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Abstract

While energy-based models have recently proven to be a powerful framework for
learning to reason with neural networks, their practical application is still lim-
ited by computational cost. That is, existing methods for energy-based iterative
reasoning suffer from computational bottlenecks by relying on expensive optimiza-
tion routines during training and especially during inference. Furthermore, these
routines may not always converge to minimal energy states, potentially leading
to suboptimal reasoning. To address these limitations, we propose a novel and
efficient algorithm for energy-based iterative reasoning based on a difference-of-
convex (DC) functions approach. Our algorithm achieves a significant speedup
compared to prior methods while offering theoretical convergence guarantees en-
suring locally minimal energy states. In addition, we achieve state-of-the-art or
superior performance on continuous reasoning tasks, as demonstrated by our exper-
iments on multiple benchmark datasets from continuous algorithmic reasoning. As
such, our method offers a leap in computational efficiency, enabling faster inference
with theoretical guarantees, and hence unlocking the potential of energy-based
models for iterative reasoning applications.

1 Introduction

The human thinking process is described as operating through two distinct modes [31]: the rapid,
automatic associations of System 1, and the slower, more controlled symbolic reasoning of System
2. Neural networks have demonstrated remarkable ability to perform System-1-like tasks within
well-defined and specific environments. However, when faced with slightly different or harder tasks,
neural networks often fail while humans engage in System 2 processes. The latter allows for iterative
reasoning about new observations drawing upon prior experience and shared abstractions which
remains difficult even for extremely large neural network architectures such as LLMs [35} [51]].

There is a variety of recent work that tries to formalize reasoning within a neural network approach,
see next section. In this work, we build upon the state-of-the-art in [20} [21] formalizing iterative
reasoning as an energy minimization problem, i.e.,

argmin Fy(z,y) )
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for a given problem encoded in y € R™ with (partial) solutions z € R™. Learning to reason is
defined as learning the energy landscape Fy parameterized by 6 via

min g
0 -
(3

from given problem- and solution-pairs {(y;, z;) € R™ x R"™ : 4 € {1,..., N}}. Optimization steps
from a current (partial) solution z* to a new z*+1 with Ey(2*+1,5) < Ey(z*,y) are then considered
as individual reasoning steps. It has been proven empirically and theoretically that this formulation
is superior to direct feed-forward computations, recurrent approaches, and various baselines from
neural reasoning in terms of generalization and parameter efficiency [20} 21]]. Nevertheless, learning
energy landscapes involves solving (I)) at training as well as inference time which imposes several
limitations on current approaches: (i) Due to the inherent complexity of energy landscapes, heuristics
for approximating solutions are used instead of directly solving (I, see next section, which can
result in unstable training, (ii) Relying on gradient descent at prediction time is computationally
expensive and might hinder practical applications, and (iii) Theoretically, energy-based reasoning
yields a natural termination criterion during inference, i.e., an indication to terminate the computation
of reasoning steps, by determining if a locally minimal energy state has been found. However, there
are no theoretical guarantees that such an energy state is ever reached in previous methods as they
rely on gradient descent.

2
(EMP)

argmin Fy(z,y;) — x;
xr

As a remedy, we present a general energy learning framework for continuous iterative reasoning
based on difference-of-convex function (DC) optimization. Our main contributions are

1. We introduce a tailored form of energy functions and present a difference-of-convex-function
algorithm (DCA), see [4]], for (I)) powering our novel energy learning algorithm.

2. We derive theoretical convergence guarantees of our DCA routine to local solutions of ().

3. We show that our DCA routine converges in finitely many steps and, hence, offers a clear
termination criterion.

4. Under additional assumptions, we show how our energy learning algorithm can be scaled
for batch optimization and present theoretical approximation guarantees for our form of
energy function.

2 Related Work

Neural Reasoning. There is an active area of research that tries to formalize reasoning with neural
networks. One group of work builds upon the idea to formulate reasoning as optimization problems
and then derives differentiable solvers, e.g., [2 [17 134, 48| 50]. These approaches are however
constrained to tasks of a particular kind, e.g., tasks that can be formulated as quadratic programs
[2]]. Another group of research formalizes reasoning as iterative computations using neural networks.
Following [21]], this research can again be broadly subdivided into two areas: one that leverages
explicit program representations [26 36} 138, [10} [13137,155] and another that uses recurrent neural
networks [32, 125,19, [15, 156} 16, {18} 140L 57]. In both areas a challenging problem is to decide when
to terminate the computation and has been tackled in various ways usually by learning some sort of
halting probabilities [[12}[7,[10]. In contrast, our approach naturally imposes a termination criterion
by stopping once a local minimum in the energy function has been reached.

Energy-Based Models. Energy-based models formulate prediction tasks via energy minimization
[33]. That is, external observations y and possible predictions z are both processed by a so-called
energy function £ : R" x R™ — R which measures how compatible x is with y. The convention is
that lower energies indicate a higher compatibility. A prediction for y is then defined as a minimum
energy state «* given y, see (I). Energy-based models have been used in various ways to learn
probabilistic models from data 54,153} [22] [24] 19} 15 152]. Our work leverages such energy functions
to formalize an iterative reasoning process similar to [20, 21].

Energy Based Iterative Reasoning. We are not the first to formulate iterative reasoning as an energy
minimization problem. To the best of our knowledge, [20] is the first to formalize reasoning through
optimization steps using a general trainable energy function. In particular, the authors make use
of a fixed number of gradient steps 7' with a fixed step size A during training to approximate (T]



within , ie., xZT = minl - )\VggEe(gcinl7 y;). However, this can lead to unstable training
processes as due to potentially complex optimization landscapes it is not guaranteed that x7 is a good
approximation of a local minimizer of Fy(z,y;). As a remedy, [21]] introduced an energy diffusion
process in which the authors minimize a sequence of energy landscapes by gradually increasing
their complexity and using solutions on previous levels to initialize the gradient descent routine on
consecutive levels. The energy landscape is then tuned via a supervised approach on noise corrupted
gradients and a contrastive loss component to enforce local minima in the learned energy landscape
instead. Nevertheless, both approaches suffer from computational bottlenecks at inference time due
to the inherent optimization procedure based on gradient descent and the need for auto-differentiation
at test time.

3 DC Framework for Energy-Based Reasoning

In this section, we introduce our novel energy-based reasoning framework that builds upon a
difference-of-convex functions approach.

