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Abstract
Large language models can exhibit unexpected
behavior in the blink of an eye. In a recent com-
puter use demo, a language model switched from
coding to Googling pictures of Yellowstone, and
these sudden shifts in behavior have also been ob-
served in reasoning patterns and jailbreaks. This
phenomenon is not unique to autoregressive mod-
els: in diffusion models, key features of the final
output are decided in narrow “critical windows”
of the generation process. In this work we de-
velop a simple, unifying theory to explain this
phenomenon. Using the formalism of stochastic
localization for generative models, we show that
it emerges generically as the generation process
localizes to a sub-population of the distribution it
models. While critical windows have been studied
at length in diffusion models, existing theory heav-
ily relies on strong distributional assumptions and
the particulars of Gaussian diffusion. In contrast
to existing work our theory (1) applies to autore-
gressive and diffusion models; (2) makes very
few distributional assumptions; (3) quantitatively
improves previous bounds even when specialized
to diffusions; and (4) requires basic mathematical
tools. Finally, we validate our predictions empir-
ically for LLMs and find that critical windows
often coincide with failures in problem solving
for various math and reasoning benchmarks.

1. Introduction
In large language models (LLMs), undesirable behavior can
often emerge very suddenly. For example,

• Claude transitioned from coding to browsing pictures of
Yellowstone while using a computer (Anthropic, 2024).
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Figure 1. Examples of critical windows for different data modal-
ities and samplers, including reasoning (Abdin et al., 2024; Qi
et al., 2024) and certain jailbreaks (Haize Labs, 2024b) for lan-
guage models and image class for diffusion models (Georgiev
et al., 2023).

• The Phi-4 team reported that the probability of correctly
answering a math problem can plummet with a single
token (Abdin et al., 2024; Lin et al., 2024).

• Gemini abruptly threatened a student who was using it to
study (Gemini, 2024).

• Llama models can be jailbroken by manipulating the first
handful of generated tokens (Qi et al., 2024; Haize Labs,
2024b).

These abrupt shifts are not unique to autoregressive mod-
els. In diffusion models, it has been observed that certain
properties like the presence of an object in the background
or the image class emerge in narrow time intervals, some-
times called critical windows, of the generation process (Ho
et al., 2020; Meng et al., 2022; Choi et al., 2022; Raya &
Ambrogioni, 2023; Georgiev et al., 2023; Sclocchi et al.,
2024; 2025; Biroli et al., 2024; Li & Chen, 2024).

Critical windows, more broadly characterizable as a few
steps of the sampling procedure during which features of
the final output appear, arise in many different generative
models and data modalities (Figure 1). They are extremely
useful from an interpretability perspective as they represent
the steps of the sampler responsible for a given property
of the output (Georgiev et al., 2023; Qi et al., 2024), and
have also been used to provide richer stepwise rewards for
preference optimization and finetuning (Abdin et al., 2024;
Lin et al., 2024; Qi et al., 2024). As the applications of gen-
erative models proliferate, it is crucial from interpretability,
safety, and capability perspectives to understand how and
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why these critical windows emerge.

Recently, this phenomenon has received significant attention
within the theoretical literature on diffusion models (Raya &
Ambrogioni, 2023; Sclocchi et al., 2024; 2025; Biroli et al.,
2024; Li & Chen, 2024). While existing works do offer pre-
dictive theory in the diffusions setting, they either (A) make
strong distributional assumptions or (B) rely heavily on
the particulars of diffusion, which do not straightforwardly
extend to autoregressive models.

Works in the former category carry out non-rigorous statis-
tical physics calculations tailored to specific toy models of
data like mixtures of Gaussians or context-free grammars
with random production rules (Sclocchi et al., 2025; 2024;
Biroli et al., 2024; Raya & Ambrogioni, 2023). Works in the
latter category derive rigorous bounds in settings without
explicit parametric structure, e.g. mixtures of strongly log-
concave distributions (Li & Chen, 2024), but they rely on
tools like Girsanov’s theorem which are specific to Gaussian
diffusion. Additionally, the bounds in the latter are generally
cruder, losing dimension-dependent factors. We ask:

Is there a simple, general theory that can explain critical
windows across all generative modeling paradigms and

data modalities?

1.1. Our contributions

In this work, we develop a simple theoretical framework
that characterizes critical windows in both diffusion models
and autoregressive models. Our theory is fully rigorous
and show that such windows arise generically when the
model localizes from a larger sub-population to a smaller
one, distilling the phenomenon of critical windows to very
general facts about the data distribution. In particular, we
show that the critical window is parameterized by the last
step of the generative model at which the larger and smaller
sub-populations are indistinguishable and the first step of
the generative model at which that smaller and larger sub-
populations have negligible overlap between each other. We
will formalize these notions in Section 3.

The key insight of our theory is to apply to the formalism of
stochastic localization samplers (see Section 2.1 for a for-
mal description) to understand critical windows (Montanari,
2023b; Chen & Eldan, 2022). Roughly speaking, a stochas-
tic localization scheme is any generative model given by
a time-reversal of a Markovian degradation process which
takes a sample from the target distribution and generates
progressively less informative “observations” of it. In diffu-
sion models, the degradation is a convolution of the original
sample with larger and larger amounts of Gaussian noise.
In autoregressive models, the degradation is the masking
of entries from right to left. Importantly, our theory does
not use anything about the specific structure of the sampler

beyond the Markovianity of the observation process. Below
we highlight our main contributions:

1. Generality: In comparison to existing work, our theory
(Theorem 3.1) makes very few distributional assump-
tions and requires no statistical physics or stochastic
calculus machinery, relying only on simple mathemat-
ical tools. The simplicity and generality of our theory
yield concrete improvements to rigorously characterizing
the location of critical windows for well-studied models
of data. For example, in contrast to (Li & Chen, 2024),
who could only identify an analogue to Theorem 3.1
with bounds that grow at a polynomial factor with di-
mension, our improved theory allows us to obviate this
dimensional dependence and replace it with a constant.

2. Diverse instantiations: Another blessing of the gener-
ality of our framework is that we can characterize the
location of critical windows for many different models of
data and generative models, while previous works were
restricted to one particular form of data or model. To
illustrate the flexibility of our bounds, we explicitly com-
pute the locations and widths of these windows for dif-
ferent generative models and data modalities (Section 4).
One such example we provide elucidates a new connec-
tion between critical windows for in-context learning and
the all-or-nothing phenomenon in statistical inference.

3. Insights into hierarchical data: We instantiate our
bounds for hierarchically structured models of data, sig-
nificantly generalizing results of (Li & Chen, 2024)
which only applied to diffusions and Gaussian mixtures
(Section 5). This allows us to show that the hierarchy
for a generative model may resemble the hierarchy of
the true data generating process if both come from the
same kind of sampler, but in general may differ. We also
use our theory to argue that autoregressive models can
support deeper hierarchies than diffusion models.

4. Experimental results: Finally, we show that our the-
ory makes accurate predictions for the location of crit-
ical windows for LLMs in a toy synthetic setting. We
also empirically demonstrate critical windows for gener-
ations from LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct,
and Qwen-2.5-7B-Instruct on 7 different math and rea-
soning benchmarks. Concurrently with (Abdin et al.,
2024; Lin et al., 2024), we observe that critical windows
occur during important mistakes in the reasoning patterns
of LLMs. 1

Our theory provides valuable insights for practitioners. For
instance, in Example 4.3 we provide a model for critical win-
dows in jailbreaks and the Yellowstone example (Anthropic,
2024; Qi et al., 2024), and argue that training on correc-

1The code to reproduce the experiments can be found
at https://github.com/marvinli-harvard/
critical-windows-lm.
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tions from critical windows can enable models to recover
from these ‘bad’ modes of behavior. This provides rigorous
theoretical justification for (Qi et al., 2024)’s approach for
deepening safety alignment through finetuning.

1.2. Related work

We briefly overview some related work here and defer our
discussion of other relevant literature to Appendix A.

Theory of critical windows in diffusion. Several recent
works have studied critical windows in the context of diffu-
sion models, using either statistical physics methods (Raya
& Ambrogioni, 2023; Sclocchi et al., 2024; 2025; Biroli
et al., 2024) or Girsanov’s theorem (Li & Chen, 2024). The
statistical physics papers assume an explicit functional form
for the data and use accurate and non-rigorous statistical
physics methods to compute critical windows. For instance,
(Biroli et al., 2024) computes the critical time at which the
reverse process specializes to one component for a mixture
of two spherical Gaussians using a Landau-type perturba-
tive calculation, and (Sclocchi et al., 2025; 2024) passed
through a mean-field approximation to compute the critical
windows for a random hierarchy model (Petrini et al., 2023),
a multi-level context-free grammar with random production
rules. Our work is most similar to (Li & Chen, 2024), which
derives rigorous, non-asymptotic bounds analogous to our
Theorem 3.1 for mixtures of log-concave distributions with
Girsanov’s theorem (Chen et al., 2023).

In contrast to existing work, our theory applies to all
localization-based samplers, including diffusion and autore-
gressive language models, and imposes no functional form
or log-concavity assumptions on the distribution. We also
improve upon the main theorem of (Li & Chen, 2024) by
obtaining dimension-independent error bounds. Using our
improved theorem, we can extend the definition of hier-
archy of critical windows from (Li & Chen, 2024) to all
localization-based samplers and, for continuous diffusions,
to distributions beyond mixtures of Gaussians.

Forward-reverse experiment. Here we study critical win-
dows with the forward-reverse experiment, where we noise
and denoise samples with a given attribute to understand
critical windows. This was also explored in (Li & Chen,
2024; Sclocchi et al., 2025; 2024). This approach is very
similar to the framework in which one imagines re-running
the reverse process at an intermediate point Yt (Georgiev
et al., 2023; Biroli et al., 2024; Raya & Ambrogioni, 2023).
Both perspectives provide rigorous frameworks to under-
stand critical windows, and in the case where the forward
process is deterministic, i.e. autoregressive language mod-
els, these frameworks are equivalent.

Stochastic localization. (El Alaoui et al., 2022; Monta-
nari & Wu, 2023; Alaoui et al., 2023; Montanari, 2023a;
Huang et al., 2024) applied Eldan’s stochastic localization
method (Eldan, 2013; 2020) to develop new sampling algo-
rithms for distributions inspired by statistical physics. Our
work applies the stochastic localization framework (Mon-
tanari, 2023b) to understand an empirical phenomenon ap-
pearing among different localization-based samplers widely
used in practice.

2. Technical preliminaries
Probability notation. Given distributions P,Q defined on
(Ω,F) with a base measure µ, the total variation distance
is defined as TV(P,Q) ≜ 1

2

∫
|dP − dQ|dµ. For random

variables X,Y , we will also use TV(X,Y ) as shorthand to
denote the TV of the measures of X,Y . Let supp(P ) =
{x ∈ Ω|dP (x) > 0} denote the support. We will also use
the following well-known relationship.

Lemma 2.1. For probability measures P,Q,

Ex∼P

[
dQ

dP+dQ

]
≤ 1

2

√
1− TV2(P,Q).

To study critical windows in diffusion and autoregressive
models, we consider a forward-reverse experiment. A
forward-reverse experiment considers the amount of “noise”
one would need to add to a generation so that running the
generative model starting from the noised generation would
still yield a sample with the same feature. For a diffusion
model, this could mean taking an image of a cat, adding
Gaussian noise, and resampling to see if the result is still a
cat. For a language model, it could mean truncating a story
about a cat and resampling to check if the story remains
about a cat. Now, we will use the language of stochastic lo-
calization to place these analogous experiments for diffusion
and language models within the same framework.

2.1. Stochastic localization samplers

We formally define the framework for stochastic localiza-
tion samplers, following (Montanari, 2023b). Let X ∼ p
be a random variable over Rd.2 We consider a sequence
of random variables (Yt)t∈I with a compact index set
I ⊂ [0,∞)

⋃
{∞}. As t increases, Yt becomes less infor-

mative and degrades the original information about X (Defi-
nition 2.2). As in (Montanari, 2023b), we will only consider
complete observation processes, where information about
the path (Yt)t∈I uniquely identifies X: for any measurable
set A ⊂ Rn, we require P (X ∈ A|(Yt)t∈I) ∈ {0, 1}. For
the sake of simplicity, we will assume 0,∞ ∈ I and Y∞ is
totally uninformative about X .

Definition 2.2. (Yt)t∈I is an observation process with

2These definitions are easily carried over to the setting where
X lives in a discrete space.
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respect to X if for any positive integer k and sequence
t1 < t2 < · · · < tk ∈ I, the sequence X → Yt1 → Yt2 →
· · · → Ytk forms a Markov chain.

Because X → Yt1 → · · · → Ytk is a Markov chain, its
reverse Ytk → · · · → Yt1 → X is also a Markov chain.
To any such observation process one can thus associate a
generative model as follows:

Definition 2.3. Given observation process (Yt)t∈I and times
t1 < · · · < tm = ∞ in I, the associated stochastic localiza-
tion sampler is the algorithm that generates a sample for X
by first sampling Ytm and then, for k = m−1,m−2, . . . , 0,
sampling from the posterior on Ytk conditioned on Ytk+1

by taking one step in the reverse Markov chain above, and
finally sampling X conditioned on Yt0 .

In Appendix B, we formally verify that diffusion and au-
toregressive models are special cases of this framework. In
practice, one does not have access to the true posteriors of
the data distribution and must learn approximations to the
posterior from data. This issue of learning the true distribu-
tion is orthogonal to our work, and thus we define X ∼ p
to be the sampler’s distribution. Furthermore, it is more
natural to study the sampler’s distribution for applications
such as interpretability or jailbreaks.

