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ABSTRACT

Data augmentation is used extensively to improve model generalisation. How-
ever, reliance on external libraries to implement augmentation methods introduces
a vulnerability into the machine learning pipeline. It is well known that backdoors
can be inserted into machine learning models through serving a modified dataset
to train on. Augmentation therefore presents a perfect opportunity to perform this
modification without requiring an initially backdoored dataset. In this paper we
present three backdoor attacks that can be covertly inserted into data augmenta-
tion. Our attacks each insert a backdoor using a different type of computer vision
augmentation transform, covering simple image transforms, GAN-based augmen-
tation, and composition-based augmentation. By inserting the backdoor using
these augmentation transforms, we make our backdoors difficult to detect, while
still supporting arbitrary backdoor functionality. We evaluate our attacks on a
range of computer vision benchmarks and demonstrate that an attacker is able to
introduce backdoors through just a malicious augmentation routine.

1 INTRODUCTION

Data augmentation is an effective way to improve model generalisation without the need for addi-
tional data (Perez & Wang, 2017). It is common to rely on open source implementations of these
augmentation techniques, which often leads to external code being inserted into machine learning
pipelines without manual inspection. This presents a threat to the integrity of the trained models.
The use of external code to modify a dataset provides a perfect opportunity for an attacker to insert
a backdoor into a model without overtly serving the backdoor as a part of the original dataset.

Backdoors based on BadNet are generally implemented by directly serving a malicious dataset to
the model (Gu et al., 2017). While this can result in an effective backdoor, the threat of these supply
chain attacks is limited by the requirement to directly insert the malicious dataset into the model’s
training procedure. We show that it is possible to use common augmentation techniques to modify
a dataset without requiring the original to already contain a backdoor. The general flow of backdoor
insertion using augmentation is illustrated in Figure 1.

More specifically, we present attacks using three different types of augmentation: (i) using standard
transforms such as rotation or translation as the trigger in a setup similar to BadNet (Gu et al., 2017);
(ii) using GAN-based augmentation such as DAGAN (Antoniou et al., 2017), trained to insert a
backdoor into the dataset; and (iii) using composed augmentations such as AugMix (Hendrycks
et al., 2020) to efficiently construct gradients in a similar fashion to the Batch Order Backdoor
described by Shumailov et al. (2021).
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Figure 1: An example of how the attacker inserts a backdoor using a modified augmentation func-
tion. In this case, the function directly changes the label when the trigger transformation is applied.
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In all three cases, the backdoored model works in much the same way as a BadNet backdoor, but
with a threat model which does not require training on an initially malicious data set and an insertion
process that is more difficult to detect because the backdoor is implemented by manipulating the
random components of genuine augmentations. To summarise, we make the following contributions
in this paper:

• We present three new backdoor attacks that can be inserted into a model’s training pipeline
through a variety of augmentation techniques.

• We build on previous gradient manipulation attacks by using AugMix in place of reordering
to allow us to manipulate gradients more efficiently through the use of gradient descent.
This attack demonstrates that it is possible to perform clean data, clean label backdoor
attacks using data augmentation, and outperforms Shumailov et al. (2021) significantly.

• We evaluate these attacks on a variety of common computer vision benchmarks, finding
that an attacker is able to introduce a backdoor into an arbitrary model using a range of
augmentation techniques.

2 RELATED WORK

Gu et al. (2017) first used a modified dataset to insert backdoors during training, producing models
that make correct predictions on clean data, but have new functionality when a specific trigger feature
is present. Improvements to this process have since been made to create attacks that assume stronger
threat models. Ma et al. (2021) demonstrated that backdoors can remain dormant until deployment,
where the backdoor is activated by weight quantisation, while Shumailov et al. (2021) manipulated
the order of data within a batch to shape gradients that simulate a backdoor using clean data. Chen
et al. (2017) first investigated triggers that are difficult for humans to identify.

Attacks that insert backdoors without modifying the dataset were also demonstrated, for example by
inserting malicious components directly into the model’s architecture (Bober-Irizar et al., 2022), or
by perturbing the model’s weights after training (Dumford & Scheirer, 2018).