3.1 DC Energy Landscapes

To allow for sufficient reasoning capabilities an energy function Fy should be able to represent a
wide range of functional dependencies while at the same time entail structural properties that allow
for an efficient solution of argmin,, Fy(z,y) at training time. Based on this observation, we are
making use of the following energy function Fy(z,y) = Zf\[:’l a;o((wg, ) + b;), with a = ag(y),
W = Wy(y), and b = by(y), where N, € N and o = max(-,0) is the ReLU activation function.
Note that Ej is a single hidden layer neural network in x, while its parameters («, W, b) are again
parameterized functions in y with weights 6. In particular, we set (g, Wy, by) again as single hidden
layer neural networks in y with N, € N hidden neurons. Thus, we are using neural networks in y to
represent parameters for a neural network in x. Due to single hidden layer neural networks being
universal approximators [27], we can ensure sufficient representation capabilities for this form of
energy function.

As the goal is to learn energy landscapes in a way that minimal-energy states represent solutions of
particular reasoning problems, we also want to ensure that such a minimum always exists. Hence,
our final definition of Ey is as follows

No
Eo(w,y) = Sl = (6,2) —w+ Y ao((ws,2) +by), @
i=1

with a = ap(y), W = Wy(y), b = bo(y), & = &o(y), p = pe(y) > 0, and w = wy(y). Note that
we added a general quadratic form, so that for fixed 6 and y we have Ey(x,y) — oo for ||z|| — oo.
Hence, Fjy is coercive and continuous in z and thus argmin, Fy(z,y) # (.

Our next result shows that (2)) can be decomposed into a difference of convex functions in z for fixed
weights (p, &, w, o, W, b), see Lemmal[l]

Lemma 1. For fixed weights (p(y),£(y),w(y), a(y), W(y), b(y)), the energy function Egy is DC in
z, Le, Eg(z,y) = Ep(x) = g(x) — h(x) with

— P2 _ _ ,
g(z) = §||x|| + Z oo ((wi, ) + b;) 3
a; >0
ha) = Y lailo((wi,2) + b)) + (€,2) +w, @
a; <0
and g, h convex in x. For a proof see Appendix|[A.]] (|

The above DC representation entails desirable properties for our analysis later on. We summarize
important characteristics in the following Lemma.

Lemma 2. Let g and h be defined as in Lemmall} then the following holds

1. g is strongly convex in x.



2. his (up to a constant) polyhedral convex in z, i.e., there exists qi; € R™ and py, € R for
ke{l,..., K} such that

h(z) = max(gy, z) + px- 5)
For a proof see Appendix[A.2] O

3.2 Locally Minimal Energy States

This section shows how the above defined energy function can be minimized in x via a tailored

DCA. For an introduction to DCA, we refer to [4]. Following [435]], the DCA routine for minimizing
Ey(x) = g(x) — h(z) starting in an arbitrary point 2o € R" i

v E 8h(xk) (6)

Tp41 € argming(z) — (v, x) (N

Note that an element in the subgradient of & in @ is given by
Z | |w; H ((ws, x) + b;) + & € Oh(zg,). (8)
a; <0

where H(z) denotes the Heaviside function, i.e., H(z) = 1 for z > 0 and H(z) = 0 else. To
compute x4 in the DCA, one has to solve the minimization problem in (7). The following lemma
shows that the problem can be equivalently stated as a convex quadratic program.

Lemma 3. The optimization problem

min g(z) = (v,z) ®)

can be formulated as

1 T _ e +
ming () (5 8) () + (). ()« (07 D O=(). @
where ot is the vector of strictly positive weights in the output layer, i.e., a;r = ay, forallij €

{1,..., Ny} with a;; >0, W is the matrix with rows formed by the corresponding weight vectors
wy;, and bt the vector formed by the corresponding bias terms bi;. For a proof see AppendixD

One step in DCA thus simplifies to evaluating Equation (8)) and then solving (QP). The next theorem
shows that this simple iteration entails favorable convergence properties in the view of supervised
learning of minimal energy states.

Theorem 1. Given an arbitrary starting point x, the DCA routine ((6) and (7)) with v given by
Equation (@) and 1 given as the solution of (QP) converges in finitely many iterations to a DC
critical point x* € R", i.e.,

Ag(x*) N Oh(z*) # 0. (10)

Furthermore, x* is a local minimum of Ey(-,y) if and only if
Oh(z*) C Og(z™). (11)
For a proof see Appendix[A4] ([l

Note that is always fulfilled if Oh(z*) or Og(x*) is a singelton. The latter holds true in particular
if (w;,2*) +b; #0 Vi€ {i:a;>0}or (w,z*)+b; #0 Vi€ {i:a; <0}.If (TI) does not
hold we can restart the DCA routine with a point zj that yields a strict energy reduction in the first
DCA step following [44], see Appendix [A8|for an in-depth discussion on our restart procedure.

"Here Of stands for the subgradient of a convex functions f defined as Of(y) =
{fueR" |Vz eR": f(z) = f(y) = (u,z —y)}



4 Scalable Energy Learning

In theory, the DC framework presented in Section [3|can now be used to learn energy landscapes by
supervising the resulting minimal energy states through regression using (EMP) similar to [20]. In
particular, one can make use of differentiable convex optimization layers [[1] or specialized batched
quadratic programming solvers [2]] to solve (QP) and run our DCA routine in batches which will
converge in finitely many steps due to Theorem[l| Nevertheless, our research shows that (i) relying on
differentiable QP solvers, and (ii) the need for our restart routine to ensure local optimality, hinders
the ability of our approach to scale to large-scale settings. As a remedy, we introduce additional
assumptions on the energy function defined in Equation (2)) and show that under these assumptions we
can find analytical solutions to and can guarantee that always holds true for *, i.e., DCA
always converges to a local minimum of the energy function. In addition, in Section[4.T] we show that
our energy function approximates a sub class of continuous functions that we call convexly-regular
arbitrarily well. We also show that for the univariate prediction case the approximation is universal.

For the remaining part of this work, we make the following additional assumption summarized in
Assumption|[T}

Assumption 1. Let a; < 0foralli € {1,..., N} in Equation ().

Note, that this can be easily accomplished by using a non-negative activation functiorE] in the neural
network component g (-) and use the resulting values directly in Equation . Under this assumption,
the following lemma can be derived.

Lemma 4. Let Assumption |I| hold true. Then, l@i can be solved analytically and xj1, = %v.
Furthermore, Oh(x*) C 8g(z*) always holds true in this case. For a proof see Appendix[A.5] O

In the next section we analyze how Assumption T]affects the approximation capabilities of our energy
function, as indeed restricting shallow neural networks to only positive weights can make them loose
their universal approximation guarantees [49].