Features, mixtures, and sub-mixtures. To capture the
notion of a feature of the generation, we assume that the dis-
tribution X ∼ p is a mixture model. Consider a discrete set
Θ = {θ1, . . . , θK} with non-negative weights w1, . . . , wK

summing to 1. Each θi ∈ Θ is associated with a probability
density function pθi : Rn → R≥0. To generate a sample
X ∼ p, we first draw θ ∼ Cat(Θ, {wi}Ki=1) and return
X ∼ pθ. This yields an overall density of p ≜

∑
θ∈Θ wθp

θ.
For any non-empty S ⊂ Θ, we also define the sub-mixture
pS by pS ≜

∑
θ∈S

wθ∑
ϕ∈S wϕ

pθ.

Remark 2.4. Note that the definition of Θ is extremely
flexible and can be tailored to the particular data modality
or task. For example, Θ could be {cat,dog} for image
diffusion models; {right,wrong} for math and reasoning
tasks; {unsafe, safe} for jailbreaks. The ability to attach
these labels and partition into subpopulations is broadly
applicable to the datasets, which we also make use of in our
experiments.

Here we study a family of observation processes correspond-
ing to observation processes for different initial distributions
of X ∼ pS for S ⊂ Θ. To ensure that we can meaning-
fully compare the observation processes within this family,
we will assume that the degradation procedure is fixed. To
formalize this intuition, we borrow the language from diffu-
sion models of a forward process, which degrades X , and a
reverse process, which takes a degraded Yt and produces X .

2.2. Forward-reverse experiment

Now we describe the general formalism under which we will
study critical windows. Fixing some t ∈ I and S ⊂ Θ, we
start with some X ∼ pS , sample Yt|X from the observation
process conditioning on X , and finally take X ′|Yt from the
stochastic localization sampler conditioning on Yt. This can
be understood as a generalization of the forward-reverse
experiment in diffusions, originally studied in (Sclocchi
et al., 2025; 2024; Li & Chen, 2024), to arbitrary stochastic
localization samplers.

Forward process. For any t ∈ I, define the forward
Markov transition kernel P→t (A|X) = P (Yt ∈ A|X). Note
the forward Markov transition kernel does not depend on
the distribution of X . The fact that the forward process is
agnostic to the specifics of the original distribution is shared
by the most widely used stochastic localization samplers.
For example, in diffusion and flow-matching models, the
forward transition is a convolution of X with a Gaussian;
in autoregressive language models, it is masking of the last
remaining token in the sequence.

For any t ∈ I and S ⊂ Θ, we let pSt denote the law of
Y S
t , where we sample XS ∼ pS and then sample Y S

t ∼
P→t (·|XS). We omit the Θ in pΘt .

Reverse process. For any t ∈ I and initial distribu-
tion X ∼ p, we define the posterior of X given Yt by
P←(A|Yt) = PX∼p(X ∈ A|Yt), that is, the distribution of
X given by starting the sampling process at t ∈ I and Yt

instead of ∞ and Y∞. We will also use this notation for the
probability density.

Now, we are ready to describe the main forward-reverse
experiment that we will study throughout the paper.
Definition 2.5 (Forward-reverse experiment (Sclocchi et al.,
2025; 2024; Li & Chen, 2024)). For nonempty S ⊂ Θ and
T̂ ∈ I, let pS,T̂ be the distribution of XS,T̂ defined by the
following procedure:3

1. Sample Y S
T̂

∼ pS
T̂

— i.e. run the forward process for

time T̂ starting at the sub-mixture pS .

2. Sample XS,T̂ ∼ P←(·|Y S
T̂
) — i.e. run the reverse pro-

cess starting at Y S
T̂

to sample from the posterior on X .

We emphasize that in the second step, we run the reverse
process with the prior on X given by the entire distribution
p rather than the sub-mixture pS . If we did the latter, the
marginal distribution of the result would simply be pS . In-
stead, the marginal distribution of XS,T̂ is some distribution
whose relation to p and sub-mixtures thereof is a priori
unclear. Intuitively, as T̂ → 0, this distribution converges

3Note that this equips 2Θ with the structure of a poset, i.e.
A ⊂ B if and only if there exists some t ∈ I such that running the
forward-reverse experiment up to t from pA yields pB .
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to pS , and as T̂ → ∞, this distribution converges to p. The
essence of our work is to understand the transition between
these two regimes as one varies T̂ .

2.2.1. INSTANTIATION FOR LANGUAGE MODELS

Consider an autoregressive language model, which produces
stories of cats or dogs. We have a discrete set of tokens A
and X ∈ AT representing length-T sequences. Letting
I = {0, 1, 2 . . . , T}, the observation process is defined with
Yi ∈ AT−i, Y0 ≜ X , and Yi being the first T − i elements
of Yi−1 for i = 1, . . . , T . It is easy to see that this is
Markovian and the samples become less informative about
the original X as t → ∞.

For the stochastic localization sampler, the posterior Yt|Yt+1

for adjacent t, t + 1 ∈ I is the conditional distribution of
T − t-length sequences given a prefix of length T − (t+1),
exactly the task of next-token prediction.

Now apply the forward-reverse experiment to a story of a
cat. In this case, this means masking the last T̂ tokens of a
sample and then resampling with the same model. If T̂ is
small, the story will likely still mention a cat and resampling
will yield a story about a cat. If T̂ is large, then the first
appearance of cat may be truncated, so resampling could
produce a story about a dog as well.

3. Characterization of critical windows
For expositional clarity, we will introduce our theory along
with a toy setting to provide some useful intuition: consider
an image diffusion model that outputs pictures of orange
cats, brown cats, and dogs and a hypothetical critical win-
dow in which we transition from sampling from both cats
and dogs to cats with certainty (Figure 2). In this case,
the critical window simply refers to the dramatic increase
in the probability of sampling a cat between time interval
[TC

after, T
C
before]. Note that the intuition heretofore will apply

to all localization-based samplers with a forward and reverse
process indexed by a time t ∈ R+.

Importantly, the critical window is situated between and in
some sense defined by the two intervals which surround it:
the left interval indicates that we have committed to only
sampling from the distribution of cats indexed by Safter and
have a high probability of producing a cat as the final image,
and the right interval, indexed by Sbefore, indicates we can
sample images of cats or dogs. Thus critical windows simply
represent the speciation from sampling from a larger sub-
population of the distribution given by Sbefore to a smaller
sub-population given by Safter. In other words, we want
to understand at what interval t ∈ [B1, B2] is some feature
(herein the feature of being a cat or dog) determined by the
diffusion process and then at what interval t ∈ [A1, A2]
the more specific version of the feature (herein the feature

T

P (is cat)
TC
after TC

before

Cats critical window Cats and dogs

Figure 2. Illustration of a critical window for a cat feature with an
image diffusion model.

of being a cat) is determined by the diffusion, yielding the
critical window as the transition period [A2, B1] in which
we specialize to the more specific version of the feature. We
can characterize both of these intervals [A1, A2], [B1, B2]
via the forward-reverse experiment.

More generally, let Sinit ⊂ Θ denote some sub-mixture,
corresponding to a sub-population of p that possesses a
certain property. Let Starg ⊃ Sinit denote some sub-mixture
containing Sinit. For instance, Starg might correspond to all
possible responses to the math question, including incorrect
ones. We are interested in the following question: if we
run the forward-reverse experiment for time T̂ starting from
pSinit , is there some range of times for which the resulting
distribution is close to pStarg? That is, can we characterize
the T̂ for which

TV(pSinit,T̂ , pStarg)

is small?

Suppose one could prove that the range of T̂ for which this
is the case is some interval [T0, T1]. This would mean that if
the stochastic localization sampler runs for time T and ends
up at a sample from pSinit , then from time T − T1 to time
T − T0 of the generation process, the sampler has not yet
localized the features that distinguish pSinit from the larger
sub-mixture pStarg . However, the sampler has localized the
features that distinguish pStarg from pΘ−Starg . When there
is a shift from localizing the features Starg to the features
Sinit, we say there is a critical window. We now formally
state and prove our main result.

3.1. Main result

We will parameterize the interval by the total variation dis-
tance between sub-mixtures Sinit and Starg along the for-
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ward process. For an error parameter 0 < ϵ < 1, define

TS
st(ϵ) ∈ sup{t ∈ I : TV(p

Starg

t , p
Θ−Starg

t ) ≥ 1− ϵ2 }

TS
end(ϵ) ∈ inf{t ∈ I : TV(pSinit

t , p
Starg

t ) ≤ ϵ} .4

When the value of ϵ is understood, we abbreviate the above
with TS

st and TS
end. Our main result is that in T̂ ∈ I ∩

[TS
end, T

S
st ], the distance TV(pSinit,T̂ , pStarg) is small:

Theorem 3.1. Let Sinit ⊂ Starg ⊂ Θ and W =∑
θ∈Θ−Starg

wθ∑
θ∈Starg

wθ
. For ϵ > 0, if T̂ ∈ I ∩ [TS

end, T
S
st ], then

TV(pSinit,T̂ , pStarg) ≤ ϵ ·
(
1 + max (1,W ) /

√
2
)
.

Intuitively, TS
st represents the largest t for which there is still

separation between Starg and Θ − Starg, and TS
end repre-

sents the smallest t for which samples from Sinit, Starg are
indistinguishable. Thus, running it for T̂ ∈ I ∩ [TS

end, T
S
st ]

erases the differences between samples from Sinit and Starg

but preserves the difference between Starg and Θ− Starg,
yielding samples looking like pStarg .

Figure 3. Intuition with the forward-reverse experi-
ment with Sinit = {orange cat} and Starg =
{orange cat,brown cat}. In the low-noise regime,
the forward-reverse experiment does not modify the image
non-trivially, meaning we still sample from Sinit; in the high-noise
regime, the forward-reverse experiment destroys all information in
the image and thus could yield a dog, lying outside of Starg. Thus
there is a ”sweet spot” where the differences between orange and
brown cats collapse but those between cats and dogs persist.

A priori it is not clear why TS
end should be smaller than TS

st ,
and indeed in general it need not be and our bound would be
vacuous. In Section 4 however, we show that in many natural
settings for diffusion models and autoregressive models, the
relation does hold.
Remark 3.2. Note a similar bound was shown in the context
of diffusions by Li & Chen (2024) (see Theorem 7 therein).
Our result is a strict improvement of that bound along sev-
eral important axes. First, our results apply to all stochastic

localization samplers, not just diffusions. Secondly, Li &
Chen (2024) needed to assume that the components of p
were strongly log-concave and that the score, i.e. gradient of
the log-density, of pt was Lipschitz and moment-bounded
for all t. Thirdly, their final bound includes a polynomial
dependence on the moments of the score, which scale with
the dimension d; in contrast, our final bound is independent
of d.

With Theorem 3.1 in place, we are ready to formally define
critical windows. These capture the moments where we
transition from sampling from a sub-mixture to a subset of
that sub-mixture.
Definition 3.3. Define Safter ⊂ Sbefore ⊂ Θ. For Sbefore,
we define TC

before = inf{t ∈ I : TV(pSafter
t , pSbefore

t ) ≤
ϵ and TV(pSbefore

t , pΘ−Sbefore
t ) ≥ 1 − ϵ2} (Sinit ≜

Safter;Starg ≜ Sbefore). For Safter, consider TC
after =

sup{t ∈ I : TV(pSafter
t , pΘ−Safter

t ) ≥ 1 − ϵ2}
(Sinit, Starg ≜ Safter). A critical window is the interval
[TC

after, T
C
before], where there is a transition from sampling

from Sbefore to the smaller subset Safter.

Finally, note that this definition does not directly explain
why or when a critical window is sharp, which depends on
the properties of the model of the data and forward process.
In Section 4, we analytically compute critical windows in
different toy settings and demonstrate that they are sharp in a
natural sense. These examples also provide general intuition
where critical windows are sharp, i.e. for autoregressive
LLMs, critical windows may occur when a few tokens are
very unlikely under one mode than other in Example 4.3. In
general, we intuit that sharp critical windows occur when it
only takes a few steps from the forward process to erase the
differences between Sbefore and Safter. This could happen
if the data has a multi-scale hierarchical structure, where a
feature is decided in a narrow intermediate band of the tree
(Section 5).

We finally define some helpful notation for our proof. For
nonempty S ⊂ Θ and t ∈ I, we define P←(·|Yt, S) to be
the posterior of X with the prior X ∼ pS . We similarly
define P←t→Θ(·|Yt) and P←t→Θ(·|Yt, S) to be the posterior of
θ conditioning on Yt with X ∼ p or X ∼ pS , respectively.
When S = {i}, we exclude the braces.

3.2. Proof outline

Crucially, our proof relies in several places on the Markov
property of stochastic localization samplers, together with
the data processing inequality.

Proof of Theorem 3.1. By the triangle inequal-
ity, we can write TV(pSinit,T̂ , pStarg) ≤
TV(pSinit,T̂ , pStarg,T̂ )︸ ︷︷ ︸

(I)

+TV(pStarg,T̂ , pStarg)︸ ︷︷ ︸
(II)

. pSinit,T̂

6
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and pStarg,T̂ are the laws of the posterior P←(·|·)
but applied to YT̂ with distributions pSinit

T̂
and p

Starg

T̂
.

Using the Markov property of localization-based sam-
plers (Definition 2.2), we apply the data processing
inequality and the definition of TS

end to bound (I) via
TV(pSinit,T̂ , pStarg,T̂ ) ≤ TV(pSinit

TS
end

, p
Starg

TS
end

) ≤ ϵ.