Many of these techniques assume direct access to either the model itself or its training set. Our
attacks are instead inserted into augmentation functions, inserting their backdoors using the random
parameters of the augmentation. Our attacks each focus on a different class of data augmentation
function, building on the work from Wu et al. (2022), who investigate only the rotation transfor-
mation. Here we consider the more general threat of adversarial augmentation as a mechanism for
inserting backdoors into the training pipeline.

3 METHODOLOGY

3.1 THREAT MODEL

Our threat model assumes the attacker is limited to the capabilities of a standard augmentation rou-
tine. Specifically, our attacker only assumes access to individual datapoints during training through
a malicious augmentation function, without the ability to observe the model.

Our simple transform augmentation attack requires modification of the clean dataset’s labels. How-
ever, in practice this would not be a major limitation if, for example, the augmentation is imple-
mented as a wrapper around a dataset object, which is the most popular implementation in today’s
machine learning frameworks (Paszke et al., 2017). The GAN-based attack is clean-label, but pro-
duces images that may be out of the distribution of augmented images. The final AugMix-based
attack, requires no visible malicious modification at all, and is, to our knowledge, the second clean
data, clean label backdoor attack (after Shumailov et al. (2021)).

Our GAN and AugMix based backdoors can both support arbitrary triggers. However, our simple
transform backdoor requires the augmentation transform to be used as the trigger. We further discuss
this issue in Appendix D.
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3.2 OVERVIEW OF DATA AUGMENTATION

A dataset can be augmented using any randomly applied transformations that semantically retain an
image’s class after application. We categorise these transformations into three groups, which our
three backdoors generally correspond to:

1. Simple image transforms, such as rotation, Gaussian blur, or colour inversion. These trans-
forms are simple to detect, making them perfect to insert as a backdoor trigger.

2. Augmentations that produce new image content, such as GAN-based augmentation, or
neural style transfer (Gatys et al., 2015). We leverage the ability of these augmentations
to generate new datapoints to insert a backdoor that does not require modification of the
labels in the training set.

3. Compositions of other augmentations, such as AugMix or AutoAugment. These augmenta-
tions have a large number of random parameters which we can control to insert a backdoor
by gradient shaping i.e. by choosing data to imitate a gradient update of choice.

We provide specific details of the implementations of each of these backdoors in Appendix B

4 EVALUATION

We evaluate our attacks on common Computer Vision benchmarks. A full explanation of the param-
eters we used can be found in Appendix D.

Table 1: Accuracies of models trained on all three backdoors. Additional results and evaluation
parameters can be found in Appendix C

Attack Dataset Clean acc. (%) ∆ ASR (%)

None

CIFAR100

78.13 0.00 2.33
Rotate 77.45 -0.68 100.00
Gaussian blur 77.45 -0.68 100.00
CutMix 77.44 -0.69 99.33

None MNIST 99.25 0.00 0.00
GAN 83.30 -15.95 99.65

None CIFAR10 83.83 0.00 10.62
AugMix 79.10 -4.73 95.77

Table 1 presents a summary of the results for all three backdoors. For our standard transform back-
door, our attacks show negligible accuracy losses when compared to our baseline and ~100% ASR.
Our simple transform attacks demonstrate clean accuracy and ASR similar to that of the BadNet
attack, while offering an improved mechanism for inserting the attack into the machine learning
pipeline.

Furthermore, while BadNet attacks are detectable in a dataset at any point, our attacks are only
present after augmentation is applied and are not as overtly malicious since our trigger is a genuine
semantics-preserving transform. Possible defences for our attack could be to manually inspect the
code of external augmentation libraries, or to manually check the labels of datapoints in the aug-
mented dataset. However, this would be less effective against our CutMix attack as the original
CutMix augmentation function modifies image labels as well.

