
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE MASKING ENHANCES VISUAL GROUNDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans excel at recognizing objects under incomplete information by focusing
on their most salient features. Inspired by this capability, we present IMAGE
(Interpretative MAsking with Gaussian Radiation ModEling), a novel training
paradigm for visual grounding that selectively obscures salient regions. By com-
pelling models to infer objects from suboptimal cues, IMAGE mimics human
adaptability in scenarios where critical features are absent. We propose a progres-
sive training strategy that gradually increases the masking ratio, compelling the
model to extract essential object attributes rather than memorizing all possible fea-
tures. Experiments on standard visual grounding benchmarks demonstrate notable
improvements in zero-shot and low-shot scenarios, with IMAGE seamlessly inte-
grating into existing architectures. The method’s training-only operation ensures
zero added computational cost during deployment, offering a practical pathway
toward robust, data-efficient visual grounding.

Figure 1: Our IMAGE method is inspired by human perception; by masking key details of objects,
we encourage the model to learn more robust representations.

1 INTRODUCTION

"To see the world in a grain of sand,"
– William Blake, Auguries of Innocence

In human perception, key details of an object guide our understanding even when certain features
are missing or occluded. Inspired by this, recent research in visual grounding has emphasized low-
shot learning, where models must identify novel objects with minimal labeled data. This paradigm
is crucial in settings like autonomous driving Rezaei & Shahidi (2020) and embodied AI Varley
et al. (2024), where systems must adapt quickly to new, rare, or unseen scenarios without extensive
annotation.

However, contemporary visual-language models such as CLIP Radford et al. (2021), despite their
success in linking textual and visual modalities, remain heavily dependent on large-scale datasets.
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Their performance degrades in complex scenes and under zero-shot conditions, revealing two key
challenges. First, these models often lack robust reasoning capabilities and focus too narrowly on the
most discriminative cues, leading to overfitting. Second, prior methods frequently address complexity
by scaling dataset size Li et al. (2022b); Cheng et al. (2024); Liu et al. (2023), rather than improving
the model’s inherent ability to generalize from limited examples.

Efforts to enhance generalization through masking strategies have emerged. For instance, Masked
Autoencoders He et al. (2022) and related approaches improve performance by reconstructing masked
inputs, but they rely on random masking patterns that offer limited interpretability and control.
More recent work Yang et al. (2023); Wei et al. (2024); Liang & Larson (2024) attempts to exclude
primarily background regions, thereby reducing computational overhead and shifting attention onto
the main object. Yet, simply removing irrelevant areas and revealing the entire salient region does not
fundamentally improve a model’s capacity to reason about partially observed features, hindering its
true generalization potential.

To address these challenges, we propose IMAGE, a novel adaptive masking strategy designed to
enhance model generalization in low-shot visual grounding tasks. Inspired by human perception,
where objects are often identified from partial glimpses of distinctive features (e.g., the nose or
wing of an airplane), IMAGE adaptively masks salient visual regions instead of backgrounds, as
done in state-of-the-art methods Yang et al. (2023); Liang & Larson (2024); Wei et al. (2024).
This strategy compels the model to infer objects from incomplete visual cues, encouraging deeper
cognitive reasoning and facilitating robust, transferable representation learning, thereby improving
generalization capabilities.

We thoroughly validate our method on datasets such as COCO Lin et al. (2014) and ODinW,
demonstrating consistent improvements in zero-shot and low-shot scenarios without increasing
computational overhead. Beyond enhancing performance, IMAGE offers a theoretically sound
and empirically validated mechanism for training models to generalize under low-shot conditions,
mitigating the need for ever-expanding datasets. Our contributions are as follows:

• We propose IMAGE, a novel adaptive masking paradigm that masks partial key features,
forcing models to reason over residual features, and theoretically and empirically demon-
strate its effectiveness on visual grounding tasks.

• We propose RFGAM, an effective masking modeling method that enables smooth, spatially
coherent transitions between hard and soft masks, Offering a novel and effective way for
mask modeling.

• We provide empirical evidence on standard benchmarks showing that IMAGE outperforms
baseline and state-of-the-art strategies in low-shot settings, enhancing low-shot performance
without computational overhead.

.