4.1 Approximation Guarantees

In our energy function () the weights to parameterize the function in =z, ie.,
(po(y), &o(y),wo(y), an(y), Wo(y),be(y)), are all single hidden layer neural networks in y,
and hence universal approximators [27]], see also Appendix [A.6] We thus focus the following analysis
on approximations of functions in x and need the following definitions and results from earlier work.
Definition 1. Let X C R” be convex. A function f : X — R is called p-weakly-convex, or simply
weakly-convex, if there exists a p > 0 and a convex function h such that f + p/2|-||> = h. The

Sfunction is called weakly-concave if — f is weakly-convex. The set of all weakly-convex functions in
X is denoted by WC(X).

It can be shown that weakly-convex functions are universal approximators. To formalize this claim
recall that Co (X)) denotes the set of continuous functions that vanish at infinity, i.e., for all € > 0 there
exists a compact set X' C X such that |f(z)| < eif v ¢ K. Then, the following holds.

Lemma 5 (Theorem 6 in [43]). Let X C R™ be closed (or open) convex. Then, WC(X) N Cy(X)
is dense in Co(X) equipped with the infinity norm. This statement also holds for weakly-concave
functions (by switching signs).

Furthermore, weakly-convex functions can be represented in a special form, see Lemma 6]

Lemma 6 (Theorem 3 in [43])). A (closed) function f is p-weakly-convex if and only if f(x) =
sup,er(qe, ) + pr — p/2||z||? for some (not necessarily finite) index set T

Now, by combining Lemma[2]and Lemma[6 we see that our energy function is weakly-concave in z,
i.e., it has exactly the form

£llall? = max{ge, ) + pr. (12)

*In our implementation, we are using softplus activations for both ag(-) and pg(-).
*Note that Theorem 3 in [43] is stating that f(z) = sup,cr{at, z) + be + o||z||* as the authors use 0 = —p
to denote the modulus of convexity.



Note, however, that it is not immediately clear that also any weakly-concave function can be ap-
proximated by our energy function as the vectors g; and biases pj, in Lemma [2] follow a special
form. Nevertheless, if this is the case or equivalently if we are able to prove that h can approximate
continuous convex functions, Lemma [5yields theoretical approximation guarantees for our energy
function.

To derive sufficient conditions for A to be able to approximate a continuous convex function, we note
that we merely impose sign constraints on the output layer of the involved shallow neural network.
Thus, h can be seen as a single layer input convex neural network (ICNN) with weighted input skip
connections in z [23]. Input skip connections were introduced for ICNNs in [3]] to increase their
expressivity by allowing identity mappings between layers as otherwise the non-negativity constraint
would be too restrictive. Indeed, it has then been shown that ICNNSs are able to approximate arbitrary
continuous convex functions on compact convex domains (see, e.g., Theorem 1 in [[14] or Proposition
3 in [28]). However, those approximation guarantees require deeper ICNNs while £ is merely a single
layer ICNN. As pointed out by [23], the derivations in [14} [28] are merely for theoretical purposes as
they require as many layers as affine pieces of the piecewise linear convex function they are trying to
approximate and only a single neuron per layer. The authors, thus, derive the following result.

Lemma 7 (Corollary 4.8 and Proposition 4.9 in [23]]). A convex function implemented by a single
hidden layer ReLU network (with or without weighted input skip connections) can also be implemented
by a single hidden layer ICNN with the same width.

The question if h can approximate a continuous convex function thus boils down to the question if it
can be approximated by a convex shallow ReLU network. Hence, we define the following

Definition 2. Let X C R"” be convex and compact. We call a continuous convex function r : X — R
e-convexly-ReLU-representable if there exists a convex single layer ReLU network (with or without
weighted input skip connections) NN such that |[NN —r||» < e.

Given a function f € Co(X), we know from Lemma [3] that for all € > 0 there exists a p-weakly-
concave function f with || f — fe||so < €. Then we know that r = — f. + p/2||z||? is convex and we
make the following definition.

Definition 3. Let X C R"™ be convex and compact and let f € Co(X). We call f convexly-regular, if
we can always choose f. such that r is e-convexly-ReLU-representable.

Now, Theorem [2] summarizes the above derivations

Theorem 2. Let X C R™ be convex and compact. Under Assumption [I] every convexly-regular
Sunction f € Co(X) can be approximated arbitrarily well by Ey as a function in x.

Proof. Let € > 0 be arbitrary and € = ¢/2. From Lemma we know that there exists a weakly-
concave function f: such that || f — f:|lcoc < €. Hence, there exists a p > 0 and a convex function
r such that —fz(z) + p/2||z||*> = 7(x). Furthermore, Definition [3| ensures that we can always
choose f: such that r is é-convexly-ReLU-representable. Thus, there exists a convex ReL.U neural
network NN with ||[r — NA|s < é& From Lemma we know that there exist < 0, W, b, &,
and w such that NN (z) = >~ |oi|o((wi, ) + b;) + (€, ) + w which we define as h. Hence, for
Eg(z) = &||x||* — h(x) we have

1 = Eo@)ll = |£ = (Sllel? = a@) | <1 = felloo + | £: = (l1al? = p@))]| _ (13)
<Eé+|h =710 <2€6=ce. (14)
O

Definition [3] is rather technical and to the best of our knowledge there are no general results on
conditions under which a convex function can be approximated by a single layer ReLLU network
which is itself convex. However, the following theorem shows that the class of convexly-regular
functions is sufficiently large in the univariate case.

