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Abstract

Early detection of in-hospital cardiac arrest remains a critical challenge for im-
proving patient outcomes. We propose a deep learning framework that leverages
continuous photoplethysmography (PPG) signals to predict cardiac arrest within
a 24-hour window. We used the SCOPE dataset, a recently released collection of
paired ECG and PPG waveforms from 4,517 ICU admissions across 3,785 patients
at Seoul National University Hospital. We trained a residual 1D convolutional
neural network on 5-minute PPG segments sampled at 125 Hz, and evaluated per-
formance using patient-level stratified 5-fold cross-validation. The model achieved
strong discrimination with both AUROC and AUPRC, demonstrating that PPG
signals contain predictive signatures of impending deterioration. These findings
highlight the feasibility of non-invasive waveform-based risk prediction, and posi-
tion PPG monitoring as a promising biomarker in critical care.

1 Introduction

Cardiac arrest is among the most severe clinical emergencies, with survival rates below 25%
despite advances in monitoring and resuscitation (1} 2} 3). Early identification of patients at risk
is critical, as interventions before arrest significantly improve outcomes (4). Conventional early
warning systems such as the Modified (MEWS) and the National Early Warning Score (NEWS) rely
on manual and sparse vital signs and struggle to detect subtle changes that precede cardiac arrest (3)).
Although NEWS has stratified risk up to 24 hours prior to in-hospital cardiac arrest, its discriminative
ability is limited (AUC of 0.58-0.64) (6). These limitations show the need for continuous, data-driven
monitoring to detect physiologic deterioration earlier.

PPG, obtained through pulse oximetry, represents a promising signal for this task. PPG is non-
invasive, low-cost, and already collected continuously in many hospital settings and wearable devices.
Beyond heart rate and oxygen saturation, PPG captures beat-to-beat variability and morphological
changes reflecting circulatory and autonomic status (7)(8). Prior studies have demonstrated associ-
ations between PPG features and cardiovascular instability (9), suggesting that PPG may contain
early signs of clinical deterioration that are invisible to current early warning scores. Despite this,
relatively little work has examined the use of continuous PPG time series for predicting in-hospital
cardiac arrest.

Deep learning has transformed time-series analysis in healthcare, with CNNs and residual
architectures showing strong performance on ECG, EEG, and other biosignals (10;[11512). Residual
networks in particular allow efficient training of deep architectures while preserving temporal detail,
making them well-suited for noisy physiological data. In this study, we investigate whether deep
residual networks applied directly to raw PPG signals can provide early warning of in-hospital cardiac
arrest.
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2 Methods

We constructed a balanced experimental cohort by matching clinical outcomes with cached PPG
recordings sampled at 125 Hz, filtering to patients with valid waveforms. To address class imbalance
in the SCOPE dataset (71 cardiac arrest vs. >3,000 non-arrest), non-arrest cases were subsampled to
achieve 1:1 and 1:2 ratios during training, while evaluation remained patient-level under the original
distribution (Figure 1).

Continuous PPG recordings were segmented into five-minute windows, with or without 50%
overlap. For cardiac arrest patients, only the last 24 h before the event were used; for non-arrest
patients, only the first 24 h of admission. Segments were normalized (zero mean, unit variance;
near-zero variance handled by mean subtraction) and missing values were replaced with zero. Each
window received a binary label indicating whether it fell within the predictive horizon.

We implemented a 1D residual neural network in PyTorch with three residual blocks (16, 32, 64
channels) including convolution, batch normalization, and ReLU, using projection shortcuts when
dimensions changed. The network ended with adaptive average pooling, a fully connected layer, and
sigmoid activation to output the probability of cardiac arrest.

Models were trained for 10-20 epochs using Adam (Ir = 1e-3), batch size 64, and binary cross-
entropy loss. Evaluation followed patient-level five-fold stratified cross-validation, ensuring windows
from the same patient remained in a single fold. Performance was assessed using AUROC and
AUPRC on held-out patients.