2 RELATED WORK

Zero-Shot and low-shot Learning in Visual Grounding Zero-shot learning (ZSL) aims to recog-
nize unseen classes by transferring knowledge from seen classes, enhancing generalization to novel
categories Lampert et al. (2009); Farhadi et al. (2009); Socher et al. (2013). Early ZSL approaches
employed attribute-based techniques and semantic embeddings to bridge the gap between seen and
unseen classes Akata et al. (2015); Xian et al. (2018). With large-scale vision-language models
such as CLIP Radford et al. (2021), recent studies have explored zero-shot grounding by leveraging
pretrained architectures Gu et al. (2021); Li et al. (2022b). However, these approaches often rely
on extensive datasets for pre-training and fine-tuning, limiting scalability. In contrast, low-shot
learning focuses on learning from a small number of labeled examples Fei-Fei et al. (2006); Snell
et al. (2017), and dedicated methods in visual grounding Kang et al. (2019); Sun et al. (2021) enhance
generalization with limited annotations. Despite these advances, overfitting remains a challenge due
to data scarcity, and many low-shot strategies utilize complex meta-learning frameworks Finn et al.
(2017); Li et al. (2019).
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Figure 2: Pipeline of IMAGE method, consisting of two blocks: attention prior generation module
and RFGAM mask generation module.

Attention Mechanisms and Masking Strategies in Vision Models Attention mechanisms selec-
tively focus on relevant input regions, improving interpretability and feature representation Bahdanau
et al. (2015); Vaswani et al. (2017). In vision transformers, self-attention facilitates long-range
dependencies, enhancing feature learning Dosovitskiy et al. (2021); Liu et al. (2021). Meanwhile,
masking techniques in self-supervised learning (e.g., Masked Autoencoders He et al. (2022) and
BEiT Bao et al. (2021)) have proven effective for representation learning by masking random patches
or tokens. However, such methods generally employ random masking without specific guidance to
emphasize crucial object features.

Radiance Field Modeling and Gaussian Approaches Radiance fields are widely used to model
high-fidelity scenes by parameterizing volumetric light interactions Mildenhall et al. (2020); Niemeyer
et al. (2020). Neural Radiance Fields (NeRF)Mildenhall et al. (2020) leverage neural networks to
represent continuous volumetric scenes for realistic rendering. Gaussian-based radiance modeling
offers smoother representationsWang et al. (2021); Kim et al. (2022). Zhou et al. Zhou et al.
(2016) demonstrated that global average pooling can localize discriminative regions without explicit
localization supervision. Building on these insights, we adopt a dynamic Gaussian-based approach to
model an importance prior distribution over feature maps. This flexibility enables adaptive masking
of salient regions, avoiding rigid thresholds and enhancing the model’s focus on key features.

3 METHODS

IMAGE enhances zero-shot and low-shot visual grounding without relying on scaling up dataset size.
Unlike conventional masking approaches, IMAGE strategically obscures salient regions, compelling
models to reason effectively from partial observations, as is shown in Fig. 2. Specifically, IMAGE
introduces two core modules: an Importance Prior Generation Block (θp), which estimates patch
importance via global contextual interactions, and an Adaptive Mask Generation Block (θm), which
generates adaptive masks guided by the importance prior. Applied on hierarchical feature maps
extracted from an image encoder, IMAGE dynamically directs model attention towards key semantic
cues, thereby improving generalization performance without increasing data requirements.

3.1 IMPORTANCE PRIOR GENERATION

To guide adaptive masking, we generate an importance prior highlighting the salient regions in the
image feature maps. Given a hierarchical feature map Fi ∈ RB×Hi×Wi×Ci , representing batch size

3
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B, number of channels Ci, and spatial dimensions Hi × Wi at scale i, we reshape it into spatial
tokens Ti ∈ RB×Ni×Ci , with Ni = Hi ×Wi, each representing a distinct spatial patch.

With a self-attention mechanism, we encode global contextual relationships among these tokens,
resulting in enriched embeddings. Each token’s global relevance is quantified by aggregating its
correlation with the global context into a scalar importance score. We normalize these scores to obtain
a coherent importance prior, denoted as S̃whole ∈ [0, 1]B×Ni , effectively guiding the subsequent
adaptive masking process.

3.2 ADAPTIVE MASK GENERATION

Guided by the importance prior S̃whole, our adaptive mask generation strategy selectively obscures
salient regions within images, enhancing model robustness to partial observations. Specifically,
we combine a threshold-based masking scheme, which explicitly masks patches based on saliency
ranking, with Radiance Field Gaussian Adaptive Masking (RFGAM), a probabilistic approach
employing Gaussian radiance fields for smooth, coherent mask transitions.

