging. For this,
we analyze the average cosine similarity of tokens in the models from table 1 after the first transformer layer.
We find that local merging accelerates model such as the Nonstationary Transformer, which learn more similar
token representations, without quality degradations. Models that show quality degradations when applying local
merging like the Informer have learned a dissimilar token representation as table 7 shows.

Table 7: Quality degradation due to token merging of models with different token representations.

Model and dataset MSE∆ Token similarity

Informer 2 Layers Traffic 6% 0.10
Informer 4 Layers Electricity 7% 0.22
Informer 8 Layers ETTh1 9% 0.28
Informer 6 Layers Weather 2% 0.35
Informer 6 Layers ETTm1 −1% 0.40
Nonstationary 10 Layers ETTh1 0% 0.77
Nonstationary 8 Layers ETTh1 0% 0.82
Nonstationary 6 Layers Weather 0% 0.87
Transformer 10 Layers ETTm1 0% 0.99

25

	Introduction
	Related work
	Token merging
	Experiments
	Results
	Token merging in pretrained models
	Token merging during training
	Scaling to large models
	Merging patterns
	When does token merging improve model performance
	Dependencies on input length
	Redundancy of input tokens
	Dynamic merging
	Token merging in state-space models

	Conclusion
	Appendix
	Derivations
	Experiments
	Scaling to large models
	When does token merging improve model performance
	Dependencies on input length
	Token similarity measures
	Dataset properties
	Model properties

