A Difference-of-Convex Functions Approach to Energy-Based Iterative Reasoning

Daniel Tschernutter
Infermedica

Graz, Austria

daniel.tschernutter@infermedica.com

David Diego-Castro

Infermedica Gothenburg, Sweden

david.diego-castro@infermedica.com

Maciej Kasiński

Infermedica Wrocław, Poland maciej.kasinski@infermedica.com

Abstract

While energy-based models have recently proven to be a powerful framework for learning to reason with neural networks, their practical application is still limited by computational cost. That is, existing methods for energy-based iterative reasoning suffer from computational bottlenecks by relying on expensive optimization routines during training and especially during inference. Furthermore, these routines may not always converge to minimal energy states, potentially leading to suboptimal reasoning. To address these limitations, we propose a novel and efficient algorithm for energy-based iterative reasoning based on a difference-ofconvex (DC) functions approach. Our algorithm achieves a significant speedup compared to prior methods while offering theoretical convergence guarantees ensuring locally minimal energy states. In addition, we achieve state-of-the-art or superior performance on continuous reasoning tasks, as demonstrated by our experiments on multiple benchmark datasets from continuous algorithmic reasoning. As such, our method offers a leap in computational efficiency, enabling faster inference with theoretical guarantees, and hence unlocking the potential of energy-based models for iterative reasoning applications.

1 Introduction

The human thinking process is described as operating through two distinct modes [31]: the rapid, automatic associations of System 1, and the slower, more controlled symbolic reasoning of System 2. Neural networks have demonstrated remarkable ability to perform System-1-like tasks within well-defined and specific environments. However, when faced with slightly different or harder tasks, neural networks often fail while humans engage in System 2 processes. The latter allows for iterative reasoning about new observations drawing upon prior experience and shared abstractions which remains difficult even for extremely large neural network architectures such as LLMs [35, 51].

There is a variety of recent work that tries to formalize reasoning within a neural network approach, see next section. In this work, we build upon the state-of-the-art in [20, 21] formalizing iterative reasoning as an energy minimization problem, i.e.,

$$\underset{x}{\operatorname{argmin}} E_{\theta}(x, y) \tag{1}$$

for a given problem encoded in $y \in \mathbb{R}^m$ with (partial) solutions $x \in \mathbb{R}^n$. Learning to reason is defined as learning the energy landscape E_{θ} parameterized by θ via

$$\min_{\theta} \sum_{i} \left\| \underset{x}{\operatorname{argmin}} E_{\theta}(x, y_{i}) - x_{i} \right\|^{2}$$
 (EMP)

from given problem- and solution-pairs $\{(y_i,x_i)\in\mathbb{R}^m\times\mathbb{R}^n:i\in\{1,\dots,N\}\}$. Optimization steps from a current (partial) solution x^k to a new x^{k+1} with $E_{\theta}(x^{k+1},y)\leq E_{\theta}(x^k,y)$ are then considered as individual reasoning steps. It has been proven empirically and theoretically that this formulation is superior to direct feed-forward computations, recurrent approaches, and various baselines from neural reasoning in terms of generalization and parameter efficiency [20, 21]. Nevertheless, learning energy landscapes involves solving (1) at training as well as inference time which imposes several limitations on current approaches: (i) Due to the inherent complexity of energy landscapes, heuristics for approximating solutions are used instead of directly solving (1), see next section, which can result in unstable training, (ii) Relying on gradient descent at prediction time is computationally expensive and might hinder practical applications, and (iii) Theoretically, energy-based reasoning yields a natural termination criterion during inference, i.e., an indication to terminate the computation of reasoning steps, by determining if a locally minimal energy state has been found. However, there are no theoretical guarantees that such an energy state is ever reached in previous methods as they rely on gradient descent.

As a remedy, we present a general energy learning framework for continuous iterative reasoning based on difference-of-convex function (DC) optimization. Our main contributions are

- 1. We introduce a tailored form of energy functions and present a difference-of-convex-function algorithm (DCA), see [4], for (1) powering our novel energy learning algorithm.
- 2. We derive theoretical convergence guarantees of our DCA routine to local solutions of (1).
- 3. We show that our DCA routine converges in finitely many steps and, hence, offers a clear termination criterion.
- 4. Under additional assumptions, we show how our energy learning algorithm can be scaled for batch optimization and present theoretical approximation guarantees for our form of energy function.

2 Related Work

Neural Reasoning. There is an active area of research that tries to formalize reasoning with neural networks. One group of work builds upon the idea to formulate reasoning as optimization problems and then derives differentiable solvers, e.g., [2, 17, 34, 48, 50]. These approaches are however constrained to tasks of a particular kind, e.g., tasks that can be formulated as quadratic programs [2]. Another group of research formalizes reasoning as iterative computations using neural networks. Following [21], this research can again be broadly subdivided into two areas: one that leverages explicit program representations [26, 36, 38, 10, 13, 37, 55] and another that uses recurrent neural networks [32, 25, 9, 15, 56, 16, 18, 40, 57]. In both areas a challenging problem is to decide when to terminate the computation and has been tackled in various ways usually by learning some sort of halting probabilities [12, 7, 10]. In contrast, our approach naturally imposes a termination criterion by stopping once a local minimum in the energy function has been reached.

Energy-Based Models. Energy-based models formulate prediction tasks via energy minimization [33]. That is, external observations y and possible predictions x are both processed by a so-called energy function $E: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ which measures how compatible x is with y. The convention is that lower energies indicate a higher compatibility. A prediction for y is then defined as a minimum energy state x^* given y, see (1). Energy-based models have been used in various ways to learn probabilistic models from data [54, 53, 22, 24, 19, 5, 52]. Our work leverages such energy functions to formalize an iterative reasoning process similar to [20, 21].

Energy Based Iterative Reasoning. We are not the first to formulate iterative reasoning as an energy minimization problem. To the best of our knowledge, [20] is the first to formalize reasoning through optimization steps using a general trainable energy function. In particular, the authors make use of a fixed number of gradient steps T with a fixed step size λ during training to approximate (1)

within (EMP), i.e., $x_i^T = x_i^{T-1} - \lambda \nabla_x E_\theta(x_i^{T-1}, y_i)$. However, this can lead to unstable training processes as due to potentially complex optimization landscapes it is not guaranteed that x_i^T is a good approximation of a local minimizer of $E_\theta(x,y_i)$. As a remedy, [21] introduced an energy diffusion process in which the authors minimize a sequence of energy landscapes by gradually increasing their complexity and using solutions on previous levels to initialize the gradient descent routine on consecutive levels. The energy landscape is then tuned via a supervised approach on noise corrupted gradients and a contrastive loss component to enforce local minima in the learned energy landscape instead. Nevertheless, both approaches suffer from computational bottlenecks at inference time due to the inherent optimization procedure based on gradient descent and the need for auto-differentiation at test time.

3 DC Framework for Energy-Based Reasoning

In this section, we introduce our novel energy-based reasoning framework that builds upon a difference-of-convex functions approach.

3.1 DC Energy Landscapes

To allow for sufficient reasoning capabilities an energy function E_{θ} should be able to represent a wide range of functional dependencies while at the same time entail structural properties that allow for an efficient solution of $\operatorname{argmin}_x E_{\theta}(x,y)$ at training time. Based on this observation, we are making use of the following energy function $E_{\theta}(x,y) = \sum_{i=1}^{N_x} \alpha_i \sigma(\langle w_i, x \rangle + b_i)$, with $\alpha = \alpha_{\theta}(y)$, $W = W_{\theta}(y)$, and $b = b_{\theta}(y)$, where $N_x \in \mathbb{N}$ and $\sigma = \max(\cdot, 0)$ is the ReLU activation function. Note that E_{θ} is a single hidden layer neural network in x, while its parameters (α, W, b) are again parameterized functions in y with weights θ . In particular, we set $(\alpha_{\theta}, W_{\theta}, b_{\theta})$ again as single hidden layer neural networks in y with $N_y \in \mathbb{N}$ hidden neurons. Thus, we are using neural networks in y to represent parameters for a neural network in x. Due to single hidden layer neural networks being universal approximators [27], we can ensure sufficient representation capabilities for this form of energy function.

As the goal is to learn energy landscapes in a way that minimal-energy states represent solutions of particular reasoning problems, we also want to ensure that such a minimum always exists. Hence, our final definition of E_{θ} is as follows

$$E_{\theta}(x,y) = \frac{\rho}{2} ||x||^2 - \langle \xi, x \rangle - \omega + \sum_{i=1}^{N_x} \alpha_i \sigma(\langle w_i, x \rangle + b_i), \tag{2}$$

with $\alpha = \alpha_{\theta}(y)$, $W = W_{\theta}(y)$, $b = b_{\theta}(y)$, $\xi = \xi_{\theta}(y)$, $\rho = \rho_{\theta}(y) > 0$, and $\omega = \omega_{\theta}(y)$. Note that we added a general quadratic form, so that for fixed θ and y we have $E_{\theta}(x,y) \to \infty$ for $||x|| \to \infty$. Hence, E_{θ} is coercive and continuous in x and thus $\operatorname{argmin}_{x} E_{\theta}(x,y) \neq \emptyset$.