Threshold-Based Adaptive Masking We first rank patches at each feature-map scale i according
to their normalized importance S̃whole. The top ρi% are deemed critical, and we randomly mask a
fraction (γ%) of these critical patches. For the remaining patches, we apply random masking to reach
the overall ratio ρi%. This selective yet partially randomized scheme pushes the model to rely on
truly essential patches, while ensuring it still has enough visible context to stabilize learning.

Radiance Field Gaussian Adaptive Masking (RFGAM) Although the threshold-based strategy
effectively isolate salient regions, their discrete boundaries can underuse the spatial continuity
inherent in semantic structure. To mitigate this issue, we introduce RFGAM, which models the spatial
importance landscape as a continuous radiance field parameterized by learned Gaussian kernels.
Concretely, we combine the top-k patches features fk with their cross-attention outputs ck to learn
the variance σ2

k of each kernel, which can be denoted as σ2
k = ReLU(FFNσ([fk, ck])) + ϵ where ϵ as

a regularization term. Given these variances and their corresponding importance weights α(b)
k , we

construct a continuous intensity field across spatial coordinates (x, y):

I(b)(x, y) =

Ki∑
k=1

α
(b)
k exp

(
−∥(x, y)− (xk, yk)∥2

2σ
2(b)
k

)
.

Let µ(b) and σ(b) denote the mean and standard deviation of I(b)(x, y). We define two thresholds:

T
(b)
hard = µ(b) + [δ + k]σ(b), T

(b)
vis = µ(b)− [δ − k]σ(b),

where δ is a hyperparameter, and k is a progressive learning offset that decays over epochs. With
two thresholds, we can partition regions into hard masked, soft masked, or fully visible states. By
combining flexible masking strategies with a progressive learning scheme, we enable the vision
model to reason and learn robust features when salient features are partially missing while avoiding
excessive masking that could hinder effective training. More implementation details are provided in
Appendix.

Optimization and Learning Strategy We do not introduce additional losses tied directly to
masking. Instead, we follow Grounding DINO Liu et al. (2023), relying solely on contrastive loss
for vision-language alignment and a localization loss for bounding box predictions. By tuning
hyperparameters such as initial masking ratios and RFGAM thresholds, we balance the trade-off
between visible information and the challenge of inference under occlusion. This strategy enhances
generalization without enlarging the dataset, ultimately yielding stronger representations from limited
data.

3.3 THEORETICAL ANALYSIS

Setup: Let X be the input space and Y be the output space. Assume there is a subset of highly
discriminative features (or regions) indexed by I ⊆ {1, . . . , d}. Based on how we handle I , we define
three hypothesis classes:
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1. Hdep: No masking is applied. The model is free to exploit all features, including I , potentially
leading to overfitting.

2. H(R-I)
rob : An “R-I” masking scheme, where all features, including those in I , may be masked

according to some distribution µ
(R-I)
M . Any h in this class must maintain low loss under this

random masking:

∀(x, y) : E
M∼µ

(R-I)
M

[
ℓ
(
h(x⊙M), y

)]
≤ ε.

3. H(A-I)
rob : An “A-I” masking scheme, where features in I are masked with high probability

(or exclusively), making it much harder for the model to rely solely on I . Formally, there is
a distribution µ

(A-I)
M that masks or perturbs features in I frequently:

∀(x, y) : E
M∼µ

(A-I)
M

[
ℓ
(
h(x⊙M), y

)]
≤ ε.

By definition, we have:
H(A-I)

rob ⊆ H(R-I)
rob ⊆ Hdep.

Rademacher Complexity: For a hypothesis class H and a sample S = {(xi, yi)}Ni=1, the empirical
Rademacher complexity is

R̂S(H) = Eσ

[
sup
h∈H

1

N

N∑
i=1

σi h(xi)
]
,

where σi are i.i.d. Rademacher random variables taking values in {+1,−1} with equal probability.
The expected Rademacher complexity RN (H) is the expectation of R̂S(H) over the random choice
of S. A key property is monotonicity: if H1 ⊆ H2, then

RN (H1) ≤ RN (H2).