Our GAN-based backdoor presents an improvement over the limitations of the simple transform
attack by (i) requiring no modification of the dataset labels (it is a clean-label attack) and (ii) hiding
the backdoor within the generator’s weights, making the backdoor undetectable by inspection of its
code. The backdoor could still be detected by inspecting the images it produces, but the generator is
likely to produce images that are passed directly to the model, making manual inspection unlikely
unless the user is already believes the augmentation function may be malicious.

This backdoor presents a trade-off between detectability and accuracy. Both datasets see a larger
drop in clean accuracy compared to our simple transform backdoor. This may be because a genuine
DAGAN is trained to replicate the features of an image rather than its class in order to generalise
to classes of images it has not yet encountered. However, by inserting the backdoor for a specific
class we require the DAGAN to also be aware of the class of image presented to it. Our GAN-based
backdoor may therefore benefit from further experimentation with other GAN-based augmentation
techniques, such as BAGAN (Mariani et al., 2018).
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Unlike our GAN-based backdoor, our AugMix backdoor produces images that are in-distribution
and clean-label, meaning they could be produced by the standard AugMix augmentation pipeline.
Our attack is therefore difficult to directly detect. However, it would be possible to detect this
backdoor by careful inspection of the source code. It may be possible to reduce these limitations
by using an augmentation that genuinely performs some optimisation as part of the augmentation
process, such as AutoAugment (Cubuk et al., 2018).
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Figure 2: Comparison between our proposed AugMix backdoor and the previous Batch Ordering
Backdoor (Shumailov et al., 2021). The graph shows the averaged reconstruction error over 200
iterations of our AugMix backdoor alongside the error from the Batch Ordering Backdoor. We
averaged the errors over 95 sequential batches, trained with the same parameters as for the bottom
row of Table 1.
Our AugMix backdoor improves over the previous Batch Order Backdoor in two ways: (i) by pro-
viding a mechanism to insert the backdoor into the training pipeline and (ii) by enabling an improved
optimisation technique for the gradient shaping process. Figure 2 shows the error between our target
gradients from an overtly backdoored dataset and our maliciously AugMixed batch. It is clear that
our proposed technique allows for improved gradient reconstruction fidelity. However, despite the
improved search procedure, our optimisation process takes a noticeable amount of time, and the
backdoor still causes a drop in accuracy compared to a BadNet attack.

Overall, we find that:

• An attacker can introduce a backdoor into a model using only data that has been passed
through a malicious augmentation function.

• Backdoors that are inserted by augmentation are capable of having comparable accuracy to
more common insertion methods such as those used by Gu et al. (2017).

• An attacker can insert clean-label backdoors using only in-distribution data that has been
transformed by a malicious augmentation function.

• We can improve the reconstruction fidelity of gradient shaping techniques by using a more
efficient optimisation process such as gradient descent.

5 CONCLUSION

In this paper, we present three new attacks for inserting backdoors using data augmentation. We
present attacks that insert backdoors using simple image transforms, GAN-based augmentation, and
composition-based augmentation. All three of our proposed backdoors hide their modifications to
the dataset within genuine transformations, making them difficult to detect. Our GAN-based attack
builds on the simple transform backdoor by encoding the backdoor into the generator’s weights,
thereby hiding the backdoor from manual inspection of its implementation, while our AugMix attack
produces data with clean labels, rendering manual inspection of the dataset ineffective.

An attacker could insert our backdoors by hosting open source, malicious implementations of aug-
mentation techniques that are not yet included in common augmentation libraries. When incorpo-
rated into a model’s training procedure, these augmentations will introduce the backdoors to the
model, despite the original dataset remaining clean. In some cases, for example with the CutMix
backdoor, it is unlikely that the backdoor would be detected without explicitly checking for it. This
paper demonstrates that is it necessary to carefully check both the source and the output of any
external libraries used to perform data augmentation when training machine learning models.
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APPENDIX

A ADDITIONAL RELATED WORK

Image data augmentation has been shown to be effective at improving model generalisation. Sim-
ple data augmentation strategies such as flipping, translation (He et al., 2016; Krizhevsky et al.,
2012), scaling, and rotation (Wan et al., 2013) are commonly used to improve model accuracy in
image classification tasks, practically teaching invariance through semantically-meaningful transfor-
mations (Lyle et al., 2020). More complex augmentation methods based on generative deep learning
(Antoniou et al., 2017; Zhu et al., 2017) are now common as they have demonstrated strong per-
formance on tasks where class-invariant transforms are non-trivial and are difficult for a human to
mathematically define.