To bound (II), we apply the definition of TV and a
coupling argument. By the law of total probability we
can express pStarg,T̂ (x) = E[P←(x|YT̂ )] and pStarg(x) =

E[P←(x|YT̂ , Starg)] for YT̂ ∼ p
Starg

T̂
, as these observation

processes have the same distribution at index T̂ . Thus,
TV(pStarg,T̂ , pStarg) = 1

2

∫ ∣∣∣pStarg,T̂ (x)− pStarg(x)
∣∣∣ dx =

1
2

∫ ∣∣E[P←(x|YT̂ )]− E[P←(x|YT̂ , Starg)]
∣∣ dx. By

Jensen’s inequality and Fubini’s theorem, we bring
the expectation outside the integral, TV(pStarg,T̂ , pStarg) ≤
1
2

∫
E
[∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)

∣∣] dx =
1
2E
[∫ ∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)

∣∣ dx] .
Combining Lemmas C.2 and C.3 (proved in
Appendix C), we find TV(pStarg,T̂ , pStarg) ≤

max (1,W )E
[

p
Θ−Starg

T̂
(YT̂ )

p
Θ−Starg

T̂
(YT̂ )+p

Starg

T̂
(YT̂ )

]
. Then, finally

applying Lemma 2.1, we are able to bound the total vari-
ation in terms of ϵ, obtaining TV(pStarg,T̂ , pStarg) ≤
1
2 max (1,W )

√
1− TV2(p

Θ−Starg

T̂
, p

Starg

T̂
) ≤

√
2
2 max (1,W ) ϵ. Combining our bounds on (I) and

(II) achieves the desired result.

4. Examples of critical windows
In this section, we analytically compute TC

before, T
C
after for

diverse stochastic localization samplers and models of data,
including diffusion and autoregression processes. In these
natural settings, the critical window is small in the sense of
having a size which shrinks or does not depend on the dimen-
sion or context length. We shall also connect our framework
to in-context learning and the all-or-nothing phenomenon. 5

4.1. Diffusion

We first consider two examples of Gaussian Mixture Models
and a diffusion model. We show that with two isotropic
Gaussians, the critical window appears around a single point,
ln ∥µ∥, with width independent of the dimension.

Example 4.1. [Two Isotropic Gaussians] Let Θ = {±1},
p+1 = N (µ, Id), p−1 = N (−µ, Id). Then, we have
a critical window transitioning from sampling from both
components to the component +1 between TC

before =
ln ∥µ∥+ln 2+ln 1/ϵ and TC

after = ln ∥µ∥−ln ln 1
2ϵ2 . When

5Proofs are deferred to Appendix D.

T̂ ≤ TC
after, then TV(p+1,T̂ , p+1) ≲ ϵ. When T̂ ≥ TC

before,
TV(p+1,T̂ , p) ≲ ϵ.

For an isotropic Gaussian mixture model with randomly
selected means, the critical window between sampling from
one component to the entire mixture is also narrow. Note
that we derive dimension-free widths in Example 4.2, an
improvement over (Li & Chen, 2024) who had a ln ln d
dependence on dimension for isotropic Gaussians.
Example 4.2. [Random mean spherical Gaussians] We
first sample µi ∼ N (0, Id) for i ∈ [K] i.i.d. and let
Θ = {N (µi, Id)}i∈[K]. We let Sbefore = Θ and Safter =
{µ1}. Then, we can compute TC

before = maxj∈[K] ln ∥µi −
µj∥ + ln(1/ϵ) and TC

after = minj∈[K],i̸=j ln ∥µi − µj∥ −
1
2 ln 8 ln

K
ϵ . Furthermore, with high probability over the se-

lection of the means, TC
before−TC

after = OK,ϵ(1) as d → ∞.

Example D.5 of a discrete diffusion model, where TC
before −

TC
after → 0, is deferred to Appendix D.5.

4.2. Autoregression

We first present a theoretical model for important critical
windows in LLMs, e.g., jailbreaks that occur over the first
few tokens in the generation and the Yellowstone exam-
ple (Anthropic, 2024; Qi et al., 2024).
Example 4.3. [“Critical Tokens” for Jailbreaks and Yel-
lowstone (Qi et al., 2024; Anthropic, 2024)] Again con-
sider an autoregressive language model, with A denot-
ing the vocabulary, p ∈ AT , a forward process in-
dexed by I = {0, 1, 2, . . . , T}, and Yt to be the first
T − t tokens of X . Let Θ = {θharmful, θsafe} (or
{θGoogling Yellowstone, θcoding}). We assume that these two
modes do not differ until some T − T ′ ∈ I. Between
T − T ′ and T − T ′ − k, the distributions become nearly
disjoint, P

x∼pθharmful
T−T ′−k

(
x ∈ supp(pθsafe

T−T ′−k)
)

≤ ϵ. In the

jailbreaking example, T ′ = 0 and they are disjoint because
the first tokens generated in the safe mode is always some
form of refusal. In the Yellowstone example, they are dis-
joint the first time the agent decides to Google Yellowstone
pictures. Then, on component θharmful we have the critical
window TC

before = T − T ′ and TC
after = T − T ′ − k.

This prediction that the critical windows are narrow in these
settings is verified by experiments from (Haize Labs, 2024b;
Qi et al., 2024), which show that one consequently ob-
serves critical windows for jailbreaks. Moreover, notice
that one can actually mitigate the effect of these critical
windows by finetuning on examples of corrections to in-
crease P

x∼pθharmful
T−T ′−k

(
x ∈ supp(pθsafe

T−T ′−k)
)

. This explains

the effectiveness of finetuning on corrections in (Qi et al.,
2024).
Remark 4.4. The quantity that measures probability of
mode-switching, pθharmful/p, suggests using a likelihood ra-
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tio to distinguish between harmful and benign prompts. In
App. F.2, we test a class of likelihood ratio methods that
obtain recall 5-10× the false positive rate for 5 different
types of jailbreaks (Table 2).

We defer critical window for a stylized model of solving a
math problem as a random walk (Example D.6) and a critical
window for an autoregressive model which expresses the
outputs as emissions from a random walk of an underlying
concept variable, akin to the model in (Arora et al., 2019),
to Appendix D.2.

4.2.1. IN-CONTEXT LEARNING

Autoregressive critical windows can also be applied to de-
scribe in-context learning. In particular, we can capture the
idea that with sufficiently many in-context examples, we
learn the θ∗ ∈ Θ that generated the transitions for in-context
examples, with a sample complexity in terms of TC

after.

Example 4.5 (Informal, see Example D.16). Con-
sider an in-context learning setup, where the context
[x1, y1, o, . . . , xT+1, yT+1, o] consists of question-answer
pairs (xi, yi), delimiters o, and xi → yi sampled from
pθ
∗

for some θ∗ ∈ Θ. In the forward-reverse experi-
ment, we truncate it to [x1, y1, o, . . . , xT+1], and then re-
sample with p to produce [x1, . . . , xT+1, ỹT+1, o]. The total
variation between the sequences [x1, y1, o, . . . , xT+1] and
[x1, . . . , xT+1, ỹT+1, o] can be viewed as the average-case
error of the in-context learner and can be bounded within
our critical windows framework. We have TC

after = 3T +
3 − Oϵ(1), with Oϵ(1) independent of T (Safter ≜ {θ∗}).
Note that TC

after is the order of how many samples that can
be erased so that we still are able to learn θ∗ ∈ Θ.

One might ask if there is a TC
before for in-context learning, a

threshold such that it is impossible to distinguish between
Safter, Sbefore with that many samples. In Appendix D.4, we
will provide an example of a TC

before with the all-or-nothing
phase transition from statistical inference.

5. Hierarchies in stochastic localization
samplers

Thus far we have largely focused on a specific critical win-
dow, which would correspond to the formation of specific
feature in the generated output. In some cases (Figure 8),
there could be a sequence of critical windows, motivating a
theory of hierarchical sampling within our critical windows
framework.6 This is naturally represented as a tree, where
the vertices correspond to the cluster at some resolution of
the forward process, the root is the entire data distribution,
and the leaves are raw components of the distribution. A
path from the root to a leaf captures the progressive refine-

6Details in Appendix E.

ment of the original distribution p into increasingly specific
components. To formalize this, we introduce the concept of
an ϵ-mixture tree, which decomposes p into a hierarchical
structure.

Definition 5.1 (Informal, see Definition E.1). For an error
term ϵ > 0 and mixture model p, an ϵ-mixture tree is a tuple
(T, {P→(·|·)}, I,Θ, {pθ}θ∈Θ,Subset,NoiseAmount). T =
(V,E) is a tree associated with a function Subset: V →
2Θ\{∅}, which maps vertices to subsets of Θ and
NoiseAmount: V → R≥0, which characterizes the
noises levels for different aggregations in the mixture
tree. If u is a parent of v, Subset(v) ⊂ Subset(u)
for u ∈ V ; NoiseAmount(u) is defined such that all
pθNoiseAmount(u) for θ ∈ Subset(u) overlap greatly and for

p
Subset(u)
NoiseAmount(u), p

Θ−Subset(u)
NoiseAmount(u) have negligible overlap.

{orange cat, brown cat, dog}

{orange cat, brown cat}

{orange cat} {brown cat}

{dog}

Figure 4. Example of an ϵ-mixture tree for a diffusion model that
produces images of orange cats, brown cats, and dogs.

We emphasize that this framework is highly general, solely
defined with the initial distribution p and the forward pro-
cess. It strictly expands the definition in (Li & Chen, 2024),
which focused on hierarchies of isotropic Gaussians, to all
localization-based samplers and mixture models. We can
also relate it to the sequences of critical windows we observe
in Figure 8, capturing the idea that each critical window rep-
resents the refinement into smaller subpopulations of p.

Corollary 5.2. Consider an ϵ-mixture tree. For θi ∈ Θ,
consider the path u1, u2, u3, . . . , uH′ ∈ V where u1 is
the leaf node with θi ∈ Subset(u1) and uH′ is the root.
There is a sequence of times T1 < T2 < · · · < TH′ with
TV(p{i},Tℓ , pSubset(uℓ)) ≲w ϵ.

We first observe that the hierarchy of two samplers with the
same forward process are identical if the samplers agree on
sub-populations. Assume we have {pθ}θ∈Θ (e.g. the true
distribution) and {qθ}θ∈Θ (e.g. a generative model), where
qθ ≈ pθ across all θ ∈ Θ with the same {wθ}θ∈Θ.

Corollary 5.3. Consider an ϵ-mixture tree
(T, {P→(·|·)}, I,Θ, {pθ}θ∈Θ, Subset,NoiseAmount).
Suppose we have another distribution {qθ}θ∈Θ
such that TV(pθ, qθ) ≤ δ/2 for all θ ∈ Θ.
Then we have ϵ +

√
δ-mixture tree given by

(T, {P→(·|·)}, I,Θ, {qθ}θ∈Θ, Subset,NoiseAmount).

8
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This similarity does not hold generally. We can define ar-
bitrary hierarchies by choosing the right forward process.

Example 5.4. Consider a set of alphabets {Ai}di=1 and de-
fine Θ = {(ai)di=1 : ∀i ∈ [d], ai ∈ Ai} and pθi = δθi . Let
I = [0, 1, 2, . . . , d]. and for any permutation i1, i2, . . . , id
of [d], define a forward process such that at t ∈ I, we mask
all id, id−1, . . . , id−t. This constructs a hierarchy where the
values for i1, i2, . . . , id are decided in that order.

Finally, we note that hierarchies of diffusions are in general
shallower than for autoregressive models. The hierarchy for
a mixture of Gaussians has depth O(1) (Example 4.2), as the
forward process simultaneously contracts all distances with
a similar dependence on d. For autoregressive models, depth
can scale linearly with the context length (Example 5.4).
While they refer to different modeling approaches, it is
worthwhile to highlight this vast difference in hierarchy
depth can vary with the dimension. We speculate that this
could mean autoregressive models can learn more complex
feature hierarchies than diffusions.

6. Experiments
As many authors7 have empirically studied critical windows
for diffusion and verified different theoretical predictions
with experiments for this model, we focus on experiments
on critical windows for LLMs. In Appendix G, we validate
the predictions of our theory on outputs with a hierarchical
structure, showing strong agreement with Section 5.

Then we identify critical windows for LLAMA-3.1-8B-
Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-Instruct in
the correctness of real-world math and reasoning bench-
marks.8 In our forward-reverse experiments to identify crit-
ical windows, we take the original generation, truncate a
fraction of tokens, and check if resampling yields the same
answer. We say that a particular generation has a critical
window if there is a > 0.5 jump in probability of obtaining
the same answer in consecutive truncation fractions.

We find that critical windows appear prominently across
all benchmarks (Figure 10 to 12); for MATH, they occur
in 42.2%, 16.6%, 30.2% of generations from LLAMA-3.1-
8B-Instruct, Qwen-2.5-7B-Instruct, and Phi-3-7B-Instruct.
These jumps seem to occur during important steps of reason-
ing, as certain parts of the solution may be more significant
to the formation of the final answer. For example, in Fig-
ure 5, the model restates the correct formula to apply to the
problem within the critical window. For other generations,
it could be that no particular part of the text is especially im-

7(Ho et al., 2020; Meng et al., 2022; Choi et al., 2022; Raya &
Ambrogioni, 2023; Georgiev et al., 2023)

8See Appendix H for full results across models and datasets
and a discussion on the effect of temperature on critical windows.

Table 1. Differences between Accuracy (Acc) without versus with
critical windows and frequency of critical windows (CW) when
the original generation is wrong versus right.

Dataset ∆Acc ∆CW

AQUA-RAT 0.42 0.20
ARC Challenge 0.53 0.22
ARC Easy 0.73 0.26
LogiQA 0.15 0.11
MATH 0.41 0.33
MMLU 0.45 0.24
TruthfulQA 0.44 0.20

MATH (Phi-3-7B-Instruct)

Q: If the first term of an arithmetic sequence equals the third
minus the second, and the fourth term is 8, what is the first term?
A: 1. We know that the arithmetic sequence has a common
difference, which we will denote as ”d”. 2. Let’s denote the
terms in the sequence as T1 , T2 , T3 , and T4 for the first,
second, third, and fourth terms, respectively. 3. We’re given
the information that T1 = T3 − T2 . Using the general
formula for an arithmetic sequence, we can write this as T1 =

T2 +2d−T2 , which simplifies to T1 = 2d. 4. We’re also
given that T4 = 8. The general formula for an arithmetic
sequence tells us that T4 = T1 + 3d. So we can write
8= T1 + 3d. 5. Now we have a system of two equations: 1)
T1 = 2d 2) 8 = T1 + 3d 6. We can substitute equation
(1) into equation (2), which gives us 8 = 2d + 3d = 5d.
7. Solving for d, we get d = 8/5. 8. Now that we know
d, we can find T1 . Using the equation from step 1, we get
T1 = 2d = 2 ∗ (8/5) = 16/5. Therefore, the first term
is T1 = 16/5.