Theorem 3. Let X C R be compact and convex. Then, every f € Co(X) is convexly-regular. For a
proof see Appendix[A.7] O
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4.2 Pseudocode

We now combine our derivations in Section[3]and Assumption [I]to define our algorithm for scalable
energy learning via a batched DCA approach named DCAReasonerE] A pseudocode is presented in
Algorithm 1]

Algorithm 1: DCAReasoner: Scalable Energy Learning via Batched DCA
Data: (y;,z;) € R™ x R", lower and upper bounds for starting points [, u € R™

Result: Ey (-, -)

while not converged do

Sample batch of data (y;,x;),eB:

Perform forward pass for parameters (a, W, b, p, &) +— (o, W, b, p, &) ((y5)eB);

Sample uniformly random starting points (z?)jeg ~U(l,u);
k <+ 0;
// Initializing x

k1
J
while max||z® — z¥T1|| > 1ol do
Jes i i

in a meaningful way

zFtl % (Z\ai|wiH((wi,xk> + b;) +§);

k<+—k+1;

end
Update 0 using Adam and Vg > H'cj‘ — xz;|1%/|Bl;
JjEB

end

Note that we used max;cp ||z§c —z’; + || > tol as a stopping criterion for the DCA routine. Empirically,
we observe that a few DCA iterations (< 10) are enough for the whole batch to converge for
tol = 1075, Indeed, most of the time we observe max;cp fo — 28| < tol approaching machine
precision, and hence, the finite convergence property can also be oéserved empirically. See Figure
in Appendix [B.T|for an illustration of how the norm differences decrease to zero with DCA iterations
for a batch size of 512, i.e., when solving 512 reasoning tasks in parallel. We also note that we
skipped the neural network for the bias term, i.e., w(y), in Algorithm [1]as it does not change the
local minimizer of @) and was merely used for our theoretical derivations. Furthermore, the network
for b will not be updated during training as a consequence of the Heaviside function. Nevertheless,
similar partial optimization routines, in which parts of the parameters are randomly initialized and
then frozen, have been successfully applied in neural learning, see e.g. [29].

S Numerical Experiments

5.1 Experimental Setup

We first evaluate our algorithm on five continuous algorithmic reasoning benchmark datasets from
earlier research [20, 21]] in Section[5.2] All tasks are aiming to capture different aspects of reasoning.
We report the mean squared errors, as well as, inference times of our DCAReasoner and two state-
of-the-art baselines from energy-based iterative reasoning. The evaluation is performed on 10000
test problems and repeated five times to report the mean and standard error of our metrics. Having
established that our algorithm is superior (or on par) with state-of-the-art but significantly faster, we
then demonstrate how our DCAReasoner might unlock reasoning capabilities in language models by
learning energy landscapes in token embedding spaces in Section

5.2 Continuous Algorithmic Reasoning Benchmarks

Baselines. We consider two baselines from state-of-the-art energy based iterative reasoning: (i) En-
ergy based reasoning through energy minimization (IREM): This baseline learns an energy function
minimizing by approximating argmin,, Fy(z,y) via a fixed number of gradient steps [20].
During inference it uses again a subgradient descent method but leveraging a greater number of steps
than during training.(ii) Energy based reasoning through energy diffusion (IRED): Here, the idea is to
minimize a sequence of energy landscapes gradually increasing their complexity and using solutions
on previous levels to initialize the gradient descent routine on consecutive levels [21]]. The energy

*https://github.com/DanielTschernutter/DCAReasoner
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Dataset DCAReasoner (Ours) IRED IREM
MSE Inference-Time [s] MSE Inference-Time [s] MSE Inference-Time [s]

Same Difficulty

Matrix Inverse 0.0096+0.0000 2.618940.0305 0.0097+£0.0000 33.7056+0.8818 0.010140.0000 22.619940.6127

Matrix Completion 0.017740.0000  1.337340.0125  0.0179£0.0000 33.659740.9125 0.018040.0000 22.744140.5296

Parity 0.0301+0.0003  0.605340.0381  0.4859+£0.0026  9.1011+0.2809  0.250440.0001  1.9797+0.1463

QR Decomposition 0.1438+0.0001  2.305140.0261  0.2175£0.0001  48.1915+1.4199  0.152140.0001 36.27754+1.0231

Matrix Multiplication 0.0480+0.0000 1.679040.0258  0.0919+£0.0000 34.160240.8609 0.090340.0000 23.65104-0.6229
Harder Difficulty

Matrix Inverse 0.207740.0003  2.601740.0226  0.2064£0.0003  33.3662+0.6442  0.20631+0.0006 22.775740.4990

Matrix Completion 0.21004+0.0001  1.349140.0211  0.2094£0.0002  33.270540.7230  0.20584-0.0002 22.92661-0.5348

Parity 0.0301+0.0003  0.586340.0067 0.4885+0.0010  8.6239+0.0879  0.25044-0.0001  1.9477+0.0983

QR Decomposition 0.8847+0.0003  2.337440.1298  1.0376£0.0002 47.7211£1.0362 1.326740.0006 35.376410.8735

Matrix Multiplication 0.297410.0003  1.687740.0243  0.4506£0.0002 33.345140.6479 0.452440.0002 23.574840.6184

Table 1: Evaluation on continuous algorithmic reasoning tasks. Models are evaluated on test problems
drawn from the training distribution (same difficulty) and a harder test distribution (harder difficulty).
We report the mean squared error and the inference time. We perform five evaluation runs and report
the mean and standard errors.

landscape is then tuned by supervising on noise corrupted gradients and a contrastive loss component
to enforce local minima in the energy landscape. We scale the network size in our baselines to ensure
that each of them has roughly the same number of parameters. For a detailed discussion of our
experimental setup see Appendix[B.2}

Datasets. In our experiments we evaluate all baselines based on five datasets from earlier research
[20} 21]]. Each of them is evaluated once with the same level of difficulty, i.e., test cases are drawn
from the training distribution, and once with a harder level of difficulty, in which test cases are
drawn from a problem specific harder test distribution following [20, [21]. The latter should test the
algorithms ability to generalize reasoning capabilities to new unseen problem settings. In particular,
we use: (i) Matrix Inverse: The task is to invert a random 20 x 20 matrix. It aims at testing
numerical reasoning. Harder problems are created by creating less well-conditioned matrices to invert.
(ii) Matrix Completion: The task is to recover masked out values in a random low-ranked 20 x 20
matrix constructed from two low-rank matrices U and V. Harder tasks are created by increasing the
complexity of U and V. It aims at both structural and analogical reasoning. (iii) Parity: Given a
random vector in [0, 1]2° the task is to decide whether or not the number of entries which are greater
than 0.5 is odd or even, i.e., the target is 0 for even 1 for odd, see also [25]. Harder tasks are created
by increasing the magnitude of vector entries. (iv) QR Decomposition: The task is to compute the
QR decomposition of a random 20 x 20 matrix with entries in [—1, 1]. Harder problems are created
by changing the magnitude of matrix entries. (v) Matrix Multiplication: Given a random 20 x 20
matrix M the task is to compute the square, i.e., M 2. Harder problems are created by changing the
magnitude of matrix entries. For an in-depth discussion of our benchmark datasets see Appendix [B.3]