Data pre-excluded in the dataset:

Assessed for eligibility: Excluded by patient/admission criteria
3785 unique patients [4517 ICU admissions]) + Gardiac surgery patients

Seoul National University Hospital ICUs < Age <18 or >90
) Oct 2019 - Dec 2023 + Brain-dead donors for organ retrieval
Continuous ECG (500 Hz) & PPG (125 Hz) per ICU stay + Cardiac arrest outside ICU
l « ICU stay <24 h continuous ECG
+ Poor signal quality

Dataset available/used
(4,517 ICU admissions [3,785 patients])
Up to 48 h continuous ECG & PPG prior to earliest
outcome
Clinical outcomes: ICU discharge, cardiac arrest,
in-unit mortality

Random sampled for prediction model (1:2) Excluded(3,564 patients)
« Cardiac arrest = 71 - 3564 non cardiac
+ Non-arrest = 150 arrest patients

5-min windows, horizon = 24/48 h
ResNet1D; 5-fold CV

Test set
e Cardiac arrest = 14
¢ Non-arrest = 31

Development set
e Cardiac arrest = 57
e Non-arrest = 119

Figure 1: Flowchart of Study Cohort.

3 Results

Table 1: 24 Hr Horizon, 50% windows overlap, 1:1 dataset

Stage AUROC AUPRC
Fold; 0.892 0.890
Fold, 0.892 0.893
Folds 0,890 0.889
Foldy; 0,865 0.870
Folds 0.894 0.883

Mean 0.888 £0.011  0.885 £0.008

Fold-wise the best AUROC and AUPRC values are reported in Table 1. Table 1 shows the results
to patient-level, five-fold stratified cross-validation with 24 hour horizon, 1:1 random sampled class
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balance, and 50% overlap in windows. yields similar performance, suggesting robustness across
different data splits.

Figure 2 presents the ROC and precision—recall curves for a 12-hour horizon, no overlap, and
1:2 cardiac arrest to non prediction. The model achieves strong discriminative performance (AUROC
= 0.833) and maintains high precision (AUPRC = 0.831), despite the class imbalance. Figure 3
shows the corresponding curves for a 24-hour horizon, where ROC performance remains similar, but
precision drops more notably at lower recall levels reflecting, as expected, increased uncertainty for
longer-range predictions. Figure 4 displays the ROC curves stratified by fold for the 24-hour horizon,
illustrating trends across cross-validation splits.

In additional (non-CV) sensitivity analyses, we varied the fixed train—test split (80/20 vs. 70/30),
windowing strategy (300s/300s non-overlapping vs. 300s/150s overlapping), prediction horizon
(24h vs. 48h), and class ratio (1:1 vs. 1:2, via down-sampling of non-arrest windows). These
ablations yielded results that were qualitatively consistent with those from cross-validation. Among
the variations tested, overlapping windows, a 1:1 class ratio, and a shorter prediction horizon (24h)
led to modest improvements in both AUROC and AUPRC, indicating that these choices may enhance
early warning performance.

ROC Curve Precision-Recall Curve ROC Curve Precision-Recall Curve

101 — RoC AUC=0.748 a 10 —— AP=0.751

recal FPR Recall

Figure 2: 12 Hr Horizon, No windows overlap,  Figure 3: 24 Hr Horizon, No windows overlap,
1:2 dataset 1:2 dataset.

Mean ROC curve with variability
tPatient-level aggregation)

True Positive Rate

Fold 1 (AUC=0.787)
Fold 2 {AUC=0.805)
Fold 3 {AUC=0.769)

Fold 4 {AUC=0.748)
Fold 5 {AUC=0.929)
% —— Mean ROC (AUC = 0.806 + 0.064}
0.0 d + 1 std. dev,

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 4: 24 Hr Horizon, 50% windows overlap, 1:2 dataset ROC curve full.

