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Abstract

We develop new algorithms for Riemannian bilevel optimization. We focus in particular
on batch and stochastic gradient-based methods, with the explicit goal of avoiding
second-order information such as Riemannian hyper-gradients. We propose and
analyze RF2SA, a method that leverages first-order gradient information to navigate
the complex geometry of Riemannian manifolds efficiently. Notably, RF2SA is a single-
loop algorithm, and thus easier to implement and use. Under various setups, including
stochastic optimization, we provide explicit convergence rates for reaching ϵ-stationary
points. We also address the challenge of optimizing over Riemannian manifolds with
constraints by adjusting the multiplier in the Lagrangian, ensuring convergence to the
desired solution without requiring access to second-order derivatives.

1 Introduction

We investigate Riemannian bilevel optimization problems described by:

min
x∈M

F(x) := f (x, y∗(x)) s.t. y∗(x) ∈ argminy∈N g(x, y), (P)

whereM and N are dx- and dy-dimensional complete Riemannian manifolds, respectively, and
f and g are smooth functions. The function F serves as the outer objective, with g as the inner
objective and y∗(x) as the optimal solution for the inner problem.

Bilevel optimization provides a useful model for hierarchical decision-making, and is thus
of great value to various fields such as machine learning, economics, operations research, and
engineering. In machine learning it is directly relevant to applications such as meta-learning
(Rajeswaran et al., 2019; Hospedales et al., 2021; Pham et al., 2020; Ravi and Larochelle, 2016),
hyper-parameter optimization (Franceschi et al., 2018; Bao et al., 2021; Pedregosa, 2016), model
selection (Kunapuli et al., 2008; Giovannelli et al., 2021), architecture search (Liu et al., 2018; Wang
et al., 2022; Zhang et al., 2021), and reinforcement learning (Konda and Tsitsiklis, 1999; Sutton and
Barto, 2018; Hong et al., 2023). Algorithms like the two-timescale stochastic approximation (TTSA)
(Hong et al., 2023) highlight the ongoing development of efficient solutions for these problems.

Riemannian optimization arises in several applications, e.g., policy optimization, where
algorithms utilize the Fisher Information manifold (Ding et al., 2020; Kakade, 2001; Cen et al.,
2022), and matrix factorization, where problems are reformulated over suitable matrix manifolds
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(Ahn and Suarez, 2021; Hou et al., 2020; Li et al., 2021). Hyperbolic manifolds have also been
applied in neural network architecture design (Peng et al., 2021) and image segmentation (Ghadimi
and Wang, 2018).

Toward solving (P) we build on recent progress in (Euclidean) bilevel optimization (Kwon et al.,
2023), and develop Riemannian “fully first-order” batch and stochastic methods. Indeed, while
some aspects of the Euclidean analysis translate directly into the Riemannian setting, curvature
causes distortion that poses unique challenges in developing the analysis.

1.1 Related Work

Riemannian optimization

The development of efficient stochastic gradient-based optimization algorithms is crucial across
various domains, with first-order methods preferred for their computational efficiency. Several
first-order stochastic methods have been adapted to the Riemannian setting, such as Riemannian
stochastic gradient descent (RSGD) (Bonnabel, 2013), and AMSGRAD (Bécigneul and Ganea,
2018). Convergence analysis in geodesically convex cases has been proposed (Zhang and Sra,
2016), and nonconvex Riemannian optimization methods have been developed to handle complex
landscapes (Kasai et al., 2018; Hu et al., 2024). Saddle-point problems, including geodesic min-max
formulations, have also been explored (Zhang et al., 2023).

Bilevel optimization

The motivation for bilevel optimization on manifolds arises from addressing lower-level problems
that are non-strongly convex, frequently encountered outside traditional Euclidean spaces. Chen
et al. (2023) highlights the necessity for geometry-aware optimization techniques, particularly
useful in meta-learning and hyperparameter tuning scenarios. Additional research focuses on
constrained bilevel problems in machine learning, where model parameters are defined on
specific manifolds (Lin and Zha, 2008; Franceschi et al., 2018; Tabealhojeh et al., 2023). Many of
these problems involve non-convex constraints, which existing methods often cannot adequately
address. Moreover, even those methods that can handle such constraints may not fully exploit the
computational advantages provided by a geometry-aware approach (Beck et al., 2023).

Riemannian bilevel optimization

Li and Ma (2024) investigated hypergradient calculations for bilevel optimization on Riemannian
manifolds, proposing deterministic and stochastic algorithms (RieBO and RieSBO). Similarly,
Han et al. (2024) developed a framework for bilevel optimization, offering several hypergradient
estimation strategies and conducting convergence and complexity analyses. Both works emphasize
the importance of hypergradient information. In contrast, our approach is fully first-order,
avoiding second-order information like Riemannian hypergradients, presenting a novel direction
in this field.

Useful Riemannian bilevel problems often involve manifold constraints, such as machine
learning with manifold constraints or robust PCA on the Stiefel manifold (Yao et al., 2024; Hong
et al., 2023; Xu and Zhu, 2023; Khanduri et al., 2023; Podosinnikova et al., 2014). Our paper
contributes tools for manifold-based bilevel optimization, opening avenues in optimal transport
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and geometric ODEs where manifold structures are crucial (Figalli et al., 2011; Udriste and Tevy,
2020).

1.2 Main Contributions

The structure of our analysis parallels the fully-first order Euclidean approach (Kwon et al., 2023).
We reformulate the optimization problem (P) into a constrained, single-level problem:

min
x∈M,y∈N

f (x, y) s.t. g(x, y)− g∗(x) ≤ 0, (P’)

where g∗(x) = g(x, y∗(x)). The associated Lagrangian Lλ(x, y) = f (x, y) + λ(g(x, y) − g∗(x))
uses a multiplier λ > 0. To optimize Lλ, we employ Riemannian gradient descent, calculating
gradients with first-order derivatives, akin to the Euclidean approach.

The main challenge in addressing (P’) is choosing λ. The optimal solution x∗ = argminx F(x)
is found as λ → ∞. However, a high λ makes Lλ(x, y) non-smooth, affecting gradient-descent
efficacy.

To address this, we begin with λ = λ0 > 0 and increment it gradually. Each iteration k sets
λk = O

(
kb) for b ∈ (0, 1], balancing bias removal and nonsmoothness increase rate. This strategy

is vital for converging to an ϵ-stationary point of F without needing second derivatives.
One primary contribution is the derivation of an optimal growth rate for λk, ensuring non-

asymptotic convergence to an ϵ-stationary point of F without needing second-order derivatives.
Algorithm RF2SA advances Riemannian bilevel optimization by employing a first-order gradient
method that navigates curvature complexities such as varying sectional curvatures, parallel
transport, and the geometry of geodesics. These complexities impact the behavior of gradients
and necessitate specialized techniques to ensure efficient convergence. Our method converges
efficiently to an ϵ-stationary solution, as outlined in Theorem 2.

Theorem 1 (Informal). There exist choices of hyperparameters of Algorithm RF2SA such that the following
stationarity guarantees hold:

1. If noise is present in grad f and grad g, then E
[
∥ grad F(xK)∥2] = Õ(K−2/7);

2. If noise is present only in grad f , then E
[
∥ grad F(xK)∥2] = Õ(K−2/5); and

3. If both grad f and grad g are exact, then E
[
∥ grad F(xK)∥2] = Õ(K−2/3).

Theorem 1 is an informal version of our convergence guarantee; the formal version is Theorem
2.

Below, we summarize the key aspects of our result:

• Stochastic First-Order Algorithm Without Hypergradient Computations: Algorithm RF2SA
uniquely employs only gradient computations, avoiding the complex hypergradient calculations
seen in prior works like (Ghadimi and Wang, 2018). This simplification is especially beneficial
in large-scale machine learning tasks, where data completeness is not guaranteed, reducing the
need for extensive iterations and streamlining the optimization process in stochastic settings.