Results. Our results are summarized in Table[I] In terms of mean squared error, DCAReasoner is
mostly on par with IRED and IREM on the matrix inverse and the matrix completion dataset, while
we see larger improvements for the remaining datasets. Noteworthy, we observe a decrease in MSE by
a factor of ~ 10 on the parity dataset, which might stem from the fact that the prediction is univariate
in this case, for which we have established universal approximation guarantees in Theorems [2] and 3]
In terms of inference time, we see large improvements of factors between 14 and 27 for IRED and
between 3 and 18 for IREM. Furthermore, we performed additional experiments showing that our
predictions are robust to noisy input data on the example of the QR Decomposition dataset. All
details are reported in Appendix [B.4]



5.3 Energy-Based Reasoning in Token Embedding Space

In the last section we have empirically proven
that our algorithm yields state-of-the-art perfor-

. .. . Alg. MSE  Accuracy[%] Inference Time[%]

mance results but is significantly faster at in- e pye o
: . IREM .01 o lo
ference.tlme_than previous energy-based mod- IRED 0.027 %67 1330%
els for iterative reasoning. Furthermore, it of-  DCAReasoner  0.008 96% 100%

fers theoretical convergence guarantees and per-
forms well in high-dimensional settings. As Table 2: Test evaluation performance on text clas-
such, we think that our algorithm might be used ~sification task. We report the mean squared error
to improve reasoning skills of language models of the prediction and the embedding of the target
by learning energy landscapes in token embed- text. Accuracy is computed by using the target
ding spaces which might be used during infer- closest to the prediction. Inference time is reported
ence for energy_guided text generation' Note in percent, with 100% indicating the lowest time.

that our baselines are not well-suited for such

a setting as large inference times especially in high-dimensional token embedding spaces might
considerably slow down token generation in practice.

As a fully developed approach for energy-guided text
generation to improve reasoning is out of the scope of

I this work, we demonstrate how DCAReasoner is able to
learn reasonable energy-landscapes in token embedding
spaces in a simpler setting. In particular, we make use of
the symptom-to-diagnosis dataset for medical reasoning
which is freely available on Hugging FaceE] It provides a
\ training and test dataset consisting of short texts in which a
/ Ar‘itis patient describes her symptoms and a corresponding diag-
nosis out of a set of 22 medical diagnoses. We then use the

\ y CLS token embeddings of a finetuned uncased DistilBERT
model of those texts as inputs y and the embeddings of the
corresponding diagnosis as a ground truth x to train the
DCAReasoner and our baselines in a continuous reasoning
I setting. More details of our experiments are reported in

Appendix [B.3]

We summarize the results in Table[2] Our algorithm yields
the lowest mean squared error more than three times faster
than IREM and thirteen times faster than IRED. We also
visualize the energy landscape in token embedding spaceE]
learned by our algorithm in Figure [T|using as an example
the sentence “My muscles are weak, my neck is stiff, and
my joints are swollen. I can’t move around very well, and
walking is really painful.” with diagnosis arthritis from
the test set. Note that arthritis has indeed the lowest energy, while embedding vectors of diseases
like malaria which shares symptoms like weakness and joint pain are also assigned lower energy
values. Furthermore, seemingly unrelated diagnoses like urinary tract infection yield higher energy
values, indicating that our algorithm is capable of learning reasonable energy landscapes in the token
embedding space.

Malaria
-

Urinary tract infection
-

4

Figure 1: Visualization of Energy Land-
scape in Token Embedding Space for
the Input Sentence “My muscles are
weak, my neck is stiff, and my joints are
swollen. I can’t move around very well,
and walking is really painful.”.

6 Conclusion

We proposed a new algorithm named DCAReasoner for energy-based continuous iterative reasoning.
It is build upon a tailored class of energy functions for which we derived theoretical approximation
guarantees. In addition, we presented theoretical convergence guarantees for the inherent DCA
routine. That is, we showed that it converges to local minima in finitely many steps independent of

*https://huggingface.co/datasets/gretelai/symptom_to_diagnosis, the dataset is licensed un-
der Apache 2.0

5We used t-SNE to visualize the 768 dimensional embedding vectors in the plane. Furthermore, we computed
the energies for all 22 target embeddings and interpolated the results using a radial basis function interpolator.
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the starting point. Empirically, we have proven that it yields improved performance and inference
times.

Limitations. Our DCAReasoner shows promising results for neural iterative reasoning. However,
there are still limitations. First, our DCAReasoner, as presented in this work, does not yet make use
of any external memory. That is, DCAReasoner cannot store intermediate results during reasoning
which might be beneficial in some reasoning tasks. Second, the form of our energy function might
require a large number of trainable parameters if a large number of hidden neurons in z, i.e., N,
is desirable. For instance, the mapping Wy (y) requires m - N, + N, - N, - n trainable parameters.
Empirically, we see however that smaller values for IV, and larger values for N, are sufficient (our
experiments use IV; = 8 and N, = 4000). Third, in the current form DCAReasoner is designed for
continuous reasoning tasks and hence cannot directly handle discrete reasoning tasks. However, we
note that earlier work on energy-based reasoning shows how discrete tasks, formulated in a continuous
setting, yield promising results [20, 21]]. Furthermore, we conducted preliminary experiments on a
discrete task, specifically solving Sudoku puzzles using the dataset provided in [41], and report our
early results in Appendix[C|

Societal Impacts. To the best of our knowledge, there are no immediate positive or negative social
impacts that can be derived from our work in the current form.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are either proven theoretically
in Section [3]or Section[d or are proven empirically in our numerical results section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We added a clearly marked limitations paragraph in our conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Each of our own theoretical results has a link to the appendix in which the
corresponding proofs can be found.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: An implementation of DCAReasoner is publicly available on GitHub. Ap-
pendix [B] reports all the necessary information including model specifications, training
hyperparameters, and details on benchmark datasets, to reproduce our results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: An implementation of DCAReasoner is publicly available on GitHub. Further-
more, the code for our baselines as well as all used benchmark datasets are already publicly
available as described in detail in our appendices.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details for training and testing are provided in our appendices.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard error of the mean in our main experiments, see Table
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes all details are reported in the main paper and appendices (see Ap-
pendix [B.2).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research does conform with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We included a societal impact paragraph in our discussion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used assets are properly cited and the name of the license is explicitly
mentioned.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .
Justification: An implementation of DCAReasoner is publicly available on GitHub.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Mathematical Appendix

A.1 Proof of Lemmal[ll

It is clear that Ey(x,y) can be decomposed as

Eo(z,y) = Eg(v) = g(x) — h(x) (15)
with
9(@) = Lllz|? + Y cwo((wi,x) +by) (16)
a; >0
h(z) =Y loilo((wi,x) +b;) + (€, 2) + w. (17)
a; <0

Furthermore, (w;, x) + b; is affine in  and hence convex and o is non-decreasing and convex. Thus
the composition o ((w;, x) + b;) is always convex and the claim follows by observing that g and h
are linear combinations of convex functions with positive weights.