Figure 5. Example of critical window (bolded).

portant for the final answer, resulting in no critical window.
In fact, we find that generations with critical windows are
significantly less accurate than generations without critical
windows across all datasets and models. For LLAMA-3.1-
8B-Instruct, critical windows result in up to 73% lower
accuracy, and incorrect responses contain 11%-33% more
critical windows (Table 1).

7. Discussion
In this work, we developed a simple yet general theory for
critical windows for stochastic localization samplers like
diffusion and autoregressive models. Already, practitioners
have applied critical windows to make LLMs safer (Qi et al.,
2024) and reason better (Abdin et al., 2024; Lin et al., 2024).
Our theory significantly streamlines our understanding of
critical windows and provides concrete insights for practi-
tioners. While we instantiate our theory in many settings
(Section 4), an important future direction is connect it to
statistical physics predictions for other models of data, e.g.,
the random hierarchy model (Sclocchi et al., 2024). An-
other interesting direction would be to explore why critical
windows exist in different settings in practice.
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A. Additional related work
Theory of in-context learning for language models. With respect to theory for language models, our results are most
closely related to the Bayesian framework for in-context learning (Xie et al., 2022; Akyürek et al., 2023; Garg et al., 2023;
Zhang et al., 2023; Arora et al., 2024). For example, (Xie et al., 2022) also considered a mixture model of topics and showed
that language models can learn the underlying class despite in-context learning and training distribution mismatch. We view
this manuscript as connecting the Bayesian framework for in-context learning to other empirical phenomena observed in
language models and diffusion models and the all-or-nothing phenomenon.

Chain of thought. (Lin et al., 2024; Abdin et al., 2024) also observed that the presence of critical windows in the chain of
thought of math and reasoning tasks and their significance in leading the model to incorrect outputs, concurrent with our
results in Figure 5. They then used them to provide rewards or data for a preference optimization algorithm to improve
reasoning performance. (Lin et al., 2024) called them critical tokens and utilized a contrastive estimation algorithm to
identify critical windows and provide token-level rewards. The Phi-4 Technical report called them pivotal tokens, developed
a binary-search based algorithm to identify the location of critical windows, and used them to produce contrasting pairs for
preference optimization (Abdin et al., 2024). Using our broad theoretical perspective, we provide new insight into critical
windows of these kinds and view our work as corroborating and extending these empirical works.

Jailbreaks. Existing work on jailbreaks has studied the appearance of critical windows in the first few generated tokens
(Qi et al., 2024; Zhang & Wu, 2024; He et al., 2024; Lin et al., 2023). Our theory provides a simple explanation for when
jailbreaks occur: when the unaligned component assigns a much higher probability to the current text than the aligned
component, then the model is jailbroken. This generalizes the explanation from (Qi et al., 2024) (see Example 4.3 for our
particular formalism of their insights). It also explains the success of perplexity-based monitors for jailbreaks (Alon &
Kamfonas, 2023), which monitor for a low probability of the context and generation. We view our work as providing a
rigorous mathematical framework for jailbreaks, as well as highlighting the important role off-distribution contexts play in
eliciting harmful behaviors; we also develop a novel jailbreak from our framework (Section F.2 ) similar to the adversarial
contrast decoding method proposed by (Zhao et al., 2024), which also uses a likelihood ratio between an unaligned and an
aligned model. However, we use a jailbroken and non-jailbroken pair of models instead of two versions of the model with
different prompts.

B. Examples of stochastic localization
In this section, we present several kinds of generative models within the stochastic localization framework and their forward
and reverse processes.
Example B.1 (Continuous Diffusion Models (Li & Chen, 2024)). For continuous diffusion models, the forward process
progressively degrades samples X ∼ p into pure Gaussian noise through scaling and convolution with Gaussian noise. It is
the Ornstein-Uhlenbeck process, a stochastic process (Xt)t≥0 given by the following stochastic differential equation (SDE),

dXt = −Xt dt+
√
2dBt , X0 ∼ p ,

where (Bt)t≥0 is a standard Brownian motion. Let qt ≜ law(Xt) for t ≥ 0, and observe that as t → ∞, qt converges
exponentially quickly to the standard Gaussian distribution N (0, Id). Assume we end the forward process at time T ≥ 0.
For the reverse process (X←t )t∈[0,T ], we employ the reversal of the Ornstein-Uhlenbeck SDE, given by

dX←t = {X←t + 2∇ ln qT−t(X
←
t )}dt+

√
2 dBt , X←T ∼ qT

where here (Bt)t≥0 is also a Brownian motion. Defining (Yt)t∈I = (Xt)t∈I, we see that the forward process satisfies the
Markov property in Definition 2.2, and the information from the original sample X0 is degraded by more steps in the SDE.
Furthermore, the reverse SDE with parameterized by the score function ∇ ln qT−t(X

←
t ) can be viewed as successively

sampling from the posteriors via Tweedie’s formula.
Example B.2 (Discrete Diffusion Models (Lou et al., 2024)). Consider a set A denoting the vocabulary and let p ∈ AT , and
consider a forward process with index set I = [0,K] ∪ {∞}, Y0 = X , and Yt ∈ AT defined in the limit as follows,

p(Yt+∆t = a | Yt = b) = δab +Qt(b, a)∆t+O(∆t2),
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where Qt ∈ Rn×n are diffusion matrices with nonnegative non-diagonal entries and columns which sum to 0. (Yt)t∈I is
also a Markov chain and as t → ∞, Yt is degraded until it is eventually uninformative about the original sample Y0.
Example B.3 (Autoregressive Language Models (?)). Consider a set A denoting the vocabulary and let p ∈ AT , and
consider a forward process with index set I = {0, 1, 2, . . . , T}, Y0 = X , and Yt ∈ AT−t. For t ∈ I, we let Yt equal the last
first T − t tokens of X . Clearly this is a Markov Chain, and the reverse process is equivalent to next-token prediction.
Remark B.4. We note if the reverse process is deterministic, e.g. ODE-based diffusion models or language models at
temperature 0, then there is no notion of a critical window under our framework. The initial position at the start of sampling
completely characterizes the final image. For example, given a fixed piece of text and language model, truncating it anywhere
in the model’s response and resampling at temperature 0 will yield the original piece of text.

C. Deferred details from Section 3
Remark C.1 (Technicality in defining TS

st , T
S
end). For general stochastic localization schemes, we can only ask that TS

st(ϵ) ∈
{r ∈ I : TV(p

Starg

t , p
Θ−Starg

t ) ≥ 1 − ϵ2 } and TS
end(ϵ) ∈ {t ∈ I : TV(pSinit

t , p
Starg

t ) ≤ ϵ} instead of sup, inf like (Li &
Chen, 2024), because the sets {t ∈ I : TV(p

Starg

t , p
Θ−Starg

t ) ≥ 1 − ϵ2 }, {t ∈ I : TV(pSinit
t , p

Starg

t ) ≤ ϵ} may not be
closed for observation processes which are discontinuous. For autoregressive language models and continuous diffusion, the
observation process is continuous, so we will elide these technicalities.

For Theorem 3.1, we employ the following two helper lemmas.

Lemma C.2. By applying the law of total probability and Bayes’ rule, we can show for YT̂ ∈ supp(p
Starg

T̂
),∫ ∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)

∣∣ dx ≤ 2
∑

θ∈Θ−Starg

P←t→Θ(θ|YT̂ ).

Proof. We can rewrite P←(x|YT̂ ), P
←(x|YT̂ , Starg) using the law of total probability and Bayes’ rule.

P←(x|YT̂ ) =
∑
θ∈Θ

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)

P←(x|YT̂ , Starg) =
∑

θ∈Starg

P←t→Θ(θ|YT̂ , Starg)P
←(x|YT̂ , θ) =

∑
θ∈Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)∑

θ∈Starg
P←t→Θ(θ|YT̂ )

.

Note that the second equality on the second line follows from the fact that for all θ ∈ Starg, the posteriors P←t→Θ(·|Yt) ∝
P←t→Θ(·|Yt, Starg) by the same normalization constant. Therefore the difference can be written as∫ ∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)

∣∣ dx
=

∫ ∣∣∣∣∣∑
θ∈Θ

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)−

∑
θ∈Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)∑

θ∈Starg
P←t→Θ(θ|YT̂ )

∣∣∣∣∣ dx
=

∫ ∣∣∣∣∣
(
1− 1∑

θ∈Starg
P←t→Θ(θ|YT̂ )

) ∑
θ∈Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ) +

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)

∣∣∣∣∣dx.
If
∑

θ∈Θ−Starg
P←t→Θ(θ|YT̂ ) = 0, then the above is equal to 0 and we are done. If it is non-zero, we can factor out∑

θ∈Θ−Starg
P←t→Θ(θ|YT̂ ) term, which allows us to write everything in terms of posteriors with respect to Θ− Starg and

Starg,∫ ∣∣∣∣∣
(
1− 1∑

θ∈Starg
P←t→Θ(θ|YT̂ )

) ∑
θ∈Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ) +

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ )P
←(x|YT̂ , θ)

∣∣∣∣∣dx
=

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ )

∫ ∣∣P←(x|YT̂ , Starg)− P←(x|YT̂ ,Θ− Starg)
∣∣ dx

15
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Employing the trivial observation that∫ ∣∣P←(x|YT̂ , Starg)− P←(x|YT̂ ,Θ− Starg)
∣∣ dx

≤
∫

P←(x|YT̂ , Starg) + P←(x|YT̂ ,Θ− Starg)dx ≤ 2,

we have ∫ ∣∣P←(x|YT̂ )− P←(x|YT̂ , Starg)
∣∣ dx ≤ 2

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ ).

Lemma C.3. By Bayes’s rule, we can derive for YT̂ ∈ supp(pT̂ ),

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ ) ≤ max (1,W )
p
Θ−Starg

T̂
(YT̂ )

p
Θ−Starg

T̂
(YT̂ ) + p

Starg

T̂
(YT̂ )

Proof. We obtain through Bayes’ rule,

∑
θ∈Θ−Starg

P←t→Θ(θ|YT̂ ) =

∑
θ∈Θ−Starg

wθp
θ
T̂
(YT̂ )∑

θ∈Θ wθpθT̂ (YT̂ )
.

We divide by the same normalizing constant
∑

θ∈Θ−Starg
wθ to obtain

∑
θ∈Θ−Starg

wθp
θ
T̂
(YT̂ )∑

θ∈Θ wθpθT̂ (YT̂ )
=

∑
θ∈Θ−Starg

wθp
θ
T̂
(YT̂ )∑

θ∈Θ−Starg
wθ∑

θ∈Θ−Starg
wθpθ

T̂
(YT̂ )∑

θ∈Θ−Starg
wθ

+

∑
θ∈Starg

wθpθ
T̂
(YT̂ )∑

θ∈Starg
wθ

·
∑

θ∈Starg
wθ∑

θ∈Θ−Starg
wθ

≤ max

(
1,

∑
θ∈Θ−Starg

wθ∑
θ∈Starg

wθ

)
p
Θ−Starg

T̂
(YT̂ )

p
Θ−Starg

T̂
(YT̂ ) + p

Starg

T̂
(YT̂ )

.

D. Omitted details from Section 4
D.1. Diffusions

Here we use an alternative f -divergence to characterize the critical windows, the squared Hellinger distance, defined
as H2(P,Q) ≜

∫
(
√
dP −

√
dQ)2dµ, because there are explicit computations for the Hellinger distance for mixtures of

Gaussians. We similarly exploit the following ratio inequality akin to Lemma 2.1,

Lemma D.1. For probability measures P,Q,

Ex∼P

[
dQ

dP + dQ

]
≤ 1

2
(1− 1

2
H2(P,Q)).

We apply the following well-known formula for the Hellinger distance between two Gaussians.

Lemma D.2. We have

1− 1

2
H2(N (µP ,ΣP ),N (µQ,ΣQ)) =

|ΣP |1/4|ΣQ|1/4∣∣∣ΣP+ΣQ

2

∣∣∣1/2 exp

{
−1

8
(µP − µQ)

⊤
[
ΣP +ΣQ

2

]−1
(µP − µQ)

}
.
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Example D.3. [Two Isotropic Gaussians] Let Θ = {±1}, p+1 = N (µ, Id), p−1 = N (−µ, Id). Then, we have a critical
window transitioning from sampling from both components to the component +1 between TC

before = ln ∥µ∥+ ln 2 + ln 1/ϵ

and TC
after = ln ∥µ∥ − ln ln 1

2ϵ2 . When T̂ ≤ TC
after, then TV(p+1,T̂ , p+1) ≲ ϵ. When T̂ ≥ TC

before, TV(p+1,T̂ , p) ≲ ϵ.

Proof. The proof for TC
before, a simple application of Pinsker’s inequality, can be found in Appendix B.1 of (Li & Chen,

2024). Directly applying the new Master Theorem 3.1 to TC
after, we need only show that

√
2

2

(
1− 1

2
H2(p+1

TC
after

, p−1
TC
after

)

)
≤

√
2

2
exp(−1

2
∥µ∥2e−2t) ≤ ϵ.