• Convergence Rate Guarantees in Stochastic Scenarios: The convergence rates for Algorithm
RF2SA in stochastic gradient scenarios are Õ(ϵ−3.5) when both grad f and grad g are noisy,
improving to Õ(ϵ−2.5) when only grad f is noisy, and Õ(ϵ−1.5) under exact gradients. These rates

3



are tight and align with those expected in Euclidean optimization, adapted to the complexities
of Riemannian manifolds.

• Achieving ϵ-Stationarity: The algorithm effectively converges to an ϵ-stationary point, where
the norm of the gradient is below ϵ. This capability is critical for assessing the efficacy of
optimization algorithms under various gradient noise conditions.

• Modular Analysis of λ: Our analysis reveals how different adjustments in λ affect step size,
noise variance, and bias, providing insights that help optimize algorithm performance on
Riemannian manifolds. This modular approach allows for the strategic modification of λ,
enhancing both computational efficiency and algorithm robustness, paving the way for future
advancements in manifold-based optimization algorithm design.

2 Mathematical Background

2.1 Some Precepts of Riemannian Geometry

The Hessian of a function f at a point p on a manifoldM with a metric g is defined using the
Levi-Civita connection ∇. It is a bilinear form that can be expressed in local coordinates as:

Hess f (X, Y) = X(Y( f ))− (∇XY)( f ), (2.1)

where X and Y are vector fields onM, and ∇XY is the covariant derivative of Y in the direction
of X.

The term ∇2
xy can be related to the components of the Hess in local coordinates. Specifically, if

X and Y are coordinate vector fields corresponding to coordinates x and y respectively, then ∇2
xy f

would correspond to the (x, y)-component of the Hessian matrix of f , which is:

Hess f (X, Y) = ∇X∇Y f −∇∇XY f (2.2)

In local coordinates, this would be written as:

Hess f (∂x, ∂y) =
∂2 f

∂x∂y
− Γk

xy
∂ f
∂k

(2.3)

where Γk
xy are the Christoffel symbols of the second kind, which encode the manifold’s

connection and hence its curvature.

2.2 Main Definitions and Assumptions

Definition 1 (ϵ-stationary point). A point x ∈ M is called ϵ-stationary if ∥ grad F(x)∥2
x ≤ ϵ. A

stochastic algorithm is said to achieve an ϵ-stationary point in K iterations if E
[
∥grad F (xK)∥2

xK

]
≤

ϵ, where the expectation is over the algorithm’s stochasticity.

Notation: OP(·) denotes the order of constants dependent on instance-specific parameters
(e.g., Lipschitz constants, strong convexity, and smoothness conditions). The notation ak ≍ bk
indicates that ak and bk decrease or increase at the same rate as k→ ∞, i.e., limk→∞ ak/bk = Θ(1).
The norm ∥ · ∥x is induced by the metric at x, reflecting the geometry ofM.

To outline the class of problems (P) of interest, we assume the outer-level objective’s optimal
value onM is bounded below by F∗ := arg minx∈M F(x) > −∞.
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Assumption 1 (Objective Functions Properties). The objective functions f and g exhibit the following
properties:

1. f is continuously differentiable onM. Its gradient satisfies l f ,1- smoothness, meaning that for any
two points x, y onM,

∥PTy←x∇ f (x)−∇ f (y)∥M ≤ l f ,1dM(x, y). (2.4)

2. g is continuously differentiable on N . Its gradient satisfies lg,1-smoothness, implying,

∥PTy←x∇g(x)−∇g(y)∥M ≤ lg,1dM(x, y). (2.5)

3. For every x̄ ∈ M, the magnitude of the gradient ||∇y f (x̄, y)||M is bounded by l f ,0 for all y.

Assumption 2 (Lower-level Objective Properties). For the lower-level objective g on N :

1. For every x̄ ∈ M, the function g(x̄, y) is µg-strongly convex in y for some µg > 0 on N .

2. g is twice continuously differentiable on N , and its Hessian ∇2g satisfies lg,2-Lipschitz continuity,

∥PTγ
y←x∇2g(y)PTγ

x←y −∇2g(x)∥N ≤ lg,2dN (x, y). (2.6)

Assumption 3 (Gradient Access). Access to the gradients of the objective functions f and g is provided
via unbiased estimators grad f (x, y; ζ) and grad g(x, y; ϕ), where:

E[grad f (x, y; ζ)] = grad f (x, y),

E[grad g(x, y; ϕ)] = grad g(x, y),
(2.7)

and the variances of the stochastic gradient estimators are bounded:

E
[
∥grad f (x, y; ζ)− grad f (x, y)∥2

x

]
≤ σ2

f ,

E
[
∥grad g(x, y; ϕ)− grad g(x, y)∥2

x

]
≤ σ2

g ,
(2.8)

where ∥ · ∥x denotes the norm induced by the metric at point x.

Assumption 4 (Gradient Boundedness). The gradients with respect to x for f and g are bounded for
every ȳ, with ∥ gradx f (x, ȳ)∥ and ∥ gradx g(x, ȳ)∥ bounded by l f ,0 and lg,0, respectively, for all x.

Assumption 5 (Second-order Smoothness of f ). f is twice continuously differentiable, with its Hessian
Hess f being l f ,2-Lipschitz continuous in the sense over the product of the manifold’s tangent spaces at
(x, y).

The assumptions 1 through 5 are necessary for guaranteeing the smoothness of y∗λ(x) and
the efficacy of the inner iterations throughout all outer iterations. These assumptions align the
analysis with the inherent curvature and metrics ofM and N . They are essential for our proof of
Theorem 2.
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2.3 Computing the Hypergradient via Perturbation Analysis

In this section, we utilize first-order perturbations in the variables x and y to derive the hyper-
gradient grad F(x) of F at x. This formulation of the hyper-gradient is crucial for the proofs of the
foundational lemmas and theorems that follow.

Considering an infinitesimal perturbation δv within the tangent space TxM, we transition to a
new manifold point x′ = Expx(δv). Similarly, perturbing the solution y∗(x) by δu in TyN leads to
y′ = Expy(δu).

The first-order Taylor expansion of g around the point (x, y∗(x)) is expressed as:

grady g(x′, y∗(x)) ≈ grady g(x, y∗(x)) + gradx(grady g)(x, y∗(x))[δv]. (2.9)

Incorporating the perturbation δu in TyN , we refine our approximation to:

grady′ g(x′, y′) ≈ grady g(x′, y∗(x)) + Hessyy g(x, y∗(x))[δu]. (2.10)

To satisfy the optimality condition grady′ g(x′, y′) = 0 for y′ as the new minimizer, we establish
a linkage between δu and δv:

gradx(grady g)(x′, y∗(x))[δv] + Hessyy g(x, y∗(x))[δu] = 0. (2.11)

Solving for δu, we invert the Hessian of g with respect to y, obtaining:

[δu] = −(Hessyy g(x′, y∗(x)))−1 gradx(grady g)(x′, y∗(x))[δv]. (2.12)

Finally, the gradient of F at x, influenced by the movements δv and δu, is concisely articulated
as:

grad F(x) = gradx f (x, y∗(x))−Hessxy g(x, y∗(x))(Hessyy g(x, y∗(x)))−1 grady f (x, y∗(x)),
(2.13)

culminating our systematic approach to compute the hyper-gradient via perturbation analysis.

3 Algorithm Design and Step-Size Calculations

3.1 Algorithm

We devise an algorithm to find a stationary point of the bilevel problem, specifically, a point where
F(x) = f (x, y∗(x)) is stationary, using gradients of f and g. Considering the formulation (P′) and
aiming to bypass second-order derivatives, we assess the gradient of Lλ:

gradx Lλ(x, y) = gradx f (x, y) + λ (gradx g(x, y)− grad g∗(x)) ,

grady Lλ(x, y) = grady f (x, y) + λ grady g(x, y).
(3.1)

On the manifold, the gradient of g∗(x) simplifies to grad g∗(x) = gradx g(x, y∗(x)) due to g’s
optimality at y∗(x). To optimize Lλ(x, y), we introduce an auxiliary variable z, approximating
y∗(x), and consider an alternative bilevel formulation (P) with the outer-level objective Lλ(x′, z),
where x′ = (x, y) is the outer variable, and z is the inner variable. This modification alters F(x)’s
landscape, introducing a bias that must be managed carefully to not affect the function Lλ’s
smoothness, which is crucial for step-size and noise variance.
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To manage the bias, we explore the relation between Lλ and F(x) through an auxiliary function
L∗λ defined as:

L∗λ(x) := min
y
Lλ(x, y). (3.2)

For λ > 2l f ,1/µg, Lλ(x, y) becomes strongly convex in y, ensuring a unique minimizer y∗λ(x):

y∗λ(x) := argminy Lλ(x, y). (3.3)

Given F(x) = limλ→∞ L∗λ(x) for any x in X, L∗λ(x) effectively approximates F(x) for a suffi-
ciently large λ. This approach is underpinned by a lemma adapted for manifolds.