Complexity Reduction:

Lemma 1 (Complexity Reduction). Since H(A-I)
rob ⊆H(R-I)

rob ⊆Hdep, it follows that RN

(
H(A-I)

rob

)
≤

RN

(
H(R-I)

rob

)
≤RN

(
Hdep

)
.

Proof of Lemma 1. The containment relations imply these Rademacher complexity inequalities via
monotonicity. Intuitively, Hdep may include overfitted solutions that exploit I aggressively, H(R-I)

rob

excludes some of these by masking features at random, and H(A-I)
rob imposes the strictest requirement

by frequently masking the most discriminative set I . Hence, the complexity is successively reduced
in these classes.

Generalization Bounds: A standard Rademacher-based generalization result states: given any
δ > 0, with probability at least 1− δ,

L(h) ≤ L̂S(h) + 2RN (H) + O
(√

log(1/δ)
N

)
,

for all h ∈ H. Here, L(h) is the expected loss and L̂S(h) is the empirical loss.

Theorem 1 (Better Generalization from Adaptive Masking). Let hdep∈Hdep, hrand∈H(R-I)
rob , htarg∈

H(A-I)
rob achieve similar empirical performance L̂S(hdep) ≈ L̂S(hrand) ≈ L̂S(htarg) on the training

sample S. Suppose that RN

(
H(A-I)

rob

)
<RN

(
H(R-I)

rob

)
<RN

(
Hdep

)
. Then the generalization bound

for htarg is strictly tighter than those for hrand and hdep. Consequently, L(htarg)<L(hrand)<L(hdep),
showing that adaptive masking of key features improves generalization more than random masking
or no masking.

5
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Table 1: Comprehensive comparison of IMAGE variants with baseline and SOTA across different
low-shot settings.

Method
COCO
val2017

(Close-set)

ODinW_13
(Zero-shot)

ODinW_35
(Zero-shot)

COCO
val2017

(low-shot)

Baseline 0.454 0.208 0.092 0.400
RandomMask 0.456 0.190 0.085 0.392

MaskCLIP Yang et al. (2023) 0.465 0.212 0.089 0.401
CenterMask Liang & Larson (2024) 0.473 0.225 0.094 0.405
ClusterMask Wei et al. (2024) 0.461 0.206 0.089 0.408

IMAGE 0.473 0.235 0.104 0.426
IMAGE(RG) 0.481 (+2.7%) 0.251 (+4.3%) 0.112 (+2.0%) 0.437 (+3.7%)

Proof of Theorem 1. From the standard Rademacher bound, we have

L(hdep)− L̂S(hdep) ≤ 2RN

(
Hdep

)
+ O

(√
log(1/δ)/N

)
,

L(hrand)− L̂S(hrand) ≤ 2RN

(
H(R-I)

rob

)
+ O

(√
log(1/δ)/N

)
,

L(htarg)− L̂S(htarg) ≤ 2RN

(
H(A-I)

rob

)
+ O

(√
log(1/δ)/N

)
.

Given similar empirical losses, the lower complexity term for H(A-I)
rob yields a tighter bound on

L(htarg), followed by H(R-I)
rob , and finally Hdep.

Remark 1. This result shows that forcing a model to train without always relying on the most
discriminative features (i.e., via high-probability masking of I) yields a strictly smaller hypothesis
space and thus better theoretical guarantees. It also indicates that merely random masking of all
features (including those in I) is beneficial but not as effective as targeting I directly. Empirically, this
aligns with improved robustness and generalization when critical features are deliberately masked
during training.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Dataset Experiments are conducted on COCO and ODinW datasets. COCO (train2017/val2017) is
utilized for closed-set training and evaluation. For zero-shot detection, ODinW datasets (ODinW_13
and ODinW_35) containing unseen object categories are employed. low-shot experiments are
performed by randomly sampling subsets comprising 5%, 10%, 20%, and 30% of COCO train2017
data.

Evaluation Metrics Standard COCO Average Precision (AP) is adopted for closed-set evaluations.
For zero-shot detection on ODinW datasets, we report Average Precision (AP) aggregated across all
unseen categories without explicit per-class averaging. low-shot performance is evaluated using AP
on COCO val2017.