Example D.4. [Random mean spherical Gaussians] We first sample µi ∼ N (0, Id) for i ∈ [K] i.i.d. and let Θ =
{N (µi, Id)}i∈[K]. We let Sbefore = Θ and Safter = {µ1}. Then, we can compute TC

before = maxj∈[K] ln ∥µi−µj∥+ln(1/ϵ)

and TC
after = minj∈[K],i̸=j ln ∥µi − µj∥ − 1

2 ln 8 ln
K
ϵ . Furthermore, with high probability over the selection of the means,

TC
before − TC

after = OK,ϵ(1) as d → ∞.

Proof. The proof for TC
before can be found in Section 5.2 of (Li & Chen, 2024). We need to slightly modify the proof of

Theorem 3.1 so that we can write the desired bound for TC
after in terms of the Hellinger distance of individual components.

We use the same notation. By convexity, we can bound

E
YT̂∼p

Starg

T̂

[∑
θ∈Θ−Starg

wθp
θ
T̂
(YT̂ )∑

θ∈Θ wθpθT̂ (YT̂ )

]
≤

∑
θ∈Θ−Starg

wθ

∑
ϕ∈Starg

wϕEYT̂∼p
ϕ

T̂

[
pθ
T̂
(YT̂ )

wθpθT̂ (YT̂ ) + wϕp
ϕ

T̂
(YT̂ )

]

≤ K max
θ∈Θ−Starg,ϕ∈Starg

(
1− 1

2
H2(pθ

T̂
, pϕ

T̂
)

)
≤ ϵ,

when T̂ ≤ TC
after. To conclude the second part of the theorem, observe that by concentration of measure (e.g., Theorem

3.1.1 from (Vershynin)) and a union bound, there exists a constant T independent of d such that ∥µj∥ ∈ [
√
d− T,

√
d+ T ]

for all j ∈ [K] with high probability. Furthermore, by known Gaussian Suprema inequalities, we can also assume that there
exists a constant T ′ independent of d such that |⟨µi, µj⟩| ≤ T ′∥µi∥ (Lemma 5.1 from (van Handel, 2016)). Thus, we can
conclude that

max
j∈[K]

∥µi − µj∥2 ≤ 2d+ 4T
√
d+ 2T 2 + 2T ′(

√
d+ T ) = O(d).

max
j∈[K]

∥µi − µj∥2 ≥ 2d− 4T
√
d+ 2T 2 − 2T ′(

√
d+ T ) = Ω(d).

The difference in log scale is thus constant,

1

2

(
ln max

j∈[K]
∥µi − µj∥2 − ln min

j∈[K],i̸=j
∥µi − µj∥2

)
= OK,ϵ(1)

Example D.5. [Two Dirac delta functions with a random masking procedure] Let p ∈ {±1}T , and consider a forward
process with index set I = [0, 1], Y0 = X , and Yt ∈ {±1, [MASKED]}T . For t ∈ I, we let all the value at index i ∈ [T ] be
set to [MASKED] with probability t independently. For a mixture of two Dirac delta functions, we can express the critical
window in terms of the Hamming distance between the corresponding strings. Let Θ = {θ±1}, ℓ±1 ∈ {±1}T , pθ±1 ∼
δℓ±1

, w±1 = 1
2 . Then, on component 1 we have the critical window

TC
before = exp

[
ln(1− ϵ)

dH(δℓ1 , δℓ−1)

]
, TC

after = exp

[
ln ϵ2

dH(δℓ1 , δℓ−1)

]
When T̂ ≤ TC

after, then TV(p1,T̂ , p1) ≲ ϵ. When T̂ ≥ TC
before, TV(p1,T̂ , p) ≲ ϵ. For sufficiently large dH(δℓ1 , δℓ−1), the

window size TC
before − TC

after = O
(

1
dH(δℓ1 ,δℓ−1

)

)
. If dH(δℓ1 , δℓ−1

) increases with T , then the width of the critical window
compared to the width of the index set becomes negligible.
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Proof. To prove TV(p1,T̂ , p1) ≲ ϵ when T̂ ≤ TC
after, observe that when T̂ ≤ TC

after, the probability that all the differing
elements between ℓ1, ℓ−1 are masked is exactly T̂ dH(δℓ1 ,δℓ−1

) ≤ ϵ2. That means that there exists a set A with p+1

T̂
(A) ≥

1− ϵ2 and p−1
T̂

(A) = 0, so by the definition of total variation, TV(p+1

T̂
, p−1

T̂
) ≥ 1− ϵ2. Obviously, TV(p+1

T̂
, p+1

T̂
) = 0 as

well, so by Theorem 3.1, we obtain TV(p1,T̂ , p1) ≲ ϵ. To prove that TV(p1,T̂ , p{±1}) ≤ ϵ when T̂ ≥ TC
before, we need only

show that TV(p+1

T̂
, pT̂ ) ≤ ϵ. By Lemma 15 of (Li & Chen, 2024), it suffices to show that TV(p+1

T̂
, p−1

T̂
) ≤ ϵ by a simple

triangle inequality argument. Consider the set A ⊂ {±1, [MASKED]}T such that TV(p+1

T̂
, p−1

T̂
) = p+1

T̂
(A) − p−1

T̂
(A).

Consider the set B = supp(p+1

T̂
) ∩ supp(p−1

T̂
). For any x ∈ B, we know p+1

T̂
(x) = p−1

T̂
(x) because the same number

of tokens need to be masked from ℓ±1. This means we have p+1

T̂
(B) = p−1

T̂
(B) ≥ T̂ dH(ℓ+1,ℓ−1) ≥ 1 − ϵ. Because

p+1

T̂
(A)− p−1

T̂
(A) = p+1

T̂
(A−B)− p−1

T̂
(A−B), we have p+1

T̂
(A)− p−1

T̂
(A) ≤ p+1

T̂
({±1, [MASKED]}T −B) ≤ ϵ.

Figure 6. Plot of critical window for discrete diffusion on delta distributions with TC
before, T

C
after plotted.

D.2. Autoregression

Example D.6. [Math problem-solving as a random walk] We model solving a math problem as taking a random walk on Z
with stepsize 1 of length T . If the random walk hits +A, then it has ‘solved‘ the problem; if the random walk hits −A, then
it has obtained an incorrect solution. Assume that we have two modes: a strong problem solving mode (denoted +1), which
takes a +1 step with probability 0.5 + ∆, and a weak problem solving mode (denoted −1), which takes a +1 step with
probability 0.5 −∆. Assuming that ln(2/ϵ2)

2∆2 < A and ϵ2 < 10−3(0.5 −∆)(0.5 + ∆), there is a critical window for the

strong problem solving window of TC
before = T − ϵ2

∆2 + 2 and TC
after = T − ln(2/ϵ2)

2∆2 . Note the critical window has width
Θ(1/∆2) independent of T .

Proof. Because only the direction of steps matter, we can model the critical window for this random walk as observing a
sequence of ±1 with an autoregressive language model. Let p ∈ {±1}T , and consider a forward process with index set
I = {0, 1, 2, . . . , T}, Y0 = X , and Yt ∈ {±1, [MASKED]}T . For t ∈ I, we let the last t tokens of Yt be deterministically
set to [MASKED]. We generate data as a mixture of biased coins with separation 2∆ < 0.01. For a mixture of two
biased coins, with probabilities of 0.5 ± ∆ (θ±1 respectively) of yielding 1, we can compute the critical window and
show that it tightly clusters around Θ(1/∆2). Let Θ = {θ±1}, pθ±1 ∼ (Bern(θ±1))⊗T , w±1 = 1

2 . We also assume
ϵ2 < 10−3(0.5 − ∆)(0.5 + ∆). Then, on component 1 we have the critical window TC

before = T − ϵ2

∆2 + 2 and

TC
after = T − ln(2/ϵ2)

2∆2 . When T̂ ≤ TC
after, then TV(p1,T̂ , p1) ≲ ϵ. When T̂ ≥ TC

before, TV(p1,T̂ , p) ≲ ϵ.

Note that the number of +1 is sufficient for disambiguating θ±1. To prove the bounds TC
before, we show that with only

ϵ2

∆2 − 2 samples the total variation between 0.5−∆ and 0.5 + ∆ is negligible. Using (Roos, 2001), we find

TV(p+1
TC
after

, p−1
TC
after

) ≤
2∆
√

T−TC
after+2

2(0.5−∆)(0.5+∆)(
1− 2∆

√
T−TC

after+2

2(0.5−∆)(0.5+∆)

)2 ≲ 3ϵ.
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For TC
after, we compute how many samples it takes for p±1 to have only ϵ overlap in total variation using Hoeffding’s

inequality. If we have n samples, the mean X of the n samples of ±1 for p = 0.5 + ∆ satisfies the concentration
inequality P (|X − 2∆| > ∆) ≤ 2 exp(−2nt2) (furthermore we can ignore the stopping condition by our requirement
that ln(2/ϵ2)

2∆2 < A). We find P (|X − 2∆| > ∆) ≤ ϵ2 for T − TC
after samples, proving that the total variation is at least

1− ϵ2.

Now, we consider a model for autoregressive data similar to the one presented in (Arora et al., 2019). Each word is a vector
w ∈ Rd and the context length is T ∈ Z>0. The original samples are x ∈ RT×d. Let Θ = {u, v}, where u, v ∈ Sd−1.
We define the distribution pθ for θ ∈ Θ as follows. We generate the path of a discourse vector

(
Cθ

t

)
t∈[0,∞]

∈ Rd with the

reverse SDE Orstein-Uhlenbeck process such that Cθ
∞ ∼ N (0, Id) and Cθ

0 ∼ N (0, Id + αθθ⊤) for some α > 0. We let qθt
be the law of Cθ

t for t ≥ 0. We let I = {0, 1, . . . , T}, and for t ∈ I, we draw samples wθ
t ∈ Rd where we impose a normal

Gaussian prior and have wθ
t |Cθ

t ∝ exp(⟨Cθ
t , ·⟩). Then we return the corpus {wθ

t }t∈I as an output.

Theorem D.7 (Autoregressive with a mixture of two Gaussians as the concept distribution ). We assume that
exp(−T )

√
α− log(1 + α) ≤ ϵ. Let ϕ(x) = 2+x

(2+x(1+⟨u,v⟩)/2)(2+x(1−⟨u,v⟩)/2) . Then, on component u we have

TC
after =

1

2
ln

[
α

ϕ−1(ϵ2)

]
, TC

before =
1

2
ln

[
α
√
1 + α2

√
1− ⟨u, v⟩2

ϵ

]
.

When T̂ ≤ TC
after, then TV(p{u},T̂ , p{u}) ≲ ϵ. When T̂ ≥ TC

before, TV(p{u},T̂ , p) ≲ ϵ.

This proof will require Theorem D.8 and Lemmas D.2 and D.9, which is stated below:

Theorem D.8 (Section 5.2 of (Chen et al., 2023)). Let (Yt)t∈[0,T ] and (Y ′t )t∈[0,T ] denote the solutions to

dYt = bt(Yt) dt+
√
2dBt , Y0 ∼ q

dY ′t = b′t(Y
′
t ) dt+

√
2dBt , Y ′0 ∼ q .

Let q and q′ denote the laws of YT and Y ′T respectively. If bt, b′t satisfy that
∫ T

0
EQ ∥bt(Yt) − b′t(Yt)∥2 dt < ∞, then

KL(q∥q′) ≤
∫ T

0
EQ ∥bt(Yt)− b′t(Yt)∥2 dt.

Lemma D.9. Let u, v ∈ Sd−1. Then

∥uu⊤ − vv⊤∥op ≤
√
1− ⟨u, v⟩2

λ(uu⊤ + vv⊤) = {1± ⟨u, v⟩}.

Proof. There exists r ∈ Sd−1 such that v = ⟨u, v⟩u+
√

1− ⟨u, v⟩2r and u ⊥ r. We find that

uu⊤ − vv⊤ = (1− ⟨u, v⟩2)uu⊤ − (1− ⟨u, v⟩2)rr⊤ − ⟨u, v⟩
√

1− ⟨u, v⟩2[ur⊤ + ru⊤].

We can explicitly compute the eigenvalues of uu⊤ − vv⊤ using the discriminant and find that they are equal to
±
√

1− ⟨u, v⟩2. By a similar derivation, we can write

uu⊤ + vv⊤ = (1 + ⟨u, v⟩2)uu⊤ + (1− ⟨u, v⟩2)rr⊤ + ⟨u, v⟩
√

1− ⟨u, v⟩2[ur⊤ + ru⊤].

which gives us eigenvalues for uu⊤ + vv⊤ of 1± ⟨u, v⟩.

Proof. To compute the TC
after bounds, we compare the difference in Hellinger distance of the distribution of words words

at generated at index T̂ , wu
T̂

. By the data processing inequality 1− 1
2H

2(pu
T̂
, pv

T̂
) ≤ 1− 1

2H
2(wu

T̂
, wv

T̂
), so it suffices to

show 1− 1
2H

2(wu
T̂
, wv

T̂
) ≲ ϵ. Because the Gaussian is its own conjugate prior and wu

T̂
|Cθ

t ∝ exp(− 1
2∥w

u
T̂
− Cθ

t ∥2), we
can compute wu

T̂
|Cθ

t ∼ N (Cθ
t , Id) and wu

T̂
∼ N (0, 2Id + αe−2tuu⊤). Applying Lemmas D.2 and D.9, we can explicitly

compute

1− 1

2
H2(wu

T̂
, wv

T̂
) ≲

√
2 + αe−2T̂

(2 + αe−2T̂ (1 + ⟨u, v⟩)/2)(2 + αe−2T̂ (1− ⟨u, v⟩)/2)
≲
√

ϕ(αe−2T̂ ) ≤ ϵ.
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To compute TC
before, we first use the data processing inequality to reduce the difference in the emitted tokens to the difference

in the paths of the context vectors, and then apply the approximation error bounds from Theorem D.8 to bound the differences
in path measures. When T̂ ≥ TC

before, we can use the triangle inequality to write TV(p{u},T̂ , p) = TV(pu
T̂
, p
{u,v}
T̂

) ≤
TV(pu

T̂
, pv

T̂
). Note that pθ

T̂
is the distribution of the first T − T̂ tokens generated by the model under θ. Note that pu

T̂
is

a function of (Cu
t )t∈I∩[T̂ ,T ] and pv

T̂
is a function of (Cv

t )t∈I∩[T̂ ,T ]. By the data processing inequality, we can bound the
difference in terms of the distributions over the tokens in terms of the law of the process of the discourse vectors,

TV(pu
T̂
, pv

T̂
) ≤ TV((Cu

t )t∈I∩[T̂ ], (C
v
t )t∈I∩[T̂ ,T ]) ≤ TV((Cu

t )t∈[T̂ ,T ], (C
v
t )t∈[T̂ ,T ]).