Our next result shows that (2) can be decomposed into a difference of convex functions in x for fixed weights $(\rho, \xi, \omega, \alpha, W, b)$, see Lemma 1.

Lemma 1. For fixed weights $(\rho(y), \xi(y), \omega(y), \alpha(y), W(y), b(y))$, the energy function E_{θ} is DC in x, i.e., $E_{\theta}(x, y) = E_{\theta}(x) = g(x) - h(x)$ with

$$g(x) = \frac{\rho}{2} ||x||^2 + \sum_{\alpha_i > 0} \alpha_i \sigma(\langle w_i, x \rangle + b_i)$$
(3)

$$h(x) = \sum_{\alpha_i \le 0} |\alpha_i| \sigma(\langle w_i, x \rangle + b_i) + \langle \xi, x \rangle + \omega, \tag{4}$$

and g, h convex in x. For a proof see Appendix A.1

The above DC representation entails desirable properties for our analysis later on. We summarize important characteristics in the following Lemma.

Lemma 2. Let g and h be defined as in Lemma 1, then the following holds

1. g is strongly convex in x.

2. h is (up to a constant) polyhedral convex in x, i.e., there exists $q_k \in \mathbb{R}^n$ and $p_k \in \mathbb{R}$ for $k \in \{1, ..., K\}$ such that

$$h(x) = \max_{k \in K} \langle q_k, x \rangle + p_k. \tag{5}$$

For a proof see Appendix A.2

3.2 Locally Minimal Energy States

This section shows how the above defined energy function can be minimized in x via a tailored DCA. For an introduction to DCA, we refer to [4]. Following [45], the DCA routine for minimizing $E_{\theta}(x) = g(x) - h(x)$ starting in an arbitrary point $x_0 \in \mathbb{R}^n$ is 1

$$v \in \partial h(x_k) \tag{6}$$

$$x_{k+1} \in \operatorname*{argmin}_{x} g(x) - \langle v, x \rangle$$
 (7)

Note that an element in the subgradient of h in (6) is given by

$$\sum_{\alpha_i < 0} |\alpha_i| w_i H(\langle w_i, x_k \rangle + b_i) + \xi \in \partial h(x_k). \tag{8}$$

where H(z) denotes the Heaviside function, i.e., H(z) = 1 for $z \ge 0$ and H(z) = 0 else. To compute x_{k+1} in the DCA, one has to solve the minimization problem in (7). The following lemma shows that the problem can be equivalently stated as a convex quadratic program.

Lemma 3. The optimization problem

$$\min_{x \in \mathbb{R}^n} g(x) - \langle v, x \rangle \tag{9}$$

can be formulated as

$$\min_{x,z} \frac{1}{2} \begin{pmatrix} x \\ z \end{pmatrix}^T \begin{pmatrix} \rho I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} + \left\langle \begin{pmatrix} x \\ z \end{pmatrix}, \begin{pmatrix} -v \\ \alpha^+ \end{pmatrix} \right\rangle \quad \text{st.} \quad \begin{pmatrix} -W^+ & I \\ 0 & I \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} \geq \begin{pmatrix} b^+ \\ 0 \end{pmatrix}, \tag{QP}$$

where α^+ is the vector of strictly positive weights in the output layer, i.e., $\alpha_i^+ = \alpha_{ij}$ for all $i_j \in \{1, \ldots, N_x\}$ with $\alpha_{ij} > 0$, W^+ is the matrix with rows formed by the corresponding weight vectors w_{ij} , and b^+ the vector formed by the corresponding bias terms b_{ij} . For a proof see Appendix A.3.

One step in DCA thus simplifies to evaluating Equation (8) and then solving (QP). The next theorem shows that this simple iteration entails favorable convergence properties in the view of supervised learning of minimal energy states.

Theorem 1. Given an arbitrary starting point x_0 , the DCA routine ((6) and (7)) with v given by Equation (8) and x_{k+1} given as the solution of (QP) converges in finitely many iterations to a DC critical point $x^* \in \mathbb{R}^n$, i.e.,

$$\partial q(x^*) \cap \partial h(x^*) \neq \emptyset.$$
 (10)

Furthermore, x^* is a local minimum of $E_{\theta}(\cdot, y)$ if and only if

$$\partial h(x^*) \subseteq \partial g(x^*). \tag{11}$$

For a proof see Appendix A.4

Note that (11) is always fulfilled if $\partial h(x^*)$ or $\partial g(x^*)$ is a singelton. The latter holds true in particular if $\langle w_i, x^* \rangle + b_i \neq 0 \quad \forall i \in \{i : \alpha_i > 0\}$ or $\langle w_i, x^* \rangle + b_i \neq 0 \quad \forall i \in \{i : \alpha_i < 0\}$. If (11) does not hold we can restart the DCA routine with a point x_0^* that yields a strict energy reduction in the first DCA step following [44], see Appendix A.8 for an in-depth discussion on our restart procedure.

¹Here ∂f stands for the subgradient of a convex functions f defined as $\partial f(y) = \{u \in \mathbb{R}^n \mid \forall \, x \in \mathbb{R}^n : f(x) - f(y) \geq \langle u, x - y \rangle \}$

4 Scalable Energy Learning

In theory, the DC framework presented in Section 3 can now be used to learn energy landscapes by supervising the resulting minimal energy states through regression using (EMP) similar to [20]. In particular, one can make use of differentiable convex optimization layers [1] or specialized batched quadratic programming solvers [2] to solve (QP) and run our DCA routine in batches which will converge in finitely many steps due to Theorem 1. Nevertheless, our research shows that (i) relying on differentiable QP solvers, and (ii) the need for our restart routine to ensure local optimality, hinders the ability of our approach to scale to large-scale settings. As a remedy, we introduce additional assumptions on the energy function defined in Equation (2) and show that under these assumptions we can find analytical solutions to (QP) and can guarantee that (11) always holds true for x^* , i.e., DCA always converges to a local minimum of the energy function. In addition, in Section 4.1, we show that our energy function approximates a sub class of continuous functions that we call convexly-regular arbitrarily well. We also show that for the univariate prediction case the approximation is universal.

For the remaining part of this work, we make the following additional assumption summarized in Assumption 1.

Assumption 1. Let
$$\alpha_i \leq 0$$
 for all $i \in \{1, ..., N_x\}$ in Equation (2).

Note, that this can be easily accomplished by using a non-negative activation function² in the neural network component $\alpha_{\theta}(\cdot)$ and use the resulting values directly in Equation (4). Under this assumption, the following lemma can be derived.

Lemma 4. Let Assumption 1 hold true. Then, (QP) can be solved analytically and $x_{k+1} = \frac{1}{\rho}v$. Furthermore, $\partial h(x^*) \subseteq \partial g(x^*)$ always holds true in this case. For a proof see Appendix A.5

In the next section we analyze how Assumption 1 affects the approximation capabilities of our energy function, as indeed restricting shallow neural networks to only positive weights can make them loose their universal approximation guarantees [49].

4.1 Approximation Guarantees

In our energy function (2) the weights to parameterize the function in x, i.e., $(\rho_{\theta}(y), \xi_{\theta}(y), \omega_{\theta}(y), \alpha_{\theta}(y), W_{\theta}(y), b_{\theta}(y))$, are all single hidden layer neural networks in y, and hence universal approximators [27], see also Appendix A.6. We thus focus the following analysis on approximations of functions in x and need the following definitions and results from earlier work.

Definition 1. Let $\mathbb{X} \subseteq \mathbb{R}^n$ be convex. A function $f: \mathbb{X} \to \mathbb{R}$ is called ρ -weakly-convex, or simply weakly-convex, if there exists a $\rho > 0$ and a convex function h such that $f + \rho/2||\cdot||^2 = h$. The function is called weakly-concave if -f is weakly-convex. The set of all weakly-convex functions in \mathbb{X} is denoted by $\mathcal{WC}(\mathbb{X})$.

It can be shown that weakly-convex functions are universal approximators. To formalize this claim recall that $\mathcal{C}_0(\mathbb{X})$ denotes the set of continuous functions that vanish at infinity, i.e., for all $\epsilon > 0$ there exists a compact set $K \subseteq \mathbb{X}$ such that $|f(x)| < \epsilon$ if $x \notin K$. Then, the following holds.

Lemma 5 (Theorem 6 in [43]). Let $\mathbb{X} \subseteq \mathbb{R}^n$ be closed (or open) convex. Then, $\mathcal{WC}(\mathbb{X}) \cap \mathcal{C}_0(\mathbb{X})$ is dense in $\mathcal{C}_0(\mathbb{X})$ equipped with the infinity norm. This statement also holds for weakly-concave functions (by switching signs).

Furthermore, weakly-convex functions can be represented in a special form, see Lemma 6.