Implementation Details Our method builds upon Grounding Dino with a Swin-T backbone,
integrating adaptive masking modules after each feature extraction stage. Initial masking rates for the
four backbone layers are set at 20%, 30%, 40%, and 50%, respectively. In the RFGAM module, the
Gaussian modeling parameter k0 decays gradually from 0.5 to near-zero throughout training. The
learning rate is set to 0.005, and training is performed on 8 RTX4090 GPUs. By default, IMAGE uses
masks sampled directly from learned importance priors. IMAGE(RG) applies an additional Gaussian
radiance modeling step to smooth the spatial distribution of importance scores.

6
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IMAGE
IMAGE(RG)

Baseline
Random Mask

low

Figure 3: Scaling laws of our IMAGE method. With increased epochs, IMAGE achieves more
accurate grounding AP across all four datasets and three settings.

IMAGE
IMAGE(RG)

Random Mask
Baseline

)

IMAGE
IMAGE(RG)

Random Mask
Baseline

Baseline(100%)

low low low low

Figure 4: Comparison between IMAGE with other strategies in different low-shot ratios.

4.2 QUANTITATIVE RESULTS

Overall Performance We comprehensively evaluated IMAGE under zero-shot, close-set, and
low-shot visual grounding settings. As is illustrated in Table 1, an ablation study on COCO val2017
clearly demonstrated that our methods greatly enhances generalization. IMAGE(RG) achieved 0.481
AP, outperforming the Baseline (no masking) by a notable 2.7%, RandomMask by 2.5%, and the
simpler threshold-based IMAGE by 1.4%. Notably, in challenging zero-shot conditions, IMAGE(RG)
exhibited remarkable improvements, with gains of 4.3% and 2.0% AP on ODinW_13 and ODinW_35
datasets, respectively. Furthermore, under low-shot conditions, IMAGE(RG) consistently maintained
superior performance, surpassing the Baseline by 3.7% AP, validating its robust capability to infer
critical visual cues with minimal labeled data.

To further demonstrate superiority, we compared IMAGE(RG) against state-of-the-art masking
methods, including MaskCLIP Yang et al. (2023), CenterMask Liang & Larson (2024), and Cluster-
Mask Wei et al. (2024). These methods primarily mask peripheral or background regions, whereas
IMAGE(RG) uniquely and strategically obscures even portions of the most salient areas, compelling
models to develop stronger contextual reasoning. As shown in Table 1, IMAGE(RG) consistently
outperformed all these methods across all settings, achieving an AP of 0.251 on ODinW_13, sur-
passing MaskCLIP by 2.6%, CenterMask by 2.1%, and ClusterMask by 1.8%. Moreover, in the
low-shot scenario on COCO val2017, IMAGE(RG) exceeded these leading methods by at least 2.9%
AP, demonstrating clear advantages in robustness, interpretability, and computational efficiency.

Scaling Laws across All Settings To further illustrate the effectiveness of IMAGE(RG), we
analyzed its scaling behavior throughout training, as shown in Figure 3. Notably, IMAGE(RG)
achieves faster convergence and higher grounding AP compared to Baseline and RandomMask
methods across all datasets and learning scenarios. Even at early training stages (e.g., epochs 6–10),
IMAGE(RG) consistently demonstrates a substantial performance gap, improving baseline methods
by over 18% AP in low-shot scenarios and similarly significant margins in close-set and zero-shot
scenarios. This accelerated early-stage performance reflects its unique ability to prioritize critical
semantic regions effectively from the outset, ensuring a robust foundation for representation learning.

Moreover, IMAGE(RG) continues to outperform other methods as training progresses, maintaining
its advantage over both basic masking strategies and the simpler IMAGE variant. Such sustained
improvement highlights the long-term benefits of strategically directing attention to essential features

7
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Figure 5: Visualization of both generated masks and importance(upper row) distributions (lower row)
for images under different masking methods: RandomMask, CenterMask, IMAGE, and IMAGE(RG).
Compared to other methods, IMAGE(RG) yields more concentrated and adaptive coverage, effectively
highlighting the entire salient region necessary for accurate grounding, while the RandomMask and
CenterMask produce relatively dispersed attention.