A.2 Proof of Lemma
For point one, note that the modulus of strong convexity is defined as
p(g) = sup{g(z) — £||:EH2 is convex }, (18)
p>0 2

see, e.g., [44]. It is easy to see that g — £||-||? is convex and hence p(g) > p > 0, which implies
strong convexity.

For point two, polyhedral convex functions can be characterized as

max{(qx, ) +pr 1 k € {1,..., K}}, (19)
see, e.g., [39]. Note that
W) —w=Y_ |alo((wi,z) + b;) + (& ) (20)
;<0
=Y o((Jailwi, x) + |aulb) + (&, ) 21)
a; <0
max 6; ((Jaiwi, @) + |ai|bi) + (€, ), (22)

3:€{0,1} a;<0

where the last equality follows from the fact that the maximum is achieved in the case where §; = 1
if (Jo;|ws, ) + |a]b; > 0 and §; = 0 else. Furthermore,

d; ilwg, ) + |ag|bs) + (€, x) = 23
s, 32 b)) + () 23)
max o;ldjw; + &,z ) + «@;|;b;, (24)
By T ) + S

which proves the claim.

A.3 Proof of Lemma[3
First, note that

g(@) = (v,2) = EllalP + 3~ awo((wi,@) + b)) - (v,2), ©5)

a; >0

which can be equivalently stated as

wing () (7 9) () +((): () )



and the non-linear equality constrained z; = o({w;, z) + b;) foralli € {1,..., N, } with a;; > 0.
Now, the inequality constraints

z; >0 27
Zi > (wi,x) + b; (28)

imply that z; > o({w;, x) + b;). As the only term in the objective function containing z is given
by (o™, z) and a™ is elementwise strictly positive, we have that problem with constraints
and always results in z} = o({w;,z*) + b;) at an optimal point (z*, z*). Hence, the claim
follows.

A.4 Proof of Theorem/I]

From Lemma we know that g is strongly convex with p(g) > p. Convergence thus follows by
Theorem 6 in [45]. Furthermore, Lemma [2] shows that & is polyhedral convex, which proves the
finite convergence property using Theorem 9 in [45]]. Last, the fact that x* is a local minimum if
Equation (TT)) holds true follows from Corollary 2 in [45]).

A.5 Proof of Lemmaf

It is easy to see that under Assumption the function g reduces to £||z||*. Hence reduces to

5 lal? = (@, v), (29)

with the global solution %v. Furthermore, in this case g is differentiable and hence dg(x*) =

{Vg(z*)} is a singleton. Thus, Equation always holds true under Assumption 1}

A.6 Details on Approximation in y

In our energy function () the weights to parameterize the function in =z, ie.,
(po(y), &o(y),wo(y), ao(y), Wa(y),be(y)), are all single hidden layer neural networks in .
Since (&p(y), wo(y), Wa(y), ba(y)) are all using the identity as an output layer activation those are
universal approximators [27]. Note also that py(y) and «y(y) are using softplus activations in the
output layer. Hence, they are still able to approximate any strictly positive continuous function
arbitrarily well as shown in the following.

Let f be an arbitrary strictly positive and continuous function. Then log(e/ — 1) is a continuous func-
tion mapping to (—oo, 00). As such it can be approximated arbitrarily well by a single hidden layer
network by [27]. Further, if we now equip this network with a softplus activation, we approximate
softplus (log(e/ — 1)) = f by using that softplus is Lipschitz. We formalize this in the following
lemma.

Lemma 8. Ler f : R™ — (0, 00) be continuous. Then for every € > 0 there is a single hidden layer
network with a softplus activation, v, such that || f — ve||oo < €

Proof. Let € > 0. By [27], there is a single hidden layer network N, such that ||log (ef(') — 1) —
N.|ls < €. Using that the function softplus(y) = log(1 + e¥) is Lipschitz of constant 1 and that
z +— log (e® — 1) is its inverse, we deduce that for every € R™: |f(x) —log (1 + e (“"))’ <
|log (e/®) — 1) — N(«)| and therefore

If —log (1 +¢V)|loo = sup |f(z) — log (1 T eNf(@)‘
reR™
< sup [log (/) — 1) = No()| = [log (¢/ — 1) = Nl < ¢
rER™

By setting v () = log (1 + e™<(®)), the claim follows. O
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A.7 Proof of Theorem 3|

Let f € Cyp(X) and € > 0. From Lemmawe know that there exists a weakly-concave function
fe such that ||f — fc|loc < €. Hence, there exists a p > 0 and a convex function 7 such that
—fe(z) + p/2||x||* = r(z). We need to show that 7 is e-convexly-ReLU-representable.

We assume first that r is Lipschitz continuous. Following the derivations in Theorem 2 in [L1], we
can find a sequence of convex piecewise linear functions r,, such that r,, — r uniformly for n — co.
Furthermore, by Theorem 2.2 in [6] there exist single layer ReLU networks A/, that can represent
r,, exactly which proves the claim.

If we relax the Lipschitz assumption, we can again follow the arguments in Theorem 2 in [[11]] and
find a sequence of Lipschitz continuous and convex functions 7, that converge uniformly to r. Hence
for ¢ > 0 we can find k£ > 1 such that ||r — 7;||cc < €/2. With the arguments from above we can
then find r,, such that ||#x — 7, || < €/2, and hence |7 — 7, ||oo < € Which proves the claim.