Algorithm 1 RF2SA- Riemannian First-order Fast Stochastic Approximation
1: Input: step sizes: {αk, γk}, multiplier difference sequence: {δk}, inner-loop iteration count: T,
2: step-size ratio: ξ, initializations: λ0, x0, y0, z0

3: For k = 0 to K− 1 do
4: zk,0 ← zk, yk,0 ← yk
5: For t = 0 to T − 1 do
6: zk,t+1 ← Expzk,t

(−γkhk,t
gz)

7: yk,t+1 ← Expyk,t
(−αk(h

k,t
f y + λkhk,t

gy))

8: EndFor
9: zk+1 ← zk,T, yk+1 ← yk,T

10: xk+1 ← Expxk
(−ξαk(hk

f x + λk(hk
gxy − hk

gxz)))

11: λk+1 ← λk + δk
12: EndFor

Lemma 1. For any x ∈ X and λ ≥ 2l f ,1/µg, the gradient of L∗λ(x) is

gradx Lλ(x, yλ(x)) = gradx f (x, yλ(x)) + λ (gradx g(x, yλ(x))− gradx g(x, y(x))) . (3.4)

Furthermore, the norm of the difference between the gradients of F(x) and L∗λ(x) is bounded by

| grad F(x)− gradL∗λ(x)| ≤ Cλ

λ
. (3.5)

where Cλ := 4l f ,0lg,1

µ2
g

(
l f ,1 +

2l f ,0lg,2
µg

)
.

The gradient gradL∗λ(x) is computable with first-order derivatives of both f and g. Thus, any
first-order method locating a stationary point of L∗λ(x) approximates the trajectory of x updated
with grad F(x), with a bias of O(1/λ).

We use gradL∗λ(x) as a proxy for grad F(x) to produce a sequence of iterates {xk}. Concur-
rently, we generate sequences {yk} and {zk} to approximate the solutions y∗λk

(xk) and y∗(xk),
respectively, incrementing λk with k to ensure the bias in {xk} diminishes to zero.

Our Fully First-order Stochastic Approximation (F2SA) method, adapted for the manifold,
employs stochastic gradients as unbiased estimators:

hk,t
gz := grady g(xk, zk,t; ϕk,t

z ), hk,t
f y := grady f (xk, yk,t; ζk,t

y ),

hk,t
gy := grady g(xk, yk,t; ϕk,t

y ), hk
gxy := gradx g(xk, yk+1; ϕk

xy),

hk
f x := gradx f (xk, yk+1; ζk

x), hk
gxz := gradx g(xk, zk+1; ϕk

xz).

(3.6)
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y∗λ,k−1 y∗λ,k

yk

yk+1

O(1/λk−1) O(1/λk)

Figure 1: yk should move faster than y∗λk
(xk), remaining within an O(1/λk)-ball around y∗λk

(xk).

With T = 1 and an appropriate choice of ξ, Algorithm RF2SA enables a fully single-loop update
of all variables, tailored to the manifold’s geometry. The step-size design for RF2SA, as outlined
in Algorithm 1, adapts to this setup.

3.2 Step-Size Design Principle

We tailor the step-sizes for Algorithm 1 to ensure convergence to an ϵ-stationary point of F. This
involves meeting several geometric conditions, considering the curvature. For instance, if Lλk is(
λkµg/2

)
-strongly convex along y’s geodesics, then updating yk,t resembles a geodesic contraction

towards y∗λ,k, with a rate of 1−O(µgβk).
Here, βk = αkλk is the effective step-size for yk. We simplify notation by denoting y∗λ,k =

Exp−1
xk
(y∗λk

(xk)) and y∗k = Exp−1
xk
(y∗(xk)), where Exp−1

xk
(·) represents the unique inverse of the

exponential map at xk, mapping points in the manifold back to the tangent space at xk.
For updating xk, the step-size ξαk should decay no slower than Ω(1/k). The step-size βk is

limited to O(1/lg,1), implying a polynomial growth in λk with k.
The manifold distance d(·, ·) between xk+1 and xk depends on several factors. Ideally, λk’s

growth rate ensures d(yk, y∗λ,k) is roughly λ−2
k , suggesting λk grows inversely to β1/4

k .
Efficiency in Algorithm 1 relies on how quickly yk and zk can track their targets as xk and λk

evolve. We will explore how y∗λ(x) adapts to changes in λ and x.

Lemma 2. For any points x1, x2 on a manifold X and multipliers λ2 ≥ λ1 ≥ 2l f ,1/µg, the distance
between optimal solutions for these multipliers is bounded by

d(y∗λ1
(x1), y∗λ2

(x2)) ≤
2(λ2 − λ1)

λ1λ2

l f ,0

µg
+ lλ,0d(x2, x1), (3.7)

with some constant lλ,0 ≤ 3lg,1/µg.
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In the algorithmic setting, it’s crucial that yk’s update moves it sufficiently close to the current
target y∗λ,k each iteration, surpassing the target’s movement due to updates in xk and λk. Ideally,
in expectation,

d(yk+1, y∗λ,k) < d(yk, y∗λ,k−1). (3.8)

Considering the geometry, the squared distance d(yk+1, y∗λ,k)
2 contracts with T-steps of 1 −

O(µgβk), starting from yk, leading to the requirement

(1−O(Tµgβk))d(yk, y∗λ,k)
2 < d(yk, y∗λ,k−1)

2. (3.9)

Utilizing Lemma 2 and the geometry, the minimal condition is

d(yλ,k−1, yλ,k) ≤
(

l f ,0

µg

)(
δk

λ2
k

)
+ lλ,0d(xk, xk−1) ≤ Tµgβkd(yk, y∗λ,k−1). (3.10)

The rate at which d(yk+1, y∗λ,k) decreases must surpass λ−1
k , maintaining controlled bias in xk

updates. Additionally, d(xk, xk−1) should align with ξβkd(yk, y∗λ,k−1).
Two key conditions emerge:

δk

λk
≤ OP(1) · βk,

ξ

T
< OP(1), (3.11)

where OP(1) denotes constants dependent on the problem instance. If λk increases polynomially,
then δk/λk = O(1/k), satisfying the first condition if βk = Ω(1/k). The second condition concerns
the inner iterations T needed per outer iteration, allowing for a single-loop algorithm with T = 1
and an adequately small ξ, or setting ξ = 1 and adjusting T > 1 for specific instance parameters.

4 Non-Asymptotic Convergence Analysis

We discussed a number of assumptions on the regularity of the optimization objective and the
underlying manifold in Section 2.2. We now present our main convergence result in Theorem 2.
Corollary 3 provides explicit iteration complexity bounds for each setting, further elucidating the
efficiency and applicability of our results in various contexts.