Note that for θ ∈ Θ, (Cθ
t )t∈[T̂ ,T ] is generated by the following reverse time SDE,

dCθ
t = {Cθ

t + 2∇ ln qθt (C
θ
t )} dt+

√
2 dBt, t ∈ [T̂ , T ], Cθ

T ∼ qθT .

Now we define (Cu→v
t )t∈[T̂ ,T ] to be the reverse SDE defined by initializing at quT but with the score of qvt ,

dCu→v
t = {Cu→v

t + 2∇ ln qvt (C
u→v
t )} dt+

√
2 dBt, t ∈ [T̂ , T ], Cu→v

T ∼ quT .

By the triangle inequality, we have

TV((Cu
t )t∈[T̂ ,T ], (C

v
t )t∈[T̂ ,T ]) ≤ TV((Cu

t )t∈[T̂ ,T ], (C
u→v
t )t∈[T̂ ,T ])︸ ︷︷ ︸

(I)

+TV((Cu→v
t )t∈[T̂ ,T ], (C

v
t )t∈[T̂ ,T ])︸ ︷︷ ︸

(II)

.

To bound (I), observe that the SDEs have different scores but the same initializations. We apply Theorem D.8 to
TV((Cu

t )t∈[T̂ ,T ], (C
u→v
t )t∈[T̂ ,T ]) and obtain

TV((Cu
t )t∈[T̂ ,T ], (C

u→v
t )t∈[T̂ ,T ]) ≤

√
KL((Cu

t )t∈[T̂ ,T ]||(Cu→v
t )t∈[T̂ ,T ])

≤

√∫ T

T̂

EX∼Cu
t
∥∇ ln put (X)−∇ ln pvt (X)∥2dt

We simplify the inner expectation by using the

∥∇ ln put (X)−∇ ln pvt (X)∥ = ∥
[
(Id + αe−2tuu⊤)−1 − (Id + αe−2tvv⊤)−1

]
x∥

= ∥
[(

Id− αe−2t

1 + αe−2t
uu⊤

)
−
(
Id− αe−2t

1 + αe−2t
vv⊤

)]
x∥

≲ αe−2t∥uu⊤ − vv⊤∥op

∥∥∥∥∥∥
∏

span(u,v)

x

∥∥∥∥∥∥ ,
= αe−2t

√
1− ⟨u, v⟩2

∥∥∥∥∥∥
∏

span(u,v)

x

∥∥∥∥∥∥ . (Lemma D.9)

We can upper bound EX∼Cu
t
∥
∏

span(u,v) X∥2 by considering right-triangular L such that L⊤L = Id + αuu⊤. and∏
span(u,v) X =

∏
span(u,v) LY , where Y ∼ N (0, Id). The operator norm of

∏
span(u,v) L is∥∥∥∥∥∥

∏
span(u,v)

◦L

∥∥∥∥∥∥
op

≤ ∥L∥op ≤
√
1 + α2e−2t ≤

√
1 + α2.

∏
span(u,v) ◦L is also rank 2 and

(∏
span(u,v) ◦L

)
Y =

(∏
span(u,v) ◦L

)
◦
∏

L−1span(u,v) Y , where
∏

L−1span(u,v) Y ∼
N (0, Id2). Thus we have

EY∼N (0,Id)


∥∥∥∥∥∥
 ∏

span(u,v)

◦L

Y

∥∥∥∥∥∥
2
 = EY ′∼N (0,Id2)


∥∥∥∥∥∥
 ∏

span(u,v)

◦L

Y ′

∥∥∥∥∥∥
2
 ≲ 1 + α2
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Combining this information together, we are able to compute,

TV((Cu
t )t∈[T̂ ,T ], (C

u→v
t )t∈[T̂ ,T ]) ≤

√∫ T

T̂

EX∼Cu
t
∥∇ ln put (X)−∇ ln pvt (X)∥2dt

≲ α
√
1 + α2

√
1− ⟨u, v⟩2e−2T̂

≲ ϵ.

To bound (II), we observe that both are run with the same score so we need only bound the difference at initialization. By
the data processing inequality, we again have TV((Cu→v

t )t∈[T̂ ,T ], (C
v
t )t∈[T̂ ,T ]) ≤ TV(puT , p

v
T ). We can again apply the

triangle inequality to get TV(puT , p
v
T ) ≤ TV(puT , γ

d)+TV(γd, pvT ) ≤. For any θ ∈ Θ, we have by the forward convergence
of the OU process TV(puT , γ

d) ≤ exp(−T )
√
KL(pu||γd). We can explicitly compute KL(pu||γd) as

KL(pu||γd) =
1

2

[
d+ α− d− log(Id + αuu⊤)

]
=

1

2
[α− log(1 + α)] .

Thus, we obtain the following bound on TV((Cu→v
t )t∈[T̂ ,T ], (C

v
t )t∈[T̂ ,T ]) of

TV((Cu→v
t )t∈[T̂ ,T ], (C

v
t )t∈[T̂ ,T ]) ≲ exp(−T )

√
α− log(1 + α) ≲ ϵ.

D.3. Interweaving transitions from other distributions

In this section, we extend our critical windows framework to the setting where at certain steps of sampling procedure,
instead of using the reverse Markov transition kernel from the original stochastic localization sampler, we use an alternative
distribution which is not necessarily related to the original sampler. This includes many important applications of
generative models, in which one seeks to combine the priors learned from data with some other algorithm. For exam-
ple, one may want to combine the language model with a problem generation oracle in in-context learning (Dong et al., 2024).

As (Xie et al., 2022) points out, the transition from the answer to one problem to the problem statement of another example
in-context learning is determined by an alternative transition kernel (which they call pprompt). Although the probability of
transition from one answer to the problem statement of another example is extremely low under the natural data distribution,
one still hopes that with sufficiently many samples, the model selects the correct θ∗ ∈ Θ if these lower probability transitions
are overcome by the distributional difference for θ ∈ Θ with θ ̸= θ∗. Similarly, under our critical windows framework, we
can hope to capture the idea that we specialize to a particular θ∗ given a sufficiently long context. In Section D.3.1, we first
present a general framework for characterizing critical windows in this setting. Then, in section D.3.2, we consider the case
of in-context learning by autoregressive language models and prove convergence.

D.3.1. GENERAL INTERWEAVING FRAMEWORK

We present this framework for the case where the index set I = {0, 1, . . . ,m} is discrete. Like before, assume we have a
series of reverse Markov transition kernels P←,p

k→k−1(·|·), for k ∈ I, but we also assume we have an alternative distribution
P←,alt

k→k−1(·|·) that we use to sample for transitions k ∈ A ⊊ I. For our sampling procedure, we sample Ym, and for
k = m− 1,m− 2, . . . , 0, we take Yk ∼ P←,p

k+1→k(·|Yk+1) for k ∈ I−A and Yk ∼ P←,alt

k+1→k(·|Yk+1) for k ∈ A. We denote
the final distribution palt.

Now, we also need to adjust our definitions of pS to this particular sampling procedure. We define pS,alt for S ⊂ Θ to the
distribution over outputs when we instead use the kernels P←k+1→k(·|Yk+1, S) instead of P←k+1→k(·|Yk+1). To relate pθ,alt

to pθ,alt for θ ∈ Θ, we need to assume transitions from alt do not affect the posterior distribution over pΘ(θ|Yt).

Assumption D.10. For all y ∈ R and x ∈ supp(P←,alt

k+1→k(·|y)), we have for all θ, θ′ ∈ Θ, the equality P←k+1→k(x|y, θ) =
P←k+1→k(x|y, θ′).
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Adopting our definitions from Section 3, we let

Tlower,alt(ϵ) ∈ {t ∈ I : TV(pSinit,alt
t , p

Starg,alt
t ) ≤ ϵ}

Tupper,alt(ϵ) ∈ {t ∈ I : TV(p
Starg,alt
t , p

Θ−Starg,alt
t ) ≥ 1− ϵ2 }.

The main challenge of the below corollary is simply show that the final distribution pΘ,alt can be written as a mixture of
pθ,alt with the same mixing weights as before.

Corollary D.11. Under Assumption D.10, for ϵ > 0, if T̂ ≥ Tlower,alt(ϵ) and T̂ ≤ Tupper,alt(ϵ), then

TV(pSinit,T̂ , pStarg,alt) ≤

(
1 +

√
2max

(
1,

∑
θ∈Θ−Starg

wθ∑
θ∈Starg

wθ

)
/2

)
ϵ.

Proof. We need only show that pΘ,alt ≜
∑

θ∈Θ wθp
θ,alt. It suffices to shows that the probability of generating a path

Ym, Ym−1, . . . , Y0 are the same under both density functions. We need only consider transitions for k ∈ I−A, because for
k ∈ A, the transitions are both given by the alternative distribution. For the transitions not given by alt, note that we are
using the original model, so

pΘ,alt(Yk−1|Yk) =

∑
θ∈Θ wθp

θ(Yk)P
←
k→k−1(Yk−1|Yk, θ)∑

θ∈Θ wθpθ(Yk)
.

Furthermore, for the mixture model, this probability is

pmix =

∑
θ∈Θ wθp

θ,alt(Ym, Ym−1, . . . , Yk+1, Yk)P
←
k→k−1(Yk−1|Yk, θ)∑

θ∈Θ wθpθ,alt(Ym, Ym−1, . . . , Yk+1, Yk)
.

The distinction between Equation D.3.1 and Equation D.3.1 is that in the former we are using the likelihood of pθ instead of
pθ,alt. Thus it suffices to show that pθ ∝ pθ,alt. We explicitly write out the probability,

pθ(Ym, Ym−1, . . . , Yk+1, Yk) =

m∏
i=k+1

pθ(Yi−1|Yi) ∝
m∏

i=k+1,i/∈A

pθ(Yi−1|Yi),

where the proportionality follows from the fact that we can ignore the probability of the transitions produced by alt under
Assumption D.10. By definition, this is proportional to pθ,alt(Ym, Ym−1, . . . , Yk+1, Yk) up to a normalization constant
independent of θ.

D.3.2. IN-CONTEXT LEARNING

Now, we will specialize our framework to the case of in-context learning. As in (Xie et al., 2022), we assume that the
language model is given inputs of the form [x1, y1, o, x2, y2, o, . . . , xt, yt, o, xt+1], where x1 is the input, y1 is the output,
and o is a delimiter token that separate different in-context samples from each other. We assume that the transitions
yi → o → xi+1 are sampled by some alternative probability distribution Pother(·|·). We require that Pother selects the xi i.i.d.

Assumption D.12. The distribution of Pother(xt+1|x1, y1, o, x2, y2, o, . . . , xt, yt, o) = Pother(x1).

Then we assume that the transitions xi → yi are generated by some θ∗ ∈ Θ, which does not depend on any of the previous
tokens before the delimiter.

Assumption D.13. (Well-specification) There exists some θ∗ ∈ Θ such that yi is generated from yi ∼
P←(·|[x1, y1, o1, . . . , oi−1, xi], θ

∗).

Assumption D.14. For all θ ∈ Θ, we have P←(·|[x1, y1, o1, . . . , oi−1, xi], θ) = P←(·|xi, θ).

We also assume statistical separation of θ∗ from Θ− {θ∗} in terms of Hellinger distance.

Assumption D.15. Let pS(x,y) for S ⊂ Θ be the distribution of (x1, y1, o) where x1 ∼ Pother(·|o) and y1 ∼ pS(·|x1). There

exists δ > 0 such that H2(p
Θ−{θ∗}
(x,y) , pθ

∗

(x,y)) ≥ δ.
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Example D.16. Let T ≥ ln
(

1−δ/2
ϵ

)
. Under Assumptions D.10, D.12, D.13, D.14, and D.15, we have

TV([x1, . . . , xT+1, yT+1], [x1, . . . , xT+1, ỹT+1]) ≲ ϵ/wθ∗ .

Proof. It suffices to upper bound 1− 1
2H

2(P θ,alt
3T , P

Θ−{θ},alt
3T ) by O(ϵ). First observe that the distribution pS,alt for S ⊂ Θ

factors along the delimiters by a factor independent of S using Assumptions D.12 and D.14, so we have

PS,alt
3t (x1, y1, o1, x2, y2, o2, . . . , xt, yt, ot) ∝

t∏
i=1

PS,alt
3 (xi, yi, oi).

Using the tensorization property of Hellinger distance and our definition of T, δ, we have

1− 1

2
H2(P θ,alt

3T , P
Θ−{θ},alt
3T ) ≲

[
1− 1

2
H2(P θ,alt

3 , P
Θ−{θ},alt
3 )

]T
≤ ϵ.

D.4. All-or-nothing

D.4.1. ALL-OR-NOTHING PHENOMENON

Here we elucidate a formal connection between the critical windows phenomenon in in-context learning and the all-or-
nothing phenomenon. To begin, we first define the notions of strong and weak detection:

Definition D.17. Let (Ns) be an increasing sequence of integers. Given sequences of distributions (ps), (qs) over z ∈ RNs ,
a sequence of test statistics (As : RNs → R) with threshold (τs) achieves:

• strong detection if lim sups→∞{Prz∼ps [As(z) < τs] + Prz∼qs [As(z) ≥ τs]} = 0.