A.8 Restart Procedure for our DCA Routine

Following [46], let the index sets Iy, (x*) and I,(z*) be defined as follows
In(z*y={ie{1,..., Nz} : oy < 0and (w;,x™) + b; = 0}, (30)
Ij(z*)={ie{l,...,Ny} : a; > O and (w;,z*) + b; = 0}. (31)

Note that if I;,(2*) = 0 or I,(z*) = () we have that Oh(z*) C Jdg(x*) as one of the two sets is a
singleton and z* is DC-critical. Hence, for the rest of this derivation we assume I (z*) # () and

Ig(z*) # 0.
Now, the subgradients of h, respectively g, are given by

Oh(z*) = {f + O;O\Oéi\wiH“qu*) +bi)e} e € {F{Of}l] eilfsiE ) } ) (32)

0,1 ifiel, (z*
Ag(x*) = {px* + QZ>:0 aw; H((w;, z*) + b;)ed 1 ) € {&f}] ellsie o(@ )} ., (33)

where H(z) denotes the Heaviside function, i.e., H(z) = 1 for z > 0 and H(z) = 0 else. Further-
more, let us define the following

LF*)={ie{l,...,N,}:; <O0and (w;,z*) +b; > 0}, (34)
Fl*) — 4 . *
Ij(z*) ={ie{l,..., N} : a; > 0 and (w;, z*) + b; > 0}, (35)
=6+ > loilw, (36)
i€t (z)
vg = pr* + Z ;w;, 37
i€l (z*)

as well as, the matrix 4, € R™ (=)l with columns |a;|w; for i € Ij,(z*), and the matrix
A, € R Ha@)l with columns a;w; for i € T,(z*). The inclusion Oh(2*) C dg(z*) holds true if

Vel e [0, 1]|Ih(w*)| 39 € [0, 1}|1g(w*)| C vy + Apet = vg + Age’. (38)
To check if this holds, we can solve the max-min problem

: h
max min ||lvy + Ape* —v, — Ay€d 39
0§5h§10§6-‘7§1|| h h g g ||17 ( )

and observe whether or not the optimal objective value is zero. If it is, holds and we have found
a local minimum. If not, then we have found an element x§ € Oh(x*) with 2§ ¢ dg(z*). Following
[44]], we can restart the DCA routine with x(; and yield a strict energy reduction in the first step.
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Figure 2: Illustration of Batched DCA for batch size 512

(a) Energy Values (b) Norm differences ||zx+1 — k||

|z — |

3 4 5 1 2 3 4
DCA lterations DCA lIterations

Note. Tllustration of our batched DCA routine computing locally minimal energy states for 512 reasoning tasks in parallel.

What remains to be discussed, is how to solve @) efficiently. To do so, note that we can reformulate
the problem as

max min (ry, 1) + (re, 1) (40)
el €9,r1,r2
st vy + Ape —v, — Aged =11 — 1o (41)
ri,7r2, e e >0 (42)
e ed <1 (43)

This problem can be solved using a branch and bound strategy for bilevel linear programming (see,
e.g., section 6.2 in [8]]). Furthermore, since z* is DC-critical, we know that for e’ = 1 there exists
an € € [0,1]1s() with vy, + A1 = v, + Agel. Hence, we can warm start the branch and bound
routine with (e, 9,71, 79) = (1,¢Z,0,0). If the optimal objective value is zero, we already start
with an optimal solution. If not, we can stop the branch and bound routine as soon as we have found
the first (¢, €9) with v, + Ape" # v, + Aye?. Thus, the restart procedure can be implemented
efficiently.

B Details on Numerical Experiments

B.1 Visualization of Convergence

We visualize how our batched DCA routine converges for 512 reasoning tasks in parallel in Figure[2}
In particular we used the matrix inversion dataset, see Section 5} and for a fixed y visualized the
energy values Ey(zy,y) and norm differences ||z11 — 2 || after training the parameters 6, i.e., at
inference time.

B.2 Details on Experimental Setup

For our baselines we closely follow the code releases of [20ﬂ and [ZIﬂ

Model Specifications. For DCAReasoner we set the number of hidden units IV, = 8 and N, = 4000
for all benchmark datasets. For our baselines we scale the network size depending on the dataset to
ensure that all models have roughly the same number of parameters. We set the convergence tolerance
in Algorithm [1]to 1075 and set a maximum of 30 DCA iterations. However, in our experiments
we see that the batched DCA algorithm consistently converges to machine precision in less than 10
iterations. Hence, we also observe finite convergence guaranteed by Theorem|[I]empirically. Starting
points x° are sampled uniformly random as stated in Algorithm (1| We set = —1 and v = 1 for all
benchmark datasets except for QR and Matrix Multiplication for which we use [ = —5 and u = 5.
Hyperparameters are summarized in Table[3]

"https://github.com/yilundu/irem_code_release, MIT License
$https://github.com/yilundu/ired_code_release, MIT License
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Hyperparameter Value

DCAReasoner IREM IRED

Common Hyperparameters

Learning Rate 1074 1074 1074
Batch Size 512 512 512
Number of Gradient Steps 10.000 10.000 10.000
Starting Point Sampling uniform uniform normal

DCAReasoner Specific Hyperparameters

Number of Neurons N, 8
Number of Neurons N, 4000
DCA Convergence Tolerance tol 107°
Maximum DCA Iterations 30

Table 3: Hyperparameters settings for our experiments. Note that for our baselines we scale the
network size depending on the dataset to ensure that all models have roughly the same number of
parameters.

Training. For training, we use the Adam optimizer with a learning rate of 10~* as suggested in
[20}21] for all models. We set the batch size to 512 and train each model for a fixed number of 10000
iterations, i.e., gradient steps. Hyperparameters are summarized in Table 3]

Evaluation. For evaluation, we are using again a batch size of 512 and perform 20 test iterations,
summing up to roughly 10000 test problems per difficulty level, i.e., once in the easy setting and
once in the hard setting.

Hardware. All experiments are performed on a nl-standard-2 Google cloud instance with 7.5GB
RAM and two NVIDIA T4 GPUs.

B.3 Details on Benchmark Datasets
B.3.1 Motivation

In general, neural algorithmic reasoning constitutes an unsolved problem in machine learning. For an
argumentation on the complexity of neural algorithmic reasoning see e.g. [47]]. Matrix Completion,
QR Decomposition, and Matrix Multiplication represent algorithmic reasoning tasks. Du et. al.
argue that effective algorithmic reasoning requires repetitive application of underlying algorithmic
computations, dependent on problem complexity, and thus serves as a natural benchmark for iterative
reasoning [20]]. Learning parities is a well-known reasoning benchmark and well-studied in learning
theory in general. Shoshani and Shamir argue that there is strong empirical evidence that suggests that
parities cannot be learned using more standard general purpose learning methods, and in particular
gradient methods, once the dimension is even moderately large [42]. This also goes in line with the
fact that our baselines struggled particularly on this task, see also conclusion and limitations section
in [20]. For matrix inversion, Ji et. al. argue that despite significant progress in deep learning, there
exists no universal neural-based method for approximating matrix inversion [30]], showing that this is
a non-trivial task for neural reasoning.

B.3.2 Technical Details

In the following we give more details on our benchmark datasets. We followed the code releases of
[20ﬂ and [21]}% closely.