Convergence Analysis Results

Theorem 2 (Alexandrov Space Version). Given that the assumptions from Section 2.2 hold within an
Alexandrov space with curvature bounded by κ, analogous to manifoldsM,N , and assuming appropriate
selection of parameters and step-sizes such that λ0 ≥ 2l f ,1/µg and

βk ≤ γk ≤ min
(

1
4lg,1

,
1

4Tµg

)
, αk ≤ min

(
1

8l f ,1
,

1
2ξlF,1

)
, (4.1a)

ξ

T
< cξµg ·max

(
lg,1l2

∗,0, l∗,1
√
M
)−1

,
δk

λk
≤

Tµgβk

16
. (4.1b)
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for all k ≥ 0, with cξ being a suitably chosen constant. Then, over K ≥ 1 iterations within the
Alexandrov space—a generalization allowing curvature bounds without necessitating smoothness—the
outcomes for Algorithm 1 adhere to

K−1

∑
k=0

ξαkE
[
∥grad F (xk)∥2

xk

]
≤ OP(1) ·∑

k
ξαkλ−2

k + OP

(
σ2

f

)
·∑

k
α2

kλk + OP

(
σ2

g

)
·∑

k
γ2

kλk + OP(1),

(4.2)
where grad F(x) symbolizes a generalized notion of gradient in Alexandrov spaces, and ∥ · ∥xk signifies the
distance measure at point xk, aligning with the space’s metric structure.

The proof of Theorem 2 is deferred to Appendix B. Therein we also explain why the effect of
the curvature κ is negligible on the final inequality 4.2.

Our analysis examines the expected decrease of the potential function Vk, defined as

Vk := (F (xk)− F∗) + lg,1λkd
(

yk, y∗λk
(xk)

)2
+

λklg,1

2
d (zk, y∗ (xk))

2 , (4.3)

where F∗ is the minimum value of F, and y∗λ and y∗ correspond to solutions. Monitoring the
distance between yk and y∗λk

(xk) is essential for computing the true gradient of F at xk using only
gradients. The proof will also show that the correct scaling factor for these errors is proportional
to λk.

For step-size design, we maintain conditions similar to 4.1a for gradient-based methods. The
conditions 4.1b address the double-loop nature of the problem. Aligning with the step-size design
rule (3), we propose:

T = max
(

32,
(
cξµg

)−1 max
(

lg,1l2
∗,0,
√

Ml∗,1
))

,

ξ = 1, αk =
cα

(k + k0)a , γk =
cγ

(k + k0)c ,
(4.4)

and for the Lagrange multiplier increase sequence {δk},

δk = min
(

Tµg

16
αkλ2

k ,
γk

2αk
− λk

)
. (4.5)

Rate constants a, c ∈ [0, 1] with a ≥ c, the initial value of the Lagrange multiplier λ0, and constants
for the context are established as:

k0 ≥
4

µg
max

(
ξlF,1

2
, Tlg,1, l f ,1

)
, λ0 ≥

2l f ,1

µg
,

cγ =
1

µgk1−c
0

, cα =
1

2λ0µgk1−a
0

.
(4.6)

These specifications streamline convergence rate analysis, with the framework accommodating
various other choices that comply with conditions 4.1a and 4.1b, facilitating the delineation of the
convergence rate across different stochastic noise regimes.

In the following corollary, we present a more interpretable version of Theorem 2, in terms
of the iteration complexity guarantees under different settings. This interpretation allows for a
clearer understanding of how our theoretical findings translate into practical implications for
convergence rates in various scenarios.
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Corollary 3. Assume the stipulations of Theorem 2 are upheld, with step-sizes delineated as in equations
4.4, 4.5, and 4.6. Let R signify a random variable uniformly distributed over {0, . . . , K− 1}. Under these
premises, after K iterations, the ensuing convergence outcomes are derived:

(a) In the presence of stochastic noise in both objectives f and g (σ2
f , σ2

g > 0), setting a = 5/7 and

c = 4/7, we achieve a convergence rate of E
[
∥ grad F(xR)∥2] ≍ log K

K2/7 .

(b) If stochastic noise is solely in f (σ2
f > 0, σ2

g = 0), setting a = 3/5 and c = 2/5, we attain

E
[
∥ grad F(xR)∥2] ≍ log K

K2/5 .

(c) In scenarios with exact gradients (σ2
f = σ2

g = 0), appointing a = 1/3 and c = 0, it follows that

∥ grad F(xK)∥2 ≍ log K
K2/3 .

These findings illustrate that convergence rates improve when stochastic noise affects fewer components
of the problem. Specifically, the rate improves from O(k−2/7) to O(k−2/5) with noise only in f , and
to O(k−2/3) in fully deterministic contexts. This compares to the O(k−1) rates that can be obtained by
second-order methods as in Li and Ma (2024); Han et al. (2024).

5 Limitations and Future Work

In general, fully first-order stochastic algorithms, although competitive with their second-order
counterparts exhibit certain limitations like higher iteration complexity (Kwon et al., 2023). This
gap highlights the need for further investigation into the theoretical limits of first-order methods
with respect to second-order methods for Riemannian bilevel optimization. Additionally, RF2SA’s
application is predominantly restricted to well-conditioned lower-level problems. It remains open
to study RF2SA’s potential in a broader range of problem classes.

Future research directions include utilizing our framework to address a wide array of real-
world applications, where the natural settings of problems involve varying geometric structures at
different decision levels. An exciting future direction is to explore applications of our algorithm
in hyperparameter optimization, meta-learning, and reinforcement learning, where manifold
optimization ideas have provided significant advantages. (Jaquier and Rozo, 2020; Tabealhojeh
et al., 2023; Xu et al., 2016; Jaquier et al., 2020)

Investigating two-player games with states represented as matrices or other manifold-valued
objects could further enrich the bilevel optimization landscape, offering novel insights into
game theory and decision-making processes on complex geometries. Moreover, the integration
of operator-valued optimization tasks and the development of algorithms that consider the
manifold’s curvature effects more explicitly would refine our understanding and application of
Riemannian optimization techniques. (Domingo-Enrich et al., 2020; Cai et al., 2023)

Moreover, in general, the concept of “bilevel" formulations is becoming increasingly significant
in the context of Riemannian problems, where many issues seem to naturally incorporate a two-tier
optimization process. One pertinent example is the k-sparse barycenter problem (e.g., in Do et al.
(2023)), where the goal is to approximate a covariance matrix X (represented as an ellipsoid) using
a sparse combination of given covariance matrices A1, . . . , AN . Specifically, one aims to find a
k-sparse weight vector q(X) that minimizes the distance between X and the Wasserstein barycen-
ter of the selected matrices. Formally, q(X) := arg minq∈Q dist2(X, BaryCenter(q, A1, . . . , AN)),
where Q = {q ∈ RN | q ≥ 0, ∥q∥0 ≤ k, ∑N

i=1 qi = 1}. The barycenter is computed as

11



BaryCenter(q, A1, . . . , AN) = arg minY∈M ∑N
i=1 qidist2(Y, Ai), where M is the manifold of sym-

metric positive definite matrices. Consequently, X ≈ BaryCenter(q(X), A1, . . . , AN), with X
approximated using at most k of the covariance matrices A1, . . . , AN .

6 Conclusion

We have presented a novel and fully first-order approach to Riemannian bilevel optimization. This
opens new avenues for addressing non-strongly convex lower-level problems and provides a geo-
metrically aware framework for complex optimization challenges involving manifold constraints.

References

Kwangjun Ahn and Felipe Suarez. Riemannian perspective on matrix factorization. arXiv preprint
arXiv:2102.00937, 2021.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
bilevel programming in hyperparameter optimization. Advances in neural information processing
systems, 34:4529–4541, 2021.

Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. arXiv
preprint arXiv:1810.00760, 2018.

Yasmine Beck, Daniel Bienstock, Martin Schmidt, and Johannes Thürauf. On a computationally
ill-behaved bilevel problem with a continuous and nonconvex lower level. Journal of Optimization
Theory and Applications, 198(1):428–447, 2023.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

Yang Cai, Michael I Jordan, Tianyi Lin, Argyris Oikonomou, and Emmanouil-Vasileios Vlatakis-
Gkaragkounis. Curvature-independent last-iterate convergence for games on riemannian
manifolds. arXiv preprint arXiv:2306.16617, 2023.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563–2578, 2022.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On bilevel optimization without lower-level strong
convexity. arXiv preprint arXiv:2301.00712, 2023.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating
stochastic gradient methods for bilevel problems. Advances in Neural Information Processing
Systems, 34:25294–25307, 2021.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient
primal-dual method for constrained markov decision processes. Advances in Neural Information
Processing Systems, 33:8378–8390, 2020.

