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Abstract

Early detection of in-hospital cardiac arrest remains a critical challenge for im-1

proving patient outcomes. We propose a deep learning framework that leverages2

continuous photoplethysmography (PPG) signals to predict cardiac arrest within3

a 24-hour window. We used the SCOPE dataset, a recently released collection of4

paired ECG and PPG waveforms from 4,517 ICU admissions across 3,785 patients5

at Seoul National University Hospital. We trained a residual 1D convolutional6

neural network on 5-minute PPG segments sampled at 125 Hz, and evaluated per-7

formance using patient-level stratified 5-fold cross-validation. The model achieved8

strong discrimination with both AUROC and AUPRC, demonstrating that PPG9

signals contain predictive signatures of impending deterioration. These findings10

highlight the feasibility of non-invasive waveform-based risk prediction, and posi-11

tion PPG monitoring as a promising biomarker in critical care.12

1 Introduction13

Cardiac arrest is among the most severe clinical emergencies, with survival rates below 25%14

despite advances in monitoring and resuscitation (1; 2; 3). Early identification of patients at risk15

is critical, as interventions before arrest significantly improve outcomes (4). Conventional early16

warning systems such as the Modified (MEWS) and the National Early Warning Score (NEWS) rely17

on manual and sparse vital signs and struggle to detect subtle changes that precede cardiac arrest (5).18

Although NEWS has stratified risk up to 24 hours prior to in-hospital cardiac arrest, its discriminative19

ability is limited (AUC of 0.58–0.64) (6). These limitations show the need for continuous, data-driven20

monitoring to detect physiologic deterioration earlier.21

PPG, obtained through pulse oximetry, represents a promising signal for this task. PPG is non-22

invasive, low-cost, and already collected continuously in many hospital settings and wearable devices.23

Beyond heart rate and oxygen saturation, PPG captures beat-to-beat variability and morphological24

changes reflecting circulatory and autonomic status (7)(8). Prior studies have demonstrated associ-25

ations between PPG features and cardiovascular instability (9), suggesting that PPG may contain26

early signs of clinical deterioration that are invisible to current early warning scores. Despite this,27

relatively little work has examined the use of continuous PPG time series for predicting in-hospital28

cardiac arrest.29

Deep learning has transformed time-series analysis in healthcare, with CNNs and residual30

architectures showing strong performance on ECG, EEG, and other biosignals (10; 11; 12). Residual31

networks in particular allow efficient training of deep architectures while preserving temporal detail,32

making them well-suited for noisy physiological data. In this study, we investigate whether deep33

residual networks applied directly to raw PPG signals can provide early warning of in-hospital cardiac34

arrest.35
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2 Methods36

We constructed a balanced experimental cohort by matching clinical outcomes with cached PPG37

recordings sampled at 125 Hz, filtering to patients with valid waveforms. To address class imbalance38

in the SCOPE dataset (71 cardiac arrest vs. >3,000 non-arrest), non-arrest cases were subsampled to39

achieve 1:1 and 1:2 ratios during training, while evaluation remained patient-level under the original40

distribution (Figure 1).41

Continuous PPG recordings were segmented into five-minute windows, with or without 50%42

overlap. For cardiac arrest patients, only the last 24 h before the event were used; for non-arrest43

patients, only the first 24 h of admission. Segments were normalized (zero mean, unit variance;44

near-zero variance handled by mean subtraction) and missing values were replaced with zero. Each45

window received a binary label indicating whether it fell within the predictive horizon.46

We implemented a 1D residual neural network in PyTorch with three residual blocks (16, 32, 6447

channels) including convolution, batch normalization, and ReLU, using projection shortcuts when48

dimensions changed. The network ended with adaptive average pooling, a fully connected layer, and49

sigmoid activation to output the probability of cardiac arrest.50

Models were trained for 10-20 epochs using Adam (lr = 1e-3), batch size 64, and binary cross-51

entropy loss. Evaluation followed patient-level five-fold stratified cross-validation, ensuring windows52

from the same patient remained in a single fold. Performance was assessed using AUROC and53

AUPRC on held-out patients.54

Figure 1: Flowchart of Study Cohort.

3 Results55

Table 1: 24 Hr Horizon, 50% windows overlap, 1:1 dataset

Stage AUROC AUPRC

Fold1 0.892 0.890
Fold2 0.892 0.893
Fold3 0,890 0.889
Fold4 0,865 0.870
Fold5 0.894 0.883
Mean 0.888 ±0.011 0.885 ±0.008

Fold-wise the best AUROC and AUPRC values are reported in Table 1. Table 1 shows the results56

to patient-level, five-fold stratified cross-validation with 24 hour horizon, 1:1 random sampled class57
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balance, and 50% overlap in windows. yields similar performance, suggesting robustness across58

different data splits.59

Figure 2 presents the ROC and precision–recall curves for a 12-hour horizon, no overlap, and60

1:2 cardiac arrest to non prediction. The model achieves strong discriminative performance (AUROC61