Matrix Inverse. We construct well-conditioned random 20 x 20-matrices A = 2M M7T +0.5- I, with
M being a random matrix with entries in [—1, 1]. The task is then to compute the inverse A~1. Harder
tasks are created by making the matrices less-well conditioned by setting A = 2M M7 + 0.1 - I.

Matrix Completion. We randomly construct low-rank 20 x 20-matrices A = 0.1 - N + %U vt
where N is a standard normally distributed noise matrix and U and V' are again standard normally
distributed random 20 x 10-matrices. Then, a random mask is created by rounding a randomly
generated uniformly distributed matrix M. The model is then presented with the masked matrix A
and asked to recover it. Harder tasks are created by setting A = 0.1 - N + %U VT,
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Figure 3: Empirical Analysis of Robustenss to Noise on the QR Decomposition Dataset

—— DCAReasoner
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" —— IREM
—— IRED
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1077 1072 102 1071 10° 10!

Noise Level

Note. We evaluated the trained models on the QR benchmark dataset adding different Gaussian noise levels to the input data. IREM becomes

unstable for large noise levels while IRED and DCAReasoner appear to be robust to noisy inputs.

Parity. Similar to [25], we create uniformly random vectors in [0, 1]2° and then set the target to 0 if
the number of values strictly greater than 0.5 is even and 1 otherwise. Harder tasks are created by
drawing random vectors from [—1,2]20,

QR Decomposition. We create uniformly random matrices A with entries in [—1, 1] and then
compute the QR decomposition, i.e., A = QR. The models are then given the matrix A and asked to
reconstruct both () and R. Harder tasks are created by creating uniformly random matrices A with
entries in [—2.5,2.5].

Matrix Multiplication. We create uniformly random matrices A with entries in [—1, 1] and then
compute the square, i.e., A2. The models are then given the matrix A and asked to perform the matrix
multiplication A%. Harder tasks are created by creating uniformly random matrices A with entries in
[-1.5,1.5].

B.4 Further Experiments Analyzing Robustness to Noisy Data

We evaluated the trained models on the QR benchmark dataset adding different Gaussian noise
levels to the input matrix before processing with a scale varying in {10~%,1073,1072,107 1,1, 10}.
Results are visualized in Figure (3] It appears that IREM becomes unstable for large noise levels while
IRED and DCAReasoner are mostly robust to noise.

B.5 Details on Energy-Based Reasoning in Token Embedding Space

For our experiments, we make use of the symptom-to-diagnosis dataset for medical reasoning which
is freely available on huggingfaceﬂ It provides a training (853 examples) and test (212 examples)
dataset consisting of short texts in which a patient describes her symptoms and a corresponding
diagnosis out of a set of 22 medical diagnoses summarized in Table ]

We first finetune an uncased DistilBERT model for text classification, splitting the training set again
into training and validation using a 80/20 split, and using the huggingface trainer for sequence
classification. In particular, we use a batch size of 16, a learning rate of 2 * 1075, a weight decay of
0.01, and 10 evaluation steps saving the best performing model in terms of accuracy (which is also
96% as for the energy-based models).

We then use the CLS token embeddings of the texts in the training dataset of this finetuned model
as inputs y and the embeddings of the corresponding diagnosis as a ground truth z to train the
DCAReasoner and our baselines in a continuous reasoning setting. The model specifications for
DCAReasoner are the same as in our main experiments, i.e., we set N; = 8 and N, = 4000,

https://huggingface.co/datasets/gretelai/symptom_to_diagnosis, the dataset is licensed un-
der Apache 2.0
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Diagnosis Training Examples  Test examples

drug reaction 40 8
allergy 40 10
chicken pox 40 10
diabetes 40 10
psoriasis 40 10
hypertension 40 10
cervical spondylosis 40 10
bronchial asthma 40 10
varicose veins 40 10
malaria 40 10
dengue 40 10
arthritis 40 10
impetigo 40 10
fungal infection 39 9
common cold 39 10
gastroesophageal reflux disease 39 10
urinary tract infection 39 9
typhoid 38 9
pneumonia 37 10
peptic ulcer disease 37 10
jaundice 33 7
migraine 32 10

Table 4: Number of examples per split and diagnosis in the Symptom-to-Diagnosis dataset.

Figure 4: Training and Validation Curves for Sudoku Experiment

(a) Training Loss (Cross-Entropy) (b) Validation Performance (Cell Accuracies)

Training curve Validation curve

30000 100000 150000 200000 250000 I 30000 100000 150000 200000 250000
Steps Steps

Note. Cross-Entropy loss during training (left) and cell accuracies on validation data (right). Validation steps are performed every 1000 training
steps.

scaling the network sizes in our baselines to ensure that all models have roughly the same number of
parameters.

For training, we use a batch size of 64 and a learning rate of 104, We train each model for 10000
iterations. For evaluation, we use the test set and process it again in batches of size 64.

C Preliminary Experiments in Discrete Setting

As mentioned in the main paper, DCAReasoner is designed for continuous reasoning tasks. Thus,
our method cannot be applied as-is to experiments in discrete spaces. Nevertheless, we performed
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preliminary experiments using the Sudoku dataset in [41]. The authors provide a training dataset
consisting of 1.8 million Sudoku puzzles as well as a validation set with 0.1 million Sudoku puzzles.

For reasoning in a discrete setting our energy landscape is defined in the logit space, i.e., a 729
dimensional setting and we replace the MSE with the cross entropy loss. Processing the inputs, i.e.,
Sudoku puzzles, can be done in multiple ways. We decided for a convolutional neural network with
the residual connection design as in [21]] to process the Sudoku puzzles before feeding them to our
neural network components. Using the same settings as in the main paper, i.e., IV, = 8, N, = 4000
and a learning rate of 10—, but a batch size of 64, we train DCAReasoner for a total of 10 epochs.
Validation steps, i.e., computing the cell accuracy defined as the percentage of unfilled cells whose
values are correctly predicted on the validation data [41]], are performed every 1000 training steps.
The training process is visualized in Figure[d] Note that the validation performance stagnates after
roughly 6 epochs. At this time, we observe a cell accuracy of 65.09% , i.e., 65.09% of all unfilled
cells in all of the 100K validation puzzles are filled correctly. For context, the baseline from [41]]
with random order of input cells achieves 52%, while the one with fixed order achieves 58.64%.
Our results only fall short from the accuracy achieved by the model receiving additional context
information about solving strategies during training (94.23%). However, we point out that the specific
architecture of our model does not allow such information to be provided.
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