Minh-Hieu Do, Jean Feydy, and Olga Mula. Approximation and structured prediction with sparse
wasserstein barycenters. arXiv preprint arXiv:2302.05356, 2023.

Carles Domingo-Enrich, Samy Jelassi, Arthur Mensch, Grant Rotskoff, and Joan Bruna. A mean-
field analysis of two-player zero-sum games. Advances in neural information processing systems,
33:20215–20226, 2020.

12



Alessio Figalli, Ludovic Rifford, and Cédric Villani. Necessary and sufficient conditions for
continuity of optimal transport maps on riemannian manifolds. Tohoku Mathematical Journal,
Second Series, 63(4):855–876, 2011.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pages 1568–1577. PMLR, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

Tommaso Giovannelli, Griffin Kent, and Luis Nunes Vicente. Bilevel stochastic methods for
optimization and machine learning: Bilevel stochastic descent and darts. arXiv preprint
arXiv:2110.00604, 2021.

Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Akiko Takeda. A framework for bilevel
optimization on riemannian manifolds. arXiv preprint arXiv:2402.03883, 2024.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic
algorithm framework for bilevel optimization: Complexity analysis and application to actor-
critic. SIAM Journal on Optimization, 33(1):147–180, 2023.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169,
2021.

Thomas Y Hou, Zhenzhen Li, and Ziyun Zhang. Fast global convergence for low-rank matrix recov-
ery via riemannian gradient descent with random initialization. arXiv preprint arXiv:2012.15467,
2020.

Jiang Hu, Ruicheng Ao, Anthony Man-Cho So, Minghan Yang, and Zaiwen Wen. Riemannian
natural gradient methods. SIAM Journal on Scientific Computing, 46(1):A204–A231, 2024.

Noémie Jaquier and Leonel Rozo. High-dimensional bayesian optimization via nested riemannian
manifolds. Advances in Neural Information Processing Systems, 33:20939–20951, 2020.

Noémie Jaquier, Leonel Rozo, Sylvain Calinon, and Mathias Bürger. Bayesian optimization meets
riemannian manifolds in robot learning. In Conference on Robot Learning, pages 233–246. PMLR,
2020.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14,
2001.

Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive gradient
algorithm. In International conference on machine learning, pages 2516–2524. PMLR, 2018.

Prashant Khanduri, Ioannis Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, and Mingyi
Hong. Linearly constrained bilevel optimization: A smoothed implicit gradient approach. In
International Conference on Machine Learning, pages 16291–16325. PMLR, 2023.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Gautam Kunapuli, K Bennett, Jing Hu, and Jong-Shi Pang. Bilevel model selection for support
vector machines. In CRM proceedings and lecture notes, volume 45, pages 129–158, 2008.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order
method for stochastic bilevel optimization. In International Conference on Machine Learning, pages

13



18083–18113. PMLR, 2023.

Jiaxiang Li and Shiqian Ma. Riemannian bilevel optimization. arXiv preprint arXiv:2402.02019,
2024.

Xiao Li, Shixiang Chen, Zengde Deng, Qing Qu, Zhihui Zhu, and Anthony Man-Cho So. Weakly
convex optimization over stiefel manifold using riemannian subgradient-type methods. SIAM
Journal on Optimization, 31(3):1605–1634, 2021.

Tong Lin and Hongbin Zha. Riemannian manifold learning. IEEE transactions on pattern analysis
and machine intelligence, 30(5):796–809, 2008.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pages 737–746. PMLR, 2016.

Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hyperbolic
deep neural networks: A survey. IEEE Transactions on pattern analysis and machine intelligence, 44
(12):10023–10044, 2021.

Quang Pham, Chenghao Liu, Doyen Sahoo, and HOI Steven. Contextual transformation networks
for online continual learning. In International Conference on Learning Representations, 2020.

Anastasia Podosinnikova, Simon Setzer, and Matthias Hein. Robust pca: Optimization of the
robust reconstruction error over the stiefel manifold. In German Conference on Pattern Recognition,
pages 121–131. Springer, 2014.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. Advances in neural information processing systems, 32, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hadi Tabealhojeh, Peyman Adibi, Hossein Karshenas, Soumava Kumar Roy, and Mehrtash
Harandi. Rmaml: Riemannian meta-learning with orthogonality constraints. Pattern Recognition,
140:109563, 2023.

Constantin Udriste and Ionel Tevy. Geometric dynamics on riemannian manifolds. Mathematics, 8
(1):79, 2020.

Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang Yang, and Junchi Yan. Zarts: On zero-order
optimization for neural architecture search. Advances in Neural Information Processing Systems, 35:
12868–12880, 2022.

Siyuan Xu and Minghui Zhu. Efficient gradient approximation method for constrained bilevel
optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
12509–12517, 2023.

Xin Xu, Zhenhua Huang, Lei Zuo, and Haibo He. Manifold-based reinforcement learning via
locally linear reconstruction. IEEE transactions on neural networks and learning systems, 28(4):
934–947, 2016.

Wei Yao, Chengming Yu, Shangzhi Zeng, and Jin Zhang. Constrained bi-level optimization:

14



Proximal lagrangian value function approach and hessian-free algorithm. arXiv preprint
arXiv:2401.16164, 2024.

Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Conference on Learning Theory, pages 1617–1638. PMLR, 2016.

Miao Zhang, Steven W Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, and Reza Haffari.
idarts: Differentiable architecture search with stochastic implicit gradients. In International
Conference on Machine Learning, pages 12557–12566. PMLR, 2021.

Peiyuan Zhang, Jingzhao Zhang, and Suvrit Sra. Sion’s minimax theorem in geodesic metric
spaces and a riemannian extragradient algorithm. SIAM Journal on Optimization, 33(4):2885–2908,
2023.

15



Appendix / Supplemental Material

Symbol Meaning Less than

l f ,0 Bound of ∥∇x f ∥, ∥∇y f ∥ ·
l f ,1 Smoothness of f ·
lg,0 Bound of ∥∇xg∥ ·
lg,1 Smoothness of g ·
µg Strong-convexity of g ·
lg,2 Hessian-continuity of g ·
M f Second-order moment of ∇ f (x, y; ζ) l2

f ,0 + σ2
f

Mg Second-order moment of ∇g(x, y; ϕ) l2
g,0 + σ2

g

l f ,2 Hessian-continuity of f ·

lF,1 Smoothness of F(x) l∗,0

(
l f ,1 +

l2
g,1
µg

+
2l f ,0lg,1lg,2

µ2
g

)
lλ,0 Lipschitzness of y∗λ(x) (for all λ ≥ 2l f ,1/µg) 3lg,1

µg

lλ,1 Smoothness of y∗λ(x) (for λ ≥ 2l f ,1/µg) 32(lg,2 + λ−1 · l f ,2)
l2
g,1

µ3
g

l∗,0 = 1 + maxλ≥2l f ,1/µg lλ,0 ·
l∗,1 = maxλ≥2l f ,1/µg lλ,1 ·

Table 1: Meaning of Constants

In Table 1, we list the main symbols used in the following proofs, their interpretations, and the
inequalities that they satisfy (where applicable).

To simplify the representation of variable movements, we define qx
k , qy

k,t, and qz
k,t as follows:

qx
k := gradx f (xk, yk+1) + λk(gradx g(xk, yk+1)− gradx g(xk, zk+1)),

qy
k,t := grady f (xk, yk,t) + λk grady g(xk, yk,t),

qz
k,t := grady g(xk, zk,t).

These quantities represent the expected movements of xk, y(t)k , and z(t)k in the absence of stochastic
noise in the gradient oracles.

A Detailed Proofs of Lemmas 1 and 2

A.1 Lemma A.1

This lemma establishes a bound on the difference between the gradient of a function at two points
x2 and x1, taking into account the effects of parallel transport.