Masking Ratio (%) COCO val2017 ODinW_13 ODinW_35 COCO val2017 (low-shot)

10–40 0.479 0.248 0.109 0.431
20–50 0.481 0.251 0.112 0.437
30–60 0.470 0.253 0.111 0.424

Table 2: IMAGE results across different datasets and masking ratio ranges.

early during training, confirming that the adaptive Gaussian-based masking strategy is effective not
only for rapid convergence but also for achieving stable and superior representations over extended
training cycles.

low-shot Training with Different Data Ratios To assess IMAGE’s robustness under limited
annotated data, we conducted low-shot experiments on COCO with varying fractions (5%, 10%, 20%,
and 30%) of the train2017 set. As shown in Fig. 4, IMAGE(RG) consistently achieves significant
performance improvements over baseline methods, especially in scenarios with severe data scarcity.
For instance, using only 30% training data after merely 6 epochs, IMAGE(RG) attains an AP of
32.3%, substantially exceeding the baseline’s 15.3%. This remarkable performance gain highlights
IMAGE(RG)’s capability to quickly learn robust representations by adaptively prioritizing essential
visual cues, thereby enhancing both generalization and convergence efficiency under practical,
resource-constrained conditions.

Impact of Different Mask Ratios We evaluate how varying initial mask ratios affect performance,
testing three schemes (10–40%, 20–50%, 30–60%) across four encoder layers. As shown in Table 2,
the 20–50% range consistently yields the best AP scores, suggesting that moderately balanced
masking improves feature quality. While optimal ratios may vary slightly by dataset, 20–50% offers
robust generalization.

8
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4.3 ABLATION STUDIES

Impact of Importance Prior in Adaptive Masking We analyze the role of our importance prior
by comparing against random masking and a no-masking baseline. As shown in Table 1, importance-
guided masking consistently outperforms the alternatives across close-set, zero-shot, and low-shot
scenarios. In particular, its gains in zero-shot settings highlight its ability to generalize to unseen
categories by focusing on semantically critical regions and encouraging robust inference from partial
yet salient cues.

Benefit of Gaussian Radiance Field Modeling To assess the effect of Gaussian-based radiance
modeling, we compare IMAGE(RG) with standard IMAGE. Table 1 shows that RFGAM yields
more nuanced and spatially coherent masks, leading to consistent improvements in zero-shot and
low-shot performance. These results demonstrate that smooth spatial transitions enhance both feature
expressiveness and robustness in limited-data scenarios.

Settings Close-set low-shot Zero-shot

non-progressive 0.476 0.426 0.235
0.110

progressive 0.481 0.437 0.251
0.112

Table 3: The comparison of non-progressive and progressive training across settings. For Zero-shot,
results are reported for ODinW_13 (upper) and ODinW_35 (lower).

Effectiveness of Progressive Training Strategy We assess the impact of progressively decaying
the parameter k in IMAGE(RG) by comparing it with a fixed-k baseline. As shown in Table 3,
progressive decay consistently improves AP across COCO val2017 (+0.5%), ODinW_13 zero-shot
(+1.6%), and 30% low-shot (+1.1%). These gains suggest that gradual reduction of k encourages
adaptive masking, leading to better feature learning and generalization.

4.4 QUALITATIVE ANALYSIS

Figure 5 visualizes masking patterns and importance scores for two examples (airplane and clock).
RandomMask yields scattered attention with little semantic focus, while CenterMask roughly outlines
object regions but misses key discriminative parts (e.g., plane’s nose or clock dial), reflecting limited
selectivity and generalization.

In contrast, IMAGE masks moderately salient regions to force reasoning from core cues, leading to
more focused representations. IMAGE(RG) further improves by blending soft and hard masking
via RFGAM, producing smoother attention and more adaptive inference. These results suggest
that IMAGE and IMAGE(RG) enable more targeted, flexible masking, enhancing robustness and
generalization in visual grounding.

5 CONCLUSION

In this paper, we proposed IMAGE, a novel method for improving zero-shot and low-shot visual
grounding without increasing dataset sizes. Inspired by cognitive science and Masked Autoencoders
He et al. (2022), IMAGE adaptively masks salient regions in feature maps generated by the vision
backbone, compelling the model to reason from remaining critical information. This approach results
in robust and generalized representations capturing both local and global features. Experimental
evaluations on benchmark datasets, including COCO and ODinW, demonstrate IMAGE’s superior
performance compared to existing methods in both zero-shot and low-shot scenarios. Our findings
underscore adaptive masking, leveraging attention mechanisms and Gaussian modeling methods, as
an effective alternative to typical data augmentation strategies. This work advances low-shot learning
and opens avenues for future research into efficient and interpretable visual grounding.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Progressive Masking Strategy As training advances, we increase masking difficulty step-by-step.
Lower-level feature maps retain more visible detail initially, aiding early representation learning,
while higher-level maps receive heavier masking to encourage the model to reason abstractly. Simul-
taneously, we anneal k over epochs:

kepoch = k0

(
1− epoch

Etotal

)
,

intensifying masking as the model matures. This progressive approach allows the network to
gradually adapt to greater occlusion, improving its ability to infer missing content and develop robust,
context-driven representations.