Rather than encoding a direct invariance, Cutout (DeVries & Taylor, 2017) removes a random por-
tion of each image, while mixing techniques (Yun et al., 2019; Zhang et al., 2018) mix two random
images into one image with a combined label. AugMix (Hendrycks et al., 2020) uses random com-
positions of simpler transforms to provide more possible augmentations. AugMax (Wang et al.,
2021) uses gradient descent to tune the parameters of the AugMix augmentation to increase the
”hardness” of the data in the training set. Our AugMix based backdoor performs a similar optimi-
sation procedure, but with the goal of inserting a backdoor into the model. AutoAugment (Cubuk
et al., 2018) tunes compositions of transforms to maximise classifier performance using reinforce-
ment learning. We provide an overview of different types of augmentations and how they relate to
each other in Section 3.2.

B METHOD

B.1 SIMPLE TRANSFORM ATTACK

A typical BadNet backdoor is implemented by manipulating a dataset D to capture additional func-
tionality in the presence of a trigger T . We define a function F so that if (x, y) ∈ D, a model M
should have the functionality (M ◦ T )(x) = F (y) when trained on the modified dataset. This is
achieved by modifying D to contain additional datapoints such as (T (x), F (y)). Gu et al. (2017)
suggest T could add a small pattern to the image, and F (·) = 0.

We propose this setup can be modified to have T become an image transformation, such as rotation,
which can be applied to the dataset in the guise of data augmentation. The backdoor insertion
function is shown in Algorithm 1.

Rotation

Inversion

Gaussian Blur

0 0 4 8 06 3 5

Figure 3: Examples of images produced by simple augmentation backdoors applied to the MNIST
dataset. Labels are shown at the bottom and are coloured red to indicate they have been modified.
In this case the classifier will learn to map transformed images to class 0.
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Algorithm 1: Simple transform augmentation backdoor
input: batch B, transform T , backdoor proportion p
N ← [];
for (input x, label y) ∈ B do

if random() ≤ p then
x′ ← T (x);
y′ ← 0;

else
x′ ← x;
y′ ← y;

end
append (x′, y′) to N ;

end
return N ;

B.2 GAN-BASED AUGMENTATION ATTACK

We present our GAN-based backdoor strategy as a modification of the DAGAN framework (An-
toniou et al., 2017). Antoniou et al. (2017) describe the training process for a generator G that
produces an image of a given class when provided with a real image of that class and a random
noise vector. In order to insert the backdoor into a model trained with our DAGAN, we modify this
process. If (x, y) is from the distribution that our dataset D is sampled from, then the backdoored
generator G′ is trained so that there exists another point in this distribution (x′, y′), where either
(G′(x), y) ≈ (x′, y′), or (G′(x), y) ≈ (T (x′), F (y′)), where T and F have the same meanings as
in Section 3.3. We define our backdoor as:

T (x) = x ·m+ t · (1−m) (1)

F (y) =

{
0 if y = 1

y otherwise
, (2)

where mij ∈ {0, 1} is a mask applied to x, and t ∈ RM×N is a pattern that acts as the trigger.
When y ̸= 1, the DAGAN is trained as normal. In the cases where y = 1, G is either trained to
map x → x′, or x → T (x′). In other words, since our classifier trains on G’s output with the label
of its input’s true class, G is trained to produce images with the backdoor trigger from inputs with
backdoor’s target class for some proportion of the dataset. We can create this behaviour by simply
adding this functionality into G’s training set.

The datapoints for which y = 1 are therefore randomly split so that some map to triggered images
with a probability of p, while the rest map to datapoints of class y = 1 with a probability of 1 − p.
We present results using three different values of p in Table 3.