Lemma 6 (Theorem 3 in [43]). A (closed) function f is ρ -weakly-convex if and only if $f(x) = \sup_{t \in T} \langle q_t, x \rangle + p_t - \rho/2 ||x||^2$ for some (not necessarily finite) index set T.³

Now, by combining Lemma 2 and Lemma 6 we see that our energy function is weakly-concave in x, i.e., it has exactly the form

$$\frac{\rho}{2}||x||^2 - \max_k \langle q_k, x \rangle + p_k. \tag{12}$$

²In our implementation, we are using softplus activations for both $\alpha_{\theta}(\cdot)$ and $\rho_{\theta}(\cdot)$.

³Note that Theorem 3 in [43] is stating that $f(x) = \sup_{t \in T} \langle a_t, x \rangle + b_t + \sigma ||x||^2$ as the authors use $\sigma = -\rho$ to denote the modulus of convexity.

Note, however, that it is not immediately clear that also any weakly-concave function can be approximated by our energy function as the vectors q_k and biases p_k in Lemma 2 follow a special form. Nevertheless, if this is the case or equivalently if we are able to prove that h can approximate continuous convex functions, Lemma 5 yields theoretical approximation guarantees for our energy function.

To derive sufficient conditions for h to be able to approximate a continuous convex function, we note that we merely impose sign constraints on the output layer of the involved shallow neural network. Thus, h can be seen as a single layer input convex neural network (ICNN) with weighted input skip connections in x [23]. Input skip connections were introduced for ICNNs in [3] to increase their expressivity by allowing identity mappings between layers as otherwise the non-negativity constraint would be too restrictive. Indeed, it has then been shown that ICNNs are able to approximate arbitrary continuous convex functions on compact convex domains (see, e.g., Theorem 1 in [14] or Proposition 3 in [28]). However, those approximation guarantees require deeper ICNNs while h is merely a single layer ICNN. As pointed out by [23], the derivations in [14, 28] are merely for theoretical purposes as they require as many layers as affine pieces of the piecewise linear convex function they are trying to approximate and only a single neuron per layer. The authors, thus, derive the following result.

Lemma 7 (Corollary 4.8 and Proposition 4.9 in [23]). A convex function implemented by a single hidden layer ReLU network (with or without weighted input skip connections) can also be implemented by a single hidden layer ICNN with the same width.

The question if h can approximate a continuous convex function thus boils down to the question if it can be approximated by a convex shallow ReLU network. Hence, we define the following

Definition 2. Let $\mathbb{X} \subseteq \mathbb{R}^n$ be convex and compact. We call a continuous convex function $r: \mathbb{X} \to \mathbb{R}$ ϵ -convexly-ReLU-representable if there exists a convex single layer ReLU network (with or without weighted input skip connections) $\mathcal{N}\mathcal{N}$ such that $\|\mathcal{N}\mathcal{N} - r\|_{\infty} < \epsilon$.

Given a function $f \in \mathcal{C}_0(\mathbb{X})$, we know from Lemma 5 that for all $\epsilon > 0$ there exists a ρ -weakly-concave function f_{ϵ} with $\|f - f_{\epsilon}\|_{\infty} < \epsilon$. Then we know that $r = -f_{\epsilon} + \rho/2\|x\|^2$ is convex and we make the following definition.

Definition 3. Let $\mathbb{X} \subseteq \mathbb{R}^n$ be convex and compact and let $f \in C_0(\mathbb{X})$. We call f convexly-regular, if we can always choose f_{ϵ} such that r is ϵ -convexly-ReLU-representable.

Now, Theorem 2 summarizes the above derivations

Theorem 2. Let $\mathbb{X} \subseteq \mathbb{R}^n$ be convex and compact. Under Assumption 1 every convexly-regular function $f \in \mathcal{C}_0(\mathbb{X})$ can be approximated arbitrarily well by E_θ as a function in x.

Proof. Let $\epsilon>0$ be arbitrary and $\hat{\epsilon}=\epsilon/2$. From Lemma 5 we know that there exists a weakly-concave function $f_{\hat{\epsilon}}$ such that $\|f-f_{\hat{\epsilon}}\|_{\infty}<\hat{\epsilon}$. Hence, there exists a $\rho>0$ and a convex function r such that $-f_{\hat{\epsilon}}(x)+\rho/2\|x\|^2=r(x)$. Furthermore, Definition 3 ensures that we can always choose $f_{\hat{\epsilon}}$ such that r is $\hat{\epsilon}$ -convexly-ReLU-representable. Thus, there exists a convex ReLU neural network $\mathcal{N}\mathcal{N}$ with $\|r-\mathcal{N}\mathcal{N}\|_{\infty}<\hat{\epsilon}$. From Lemma 7, we know that there exist $\alpha\leq0$, W, b, ξ , and ω such that $\mathcal{N}\mathcal{N}(x)=\sum_i|\alpha_i|\sigma(\langle w_i,x\rangle+b_i)+\langle\xi,x\rangle+\omega$ which we define as h. Hence, for $E_{\theta}(x)=\frac{\rho}{2}\|x\|^2-h(x)$ we have

$$||f - E_{\theta}(x)|| = ||f - \left(\frac{\rho}{2}||x||^{2} - h(x)\right)||_{\infty} \le ||f - f_{\hat{\epsilon}}||_{\infty} + ||f_{\hat{\epsilon}} - \left(\frac{\rho}{2}||x||^{2} - h(x)\right)||_{\infty}$$
(13)
$$< \hat{\epsilon} + ||h - r||_{\infty} < 2\hat{\epsilon} = \epsilon.$$

Definition 3 is rather technical and to the best of our knowledge there are no general results on conditions under which a convex function can be approximated by a single layer ReLU network which is itself convex. However, the following theorem shows that the class of convexly-regular functions is sufficiently large in the univariate case.

Theorem 3. Let $\mathbb{X} \subseteq \mathbb{R}$ be compact and convex. Then, every $f \in C_0(\mathbb{X})$ is convexly-regular. For a proof see Appendix A.7

4.2 Pseudocode

We now combine our derivations in Section 3 and Assumption 1 to define our algorithm for scalable energy learning via a batched DCA approach named **DCAReasoner**. A pseudocode is presented in Algorithm 1.

Algorithm 1: DCAReasoner: Scalable Energy Learning via Batched DCA

```
      Data: (y_i, x_i) ∈ \mathbb{R}^m × \mathbb{R}^n, lower and upper bounds for starting points l, u ∈ \mathbb{R}^n

      Result: E_\theta(\cdot, \cdot)

      while not converged do

      2
      Sample batch of data (y_j, x_j)_{j ∈ B};

      3
      Perform forward pass for parameters (\alpha, W, b, \rho, \xi) \leftarrow (\alpha, W, b, \rho, \xi)((y_j)_{j ∈ B});

      4
      Sample uniformly random starting points (x_j^0)_{j ∈ B} \sim \mathcal{U}(l, u);

      5
      k \leftarrow 0;

      // Initializing x_j^{k+1} in a meaningful way

      6
      while \max_{j ∈ B} ||x_j^k - x_j^{k+1}|| > tol do

      7
      x^{k+1} \leftarrow \frac{1}{\rho} \left( \sum_i |\alpha_i| w_i H(\langle w_i, x^k \rangle + b_i) + \xi \right);

      8
      k \leftarrow k + 1;

      9
      end

      10
      Update θ using Adam and \nabla_\theta \sum_{j ∈ B} ||x_j^k - x_j||^2 / |B|;

      11
      end
```

Note that we used $\max_{j\in B}\|x_j^k-x_j^{k+1}\| > \text{tol}$ as a stopping criterion for the DCA routine. Empirically, we observe that a few DCA iterations (< 10) are enough for the whole batch to converge for $\text{tol}=10^{-5}$. Indeed, most of the time we observe $\max_{j\in B}\|x_j^k-x_j^{k+1}\| \ll \text{tol}$ approaching machine precision, and hence, the finite convergence property can also be observed empirically. See Figure 2 in Appendix B.1 for an illustration of how the norm differences decrease to zero with DCA iterations for a batch size of 512, i.e., when solving 512 reasoning tasks in parallel. We also note that we skipped the neural network for the bias term, i.e., $\omega(y)$, in Algorithm 1 as it does not change the local minimizer of (1) and was merely used for our theoretical derivations. Furthermore, the network for b will not be updated during training as a consequence of the Heaviside function. Nevertheless, similar partial optimization routines, in which parts of the parameters are randomly initialized and then frozen, have been successfully applied in neural learning, see e.g. [29].

5 Numerical Experiments

5.1 Experimental Setup

We first evaluate our algorithm on five continuous algorithmic reasoning benchmark datasets from earlier research [20, 21] in Section 5.2. All tasks are aiming to capture different aspects of reasoning. We report the mean squared errors, as well as, inference times of our DCAReasoner and two state-of-the-art baselines from energy-based iterative reasoning. The evaluation is performed on 10000 test problems and repeated five times to report the mean and standard error of our metrics. Having established that our algorithm is superior (or on par) with state-of-the-art but significantly faster, we then demonstrate how our DCAReasoner might unlock reasoning capabilities in language models by learning energy landscapes in token embedding spaces in Section 5.3.