F(x) = f (x, y∗(x)) is lF,1-smooth where

lF,1 ≤ l∗,0

(
l f ,1 +

l2
g,1

µg
+

2l f ,0lg,1lg,2

µ2
g

)
.
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Proof. We recall from equation (2.13) that the gradient grad F(x) of the function F, defined in (P),
is given by the expression:

grad F(x) = gradx f (x, y∗(x))−Hessxy g(x, y∗(x))
(
Hessyy g(x, y∗(x))

)−1 grady f (x, y∗(x)),

where y∗(x) denotes the solution to the inner-level optimization problem associated with x.
The bound for the difference between the parallel transported gradient at x2 to x1 and the

gradient at x1 is given by:

∥PTx2→x1 grad F (x2)− grad F (x1)∥

≤
(

l f ,1 +
l f ,0

µg
lg,2 +

lg,1

µg
lg,1

)
(∥dM(x1, x2)∥+ ∥dN (y∗ (x1) , y∗ (x2))∥)

+ lg,1l f ,0

∥∥∥PTx2→x1

(
∇2

yyg (x2, y∗ (x2))
−1
)

PTx1→x2 −∇2
yyg (x1, y∗ (x1))

−1
∥∥∥ .

To simplify this inequality, we employ the assumptions on the smoothness and strong convexity
of the functions f and g, alongside the triangle inequality. From our assumptions in Section 2.2,
we require in particular:

1. Smoothness of f : f is l f ,1−-smooth, which provides a bound on the gradient differences of
f at two points.

2. Smoothness of g: g is lg,1-smooth, enabling us to bound the gradient differences of g.

3. Strong Convexity of g: The µg-strong convexity of g facilitates relating the Hessian of g to
its inverse, critical for bounding the differences in Hessian inverses.

4. Lipschitz Continuity of the Hessian of g: The lg,2-Lipschitz continuity of the Hessian of g
aids in bounding the differences in Hessians at two points.

∥PTx2→x1gradF(x2)− gradF(x1)∥
≤ ||PTx2→x1grad f (x2, y∗(x2))− grad f (x1, y∗(x1))||
+ ||PTx2→x1gradg(x2, y∗(x2))− gradg(x1, y∗(x1))||
·max

x
||Hessyyg(x, y∗(x))−1|| ·max

x
||grady f (x, y∗(x))||

+ ||PTx2→x1(Hessxyg(x2, y∗(x2))PTx1→x2 −Hessxyg(x1, y∗(x1))||
·max

x
||Hessyyg(x, y∗(x))−1|| ·max

x
||grady f (x, y∗(x))||

+ max
x
||Hessxyg(x, y∗(x))|| ·max

x
||grady f (x, y∗(x))||

· ||PTx2→x1Hess−1
yy (x2, y∗(x2))PTx1→x2 −Hess−1

yy (x1, y∗(x1))||

≤ (l f1 +
l f0

µg
lg2 +

lg1

µg
l f1)(dM(x1, x2) + dN (y∗(x1), y∗(x2)))

+
lg1 l f0

µ2
g

lg,2(dM(x1, x2) + dN (y∗(x1), y∗(x2))).

where to upper bound ||PTx2→x1Hess−1
yy (x2, y∗(x2))PTx1→x2 −Hess−1

yy (x1, y∗(x1))|| we used the
following result on bounding the norm of the difference of the inverses of two matrices, A and
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B, leveraging the Neumann series to express the inverse of a matrix in terms of its perturbation.
Specifically, we have:

∥A−1 − B−1∥ ≤ ∥∆A∥ · ∥A−1∥ · ∥B−1∥,

where ∆A = A − B, which is instrumental in establishing the final bound on the gradient
difference.

The lemma concludes with:

lF,1 ≤ l∗,0

(
l f ,1 +

l f ,0lg,2 + l2
g,1

µg
+

l f ,0lg,1lg,2

µ2
g

)

≤ l∗,0

(
l f ,1 +

l2
g,1

µg
+

2l f ,0lg,1lg,2

µ2
g

)
,

where the last inequality utilizes the condition that lg,1/µg ≥ 1.

A.2 Lemma A.2

This lemma establishes a bound on the difference between the gradient of a function F(x) and the
gradient of a Lagrangian Lλ(x, y) with respect to x, adjusted for the effects of parallel transport.

For any x, y, λ, the following holds:∥∥∥gradF(x)− gradxLλ(x, y) + PTy→y∗Hessxyg(x, y∗)
(
Hessyyg(x, y∗)

)−1 PTy∗→ygradyL(x, y)
∥∥∥

≤ 2
(

lg,1
µg

)
dM(y, y∗)

(
l f ,1 + λ ·min

(
2lg,1, lg,2dN (y, y∗)

))
.

Proof. Given the Lagrangian Lλ(x, y), we consider the gradients with respect to variables x and y,
expressed as:

gradx Lλ(x, y) = gradx f (x, y) + λ
(

gradx g(x, y)− PTy∗(x)→y gradx g(x, y∗(x))
)

,

grady Lλ(x, y) = grady f (x, y) + λ grady g(x, y).

Here, PTy∗(x)→y denotes the parallel transport operation that moves vectors along geodesics from
the tangent space at y∗(x) to the tangent space at y, ensuring that the comparison of vectors is
meaningful.

The discrepancy between the gradient of F and the gradient of the Lagrangian with respect to
x is detailed as follows:

grad F(x)− gradx Lλ(x, y) = gradx f (x, y∗)− PTy→y∗ gradx f (x, y)

−Hessxyg(x, y∗)
(

Hessyyg(x, y∗)−1 grady f (x, y)
)

− λ
(
gradx g(x, y)− PTy∗→y gradx g(x, y∗)

)
.

We can rearrange terms for gradx g(x, y)− PTy∗→y gradx g(x, y∗) as the following:

gradx g(x, y)− PTy∗→y gradx g(x, y∗) = gradx g(x, y)− PTy∗→y gradx g(x, y∗)

− PTy∗→yHessxyg(x, y∗)PTy→y∗Exp−1
y (y∗)

+ PTy∗→yHessxyg(x, y∗)PTy→y∗Exp−1
y (y∗).
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Note that from the optimality condition for y∗, we have gradyg(x, y∗) = 0. From the gradient
of the Lagrangian L, we have gradyL(x, y) = grady f (x, y) + λgradyg(x, y). We can express the
equivalent of y− y∗ using the inverse exponential map and the Hessian as follows:

Exp−1
y (y∗) =−

(
Hessyyg(x, y∗)

)−1
(

grady g(x, y)− PTy∗→y grady g(x, y∗)

−PTy∗→yHessyyg(x, y∗)PTy→y∗Exp−1
y (y∗)

)
+

1
λ

(
Hessyyg(x, y∗)

)−1
(

grady L(x, y)− grady f (x, y)
)

.

This approximation is based on the Taylor expansion in the setting, where gradyg(x, y∗) = 0
because y∗ is an optimal point (assuming g is minimized at y∗ with respect to y).

gradyg(x, y)− PTy∗→ygradyg(x, y∗) ≈ PTy∗→yHessyyg(x, y∗)PTy→y∗Exp−1
y (y)

gradF(x)− gradxLλ(x, y)

= (gradx f (x, y∗)− gradx f (x, y))

−Hessxyg(x, y∗)
(
Hessyyg(x, y∗)

)−1
(

grady f (x, y∗)− PTy→y∗grady f (x, y)
)

−Hessxyg(x, y∗)
(
Hessyyg(x, y∗)

)−1 PTy→y∗gradyL(x, y)

− λ
(

gradxg(x, y)− PTy∗→ygradxg(x, y∗)− PTy∗→yHessxyg(x, y∗)Exp−1
y (y∗)

)
+ λHessxyg(x, y∗)

(
Hessyyg(x, y∗)

)−1
(

gradyg(x, y)− PTy∗→ygradyg(x, y∗)

−PTy∗→yHessyyg(x, y∗)PTy→y∗Exp−1
y (y∗)

)
.