Input

DAGAN output

6 4 3 8 9 1 1 1 1 1

Figure 4: Examples of images produced by the modified DAGAN. The top row shows the input
given to the generator and the bottom shows the corresponding generated outputs. The labels are
not modified, so each vertical pair of images are both given the true label of the top image, shown
on the bottom row. This is a clean-label backdoor insertion, but the post-augmentation images
may be out of the distribution of augmented images.

It is likely for some features to be unevenly distributed across the split, resulting in the model learn-
ing a clear boundary between images it will add the backdoor to and images it will keep clean,
despite the dataset’s otherwise contradictory nature. If this were not the case, features could be
strategically selected to be unevenly split, which could also be controlled so that the backdoor is
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only inserted in certain tasks. Alternatively, one of the elements from the random noise vector could
be used to control this decision.

We show the results of our modified DAGAN in Figure 4. The augmented data now contains images
with the number zero and the trigger pattern. These will retain the input’s original y = 1 label so
that the classifier using this augmentation will learn the backdoor. We would like to highlight that
this attack is clean-label. This means we do not modify the labels of the datapoints.

B.3 AUGMIX-BASED AUGMENTATION ATTACK

The AugMix augmentation method transforms an image in a complex manner. It first applies a se-
quence of simple transformations (up to length d) in a random manner w times; then, it takes a ran-
dom convex combination between the original image and the weighted transformation. Hendrycks
et al. (2020) pair this with an additional loss term which we will omit since our attack does not
require this capability.

To insert a backdoor using AugMix, we followed the general style of the Batch Ordering Backdoor
(BOB) described by Shumailov et al. (2021). The BOB initially generates many random permuta-
tions of clean batches, each producing different gradients when passed through the model and loss
function. The permutation Xi with the smallest difference in gradient with an explicitly backdoored
batch X̂j is selected to train on:

min
Xi

||∇θL̂(X̂j , θk)−∇θL̂(Xi, θk)||p.

Here, θ are the parameters, and L(X, θk) is the loss from applying the classifier to batch X using
weights from timestep k. Since we don’t have access to the classifier, we can train our own surrogate
model in parallel, and use the loss L̂(X, θ̂k) ≈ L(X, θk) from this. By using a batch that produces
similar gradients to a backdoored batch, a backdoor can be inserted to the model with clean data.

Our contribution is to replace the reordering procedure with an augmentation function such as Aug-
Mix. Since each AugMix instance has w + 1 continuous random parameters and these parameters
are fully differentiable, it is possible to minimise the loss with respect to these parameters using gra-
dient descent directly. This results in a significant efficiency improvement over the random sampling
method used by Shumailov et al. (2021).

AugMix

S. Classifier Weights

Loss function

BadNet backdoor

Backdoored dataset

Predictions

Loss function

Loss

S. Classifier

Error

SGD

AugMix weights

Loss

Predictions

Augmented batch

Batch

AugMix weightsBatch

Weight optimisation: Augmentation:

AugMix

Output batch

Augmented batch

Figure 5: Overview of the AugMix backdoor process. The red cycle indicates the optimisation we
perform prior to augmentation to insert the backdoor, while the green shows the augmentation.

We therefore have two optimisation loops. The first iterates over each epoch, training the target and
surrogate classifiers, while the second performs a full optimisation pass on every epoch to optimise
the AugMix weights for our malicious batch (red loop in Appendix B.3). Once these parameters
have been found, we can perform the AugMix augmentation normally (green path in Appendix B.3),
substituting the random parameter sampling with our malicious values. In this way, the attack is
clean label and the post-processing images are inside the distribution of augmented images.
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Figure 6: Samples from two batches of data that produce similar gradients in our models. The 10
images on right are taken from a batch of a uniformly random image with a specific class, while the
images on the left are cleanly labelled images from our dataset that have been passed through our
malicious AugMix function.
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Figure 7: Overview of the data output from each of our three backdoors.