5.2 Continuous Algorithmic Reasoning Benchmarks

Baselines. We consider two baselines from state-of-the-art energy based iterative reasoning: (i) *Energy based reasoning through energy minimization (IREM)*: This baseline learns an energy function minimizing (EMP) by approximating $\operatorname{argmin}_x E_\theta(x,y)$ via a fixed number of gradient steps [20]. During inference it uses again a subgradient descent method but leveraging a greater number of steps than during training.(ii) *Energy based reasoning through energy diffusion (IRED)*: Here, the idea is to minimize a sequence of energy landscapes gradually increasing their complexity and using solutions on previous levels to initialize the gradient descent routine on consecutive levels [21]. The energy

⁴https://github.com/DanielTschernutter/DCAReasoner

Dataset	DCAReasoner (Ours)		IRED		IREM		
	MSE	Inference-Time [s]	MSE	Inference-Time [s]	MSE	Inference-Time [s]	
Same Difficulty							
Matrix Inverse Matrix Completion Parity QR Decomposition Matrix Multiplication	$0.0096\pm0.0000 \ 0.0177\pm0.0000 \ 0.0301\pm0.0003 \ 0.1438\pm0.0001 \ 0.0480\pm0.0000$	2.6189±0.0305 1.3373±0.0125 0.6053±0.0381 2.3051±0.0261 1.6790±0.0258	0.0097±0.0000 0.0179±0.0000 0.4859±0.0026 0.2175±0.0001 0.0919±0.0000	33.7056±0.8818 33.6597±0.9125 9.1011±0.2809 48.1915±1.4199 34.1602±0.8609	0.0101±0.0000 0.0180±0.0000 0.2504±0.0001 0.1521±0.0001 0.0903±0.0000	22.6199±0.6127 22.7441±0.5296 1.9797±0.1463 36.2775±1.0231 23.6510±0.6229	
Harder Difficulty							
Matrix Inverse Matrix Completion Parity QR Decomposition Matrix Multiplication	0.2077±0.0003 0.2100±0.0001 0.0301±0.0003 0.8847±0.0003 0.2974±0.0003	2.6017±0.0226 1.3491±0.0211 0.5863±0.0067 2.3374±0.1298 1.6877±0.0243	0.2064±0.0003 0.2094±0.0002 0.4885±0.0010 1.0376±0.0002 0.4506±0.0002	33.3662±0.6442 33.2705±0.7230 8.6239±0.0879 47.7211±1.0362 33.3451±0.6479	0.2063±0.0006 0.2058±0.0002 0.2504±0.0001 1.3267±0.0006 0.4524±0.0002	22.7757±0.4990 22.9266±0.5348 1.9477±0.0983 35.3764±0.8735 23.5748±0.6184	

Table 1: Evaluation on continuous algorithmic reasoning tasks. Models are evaluated on test problems drawn from the training distribution (same difficulty) and a harder test distribution (harder difficulty). We report the mean squared error and the inference time. We perform five evaluation runs and report the mean and standard errors.

landscape is then tuned by supervising on noise corrupted gradients and a contrastive loss component to enforce local minima in the energy landscape. We scale the network size in our baselines to ensure that each of them has roughly the same number of parameters. For a detailed discussion of our experimental setup see Appendix B.2.

Datasets. In our experiments we evaluate all baselines based on five datasets from earlier research [20, 21]. Each of them is evaluated once with the same level of difficulty, i.e., test cases are drawn from the training distribution, and once with a harder level of difficulty, in which test cases are drawn from a problem specific harder test distribution following [20, 21]. The latter should test the algorithms ability to generalize reasoning capabilities to new unseen problem settings. In particular, we use: (i) Matrix Inverse: The task is to invert a random 20×20 matrix. It aims at testing numerical reasoning. Harder problems are created by creating less well-conditioned matrices to invert. (ii) Matrix Completion: The task is to recover masked out values in a random low-ranked 20×20 matrix constructed from two low-rank matrices U and V. Harder tasks are created by increasing the complexity of U and V. It aims at both structural and analogical reasoning. (iii) Parity: Given a random vector in $[0,1]^{20}$ the task is to decide whether or not the number of entries which are greater than 0.5 is odd or even, i.e., the target is 0 for even 1 for odd, see also [25]. Harder tasks are created by increasing the magnitude of vector entries. (iv) OR Decomposition: The task is to compute the QR decomposition of a random 20×20 matrix with entries in [-1, 1]. Harder problems are created by changing the magnitude of matrix entries. (v) Matrix Multiplication: Given a random 20×20 matrix M the task is to compute the square, i.e., M^2 . Harder problems are created by changing the magnitude of matrix entries. For an in-depth discussion of our benchmark datasets see Appendix B.3.

Results. Our results are summarized in Table 1. In terms of mean squared error, DCAReasoner is mostly on par with IRED and IREM on the matrix inverse and the matrix completion dataset, while we see larger improvements for the remaining datasets. Noteworthy, we observe a decrease in MSE by a factor of ~ 10 on the parity dataset, which might stem from the fact that the prediction is univariate in this case, for which we have established universal approximation guarantees in Theorems 2 and 3. In terms of inference time, we see large improvements of factors between 14 and 27 for IRED and between 3 and 18 for IREM. Furthermore, we performed additional experiments showing that our predictions are robust to noisy input data on the example of the QR Decomposition dataset. All details are reported in Appendix B.4.

5.3 Energy-Based Reasoning in Token Embedding Space

In the last section we have empirically proven that our algorithm yields state-of-the-art performance results but is significantly faster at inference time than previous energy-based models for iterative reasoning. Furthermore, it offers theoretical convergence guarantees and performs well in high-dimensional settings. As such, we think that our algorithm might be used to improve reasoning skills of language models by learning energy landscapes in token embedding spaces which might be used during inference for energy-guided text generation. Note that our baselines are not well-suited for such

Alg.	MSE	Accuracy[%]	Inference Time[%]
IREM	0.012	96%	336%
IRED	0.027	96%	1330%
DCAReasoner	0.008	96%	100%

Table 2: Test evaluation performance on text classification task. We report the mean squared error of the prediction and the embedding of the target text. Accuracy is computed by using the target closest to the prediction. Inference time is reported in percent, with 100% indicating the lowest time.

a setting as large inference times especially in high-dimensional token embedding spaces might considerably slow down token generation in practice.

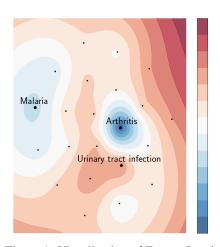


Figure 1: Visualization of Energy Landscape in Token Embedding Space for the Input Sentence "My muscles are weak, my neck is stiff, and my joints are swollen. I can't move around very well, and walking is really painful.".

As a fully developed approach for energy-guided text generation to improve reasoning is out of the scope of this work, we demonstrate how DCAReasoner is able to learn reasonable energy-landscapes in token embedding spaces in a simpler setting. In particular, we make use of the symptom-to-diagnosis dataset for medical reasoning which is freely available on Hugging Face.⁵ It provides a training and test dataset consisting of short texts in which a patient describes her symptoms and a corresponding diagnosis out of a set of 22 medical diagnoses. We then use the CLS token embeddings of a finetuned uncased DistilBERT model of those texts as inputs y and the embeddings of the corresponding diagnosis as a ground truth x to train the DCAReasoner and our baselines in a continuous reasoning setting. More details of our experiments are reported in Appendix B.5.

We summarize the results in Table 2. Our algorithm yields the lowest mean squared error more than three times faster than IREM and thirteen times faster than IRED. We also visualize the energy landscape in token embedding space⁶ learned by our algorithm in Figure 1 using as an example the sentence "My muscles are weak, my neck is stiff, and my joints are swollen. I can't move around very well, and walking is really painful." with diagnosis arthritis from

the test set. Note that *arthritis* has indeed the lowest energy, while embedding vectors of diseases like *malaria* which shares symptoms like weakness and joint pain are also assigned lower energy values. Furthermore, seemingly unrelated diagnoses like *urinary tract infection* yield higher energy values, indicating that our algorithm is capable of learning reasonable energy landscapes in the token embedding space.

6 Conclusion

We proposed a new algorithm named DCAReasoner for energy-based continuous iterative reasoning. It is build upon a tailored class of energy functions for which we derived theoretical approximation guarantees. In addition, we presented theoretical convergence guarantees for the inherent DCA routine. That is, we showed that it converges to local minima in finitely many steps independent of

 $^{^5}$ https://huggingface.co/datasets/gretelai/symptom_to_diagnosis, the dataset is licensed under Apache 2.0

⁶We used t-SNE to visualize the 768 dimensional embedding vectors in the plane. Furthermore, we computed the energies for all 22 target embeddings and interpolated the results using a radial basis function interpolator.

the starting point. Empirically, we have proven that it yields improved performance and inference times.