To simplify this, we will require the following facts:∥∥∥gradyg(x, y)− PTy∗→ygradyg(x, y∗)− PTy∗→yHessyyg(x, y∗)PTy→y∗Exp−1
y∗ (y)

∥∥∥ ≤ lg,2∥Exp−1
y∗ (y)∥

2∥∥∥gradyg(x, y)− PTy∗→ygradyg(x, y∗)− PTy∗→yHessyyg(x, y∗)PTy→y∗Exp−1
y∗ (y)

∥∥∥ ≤ 2lg,1dM(y, y∗)∥∥∥gradxg(x, y)− PTy∗→ygradxg(x, y∗)− PTy∗→yHessxyg(x, y∗)PTy→y∗Exp−1
y∗ (y)

∥∥∥
≤ min

(
lg,2dM(y, y∗)2, 2lg,1dM(y, y∗)

)
.∥∥gradx f (x, y∗)− PTy→y∗gradx f (x, y)

∥∥ ≤ l f ,1dN (y, y∗),∥∥∥grady f (x, y∗)− PTy→y∗grady f (x, y)
∥∥∥ ≤ l f ,1dN (y, y∗).

With this, our final result is:∥∥∥gradF(x)− gradxLλ(x, y) + PTy→y∗Hessxyg(x, y∗)
(
Hessyyg(x, y∗)

)−1 PTy∗→ygradyL(x, y)
∥∥∥

≤ l f ,1

(
1 +

lg,1

µg

)
dN (y, y∗) + λ

(
1 +

lg,1

µg

)
dN (y, y∗)min

(
lg,2dM(y, y∗)2, 2lg,1

)
.

We know that lg,1/µg ≥ 1 and thus, we have:∥∥∥gradF(x)− gradxLλ(x, y) + PTy→y∗Hessxyg(x, y∗)
(
Hessyyg(x, y∗)

)−1 PTy∗→ygradyL(x, y)
∥∥∥

≤ 2
(

lg,1
µg

)
dN (y, y∗)

(
l f ,1 + λ ·min

(
2lg,1, lg,2dN (y, y∗)

))
.
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A.3 Lemma A.3

Under Assumptions 1, 2 and 3, and λ > 2l f ,1/µg, a function y∗λ(x) is lλ,1-smooth: for any
x1, x2 ∈ X, we have

∥ grad y∗λ(x1)− grad y∗λ(x2)∥ ≤ lλ,1dM(x1, x2)

where lλ,1 ≤ 32(lg,2 + λ−1l f ,2)l2
g,1/µ3

g.

Proof. The Lipschitz continuity of y∗λ(x) directly follows from Lemma 2, considering the manifold’s
intrinsic geometry. By the optimality condition for ∇y∗λ(x) in the manifold setting, we obtain

∇yLλ (x, y∗λ(x)) = ∇y f (x, y∗λ(x)) + λ∇yg (x, y∗λ(x)) = 0,

where ∇y denotes the gradient with respect to y. Differentiating with respect to x along the
manifold yields(
Hessyy f (x, y∗λ(x)) + λHessyyg (x, y∗λ(x))

)
∇y∗λ(x) = −

(
Hessxy f (x, y∗λ(x)) + λHessxyg (x, y∗λ(x))

)
,

where Hessyy and Hessxy represent the Hessians with respect to y and the mixed partial
derivative along the manifold, respectively. Given λ > 2l f ,1/µg, the left-hand side exhibits a
positive definiteness with a minimum eigenvalue greater than λµg/2. Thus,

∇y∗λ(x) = −
(

1
λ

Hessyy f (x, y∗λ(x)) + Hessyyg (x, y∗λ(x))
)−1 ( 1

λ
Hessxy f (x, y∗λ(x)) + Hessxyg (x, y∗λ(x))

)
.

To derive the smoothness property, we compare the expression at two points x1 and x2 on the
manifold:

λµg

2
∥∇y∗λ(x1)−∇y∗λ(x2)∥ ≤

(
l f ,2 + λlg,2

)
(dM(x1, x2) + dN (y∗λ(x1), y∗λ(x2)))max

x∈X
∥∇y∗λ(x)∥

+
(
l f ,2 + λlg,2

)
(dM(x1, x2) + dN (y∗λ(x1), y∗λ(x2)))

≤
(
l f ,2 + λlg,2

)
(1 + lλ,0)

2 dM(x1, x2).

Rearranging, we obtain

∥∇y∗λ(x1)−∇y∗λ(x2)∥ ≤ 32
(

l f ,2

λ
+ lg,2

) l2
g,1

µ3
g

dM(x1, x2).

A.4 Lemma A.4

For any fixed λ > 2l f ,1/µg, at every k iteration conditioned on Fk, we have

E[∥dN (y∗ (xk+1) , y∗ (xk))
2 |Fk] ≤ ξ2l2

∗,0

(
α2

k E[∥qx
k∥2|Fk] + α2

kσ2
f + β2

kσ2
g

)
.

Proof. The result directly follows from the Lipschitz continuity established in Lemma 2, taking the
limit as λ1 = λ2 approaches infinity on a manifold.

Given the structure of a manifold, we assess the changes in the optimal solution y∗ between
consecutive points xk+1 and xk through the geodesic distance, conditioned on the filtration Fk.
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This approach quantifies the modifications in y∗ as we traverse from one location to another on
the manifold. Specifically, we express the expectation of the squared geodesic distance between
y∗(xk+1) and y∗(xk) as follows:

E
[
dN (y∗ (xk+1) , y∗ (xk))

2 | Fk

]
≤ l2
∗,0E

[
dM (xk+1, xk)

2 | Fk

]
,

The inequality captures the bounded change in y∗ in response to movements in x across the
manifold, leveraging the Lipschitz property of y∗ relative to x.

Further, by incorporating the step-sizes and the stochastic gradients’ variances, we refine this
inequality to:

≤ l2
∗,0ξ2α2

k

(
E
[
∥qx

k∥
2 | Fk

]
+ α2

kσ2
f + β2

kσ2
g

)
,

where ξ2, αk, σf , and σg encapsulate the effect of the algorithm’s parameters and the in-
herent randomness of the optimization problem within the manifold setting. The expression
E
[∥∥qx

k

∥∥2 | Fk

]
reflects the expected squared norm of the search direction on the tangent space.

A.5 Lemma A.5

At every kth iteration, conditioned on Fk, let vk be a random vector decided before updating xk.
Then for any ηk > 0, we have

E[⟨vk, y∗(xk+1)− y∗(xk)⟩|Fk] ≤ (ξαkηk + Mξ2l2
∗,1β2

k)E[∥vk∥2|Fk]

+

(
ξαkl2

∗,0
4ηk

+
ξ2α2

k
4

)
E[∥qx

k∥2|Fk] +
ξ2

4
(α2

kσ2
f + β2

kσ2
g),

where M := max
(

l2
f ,0 + σ2

f , l2
g,0 + σ2

g

)
.

Proof. Utilizing the smoothness property of y∗(x) as discussed in Chen et al. (2021), which is
essential for controlling the noise variance induced by updating x, we proceed as follows on a
manifold:

Consider the inner product on the tangent space of the manifold at point xk, which respects
the manifold’s geometry. For two vectors u, v in the tangent space at xk, their inner product is
denoted by ⟨u, v⟩xk . We can then express the expectation involving this inner product as follows:

⟨vk, Exp−1
xk
(y∗k+1)− Exp−1

xk
(y∗k )⟩xk =⟨vk,∇y∗(xk)(Exp−1

xk
(xk+1))⟩xk

+ ⟨vk, Exp−1
xk
(y∗(xk+1))− Exp−1

xk
(y∗(xk))−∇y∗(xk)(Exp−1

xk
(xk+1))⟩xk .