C AUGMIX ALGORITHM

Algorithm 2: AugMix backdoor
input: batch B, transforms T , iterations n, surrogate model M , loss function L

w ← random samples from Dirichlet(1) in shape (len(B), len(T ));
m← random samples from Beta(α, α) in shape len(T );

U ← apply BADNET backdoor to B;
lu ← L(M(U .inputs), U .labels);
gu ← backpropagate gradients from lu to weights of M
for n iterations do

V ← apply AugMix to B.inputs, using weights w[i], m[i] for B.inputs[i];
lv ← L(M(V .inputs), V .labels);
gv ← backpropagate gradients from lv to weights of M ;

E ← ||gu − gv||p;
gE ← backpropagate gradients from E to w and m;

w,m←SGD ([w,m], gE);
end
return V ;

D ADDITIONAL EVALUATION

We evaluate our attacks on common Computer Vision benchmarks. A summary of the datasets we
use can be found in Appendix E. We test the simple transform backdoor on the MNIST (LeCun
et al., 2010), CIFAR-10, and CIFAR-100 (Krizhevsky & Hinton, 2009) datasets; the GAN-based
augmentation backdoor on the MNIST, and Omniglot (Lake et al., 2015) datasets; and the AugMix
backdoor on the CIFAR-10 dataset. For each dataset we report the clean accuracy on only clean data
and the attack success rate (ASR) on only data with the trigger and backdoor label. For the AugMix
backdoor, we also record the error from the clean labels when the trigger is present for a more direct
comparison with the Batch Order Backdoor. We summarise the details of the networks we use in
Appendix F and the details of our hardware setup can be found in Appendix G.
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Our PyTorch code used to achieve the results for all three backdoors can be found at
https://github.com/slkdfjslkjfd/augmentation backdoors.

D.1 SIMPLE TRANSFORM BACKDOOR

Table 2 presents the results for our standard transform backdoor. For the first four transforms listed,
our attacks show negligible accuracy losses when compared to our baseline and near 100% ASR,
with the exception of the vertical flip transformation, which is more difficult to detect. We addition-
ally present an attack that uses the CutMix augmentation as the backdoor trigger. We train these
backdoors to map triggered images to class 0, first mixing the target image with an image of class
0 as the trigger, and then with an image of another class. These attacks perform at or only slightly
below our baseline accuracy.

Our simple transform backdoor requires the augmentation transform to be used as the trigger. Gu et
al. (2017) describe applying a pattern trigger to a traffic sign, which presents an issue when using
transforms that could not be physically applied to a sign as the trigger, such as colour inversion.
However, in many cases, these attacks can be launched in alternative settings, such as against image-
based filtering systems (Google; Apple). In this case, if the attacker wants to upload an image that
should be rejected by the filter, they could apply the transformation which triggers the backdoor,
resulting in the filter failing to reject the image.

Table 2: Percentage accuracies of classifiers trained using different backdoored transforms. We
trained the classifiers with Adam optimiser using β = (0.9, 0.999) and a Cosine Annealing sched-
uler for 300 epochs. For MNIST, we trained with a batch size of 4069, and initial learning rate of
2×10−3, while for CIFAR-10 and CIFAR-100, we used a batch size of 128, and initial learning rate
of 5 × 10−4. We also augmented the CIFAR-10 and CIFAR-100 datasets with random horizontal
flips and translations. We report the accuracy differential in the ∆ heading.

MNIST CIFAR10 CIFAR100
Attack Clean (%) ∆ ASR (%) Clean (%) ∆ ASR (%) Clean (%) ∆ ASR (%)
Baseline
None 99.25 0.00 9.84 94.43 0.00 10.08 78.13 0.00 2.33
Geometric
Vertical flip 98.76 -0.49 98.51 92.46 -1.97 98.73 74.97 -3.16 91.94
Rotate 45◦ clockwise 99.15 -0.10 99.97 94.66 +0.23 100.00 77.45 -0.68 100.00
Colour
Invert 99.27 +0.02 100.00 94.05 -0.38 98.96 77.54 -0.59 95.91
Kernel