Limitations. Our DCAReasoner shows promising results for neural iterative reasoning. However, there are still limitations. First, our DCAReasoner, as presented in this work, does not yet make use of any external memory. That is, DCAReasoner cannot store intermediate results during reasoning which might be beneficial in some reasoning tasks. Second, the form of our energy function might require a large number of trainable parameters if a large number of hidden neurons in x, i.e., N_x , is desirable. For instance, the mapping $W_\theta(y)$ requires $m \cdot N_y + N_y \cdot N_x \cdot n$ trainable parameters. Empirically, we see however that smaller values for N_x and larger values for N_y are sufficient (our experiments use $N_x = 8$ and $N_y = 4000$). Third, in the current form DCAReasoner is designed for continuous reasoning tasks and hence cannot directly handle discrete reasoning tasks. However, we note that earlier work on energy-based reasoning shows how discrete tasks, formulated in a continuous setting, yield promising results [20, 21]. Furthermore, we conducted preliminary experiments on a discrete task, specifically solving Sudoku puzzles using the dataset provided in [41], and report our early results in Appendix C.

Societal Impacts. To the best of our knowledge, there are no immediate positive or negative social impacts that can be derived from our work in the current form.

References

- [1] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable convex optimization layers. *Advances in Neural Information Processing Systems (NeurIPS)*, 32, 2019.
- [2] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In *International Conference on Machine Learning (ICML)*, pages 136–145. PMLR, 2017.
- [3] B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. In *International Conference on Machine Learning (ICML)*, pages 146–155. PMLR, 2017.
- [4] L. T. H. An and P. D. Tao. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. *Annals of Operations Research*, 133:23–46, 2005.
- [5] M. Arbel, L. Zhou, and A. Gretton. Generalized energy based models. In *International Conference on Learning Representations (ICLR)*. ICLR, 2021.
- [6] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with rectified linear units. In *International Conference on Learning Representations (ICLR)*, 2018.
- [7] A. Banino, J. Balaguer, and C. Blundell. PonderNet: Learning to ponder. In 8th ICML Workshop on Automated Machine Learning (AutoML), 2021.
- [8] Y. Beck and M. Schmidt. A gentle and incomplete introduction to bilevel optimization. *Lecture Notes*, 2021.
- [9] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. Adaptive neural networks for efficient inference. In *International Conference on Machine Learning (ICML)*, pages 527–536. PMLR, 2017.
- [10] J. Cai, R. Shin, and D. Song. Making neural programming architectures generalize via recursion. *International Conference on Learning Representations (ICLR)*, 2022.
- [11] G. C. Calafiore, S. Gaubert, and C. Possieri. Log-sum-exp neural networks and posynomial models for convex and log-log-convex data. *IEEE Transactions on Neural Networks and Learning Systems*, 31(3):827–838, 2019.
- [12] X. Chen, H. Dai, Y. Li, X. Gao, and L. Song. Learning to stop while learning to predict. In *International Conference on Machine Learning (ICML)*, pages 1520–1530. PMLR, 2020.
- [13] X. Chen, C. Liang, A. W. Yu, D. Song, and D. Zhou. Compositional generalization via neural-symbolic stack machines. *Advances in Neural Information Processing Systems (NeurIPS)*, 33:1690–1701, 2020.

- [14] Y. Chen, Y. Shi, and B. Zhang. Optimal control via neural networks: A convex approach. In *International Conference on Learning Representations (ICLR)*. ICLR, 2019.
- [15] J. Chung, S. Ahn, and Y. Bengio. Hierarchical multiscale recurrent neural networks. *International Conference on Learning Representations (ICLR)*, 2017.
- [16] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser. Universal transformers. *International Conference on Learning Representations (ICLR)*, 2019.
- [17] J. Djolonga and A. Krause. Differentiable learning of submodular models. *Advances in Neural Information Processing Systems (NeurIPS)*, 30, 2017.
- [18] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou. Neural logic machines. *International Conference on Learning Representations (ICLR)*, 2019.
- [19] Y. Du, S. Li, J. Tenenbaum, and I. Mordatch. Improved contrastive divergence training of energy-based models. In *International Conference on Machine Learning (ICML)*, pages 2837–2848. PMLR, 2021.
- [20] Y. Du, S. Li, J. Tenenbaum, and I. Mordatch. Learning iterative reasoning through energy minimization. *International Conference on Machine Learning (ICML)*, pages 5570–5582, 2022.
- [21] Y. Du, J. Mao, and J. Tenenbaum. Learning iterative reasoning through energy diffusion. *International Conference on Machine Learning (ICML)*, pages 11764–11776, 2024.
- [22] Y. Du and I. Mordatch. Implicit generation and modeling with energy based models. *Advances in Neural Information Processing Systems (NeurIPS)*, 32, 2019.
- [23] A. Gagneux, M. Massias, E. Soubies, and R. Gribonval. Convexity in relu neural networks: beyond ICNNs? *arXiv preprint arXiv:2501.03017*, 2025.
- [24] W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, and R. Zemel. Learning the stein discrepancy for training and evaluating energy-based models without sampling. In *International Conference on Machine Learning (ICML)*, pages 3732–3747. PMLR, 2020.
- [25] A. Graves. Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:1603.08983, 2016.
- [26] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.
- [27] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. *Neural Networks*, 2(5):359–366, 1989.
- [28] C.-W. Huang, R. T. Chen, C. Tsirigotis, and A. Courville. Convex potential flows: Universal probability distributions with optimal transport and convex optimization. In *International Conference on Learning Representations (ICLR)*. ICLR, 2021.
- [29] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: theory and applications. *Neurocomputing*, 70(1-3):489–501, 2006.
- [30] Y. Ji, J. Wu, and Y. Xi. Rethinking neural-based matrix inversion: Why can't, and where can. *arXiv preprint arXiv*:2506.00642, 2025.
- [31] D. Kahneman. Thinking, fast and slow. Macmillan, 2011.
- [32] Ł. Kaiser and I. Sutskever. Neural GPUs learn algorithms. arXiv preprint arXiv:1511.08228, 2015.
- [33] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, F. Huang, et al. A tutorial on energy-based learning. *Predicting structured data*, 1(0), 2006.
- [34] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt. Deepproblog: Neural probabilistic logic programming. *Advances in Neural Information Processing Systems* (NeurIPS), 31, 2018.

- [35] I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and M. Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in large language models. arXiv preprint arXiv:2410.05229, 2024.
- [36] A. Neelakantan, Q. V. Le, and I. Sutskever. Neural programmer: Inducing latent programs with gradient descent. *International Conference on Learning Representations (ICLR)*, 2016.
- [37] R. Y. Pang, W. Yuan, H. He, K. Cho, S. Sukhbaatar, and J. Weston. Iterative reasoning preference optimization. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:116617–116637, 2024.
- [38] S. Reed and N. De Freitas. Neural programmer-interpreters. *International Conference on Learning Representations (ICLR)*, 2016.
- [39] R. T. Rockafellar. Convex Analysis, volume 28. Princeton University Press, 1997.
- [40] A. Schwarzschild, E. Borgnia, A. Gupta, F. Huang, U. Vishkin, M. Goldblum, and T. Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with recurrent networks. *Advances in Neural Information Processing Systems (NeurIPS)*, 34:6695–6706, 2021.
- [41] K. Shah, N. Dikkala, X. Wang, and R. Panigrahy. Causal language modeling can elicit search and reasoning capabilities on logic puzzles. *Advances in Neural Information Processing Systems* (*NeurIPS*), 37:56674–56702, 2024.
- [42] I. Shoshani and O. Shamir. Hardness of learning fixed parities with neural networks. *arXiv* preprint arXiv:2501.00817, 2025.
- [43] S. Sun and Y. Yu. Least squares estimation of weakly convex functions. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, pages 2271–2280. PMLR, 2019.
- [44] P. D. Tao and L. T. H. An. A DC optimization algorithm for solving the trust-region subproblem. SIAM Journal on Optimization, 8(2):476–505, 1998.
- [45] L. Thi Hoai An and P. Dinh Tao. Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. *Journal of Global Optimization*, 11:253–285, 1997.
- [46] D. Tschernutter, M. Kraus, and S. Feuerriegel. A globally convergent algorithm for neural network parameter optimization based on difference-of-convex functions. *Transactions on Machine Learning Research*, 2024.
- [47] P. Veličković and C. Blundell. Neural algorithmic reasoning. *Patterns*, 2(7), 2021.
- [48] P.-W. Wang, P. Donti, B. Wilder, and Z. Kolter. SATnet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. In *International Conference on Machine Learning (ICML)*, pages 6545–6554. PMLR, 2019.
- [49] Q. Wang, M. A. Powell, A. Geisa, E. Bridgeford, C. E. Priebe, and J. T. Vogelstein. Why do networks have inhibitory/negative connections? *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 22551–22559, 2023.
- [50] B. Wilder, B. Dilkina, and M. Tambe. Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 1658–1665, 2019.
- [51] Z. Wu, L. Qiu, A. Ross, E. Akyürek, B. Chen, B. Wang, N. Kim, J. Andreas, and Y. Kim. Reasoning or reciting? exploring the capabilities and limitations of language models through counterfactual tasks. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 1819–1862, 2024.
- [52] Z. Xiao, K. Kreis, J. Kautz, and A. Vahdat. VAEBM: A symbiosis between variational autoencoders and energy-based models. *International Conference on Learning Representations* (*ICLR*), 2021.