= 0.833) and maintains high precision (AUPRC = 0.831), despite the class imbalance. Figure 362

shows the corresponding curves for a 24-hour horizon, where ROC performance remains similar, but63

precision drops more notably at lower recall levels reflecting, as expected, increased uncertainty for64

longer-range predictions. Figure 4 displays the ROC curves stratified by fold for the 24-hour horizon,65

illustrating trends across cross-validation splits.66

In additional (non-CV) sensitivity analyses, we varied the fixed train–test split (80/20 vs. 70/30),67

windowing strategy (300s/300s non-overlapping vs. 300s/150s overlapping), prediction horizon68

(24h vs. 48h), and class ratio (1:1 vs. 1:2, via down-sampling of non-arrest windows). These69

ablations yielded results that were qualitatively consistent with those from cross-validation. Among70

the variations tested, overlapping windows, a 1:1 class ratio, and a shorter prediction horizon (24h)71

led to modest improvements in both AUROC and AUPRC, indicating that these choices may enhance72

early warning performance.73

Figure 2: 12 Hr Horizon, No windows overlap,
1:2 dataset

Figure 3: 24 Hr Horizon, No windows overlap,
1:2 dataset.

Figure 4: 24 Hr Horizon, 50% windows overlap, 1:2 dataset ROC curve full.

4 Discussion74

Our findings demonstrate that deep residual networks trained on PPG segments can extract75

signals for early warning of in-hospital cardiac arrest. Importantly, evaluation was performed using76

patient-level cross-validation, which mitigates the optimistic bias that occurs when windows from77

the same patient appear in both training and validation. The stability of AUROC and AUPRC across78

folds suggests that the model is learning features that generalize beyond individual patients.79

The dataset included only 74 cardiac arrest cases, yielding a more balanced cohort of approxi-80

mately 300 samples after downsampling. While this approach reduced class imbalance, it may also81

have excluded patients and limited statistical power. We also constrained the prediction horizon82
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to 24 hours before arrest and limited control segments to the first 24 hours of admission. While83

this simplification aids model learning, it may not capture the full diversity of clinical trajectories,84

including gradual deterioration or recurrent instability.85

The current model also relies on a relatively shallow architecture and short fixed-length windows.86

More expressive architectures such as temporal transformers, diffusion models, or self-supervised87

pretraining approaches could capture longer-term dependencies and subtle temporal trends in the data.88

Finally, while AUROC and AUPRC provide useful measures of discrimination, clinical deployment89

would require additional evaluation of calibration, interpretability, and fairness across subgroups.90

Future work should validate these methods in larger multi-institutional cohorts, explore mul-91

timodal integration with ECG or electronic health records, and investigate model interpretability92

techniques like saliency maps to identify physiologic correlates of risk. By grounding early warning in93

high-frequency physiological signals, this approach may complement existing early warning scores.94

4.1 Grad-CAM95

To better understand which waveform segments influenced the model’s decisions, we applied96

Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize temporal attribution across97

input PPG windows (15).98

For the non-arrest case Figure 5, the model assigned moderate attention to regions with stable99

and smooth waveform morphology, suggesting that these segments contributed to the confident100

non-arrest prediction. In contrast, the arrest case Figure 6 shows distributed attention across the101

waveform, with higher attribution around irregular patterns, reflecting subtle physiologic instability102

captured in the PPG signal.103

Figure 5: Non-arrest case Grad-CAM zoomed. Figure 6: Arrest case Grad-CAM zoomed.

4.2 Related Works104

Prior work on cardiac arrest prediction has explored a range of modalities and modeling strategies.105

Kataria et al. (13) developed PPG-GPT, a large pre-trained foundation model trained on extended106

waveform histories of up to 24 hours. Park et al. (14) incorporated multimodal data from the107

electronic medical record, including vital signs, laboratory results, and diagnostic codes, to achieve108

strong discriminative performance. Lee et al. (16) focused on heart rate variability features derived109

from ECG, emphasizing the predictive value of engineered physiological markers.110

In contrast, our study uses a lightweight 1D ResNet trained directly on shorter, sliding-window111

PPG segments without pretraining, multimodal integration, or handcrafted features. We further112

extend prior work by systematically examining windowing strategies, prediction horizons, and class113

balancing methods, providing insights into how these design choices affect performance.114

5 Conclusion115

We presented a residual neural network for early warning of in-hospital cardiac arrest using116

only PPG time series. By segmenting continuous PPG recordings into fixed windows and restricting117

positive samples to the 24-hour pre-arrest horizon, we framed the task as a patient-level binary pre-118

diction problem. Training with five-fold stratified cross-validation demonstrated that the model could119

distinguish arrest from non-arrest cases using waveform-derived features alone. These results indicate120

that routinely collected PPG signals contain predictive information about clinical deterioration, and121

that residual networks can effectively extract these patterns. Future work will involve scaling to larger122

and more diverse datasets, incorporating additional modalities such as ECG or EHR-derived features,123

and extending to self-supervised representation learning for improved generalization.124
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