Gaussian blur 99.22 -0.03 100.00 94.37 -0.06 100.00 77.45 -0.68 100.00
Image mixing
CutMix with class 0 98.83 -0.42 80.78 94.43 +0.00 99.34 77.44 -0.69 99.33
CutMix with class not 0 98.69 -0.56 84.16 94.56 +0.13 99.48 77.49 -0.64 99.23

D.2 GAN BACKDOOR

Table 3: Percentage accuracies of classifiers trained on our modified DAGAN generator. p is the
trigger proportion. We trained the classifiers with Adam optimiser using β = (0.9, 0.999) and a
learning rate of 1 × 10−3 for 300 epochs. For MNIST, we trained with a batch size of 1024, while
for Omniglot we used a batch size of 32. For both datasets, the DAGAN was trained with Adam
optimiser using 5 × 10−4 learning rate and β = (0, 0.9) for 75 epochs. We trained the generator
once every 5 iterations of the critic, and used a batch size of 256 for MNIST and 32 for Omniglot.

MNIST Omniglot
Attack p Clean acc. (%) ∆ ASR (%) Clean acc. (%) ∆ ASR (%)
None 99.25 0.00 0.00 84.14 0.00 0.00

GAN aug
0.25 75.91 -23.34 38.60 53.10 -31.04 73.33
0.5 83.30 -15.95 99.65 29.66 -54.48 53.33

0.75 60.33 -38.92 85.12 26.21 -57.93 100.00

11

https://github.com/slkdfjslkjfd/augmentation_backdoors


Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Table 3 presents the results for our GAN-based augmentation backdoor. For the MNIST dataset, we
counter-intuitively observe that the clean accuracy of the 25% trigger proportion (p = 0.25) and the
ASR of the 75% trigger proportion (p = 0.75) are inferior to the accuracies of the 50% proportion
(p = 0.5). This is likely because the generator either always adds the trigger or never adds it to an
image in these cases, causing the 25% of the dataset that represents the other option to only disrupt
the generator’s training.

D.3 AUGMIX BACKDOOR

Table 4 presents the results of our AugMix attack. We develop our attack on the codebase from
Shumailov et al. (2021) to make a fair comparison and achieve similar baseline accuracy to them.
Our backdoor is able to achieve 95.77% ASR. This is a 5.2% increase in accuracy over the best
result achieved by the previous Batch Order Backdoor method. Our results indicate that the attack
is most effective on larger batch sizes, which differs from the ordering method, because our attack
is able to take advantage of the larger number of parameters more effectively. We performed all of
our tests with an AugMix width of 20 as we found that widening past this made the search much
less efficient.

Table 4: Percentage accuracies of classifiers trained on CIFAR10 using our backdoored AugMix
function. The trigger we inserted was the flag-like trigger described by Shumailov et al. (2021).
We performed 200 iterations with Adam optimiser using β = (0.99, 0.999) and 1 × 10−3 learning
rate to find the AugMix parameters. Following the setup described by Shumailov et al. (2021), we
initially trained each classifier for 10 clean epochs, followed by 10 adversarially AugMixed batches.
We used a ResNet50 as both the target model and surrogate, trained with Adam optimiser using
β = (0.99, 0.999) and 1× 10−3 learning rate.

CIFAR10
Attack Batch size Clean acc. (%) ∆ ASR (%) Error w. trigger

None
32 84.07 0.00 13.61 27.90
64 83.96 0.00 12.94 31.16

128 83.83 0.00 10.62 31.90

AugMix
32 79.73 -4.34 84.73 84.19
64 79.53 -4.43 89.88 85.75

128 79.10 -4.73 95.77 88.52

We were unable to achieve significant error improvement when using random sampling with our
AugMix backdoor, which may be due to the sampling’s inability to effectively explore the larger
parameter space. The AugMix function’s larger parameter space may also correspond to a wider
set of possible gradient updates. This improved error is therefore likely due to a combination of the
AugMix function’s improved lower bound on gradient reconstruction error and our use of gradient
descent to more efficiently approach this lower bound.