- [53] J. Xie, Y. Lu, R. Gao, S.-C. Zhu, and Y. N. Wu. Cooperative training of descriptor and generator networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1):27–45, 2018.
- [54] J. Xie, Y. Lu, S.-C. Zhu, and Y. Wu. A theory of generative ConvNet. In *International Conference on Machine Learning*, pages 2635–2644. PMLR, 2016.
- [55] Y. Xie, A. Goyal, W. Zheng, M.-Y. Kan, T. P. Lillicrap, K. Kawaguchi, and M. Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. *arXiv* preprint *arXiv*:2405.00451, 2024.
- [56] F. Yang, Z. Yang, and W. W. Cohen. Differentiable learning of logical rules for knowledge base reasoning. *Advances in Neural Information Processing Systems (NeurIPS)*, 30, 2017.
- [57] Z. Yang, A. Ishay, and J. Lee. Learning to solve constraint satisfaction problems with recurrent transformer. *International Conference on Learning Representations (ICLR)*, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are either proven theoretically in Section 3 or Section 4, or are proven empirically in our numerical results section.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We added a clearly marked limitations paragraph in our conclusion.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Each of our own theoretical results has a link to the appendix in which the corresponding proofs can be found.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: An implementation of DCAReasoner is publicly available on GitHub. Appendix B reports all the necessary information including model specifications, training hyperparameters, and details on benchmark datasets, to reproduce our results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: An implementation of DCAReasoner is publicly available on GitHub. Furthermore, the code for our baselines as well as all used benchmark datasets are already publicly available as described in detail in our appendices.

Guidelines

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All details for training and testing are provided in our appendices.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard error of the mean in our main experiments, see Table 1. Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Yes all details are reported in the main paper and appendices (see Appendix B.2).

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does conform with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We included a *societal impact* paragraph in our discussion.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All used assets are properly cited and the name of the license is explicitly mentioned.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes].

Justification: An implementation of DCAReasoner is publicly available on GitHub.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Mathematical Appendix

A.1 Proof of Lemma 1

It is clear that $E_{\theta}(x,y)$ can be decomposed as

$$E_{\theta}(x,y) = E_{\theta}(x) = g(x) - h(x) \tag{15}$$

with

$$g(x) = \frac{\rho}{2} ||x||^2 + \sum_{\alpha_i > 0} \alpha_i \sigma(\langle w_i, x \rangle + b_i)$$
(16)

$$h(x) = \sum_{\alpha_i < 0} |\alpha_i| \sigma(\langle w_i, x \rangle + b_i) + \langle \xi, x \rangle + \omega.$$
 (17)

Furthermore, $\langle w_i, x \rangle + b_i$ is affine in x and hence convex and σ is non-decreasing and convex. Thus the composition $\sigma(\langle w_i, x \rangle + b_i)$ is always convex and the claim follows by observing that g and h are linear combinations of convex functions with positive weights.

A.2 Proof of Lemma 2

For point one, note that the modulus of strong convexity is defined as

$$\rho(g) = \sup_{\rho > 0} \{ g(x) - \frac{\rho}{2} ||x||^2 \text{ is convex} \},$$
 (18)

see, e.g., [44]. It is easy to see that $g - \frac{\rho}{2} \|\cdot\|^2$ is convex and hence $\rho(g) \ge \rho > 0$, which implies strong convexity.

For point two, polyhedral convex functions can be characterized as

$$\max\{\langle q_k, x \rangle + p_k : k \in \{1, \dots, K\}\},\tag{19}$$

see, e.g., [39]. Note that

$$h(x) - \omega = \sum_{\alpha_i < 0} |\alpha_i| \sigma(\langle w_i, x \rangle + b_i) + \langle \xi, x \rangle$$
 (20)

$$= \sum_{\alpha_i < 0} \sigma(\langle |\alpha_i| w_i, x \rangle + |\alpha_i| b_i) + \langle \xi, x \rangle$$
 (21)

$$= \max_{\delta_i \in \{0,1\}} \sum_{\alpha_i < 0} \delta_i \left(\langle |\alpha_i| w_i, x \rangle + |\alpha_i| b_i \right) + \langle \xi, x \rangle, \tag{22}$$

where the last equality follows from the fact that the maximum is achieved in the case where $\delta_i = 1$ if $\langle |\alpha_i|w_i,x\rangle + |\alpha_i|b_i \geq 0$ and $\delta_i = 0$ else. Furthermore,

$$\max_{\delta_i \in \{0,1\}} \sum_{\alpha_i < 0} \delta_i \left(\langle |\alpha_i| w_i, x \rangle + |\alpha_i| b_i \right) + \langle \xi, x \rangle = \tag{23}$$

$$\max_{\delta_i \in \{0,1\}} \left\langle \sum_{\alpha_i < 0} |\alpha_i| \delta_i w_i + \xi, x \right\rangle + \sum_{\alpha_i < 0} |\alpha_i| \delta_i b_i, \tag{24}$$

which proves the claim.

A.3 Proof of Lemma 3

First, note that

$$g(x) - \langle v, x \rangle = \frac{\rho}{2} ||x||^2 + \sum_{\alpha_i > 0} \alpha_i \sigma(\langle w_i, x \rangle + b_i) - \langle v, x \rangle, \tag{25}$$

which can be equivalently stated as

$$\min_{x,z} \frac{1}{2} \begin{pmatrix} x \\ z \end{pmatrix}^T \begin{pmatrix} \rho I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} + \left\langle \begin{pmatrix} x \\ z \end{pmatrix}, \begin{pmatrix} -v \\ \alpha^+ \end{pmatrix} \right\rangle,$$
(26)

and the non-linear equality constrained $z_i = \sigma(\langle w_i, x \rangle + b_i)$ for all $i \in \{1, \dots, N_x\}$ with $\alpha_i > 0$. Now, the inequality constraints

$$z_i \ge 0 \tag{27}$$

$$z_i \ge \langle w_i, x \rangle + b_i \tag{28}$$

imply that $z_i \geq \sigma(\langle w_i, x \rangle + b_i)$. As the only term in the objective function containing z is given by $\langle \alpha^+, z \rangle$ and α^+ is elementwise strictly positive, we have that problem (26) with constraints (27) and (28) always results in $z_i^* = \sigma(\langle w_i, x^* \rangle + b_i)$ at an optimal point (x^*, z^*) . Hence, the claim follows.

A.4 Proof of Theorem 1

From Lemma 2, we know that g is strongly convex with $\rho(g) \ge \rho$. Convergence thus follows by Theorem 6 in [45]. Furthermore, Lemma 2 shows that h is polyhedral convex, which proves the finite convergence property using Theorem 9 in [45]. Last, the fact that x^* is a local minimum if Equation (11) holds true follows from Corollary 2 in [45].

A.5 Proof of Lemma 4

It is easy to see that under Assumption 1, the function g reduces to $\frac{\rho}{2}||x||^2$. Hence (QP) reduces to

$$\frac{\rho}{2}||x||^2 - \langle x, v \rangle,\tag{29}$$

with the global solution $\frac{1}{\rho}v$. Furthermore, in this case g is differentiable and hence $\partial g(x^*) = \{\nabla g(x^*)\}$ is a singleton. Thus, Equation (11) always holds true under Assumption 1.

A.6 Details on Approximation in y

In our energy function (2) the weights to parameterize the function in x, i.e., $(\rho_{\theta}(y), \xi_{\theta}(y), \omega_{\theta}(y), \alpha_{\theta}(y), W_{\theta}(y), b_{\theta}(y))$, are all single hidden layer neural networks in y. Since $(\xi_{\theta}(y), \omega_{\theta}(y), W_{\theta}(y), b_{\theta}(y))$ are all using the identity as an output layer activation those are universal approximators [27]. Note also that $\rho_{\theta}(y)$ and $\alpha_{\theta}(y)$ are using softplus activations in the output layer. Hence, they are still able to approximate any strictly positive continuous function arbitrarily well as shown in the following.

Let f be an arbitrary strictly positive and continuous function. Then $\log(e^f-1)$ is a continuous function mapping to $(-\infty,\infty)$. As such it can be approximated arbitrarily well by a single hidden layer network by [27]. Further, if we now equip this network with a softplus activation, we approximate softplus $(\log(e^f-1))=f$ by using that softplus is Lipschitz. We formalize this in the following lemma.

Lemma 8. Let $f: \mathbb{R}^n \to (0, \infty)$ be continuous. Then for every $\epsilon > 0$ there is a single hidden layer network with a softplus activation, ν_{ϵ} , such that $\|f - \nu_{\epsilon}\|_{\infty} < \epsilon$

Proof. Let $\epsilon > 0$. By [27], there is a single hidden layer network N_{ϵ} such that $\|\log\left(e^{f(\cdot)} - 1\right) - N_{\epsilon}\|_{\infty} < \epsilon$. Using that the function softplus $(y) = \log(1 + e^y)$ is Lipschitz of constant 1 and that $z \mapsto \log\left(e^z - 1\right)$ is its inverse, we deduce that for every $x \in \mathbb{R}^n$: $\left|f(x) - \log\left(1 + e^{N_{\epsilon}(x)}\right)\right| \le \left|\log\left(e^{f(x)} - 1\right) - N_{\epsilon}(x)\right|$ and therefore

$$||f - \log\left(1 + e^{N_{\epsilon}}\right)||_{\infty} = \sup_{x \in \mathbb{R}^n} \left| f(x) - \log\left(1 + e^{N_{\epsilon}(x)}\right) \right|$$

$$\leq \sup_{x \in \mathbb{R}^n} \left| \log\left(e^{f(x)} - 1\right) - N_{\epsilon}(x) \right| = ||\log\left(e^f - 1\right) - N_{\epsilon}||_{\infty} < \epsilon$$

By setting $\nu_{\epsilon}(x) = \log(1 + e^{N_{\epsilon}(x)})$, the claim follows.