• weak detection if lim sups→∞{Prz∼ps
[As(z) < τs] + Prz∼qs [As(z) ≥ τs]} < 1.

By the operational characterization of TV distance, strong detection is (information-theoretically) possible if and
only if lim infs→∞ TV(ps, qs) = 1, and weak detection is (information-theoretically) possible if and only if
lim infs→∞ TV(ps, qs) > 0.

Now we consider the following Bayesian inference problem, given by a joint distribution π over (θ, z) ∈ Rn × Rm. Nature
samples unknown signal θ ∈ Rn from πθ. Given sample size N , we receive observations {zi}Ni=1 drawn i.i.d. from πz|θ; the
goal is to infer θ from these observations. Let π(N) denote the distribution over {zi}Ni=1, the mixture of product measures
parametrized by θ.

Definition D.18. Let (πs) be a sequence of inference tasks over Rns ×Rms and (πnulls) be a sequence of distributions over
Rms . (πs) exhibits an all-or-nothing phase transition at threshold (Ns) with respect to null models (πnulls) if:

• For any β < 1: weak detection between (π(βNs)) and ((πnulls)⊗βNs) is information-theoretically impossible
• For any β > 1: strong detection between the planted model (π(βNs)) and the null model ((πnulls)⊗βNs) is information-

theoretically possible

All-or-nothing phase transitions have been established for a number of natural inference tasks like sparse linear re-
gression (Reeves et al., 2019; Gamarnik & Zadik, 2019), sparse PCA (Niles-Weed & Zadik, 2020), generalized linear
models (Barbier et al., 2020), group testing (Truong et al., 2021; Coja-Oghlan et al., 2022), linear and phase retrieval
models (Scarlett & Cevher, 2016; Truong & Scarlett, 2020), planted subgraphs (Mossel et al., 2023), and planted Gaussian
perceptron (Niles-Weed & Zadik, 2023). Here is an example for sparse linear regression:

Theorem D.19 ((Reeves et al., 2019)). Let πs be the distribution over Rns × Rms for ns = s and ms = s+ 1 where the
marginal over θ is given by the uniform distribution over ks-sparse vectors in {0, 1}s, and the conditional distribution πz|θ
is given by sampling x ∼ N (0, Ids), taking y = ⟨θ, x⟩+ ξ for ξ ∼ N (0, σ2

s), and outputting observation z = (x, y). The
null model πnull

s is given by sampling x ∼ N (0, Ids) and outputting y = N (0, ks + σ2
s).

If σ2
s ≪ ks ≤ s0.499, then (πs) exhibits an all-or-nothing phase transition at threshold (N∗s ) with respect to null models

(πnull
s ) for N∗s ≜ 2ks log(s/ks)

log(1+ks/σ2
s)

.
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Having defined the all-or-nothing phenomenon, we rigorously instantiate it as a critical window for in-context learning. We
first define a mixture model pΘ(N) for sequence lengths N onto which we will identify a critical window.

Definition D.20. To any inference task π, null model πnull, and sequence length N , we can associate the following
in-context learning task. Let Θ = Θsignal ⊔ {NULL} where Θsignal ≜ supp(πθ). Given θ ∈ supp(πθ), let pθ(N) denote
the distribution over sequences (z1, . . . , zN , ?, θ) where z1, . . . , zN are i.i.d. samples from pz|θ. Let pnull(N) denote the

distribution over observations (z1, . . . , zN , ?,NULL) where z1, . . . , zN are i.i.d. samples from πnull. We then take pΘ(N) ≜

Eθ∼ 1
2πθ+

1
2 δNULL

pθ(N).

Under this model of data, we have the following theorem expressing the all-or-nothing phase transition in terms of
TC
before, T

C
after.

Theorem D.21. Suppose (πs) is a sequence of inference tasks that exhibits an all-or-nothing phase transition at threshold
(N∗s ) with respect to null models (πs). Given Ns ≥ N∗s , let (ps;θ(Ns)

)θ∈Θs denote the sequence of in-context learning tasks.

For any constant 0 < ϵ < 1, there exist constants δ, s such that for all s ≥ s, next-token prediction for (ps;θ(Ns)
)θ∈Θs exhibits

a critical window over [Ns + 2− (1 + δ)N∗s , Ns + 2−−(1− δ)N∗s ] in which we transition from sampling a distribution
O(ϵ)-close in TV to Sbefore = Θs;signal, to sampling from a distribution O(ϵ)-close in TV to Safter = Θs.

In other words, we have TC
before ≜ N + 2− (1− δ)N∗s and TC

after ≜ N + 2− (1 + δ)N∗s .

The proof of Theorem D.21 is essentially immediate from Theorem 3.1 and the definition of the all-or-nothing phase
transition:

Proof. Let us first apply Theorem 3.1 to Sinit = Starg = Θs;signal. By the definition of DΘ, the parameter W therein
is 1. Furthermore, we trivially have that Tend(ϵ) = 0. Finally, because strong detection is possible provided there are
N ≥ βN∗s in-context examples for β > 1, there exists δ1 depending only on ϵ for which TV(p

Starg

t , p
Θs−Starg

t ) ≥ 1− ϵ2

for t = Ns + 2 − (1 + δ1)N
∗
s . By Theorem 3.1 we conclude that TV(pSinit,Ns+2−(1+δ1)N

∗
s ) ≲ ϵ. Next, let us apply

Theorem 3.1 to Sinit = Θs;signal and Starg = Θs. The parameter W therein is now 0. Furthermore, we trivially have that
Tend(ϵ) = Ns + 2. Finally, because weak detection is impossible provided there are N ≤ βN∗s in-context examples for
β < 1, there exists δ2 depending only on ϵ for which TV(pSinit

t , p
Starg

t ) ≤ ϵ for t = Ns +2− (1− δ2)N
∗
s . By Theorem 3.1

we conclude that TV(pSinit,Ns+2−(1−δ2)N∗s ) ≤ ϵ. Taking δ = max(δ1, δ2) concludes the proof.

E. Details from Section 5
Definition E.1. An ϵ-mixture tree is a tuple (T, {P→(·|·)}, I,Θ, {pθ}θ∈Θ,Subset,NoiseAmount). The tree T = (V,E)
is associated with a function Subset: V → 2Θ\{∅}, which maps vertices to sub-mixtures. We require Subset satisfies
the following two properties: (1) Subset(root) = Θ; (2) If u is a parent of v, Subset(v) ⊂ Subset(u). We consider a
NoiseAmount: V → R≥0, which characterizes the noise levels that result in the aggregations of mixture components
described by vertices in the mixture tree. Thus we require that NoiseAmount satisfy three properties: (1) For distinct
θi, θj ∈ Θ with leaf nodes w, v such that θi ∈ Subset(w), θj ∈ Subset(v), if u is the lowest common ancestor of w, v, then
we require TV(pθiNoiseAmount(u), p

θj
NoiseAmount(u)) ≤ ϵ; (2) For u ∈ V , we have statistical separation between Subset(u) and

Θ − Subset(u) in terms of TV, TV(p
Subset(u)
NoiseAmount(u), p

Θ−Subset(u)
NoiseAmount(u)) ≥ 1 − ϵ2; and (3) If v ∈ V is a parent of u, we have

NoiseAmount(u) < NoiseAmount(v). Property 1 establishes bounds on TS
end, and properties 2 and 3 establishes bounds on

TS
st .

Corollary E.2. Consider an ϵ-mixture tree. For θi ∈ Θ, consider the path u1, u2, u3, . . . , uH′ ∈ V where u1 is
the leaf node with θi ∈ Subset(u1) and uH′ is the root. There is a sequence of times T1 < T2 < · · · < TH′ with
TV(p{i},Tℓ , pSubset(uℓ)) ≲w ϵ.

Proof. For ℓ ∈ [H ′], we let Tℓ = NoiseAmount(uℓ). We apply Theorem 3.1 with Sinit = {i} and Starg = Subset(uℓ). We
know TV(p

Starg

Tℓ
, p

Θ−Starg

Tℓ
) ≥ 1 − ϵ2 by Condition 2 in Definition E.1. By Lemma 15 of (Li & Chen, 2024), we know

TV(p
{i}
Tℓ

, pSinit

Tℓ
) ≤ maxj∈Sinit TV(p

{i}
Tℓ

, p
{j}
Tℓ

). This is ≤ ϵ for all j ∈ Sinit by Condition 3 on NoiseAmount and the data
processing inequality.
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Corollary E.3. Consider an ϵ-mixture tree (T, {P→(·|·)}, I,Θ, {pθ}θ∈Θ, Subset,NoiseAmount). Suppose we have an-
other distribution {qθ}θ∈Θ such that TV(pθ, qθ) ≤ δ/2 for all θ ∈ Θ. Then we have ϵ +

√
δ-mixture tree given by

(T, {P→(·|·)}, I,Θ, {qθ}θ∈Θ, Subset,NoiseAmount).

Proof. We need only check the first and second properties of NoiseAmount with parameter ϵ+
√
δ. To do this, it suffices to

show TV(qθiNoiseAmount(u), q
θj
NoiseAmount(v)) ≤ ϵ+δ and TV(q

Subset(u)
NoiseAmount(u), q

Θ−Subset(u)
NoiseAmount(u)) ≥ 1−ϵ2−δ. By the data processing

inequality, we just need to show this at t = 0, and we prove the stronger statement that for S1 ⊂ Θ, TV(pS1 , qS1) ≤ δ/2.
This follows from Lemma 15 of (Li & Chen, 2024) and TV(pθ, qθ) ≤ δ/2 for all θ ∈ Θ.

Example E.4. Consider a set of alphabets {Ai}di=1 and define Θ = {(ai)di=1 : ∀i ∈ [d], ai ∈ Ai} and pθi = δθi . Let
I = [0, 1, 2, . . . , d]. and for any permutation i1, i2, . . . , id of [d], define a forward process such that at t ∈ I, we mask all
id, id−1, . . . , id−t. This constructs a hierarchy where the values for i1, i2, . . . , id are decided in that order.

Proof. We construct the following 0-mixture tree as follows. We let the leaf nodes be the set Θ. We let two leaf nodes u, v
have the same parent if and only if they share the same values on the alphabet at i1, i2, . . . , id−1; we also define the parent
as the union of all of its children. We now treat the parents we constructed as the roots, and let them have the same parent if
and only if they share the same values on the tuple i1, i2, . . . , id−2. We continue to do this until we are left with one root
node. We let Subset map each node to the corresponding set and NoiseAmount map each node to its distance from a leaf node.

By the construction of T , it is clear that Subset satisfies the desired properties. For distinct θi, θj ∈ Θ, the lowest common
ancestor of θi, θj represents the largest k such that indices i1, . . . , ik are the same for θi, θj . Because pθiNoiseAmount(u) is just

the tuple of the values of θi, θj at i1, . . . , ik, we know TV(pθiNoiseAmount(u), p
θj
NoiseAmount(u)) = 0. For any u ∈ V representing

the values at index (iℓ)
k
ℓ=1, all θ /∈ Subset(u) does not share the same values at these indices by definition, so we also know

TV(p
Subset(u)
NoiseAmount(u), p

Θ−Subset(u)
NoiseAmount(u)) = 1.

F. Jailbreak Experiments
F.1. Reproducing critical windows for jailbreaks from existing papers

Existing work has already identified the presence of critical windows in the domain of jailbreaks. Here we present critical
windows for a simplified prefill jailbreak based on the prefill attack (Haize Labs, 2024b) and repeating token jailbreak (Nasr
et al., 2023) for LLAMA-3.1-8B-Instruct. In the first figure, we plot the probability of the model giving a harmful response,
computed using the StrongReject Gemma 7b auditor from (Souly et al., 2024), as a function of the fraction of the
phrase Sure, here is how to appended to the front of the model’s generation. We can see that there is a large jump
in the attack success rate after only including a few tokens in the prefix. The second figure is a reproduction of Figure 12
from (Nasr et al., 2023). It shows that the probability of repeating the next token increases substantially as the first few
tokens are included a few times in the context.
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Figure 7. Examples of critical windows in jailbreaks for LLAMA-3.1-8B-Instruct. Left: Critical window for a prefill jailbreak (Haize
Labs, 2024b). Right: Critical window for a repeating token jailbreak (Nasr et al., 2023).

F.2. Experimental details from jailbreak

Now we apply our theory to develop a new jailbreak detection method, based on a likelihood ratio between an aligned and
unaligned model. Intuitively, our theory states that when the unaligned component assigns a high probability to the text
compared to the entire model, the model is likely to be jailbroken. We use a LLAMA-3.1-8B-Instruct model jailbroken
with LoRA to not refuse harmful prompts (grimjim, 2024) as a proxy for the unaligned model. We evaluate these different
methods on a dataset of jailbreaks and benign prompts from (Bailey et al., 2024).

Dataset. We use the same dataset as (Bailey et al., 2024) but provide details here for completeness. The benign dataset
consists of inputs from UltraChat (Ding et al., 2023), a large dialogue dataset, and Xstest (Röttger et al., 2024), which
contains benign queries that are often incorrectly refused by language models. The benign queries are filtered to ensure that
LLAMA-3.1-8B-Instruct does not refuse any of them. The dataset of harmful prompts is based off of the Circuit Breakers
dataset (Zou et al., 2024). The datasets include the following jailbreaking methods from the extant literature: PAIR (Chao
et al., 2023), AutoDAN (Liu et al., 2024), Many-Shot Jailbreaking (MSJ) (Anil et al., 2024), Multi-Turn Attacks (Li et al.,
2024; Haize Labs, 2024a), Prefill, GCG (Zou et al., 2023), and other Misc. attakcs from (Wei et al., 2023). For each
jailbreaking method, it is applied to a prompt from the Circuit Breaker dataset and evaluated to see if the generation from
LLAMA-3.1-8B-Instruct is helpful and harmful, as determined by the StrongReject jailbreaking classifier (Souly et al.,
2024)).