E DATASETS

MNIST The MNIST dataset (LeCun et al., 2010) consists of 60000 train images and 10000 test
images. Each 28x28 pixel greyscale image displays a single digit between 0 and 9 inclusive. The
class of the image is the digit it contains.

Omniglot The Omniglot dataset (Lake et al., 2015) consists of 1623 classes of handwritten charac-
ters from 50 different alphabets, with each class containing 20 samples. We downscale the dataset
to 28x28 greyscale images and reduce the number of classes to 50. We split each class into 15 train
images and 5 test images.

CIFAR-10 The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) consists of 50000 train images and
10000 test images, both equally split into 10 classes. Each 32x32 pixel colour image displays a
subject from one of the 10 classes.

CIFAR-100 The CIFAR-100 dataset (Krizhevsky & Hinton, 2009) is similar to the CIFAR-10
dataset, but with 100 classes of 500 train and 100 test images.
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F MODELS

ResNet We use a ResNet-50 classifier (He et al., 2016) for the CIFAR-10 dataset, and the WideRes-
Net variant implementation at https://github.com/meliketoy/wide-resnet.pytorch to train our CIFAR-
100 classifier.

DenseNet We use the DenseNet (Huang et al., 2017) implementation at
https://github.com/amurthy1/dagan torch to train our Omniglot classifier.

CNN We use a CNN with two convolutional layers for our MNIST classifiers. The architecture of
our classifiers is detailed in Table 4.

Table 5: Architecture of the classifier trained on the MNIST dataset
input filter shape stride output activation

Conv0 (1, 28, 28) (8, 1, 5, 5) 1 (8, 24, 24) ReLU
Pool0 (8, 28, 28) Max, (2, 2) 2 (8, 12, 12)
Conv1 (8, 12, 12) (16, 8, 5, 5) 1 (16, 8, 8) ReLU
Pool1 (16, 8, 8) Max, (2, 2) 2 (16, 4, 4)

Dense0 (16, 4, 4) (128) ReLU
Dense1 (128) (96) ReLU
Dense2 (96) (10)

G HARDWARE SYSTEMS

The testing of our GAN and AugMix backdoors was carried out on a hardware system with 4x
NVIDIA GeForce GTX 1080 Ti. The simple transform backdoor training was carried out on
NVIDIA T4 GPUs.

H BACKDOOR DEFENCE METHODS

Our attacks bring improvements in detectability and prevention over previous methods, such as
BadNet. For example, data augmentation has been suggested to be an effective defence against
BadNets (Borgnia et al., 2021), however, since our backdoor is inserted by augmentation, this is
likely to be less effective against our attacks.

Backdoor defence methods such as those proposed by Li et al. (2021) and Zeng et al. (2022) have
been shown to be effective at removing backdoors from a trained models. However, our backdoors
are able to bypass many of these defences by breaking some of their initial assumptions.

The defence described by Li et al. (2021) isolates the subset of data that contains the backdoor, and
then uses this remove the backdoor from the trained model. However, when the backdoor is inserted
by augmentation, there is no specific subset of data that contains the backdoor. Therefore, it is not
possible to extract only the data that contains the backdoor, making the defence ineffective.

Similarly, the defence proposed by Zeng et al. (2022) assumes that the backdoor is inserted by a
malicious dataset, and that we have access to a separate, “clean” dataset. However, since our attack
is not inserted as part of the dataset, using different data will not change whether the backdoor is
present in the images passed into the model. This defence would therefore only be effective if the
augmentation function is not applied to the clean data, which would require the defender to initially
believe the augmentation is malicious. Table 6 shows the ASR of our rotation backdoor after each
defence has been applied to the backdoored model.
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Table 6: Results of applying the defences proposed by Li et al. (2021) and Zeng et al. (2022) to a
backdoored model that has been trained using our rotation-based augmentation backdoor with 10%
trigger proportion. We used the defence parameters described by Li et al. (2021) and Zeng et al.
(2022) and the classifier described by Li et al. (2021).

CIFAR10
No Defence Li et al. (2021) Zeng et al. (2022)

ASR 100.00 100.00 100.00
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