A.7 Proof of Theorem 3

Let $f \in \mathcal{C}_0(\mathbb{X})$ and $\epsilon > 0$. From Lemma 5 we know that there exists a weakly-concave function f_ϵ such that $\|f - f_\epsilon\|_\infty < \epsilon$. Hence, there exists a $\rho > 0$ and a convex function r such that $-f_\epsilon(x) + \rho/2\|x\|^2 = r(x)$. We need to show that r is ϵ -convexly-ReLU-representable.

We assume first that r is Lipschitz continuous. Following the derivations in Theorem 2 in [11], we can find a sequence of convex piecewise linear functions r_n such that $r_n \to r$ uniformly for $n \to \infty$. Furthermore, by Theorem 2.2 in [6] there exist single layer ReLU networks \mathcal{NN}_n that can represent r_n exactly which proves the claim.

If we relax the Lipschitz assumption, we can again follow the arguments in Theorem 2 in [11] and find a sequence of Lipschitz continuous and convex functions \hat{r}_k that converge uniformly to r. Hence for $\epsilon>0$ we can find $k\geq 1$ such that $\|r-\hat{r}_k\|_\infty<\epsilon/2$. With the arguments from above we can then find r_n such that $\|\hat{r}_k-r_n\|_\infty<\epsilon/2$, and hence $\|r-r_n\|_\infty<\epsilon$ which proves the claim.

A.8 Restart Procedure for our DCA Routine

Following [46], let the index sets $I_h(x^*)$ and $I_q(x^*)$ be defined as follows

$$I_h(x^*) = \{i \in \{1, \dots, N_x\} : \alpha_i < 0 \text{ and } \langle w_i, x^* \rangle + b_i = 0\},$$
 (30)

$$I_a(x^*) = \{i \in \{1, \dots, N_x\} : \alpha_i > 0 \text{ and } \langle w_i, x^* \rangle + b_i = 0\}.$$
 (31)

Note that if $I_h(x^*) = \emptyset$ or $I_g(x^*) = \emptyset$ we have that $\partial h(x^*) \subseteq \partial g(x^*)$ as one of the two sets is a singleton and x^* is DC-critical. Hence, for the rest of this derivation we assume $I_h(x^*) \neq \emptyset$ and $I_g(x^*) \neq \emptyset$.

Now, the subgradients of h, respectively g, are given by

$$\partial h(x^*) = \left\{ \xi + \sum_{\alpha_i < 0} |\alpha_i| w_i H(\langle w_i, x^* \rangle + b_i) \epsilon_i^h : \epsilon_i^h \in \left\{ \begin{bmatrix} 0, 1 \end{bmatrix} & \text{if } i \in I_h(x^*) \\ \{1\} & \text{else} \\ \end{cases} \right\}, \tag{32}$$

$$\partial g(x^*) = \left\{ \rho x^* + \sum_{\alpha_i > 0} \alpha_i w_i H(\langle w_i, x^* \rangle + b_i) \epsilon_i^g : \epsilon_i^g \in \begin{cases} [0, 1] & \text{if } i \in I_g(x^*) \\ \{1\} & \text{else} \end{cases} \right\}, \quad (33)$$

where H(z) denotes the Heaviside function, i.e., H(z) = 1 for $z \ge 0$ and H(z) = 0 else. Furthermore, let us define the following

$$I_h^+(x^*) = \{ i \in \{1, \dots, N_x\} : \alpha_i < 0 \text{ and } \langle w_i, x^* \rangle + b_i > 0 \},$$
 (34)

$$I_a^+(x^*) = \{i \in \{1, \dots, N_x\} : \alpha_i > 0 \text{ and } \langle w_i, x^* \rangle + b_i > 0\},$$
 (35)

$$v_h = \xi + \sum_{i \in I_h^+(x^*)} |\alpha_i| w_i, \tag{36}$$

$$v_g = \rho x^* + \sum_{i \in I_g^+(x^*)} \alpha_i w_i, \tag{37}$$

as well as, the matrix $A_h \in \mathbb{R}^{n \times |I_h(x^*)|}$ with columns $|\alpha_i|w_i$ for $i \in I_h(x^*)$, and the matrix $A_g \in \mathbb{R}^{n \times |I_g(x^*)|}$ with columns $\alpha_i w_i$ for $i \in I_g(x^*)$. The inclusion $\partial h(x^*) \subseteq \partial g(x^*)$ holds true if

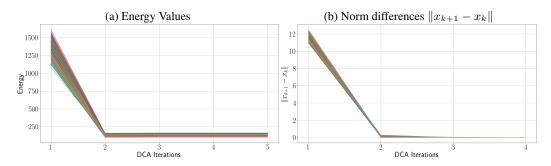
$$\forall \epsilon^h \in [0,1]^{|I_h(x^*)|} \ \exists \epsilon^g \in [0,1]^{|I_g(x^*)|} : \ v_h + A_h \epsilon^h = v_g + A_g \epsilon^g.$$
 (38)

To check if this holds, we can solve the max-min problem

$$\max_{0 \le \epsilon^h \le 1} \min_{0 \le \epsilon^g \le 1} \|v_h + A_h \epsilon^h - v_g - A_g \epsilon^g\|_1, \tag{39}$$

and observe whether or not the optimal objective value is zero. If it is, (38) holds and we have found a local minimum. If not, then we have found an element $x_0^* \in \partial h(x^*)$ with $x_0^* \notin \partial g(x^*)$. Following [44], we can restart the DCA routine with x_0^* and yield a strict energy reduction in the first step.

Figure 2: Illustration of Batched DCA for batch size 512



Note. Illustration of our batched DCA routine computing locally minimal energy states for 512 reasoning tasks in parallel.

What remains to be discussed, is how to solve (39) efficiently. To do so, note that we can reformulate the problem as

$$\max_{\epsilon^h} \min_{\epsilon^g r_1, r_2} \langle r_1, \mathbb{1} \rangle + \langle r_2, \mathbb{1} \rangle \tag{40}$$

$$\max_{\epsilon^h} \min_{\epsilon^g, r_1, r_2} \langle r_1, \mathbb{1} \rangle + \langle r_2, \mathbb{1} \rangle$$
s.t. $v_h + A_h \epsilon^h - v_g - A_g \epsilon^g = r_1 - r_2$ (41)
$$r_1, r_2, \epsilon^h, \epsilon^g \ge 0$$
 (42)

$$r_1, r_2, \epsilon^h, \epsilon^g \ge 0 \tag{42}$$

$$\epsilon^h, \epsilon^g < 1$$
 (43)

This problem can be solved using a branch and bound strategy for bilevel linear programming (see, e.g., section 6.2 in [8]). Furthermore, since x^* is DC-critical, we know that for $\epsilon^h = 1$ there exists an $\epsilon_*^g \in [0,1]^{|I_g(x^*)|}$ with $v_h + A_h \mathbb{1} = v_g + A_g \epsilon_*^g$. Hence, we can warm start the branch and bound routine with $(\epsilon^h, \epsilon^g, r_1, r_2) = (1, \epsilon_*^g, 0, 0)$. If the optimal objective value is zero, we already start with an optimal solution. If not, we can stop the branch and bound routine as soon as we have found the first (ϵ^h, ϵ^g) with $v_h + A_h \epsilon^h \neq v_g + A_g \epsilon^g$. Thus, the restart procedure can be implemented efficiently.

Details on Numerical Experiments В

Visualization of Convergence

We visualize how our batched DCA routine converges for 512 reasoning tasks in parallel in Figure 2. In particular we used the matrix inversion dataset, see Section 5, and for a fixed y visualized the energy values $E_{\theta}(x_k, y)$ and norm differences $||x_{k+1} - x_k||$ after training the parameters θ , i.e., at inference time.

B.2 Details on Experimental Setup

For our baselines we closely follow the code releases of $[20]^7$ and $[21]^8$.

Model Specifications. For DCAReasoner we set the number of hidden units $N_x = 8$ and $N_y = 4000$ for all benchmark datasets. For our baselines we scale the network size depending on the dataset to ensure that all models have roughly the same number of parameters. We set the convergence tolerance in Algorithm 1 to 10^{-5} and set a maximum of 30 DCA iterations. However, in our experiments we see that the batched DCA algorithm consistently converges to machine precision in less than 10 iterations. Hence, we also observe finite convergence guaranteed by Theorem 1 empirically. Starting points x^0 are sampled uniformly random as stated in Algorithm 1. We set l=-1 and u=1 for all benchmark datasets except for QR and Matrix Multiplication for which we use l = -5 and u = 5. Hyperparameters are summarized in Table 3.