4 Discussion

Our findings demonstrate that deep residual networks trained on PPG segments can extract
signals for early warning of in-hospital cardiac arrest. Importantly, evaluation was performed using
patient-level cross-validation, which mitigates the optimistic bias that occurs when windows from
the same patient appear in both training and validation. The stability of AUROC and AUPRC across
folds suggests that the model is learning features that generalize beyond individual patients.

The dataset included only 74 cardiac arrest cases, yielding a more balanced cohort of approxi-
mately 300 samples after downsampling. While this approach reduced class imbalance, it may also
have excluded patients and limited statistical power. We also constrained the prediction horizon
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to 24 hours before arrest and limited control segments to the first 24 hours of admission. While
this simplification aids model learning, it may not capture the full diversity of clinical trajectories,
including gradual deterioration or recurrent instability.

The current model also relies on a relatively shallow architecture and short fixed-length windows.
More expressive architectures such as temporal transformers, diffusion models, or self-supervised
pretraining approaches could capture longer-term dependencies and subtle temporal trends in the data.
Finally, while AUROC and AUPRC provide useful measures of discrimination, clinical deployment
would require additional evaluation of calibration, interpretability, and fairness across subgroups.

Future work should validate these methods in larger multi-institutional cohorts, explore mul-
timodal integration with ECG or electronic health records, and investigate model interpretability
techniques like saliency maps to identify physiologic correlates of risk. By grounding early warning in
high-frequency physiological signals, this approach may complement existing early warning scores.

4.1 Grad-CAM

To better understand which waveform segments influenced the model’s decisions, we applied
Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize temporal attribution across
input PPG windows (15)).

For the non-arrest case Figure 5, the model assigned moderate attention to regions with stable
and smooth waveform morphology, suggesting that these segments contributed to the confident
non-arrest prediction. In contrast, the arrest case Figure 6 shows distributed attention across the
waveform, with higher attribution around irregular patterns, reflecting subtle physiologic instability
captured in the PPG signal.

Patient 190628094 — Zoom 1 (peak CAM=0.41) — True: Non-Arrest — Pred: 1.00 Patient 197976258 — Zoom 1 (peak CAM=0.30) — True: Cardiac Arrest — Pred: 1.00
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Figure 5: Non-arrest case Grad-CAM zoomed. Figure 6: Arrest case Grad-CAM zoomed.

4.2 Related Works

Prior work on cardiac arrest prediction has explored a range of modalities and modeling strategies.
Kataria et al. (13) developed PPG-GPT, a large pre-trained foundation model trained on extended
waveform histories of up to 24 hours. Park et al. (14) incorporated multimodal data from the
electronic medical record, including vital signs, laboratory results, and diagnostic codes, to achieve
strong discriminative performance. Lee et al. (16) focused on heart rate variability features derived
from ECG, emphasizing the predictive value of engineered physiological markers.

In contrast, our study uses a lightweight 1D ResNet trained directly on shorter, sliding-window
PPG segments without pretraining, multimodal integration, or handcrafted features. We further
extend prior work by systematically examining windowing strategies, prediction horizons, and class
balancing methods, providing insights into how these design choices affect performance.

5 Conclusion

We presented a residual neural network for early warning of in-hospital cardiac arrest using
only PPG time series. By segmenting continuous PPG recordings into fixed windows and restricting
positive samples to the 24-hour pre-arrest horizon, we framed the task as a patient-level binary pre-
diction problem. Training with five-fold stratified cross-validation demonstrated that the model could
distinguish arrest from non-arrest cases using waveform-derived features alone. These results indicate
that routinely collected PPG signals contain predictive information about clinical deterioration, and
that residual networks can effectively extract these patterns. Future work will involve scaling to larger
and more diverse datasets, incorporating additional modalities such as ECG or EHR-derived features,
and extending to self-supervised representation learning for improved generalization.
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