Evaluation Metric. As is standard in the jailbreak detection literature (Bailey et al., 2024), we report the recall at the false
positive rate at 0.01.

Table 2 displays the recall and several other baselines. Crucially, the log likelihood ratio methods does obtain recall > 1 for
5 different categories of jailbreaks. While our methods do perform worse than existing methods, it is important to note that
they still work and that their poor performance could be explained by the fact that we have to use a proxy for the unaligned
mode of the model.
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Table 2. Recall (FPR=0.01) for our likelihood ratio threshold, a perplexity threshold (Alon & Kamfonas, 2023), and a MLP-based detector
trained on activations (Bailey et al., 2024) for predicting different jailbreaks. prompt/gen denote the logprobs of the prompt and generation,
respectively.

AutoDAN GCG Multi-Turn Misc MSJ Pair Prefill

log punaligned
prompt − log paligned

prompt 0.000 0.000 0.028 0.000 0.063 0.000 0.077
log punaligned

gen − log paligned
gen 0.082 0.030 0.000 0.100 0.000 0.061 0.051

log paligned
prompt 0.000 0.576 0.056 0.063 0.013 0.000 0.077

log paligned
gen 0.205 0.150 0.570 0.200 0.006 0.015 0.416

MLP 1.00 0.956 0.873 0.663 1.00 0.833 1.00

G. Structured output experiments
We have LLAMA-3.1-8B-Instruct (default sampling parameters of temperature of 0.6 and top-p sampling of 0.9) respond
to following prompt, which asks it to answer a series of fill-in-the-blank questions in a structured format. We prefill
the model’s generations with \n\n 1. to ensure that the outputs comport to that format. Figure 8 plots the probability
of obtaining the same answers as the original generation after truncating different amounts from the generation in the
forward-reverse experiments, computed with 10, 000 generations from the prompt. Our theory predicts that jumps in the
probability will occur at TC

before, T
C
after which represent when the model has committed to a particular answer to a question

in the generation. To compute TC
before, T

C
after, we look at when the generations diverge based on the first occurrence of the

identifying information. For example, the TC
before of the first critical window is 1. The , because the first answer has not

appeared in the generation, and the TC
after of the first critical window is 1. The P or 1. The N, because that uniquely

identifies the answer. These theoretical predictions are vindicated empirically, as the jumps in probability, representing the
model localization to a particular set of answers, occur exactly at TC

before, T
C
after in Figure 8.

Structured Output Prompt

Complete the following by choosing only one option for each blank. The options are provided in parentheses, and
your response must match the exact case and meaning of the chosen option. Respond with only the completed
sentence, no explanations or additional text.
1. The (Pirate/Ninja) jumped across the ship.
2. She adopted a (Dog/Cat) from the shelter.
3. The (River/Bridge) sparkled under the sun.
4. A (Dragon/Knight) guarded the castle gates.
5. He ordered (Pizza/Sushi) for dinner.

27



Blink of an eye: a simple theory for feature localization in generative models

Figure 8. Structured output plots for LLAMA-3.1-8B-Instruct. P denotes that we are sampling from responses whose answer to the first
question was Pirate; P,C denotes that we are sampling from responses whose answers to the first two questions were Pirate and Cat,
respectively. We can see that the critical windows directly correspond to our theoretical values for TC

before, T
C
after.

H. Chain of thought experiments
H.1. Experimental details

We select 7 different math and reasoning benchmarks on which performance is known to improve with chain of thought
reasoning (Lanham et al., 2023): ARC Challenge and Easy (Clark et al., 2018), AQua (Ling et al., 2017), LogiQA (Liu
et al., 2020), MMLU (Hendrycks et al., 2021a), and TruthfulQA (Lin et al., 2022) multiple-choice benchmarks and the
MATH benchmark from (Hendrycks et al., 2021b).

We describe the prompts we used in our evaluation of different datasets. The system prompt for all datasets is Produce
a correct solution to the following /TASK/ question., where /TASK/ is the type of question
of the dataset, i.e. science, math, or logic. For each question, we create a user prompt by appending Think of
the /TASK/ question thoroughly step by step. Please only respond with the answer
after reasoning thoroughly. in front of the question. Once the model completes its generation (max generation
length set to 2048 and default sampling parameters), we append the user prompt Given all of the above,
what’s the single, most likely answer? Your answer should have the format "The
answer is ANSWER", where ANSWER is your answer. for the multiple choice benchmarks and Given
all of the above, what’s the single, most likely answer? Simplify it completely.
Your answer should have the format "The answer is $ANSWER$", where ANSWER is your
answer in LaTeX. Note that when we ask the model for the final answer, we set the temperature to 0.

For 400 questions from each dataset, we prompt the language model with the query, cut off the generation at different
percentages of completion (in tokens), and regenerate it 100 times. We compute the probability that the final answer is the
same as the original answer, using a direct text comparison for the multiple choice benchmarks and the prm800k grader for
MATH (Lightman et al., 2023). Across three different models ( LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-
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Table 3. Differences between Accuracy (Acc) without versus with critical windows and frequency of critical windows (CW) when the
original generation is wrong versus right for LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-Instruct.

Dataset LLAMA-3.1-8B-Instruct Phi-3-7B-Instruct Qwen-2.5-7B-Instruct
∆Acc ∆CW ∆Acc ∆CW ∆Acc ∆CW

AQUA-RAT 0.42 0.20 0.36 0.16 0.03 0.01
ARC Challenge 0.53 0.22 0.50 0.24 0.38 0.11
ARC Easy 0.73 0.26 0.28 0.13 0.40 0.07
LogiQA 0.15 0.11 0.21 0.19 0.23 0.11
MATH 0.41 0.33 0.36 0.33 0.46 0.29
MMLU 0.45 0.24 0.38 0.21 0.26 0.11
TruthfulQA 0.44 0.20 0.42 0.23 0.55 0.23

2.5-7B-Instruct), we find that conditioned on the occurrence of critical windows, the model generation is significantly less
accurate compared to generations without critical windows.

Figure 9. Left-to-right: LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-Instruct barplots of original generation accuracy
for generations with (≥ 0.5 jump in probability) and without critical windows (< 0.5).
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Figure 10. Probability that the answer is the same as a function of the percentage of the generation remaining for different math and
reasoning benchmarks for LLAMA-3.1-8B-Instruct. Highlighted are generations with a 50% increase and no 30% decrease in the
probability over one step.

Figure 11. Probability that the answer is the same as a function of the percentage of the generation remaining for different math and
reasoning benchmarks for Phi-3-7B-Instruct. Highlighted are generations with a 50% increase and no 30% decrease in the probability
over one step.
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Figure 12. Probability that the answer is the same as a function of the percentage of the generation remaining for different math and
reasoning benchmarks for Qwen-2.5-7B-Instruct. Highlighted are generations with a 50% increase and no 30% decrease in the probability
over one step.

H.2. Examples of critical windows

We provide a few more examples of critical windows (bolded).

MATH example (LLAMA-3.1-8B-Instruct)

Q: Let a and b be the solutions of the equation 2x2 − 10x+ 5 = 0. What is the value of (2a− 3)(4b− 6)?

A: To find the value of (2a − 3)(4b − 6), we need to first find the values of a and b by solving the equa-
tion 2x2 − 10x + 5 = 0. We can use the quadratic formula to solve for a and b: x = −b±

√
b2−4ac
2a .

In this case, a = 2, b = −10, and c = 5. Plugging these values into the quadratic formula, we get:

x =
−(−10)±

√
(−10)2−4(2)(5)
2(2) x = 10±

√
100−40
4 x = 10±

√
60

4 x = 10±2
√
15

4 So, the solutions are a = 10+2
√
15

4

and b = 10−2
√
15

4 . Now that we have the values of a and b, we can substitute them into the expression
(2a − 3)(4b − 6): (2a − 3)(4b − 6) = (2(10+2

√
15

4 ) − 3)(4( 10−2
√
15

4 ) − 6) Simplifying the expression,
we get: (2a − 3)(4b − 6) = ( 10+2

√
15

2 − 3)( 10−2
√
15

1 − 6) (2a − 3)(4b − 6) = ( 10+2
√
15−6

2 )( 10−2
√
15−6

1 )

(2a − 3)(4b − 6) = ( 4+2
√
15

2 )( 4−2
√
15

1 ) Now, we can simplify the expression further by multiplying the
numerators and denominators: (2a− 3)(4b− 6) = (4+2

√
15)(4−2

√
15)

2 Using the difference of squares
formula (a+ b)(a− b) = a2 − b2, we can simplify the numerator: (2a− 3)(4b− 6) = 42−(2

√
15)2

2
(2a− 3)(4b− 6) = 16−60

2 Simplifying the expression further, we get: (2a − 3)(4b − 6) = −44
2

(2a− 3)(4b− 6) = −22 Therefore, the value of (2a− 3)(4b− 6) is −22.

Correct answer: −22
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LogiQA example (Phi-3-7B-Instruct)

Q: The person in charge of the relevant department said that pilots will be carried out in some areas this
year to prepare for the system and policy preparations for the comprehensive clean-up of ”small property
houses”, and require all localities to confirm the registration and certification of rural collective land. All
small-property houses are not subject to registration and are not protected by law. Therefore, this newly built
house in Hexi Village is not protected by law. Which of the following is true will most weaken the above
argument. (A) This newly built house in Hexi Village has been tacitly approved by relevant departments.
(B) This newly built house in Hexi Village is a small property house. (C) This newly built house in Hexi Vil-
lage is built on rural collective land. (D) Some of the newly built houses in Hexi Village are not small property houses.

A: The statement implies that small property houses are not protected by law and can be demolished if necessary
in the preparations for the system and policy preparations for the comprehensive clean-up. -We have to find the
option that weakens this argument the most. Option A suggests that the department has tacitly approved the newly
built house. This weakens the argument, but it can still be argued that the house is subject to demolition if the
comprehensive clean-up policy is implemented. Option B states that this newly built house in Hexi Village is a
small property house. This directly contradicts the argument that all small-property houses are not protected
by law and not subject to registration and certification. Therefore, this house would not be demolished and would be
protected by law. Option C says that the house is built on rural collective land. This doesn’t disprove the argument –
it might still be a small-property house without legal protection. Option D makes only some of the newly built
houses in Hexi Village not small property houses. This doesn’t address the argument that all small-property houses
are not protected by law and not subject to registration, but only carries an exceptional circumstance. Thus, the
option that most weakens the argument is (B) as it directly contradicts the statement by implying that the specific
house is protected by law. The answer is B.

Correct answer: D

MATH example (Qwen-2.5-7B-Instruct)

Q: Carson flips over the cards of a standard 52-card deck one at a time. What is the probability that he flips over the
ace of spades before any face card (jack, queen or king)?

A: 1. First, we need to identify the relevant cards for our problem. The ace of spades (A♠) and the face cards (J, Q,
K) are the ones we’re focusing on. There are 4 face cards in a standard deck of 52 cards (12 face cards total, but we
only consider 4 for this problem). 2. There are 52 cards in total, and 5 of these (A♠, J♠, Q♠, K♠, J♡, Q♡, K♡,
J♢, Q♢, K♢, J♣, Q♣, K♣) are either the ace of spades or a face card. Therefore, there are 47 other cards that are
neither the ace of spades nor face cards. 3. The problem can be simplified by considering the probability of the ace
of spades coming before any face card in a sequence of drawing these 9 cards (the ace of spades and the 8 face
cards). 4. We can think of the problem as a sequence of drawing 9 cards, where we are interested in the
position of the ace of spades relative to the face cards. The ace of spades can come in any of the 9 positions,
and we want to find the probability that it comes before any of the face cards. 5. For the ace of spades to
come before any face card, it must be in one of the first 5 positions (since there are 4 face cards, and the ace of
spades must come before any of them). There are 9 positions in total, and 5 of these are favorable. 6. Therefore, the
probability that the ace of spades comes before any face card is the ratio of the number of favorable outcomes to the
total number of outcomes, which is 5

9 . So, the probability that Carson flips over the ace of spades before any face

card is
5

9
.

Correct answer: 1
13
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H.3. Varied temperature sampling

In our above experiments with critical windows, we have been generating model responses at their default sampling
temperatures: LLAMA-3.1-8B-Instruct: 0.6, Phi-3-7B-Instruct: 1.0, and Qwen-2.5-7B-Instruct: 0.7. A natural question to
ask is whether the sampling temperature affects the presence or strength of critical windows across these models. At one
extreme, sampling at infinite temperature exhibits no critical windows since each token is generated uniformly at random.
At the other extreme, zero temperature sampling is deterministic, so there is only one mode of behavior and critical windows
again cannot exist. At intermediate temperatures, decreasing sampling temperature reduces token variance, so the sharpness
of transition from general mixture to target submixture can be heightened. At the same time, reduced sampling variance also
reduces the likelihood of transitioning between modes as well, leaving the overall effect on critical windows unclear.

First, we report the frequency of critical windows across the different temperatures for the MATH dataset: 0.1, 0.4, 0.7,
and 1.0. Then, we report the average size of a critical window on 400 samples from MATH, running the forward-reverse
experiment on each sample 25 times and taking the max consecutive jump as the critical window size for that problem.
From Figures 13 and 14, each model has its own relationship between temperature and critical window frequency and size,
with no clear definite relationship across all models.

Figure 13. Temperature versus critical window frequency for LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-Instruct.
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Figure 14. Temperature versus mean critical window size for LLAMA-3.1-8B-Instruct, Phi-3-7B-Instruct, and Qwen-2.5-7B-Instruct.
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