⁷https://github.com/yilundu/irem_code_release, MIT License

⁸https://github.com/yilundu/ired_code_release, MIT License

Hyperparameter	Value		
	DCAReasoner	IREM	IRED
Con	nmon Hyperparameters		
Learning Rate	10^{-4}	10^{-4}	10^{-4}
Batch Size	512	512	512
Number of Gradient Steps	10.000	10.000	10.000
Starting Point Sampling	uniform	uniform	norma
DCAReaso	oner Specific Hyperparam	eters	
Number of Neurons N_x	8		
Number of Neurons N_u	4000		
DCA Convergence Tolerance tol	10^{-5}		
Maximum DCA Iterations	30		

Table 3: Hyperparameters settings for our experiments. Note that for our baselines we scale the network size depending on the dataset to ensure that all models have roughly the same number of parameters.

Training. For training, we use the Adam optimizer with a learning rate of 10^{-4} as suggested in [20, 21] for all models. We set the batch size to 512 and train each model for a fixed number of 10000 iterations, i.e., gradient steps. Hyperparameters are summarized in Table 3.

Evaluation. For evaluation, we are using again a batch size of 512 and perform 20 test iterations, summing up to roughly 10000 test problems per difficulty level, i.e., once in the easy setting and once in the hard setting.

Hardware. All experiments are performed on a n1-standard-2 Google cloud instance with 7.5GB RAM and two NVIDIA T4 GPUs.

B.3 Details on Benchmark Datasets

B.3.1 Motivation

In general, neural algorithmic reasoning constitutes an unsolved problem in machine learning. For an argumentation on the complexity of neural algorithmic reasoning see e.g. [47]. Matrix Completion, QR Decomposition, and Matrix Multiplication represent algorithmic reasoning tasks. Du et. al. argue that effective algorithmic reasoning requires repetitive application of underlying algorithmic computations, dependent on problem complexity, and thus serves as a natural benchmark for iterative reasoning [20]. Learning parities is a well-known reasoning benchmark and well-studied in learning theory in general. Shoshani and Shamir argue that there is strong empirical evidence that suggests that parities cannot be learned using more standard general purpose learning methods, and in particular gradient methods, once the dimension is even moderately large [42]. This also goes in line with the fact that our baselines struggled particularly on this task, see also conclusion and limitations section in [20]. For matrix inversion, Ji et. al. argue that despite significant progress in deep learning, there exists no universal neural-based method for approximating matrix inversion [30], showing that this is a non-trivial task for neural reasoning.

B.3.2 Technical Details

In the following we give more details on our benchmark datasets. We followed the code releases of $[20]^7$ and $[21]^8$ closely.

Matrix Inverse. We construct well-conditioned random 20×20 -matrices $A = 2MM^T + 0.5 \cdot I$, with M being a random matrix with entries in [-1,1]. The task is then to compute the inverse A^{-1} . Harder tasks are created by making the matrices less-well conditioned by setting $A = 2MM^T + 0.1 \cdot I$.

Matrix Completion. We randomly construct low-rank 20×20 -matrices $A = 0.1 \cdot N + \frac{1}{20}UV^T$ where N is a standard normally distributed noise matrix and U and V are again standard normally distributed random 20×10 -matrices. Then, a random mask is created by rounding a randomly generated uniformly distributed matrix M. The model is then presented with the masked matrix A and asked to recover it. Harder tasks are created by setting $A = 0.1 \cdot N + \frac{1}{5}UV^T$.

DCAReasoner

IREM

→ IRED

IRED

Noise Level

Figure 3: Empirical Analysis of Robustenss to Noise on the QR Decomposition Dataset

Note. We evaluated the trained models on the QR benchmark dataset adding different Gaussian noise levels to the input data. IREM becomes unstable for large noise levels while IRED and DCAReasoner appear to be robust to noisy inputs.

Parity. Similar to [25], we create uniformly random vectors in $[0, 1]^{20}$ and then set the target to 0 if the number of values strictly greater than 0.5 is even and 1 otherwise. Harder tasks are created by drawing random vectors from $[-1, 2]^{20}$.

QR Decomposition. We create uniformly random matrices A with entries in [-1,1] and then compute the QR decomposition, i.e., A=QR. The models are then given the matrix A and asked to reconstruct both Q and R. Harder tasks are created by creating uniformly random matrices A with entries in [-2.5, 2.5].

Matrix Multiplication. We create uniformly random matrices A with entries in [-1,1] and then compute the square, i.e., A^2 . The models are then given the matrix A and asked to perform the matrix multiplication A^2 . Harder tasks are created by creating uniformly random matrices A with entries in [-1.5, 1.5].

B.4 Further Experiments Analyzing Robustness to Noisy Data

We evaluated the trained models on the QR benchmark dataset adding different Gaussian noise levels to the input matrix before processing with a scale varying in $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 10\}$. Results are visualized in Figure 3. It appears that IREM becomes unstable for large noise levels while IRED and DCAReasoner are mostly robust to noise.

B.5 Details on Energy-Based Reasoning in Token Embedding Space

For our experiments, we make use of the symptom-to-diagnosis dataset for medical reasoning which is freely available on huggingface. It provides a training (853 examples) and test (212 examples) dataset consisting of short texts in which a patient describes her symptoms and a corresponding diagnosis out of a set of 22 medical diagnoses summarized in Table 4.

We first finetune an uncased DistilBERT model for text classification, splitting the training set again into training and validation using a 80/20 split, and using the huggingface trainer for sequence classification. In particular, we use a batch size of 16, a learning rate of $2*10^{-5}$, a weight decay of 0.01, and 10 evaluation steps saving the best performing model in terms of accuracy (which is also 96% as for the energy-based models).

We then use the CLS token embeddings of the texts in the training dataset of this finetuned model as inputs y and the embeddings of the corresponding diagnosis as a ground truth x to train the DCAReasoner and our baselines in a continuous reasoning setting. The model specifications for DCAReasoner are the same as in our main experiments, i.e., we set $N_x = 8$ and $N_y = 4000$,

 $^{^9 \}rm https://huggingface.co/datasets/gretelai/symptom_to_diagnosis, the dataset is licensed under Apache <math display="inline">2.0$

Diagnosis	Training Examples	Test examples
drug reaction	40	8
allergy	40	10
chicken pox	40	10
diabetes	40	10
psoriasis	40	10
hypertension	40	10
cervical spondylosis	40	10
bronchial asthma	40	10
varicose veins	40	10
malaria	40	10
dengue	40	10
arthritis	40	10
impetigo	40	10
fungal infection	39	9
common cold	39	10
gastroesophageal reflux disease	39	10
urinary tract infection	39	9
typhoid	38	9
pneumonia	37	10
peptic ulcer disease	37	10
jaundice	33	7
migraine	32	10

Table 4: Number of examples per split and diagnosis in the Symptom-to-Diagnosis dataset.

Figure 4: Training and Validation Curves for Sudoku Experiment

(a) Training Loss (Cross-Entropy) (b) Validation Performance (Cell Accuracies)

Note. Cross-Entropy loss during training (left) and cell accuracies on validation data (right). Validation steps are performed every 1000 training

scaling the network sizes in our baselines to ensure that all models have roughly the same number of parameters.

For training, we use a batch size of 64 and a learning rate of 10^{-4} . We train each model for 10000iterations. For evaluation, we use the test set and process it again in batches of size 64.

Preliminary Experiments in Discrete Setting

As mentioned in the main paper, DCAReasoner is designed for continuous reasoning tasks. Thus, our method cannot be applied as-is to experiments in discrete spaces. Nevertheless, we performed

preliminary experiments using the Sudoku dataset in [41]. The authors provide a training dataset consisting of 1.8 million Sudoku puzzles as well as a validation set with 0.1 million Sudoku puzzles.

For reasoning in a discrete setting our energy landscape is defined in the logit space, i.e., a 729 dimensional setting and we replace the MSE with the cross entropy loss. Processing the inputs, i.e., Sudoku puzzles, can be done in multiple ways. We decided for a convolutional neural network with the residual connection design as in [21] to process the Sudoku puzzles before feeding them to our neural network components. Using the same settings as in the main paper, i.e., $N_x = 8$, $N_y = 4000$ and a learning rate of 10^{-4} , but a batch size of 64, we train DCAReasoner for a total of 10 epochs. Validation steps, i.e., computing the cell accuracy defined as the percentage of unfilled cells whose values are correctly predicted on the validation data [41], are performed every 1000 training steps. The training process is visualized in Figure 4. Note that the validation performance stagnates after roughly 6 epochs. At this time, we observe a cell accuracy of 65.09%, i.e., 65.09% of all unfilled cells in all of the 100K validation puzzles are filled correctly. For context, the baseline from [41] with random order of input cells achieves 52%, while the one with fixed order achieves 58.64%. Our results only fall short from the accuracy achieved by the model receiving additional context information about solving strategies during training (94.23%). However, we point out that the specific architecture of our model does not allow such information to be provided.