Soft Mask Scheme Given I(b)(x, y) relative to T
(b)
hard and T

(b)
no-mask, each patch is assigned a mask

value:

M
(b,p)
i =


0, if I(b)(x, y) > T

(b)
hard,

1, if I(b)(x, y) < T
(b)
no-mask,

1− I(b)(x,y)−T
(b)
no-mask

T
(b)
hard −T

(b)
no-mask

, otherwise.

This formulation smoothly interpolates between fully masked and fully visible states, respecting
the continuous nature of the underlying importance field. Applying Mi to the feature map Fi via
element-wise multiplication (F ′

i = Fi ⊙ Reshape(Mi)) ensures that highly informative regions
receive less masking, while less critical areas are increasingly obscured.

Training Time and Memory Overhead Compared with the baseline training pipeline, our IM-
AGE(RG) method introduces only minimal extra computation. Training time increases by around
10%, which is mainly caused by the additional attention-based mask generation process. In terms
of memory, consumption grows by about 100MB, largely due to maintaining the radiance prior and
performing Gaussian-based mask computations.

A.2 MORE EVALUATION RESULTS

Experiments on Ultra-Low Data Regimes (1-2%) In addition to the main results (see Section 4.2
and Fig. 4 of the paper), we further evaluate data efficiency in an ultra-low data regime. Specifically,
we train all methods using only 1% of the labeled data. As shown in Table 4, despite the instability
typically observed at such extreme sparsity, our approach remains robust and clearly outperforms
baselines.

Table 4: Performance at 1% labeled data.

Method Baseline Random Mask IMAGE IMAGE(RG)

AP @ 1% 1.90 0.95 2.60 3.30
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These results indicate that both IMAGE and IMAGE(RG) maintain clear advantages even when su-
pervision is extremely scarce. In particular, IMAGE(RG) achieves the best performance, suggesting
that the paradigm is especially beneficial in the ultra-low data regime.

Generalizability Across Model Paradigms To evaluate the generalizability of the proposed
IMAGE framework across different model paradigms, we extend our analysis beyond DETR-style
architectures. While the main body of experiments is conducted on Grounding DINO (Swin-T),
a representative DETR-based visual grounding model, we further investigate the applicability of
IMAGE on YOLO-based models.

Specifically, we integrate IMAGE into YOLO-World and perform evaluations on several benchmarks.
As shown in Table 5, Across all evaluation settings, IMAGE yields consistent performance gains over
the YOLO-World baseline. This demonstrates that the proposed approach is architecture-agnostic
and effectively enhances visual grounding performance across heterogeneous backbones.

Table 5: Generalization of IMAGE to YOLO-based architecture (YOLO-World). Results are reported
on COCO val2017 (closed-set and low-shot), ODinW-13, and ODinW-35.

Method COCO val2017 ODinW-13 ODinW-35 COCO val2017 (Low-shot)
YOLO-World 0.412 0.177 0.090 0.373
IMAGE 0.448 0.221 0.101 0.415
IMAGE (RG) 0.463 0.234 0.112 0.427

Comparison with Semantic Masking Strategies To further evaluate the effectiveness of the pro-
posed masking paradigm, we conduct an additional comparison with a strong semantic-aware masking
method, SemMAE Li et al. (2022a). This comparison complements existing evaluations against
widely-used masking baselines such as random masking (MAE), CenterMask, and ClusterMask.

The evaluation follows the same training and testing protocols described in the main paper. As shown
in Table 6, both IMAGE and its variant IMAGE (RG) achieve consistently higher performance than
SemMAE across all benchmarks. These results highlight the effectiveness of our masking paradigm,
which achieves superior performance without relying on external semantic priors or additional model
complexity.

Table 6: Performance comparison with SemMAE across four benchmarks.

Method COCO (Close) ODinW-13 ODinW-35 COCO (Low-shot)
SemMAE 0.469 0.219 0.091 0.412
IMAGE 0.473 0.235 0.104 0.426
IMAGE (RG) 0.481 0.251 0.112 0.437
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