For the first term, applying the expectation and the Cauchy-Schwarz inequality on the manifold,
we get:

E[⟨vk,∇y∗(xk)(Exp−1
xk
(xk+1))⟩xk | Fk] = −ξαkE[⟨vk,∇y∗(xk)qx

k ⟩xk | Fk]

≤ ξαkηkE[∥vk∥2
xk
| Fk] +

ξαk

4ηk
E[∥∇y∗(xk)qx

k∥2
xk
| Fk]
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≤ ξαkηkE[∥vk∥2
xk
| Fk] +

ξαkl2
∗,0

4ηk
E[∥qx

k∥2
xk
| Fk]

For the second term, leveraging the smoothness of y∗(x) on the manifold, we have:

E[⟨vk, Exp−1
xk
(y∗(xk+1))− Exp−1

xk
(y∗(xk))−∇y∗(xk)(Exp−1

xk
(xk+1))⟩xk | Fk]

≤ l∗,1
2

E[dM(xk+1, xk)
2 | Fk]

A.6 Lemma A.6

Under Assumptions 1-5, at every kth iteration, conditioned on Fk, let vk be a random vector
decided before updating xk. Then for any ηk > 0, we have

E[⟨vk, y∗λk+1
(xk+1)− y∗λk

(xk)⟩|Fk] ≤ (δk/λk + ξαkηk + Mξ2l2
λk ,1β2

k)E[∥vk∥2|Fk]

+

(
ξαkl2

∗,0
4ηk

+
ξ2α2

k
4

)
E[∥qx

k∥2|Fk] +
ξ2

4
(α2

kσ2
f + β2

kσ2
g) +

δkl2
f ,0

λ3
kµ2

g
,

where M := max
(

l2
f ,0 + σ2

f , l2
g,0 + σ2

g

)
.

Proof. We start with the following decomposition:

⟨vk, Exp−1
xk
(y∗λk+1

(xk+1))− Exp−1
xk
(y∗λk

(xk))⟩ =
⟨vk, Exp−1

xk+1
(y∗λk+1

(xk+1))− Exp−1
xk+1

(y∗λk
(xk+1))⟩

+ ⟨vk,∇y∗λk
(xk)(Exp−1

xk
(xk+1))⟩

+ ⟨vk, Exp−1
xk
(y∗λk

(xk+1))− Exp−1
xk
(y∗λk

(xk))−∇y∗λk
(xk)(Exp−1

xk
(xk+1))⟩.

For the second and third terms, the smoothness of yλ(x) is applied similarly to the proof in
A.5, considering the manifold’s intrinsic geometry.

Regarding the first term, taking expectation and using the inequality ⟨a, b⟩ ≤ c∥a∥2 + 1
4c∥b∥2

adapted for the tangent space, we get:

E[⟨vk, Exp−1
xk+1

(y∗λk+1
(xk+1))− Exp−1

xk+1
(y∗λk

(xk+1))⟩ | Fk]

≤ cE[∥vk∥2] +
1
4c

E[∥Exp−1
xk+1

(y∗λk+1
(xk+1))− Exp−1

xk+1
(y∗λk

(xk+1))∥2]

≤ cE[∥vk∥2] +
1
c

δ2
k

λ2
kλ2

k+1

l2
f ,0

µ2
g

,

where the expectation and norms are understood within the context of the manifold’s geometry.
By selecting c = δk

λk
, we derive:

E[⟨vk, Exp−1
xk+1

(y∗λk+1
(xk+1))− Exp−1

xk+1
(y∗λk

(xk+1))⟩ | Fk] ≤
δk

λk
E[∥vk∥2] +

l2
f ,0δk

µ2
gλ3

k
.

Combining this with bounds on the other two terms, we conclude the lemma.

22



Proof of Lemma 1

Let y∗λ(x) := arg miny Lλ(x, y). Note that gradyLλ(x, y∗λ(x)) = 0, and thus

gradL∗λ(x) = gradxLλ(x, y∗λ(x)) + gradxy∗λ(x)TgradyLλ(x, y∗λ(x)) = gradxLλ(x, y∗λ(x)).

To compare this to gradF(x), we can invoke Lemma A.2 which gives

||gradF(x)− gradxLλ(x, y∗λ(x))||
≤ 2

(
lg,1/µg

)
dN (y∗λ(x), y∗(x))

(
l f ,1 + λ ·min

(
2lg,1, lg,2dN (y∗(x), y∗λ(x))

))
.

From a version of Lemma 2 (A.6), we use dN (y∗λ(x), y∗(x)) ≤ 2l f ,0
λµg

, and get

||gradF(x)− gradxLλ(x, y∗λ(x))|| ≤ 1
λ
·

4l f ,0lg,1

µ2
g

(
l f ,1 +

2l f ,0lg,2

µg

)
.

Here, gradxy∗λ(x)T represents the transpose of the gradient of y∗λ(x) with respect to x.

Proof of Lemma 2

Note that on a manifold, the function Lλ(x, y) is at least λµg
2 strongly-convex in y with respect to

the metric once λ ≥ 2l f ,1µg. To see this,

Lλ(x, y) = f (x, y) + λ(g(x, y)− g∗(x))

which is at least −l f ,1 + λµg-strongly convex in y with respect to the metric. If λ > 2l f ,1/µg, this
implies at least λµg/2 strong-convexity of Lλ(x, y) in y.

By the optimality condition at y∗λ1
(x1) with x1, λ1, we have

grady f (x1, y∗λ1
(x1)) + λ1gradyg(x1, y∗λ1

(x1)) = 0,

which also implies that dM(g(x1, y∗λ1
(x1)), 0) ≤ l f ,0/λ1. Observe that

grady f (x2, y∗λ1
(x1)) + λ2gradyg(x2, y∗λ1

(x1))

=
(

grady f (x2, y∗λ1
(x1))− PTx1→x2(grady f (x1, y∗λ1

(x1)))
)
+ PTx1→x2(grady f (x1, y∗λ1

(x1)))

+ λ2

(
gradyg(x2, y∗λ1

(x1))− PTx1→x2(gradyg(x1, y∗λ1
(x1)))

)
+ λ2PTx1→x2(gradyg(x1, y∗λ1

(x1)))

=
(

grady f (x2, y∗λ1
(x1))− PTx1→x2(grady f (x1, y∗λ1

(x1)))
)

+ λ2

(
gradyg(x2, y∗λ1

(x1))− PTx1→x2(gradyg(x1, y∗λ1
(x1)))

)
+ (λ2 − λ1)PTx1→x2(gradyg(x1, y∗λ1

(x1))),

where in the last equality, we applied the optimality condition for y∗λ1
(x1). Then applying the

Lipschitzness of grady f and gradyg in x, we have

dM(grady f (x2, y∗λ1
(x1))+λ2gradyg(x2, y∗λ1

(x1)), 0) ≤ l f ,1dM(x1, x2)+ lg,1λ2dM(x2, x1)+ (λ2−λ1)
l f ,0

λ1
.

23



Since Lλ2(x2, y) is λ2µg/2-strongly convex in y with respect to the metric, from the coercivity
property of strongly-convex functions, along with the optimality condition with y∗λ2

(x2), we have

λ2µg

2
dM(y∗λ1

(x1), y∗λ2
(x2))

≤ ||∇yLλ2(x2, y∗λ1
(x1))−∇yLλ2(x2, y∗λ1

(x2))||

≤ (l f ,1 + λ2lg,1)dM(x1, x2) +
λ2 − λ1

λ1
l f ,0.

=⇒
λ2µg

2
dN (y∗λ1

(x1), y∗λ2
(x2)) ≤ ||∇yLλ2(x2, y∗λ1

(x1))|| ≤ (l f ,1 + λ2lg,1)dM(x1, x2) +
λ2 − λ1

λ1
l f ,0.

Dividing both sides by λ2µg/2 concludes the first part of the proof. Note that y∗(x) =

limλ→∞ y∗λ(x). Thus, for any x and finite λ ≥ 2l f ,1/µg,

dN (y∗λ(x), y∗(x)) ≤
2l f ,0

λµg
.

Remarks.
The Cauchy-Schwarz inequality in the context of manifolds states that for any two tangent

vectors u, v at a point, the following holds:

⟨u, v⟩ ≤ ∥u∥ · ∥v∥,

where ⟨·, ·⟩ denotes the metric and ∥ · ∥ is the norm induced by this metric.
Applying this to the inequality for strong convexity:

⟨gradx f − PTyx(grady f ), Exp−1
x (y)⟩ ≥ µ∥Exp−1

x (y)∥2,

we get:

∥gradx f − PTyx(grady f )∥ · ∥Exp−1
x (y)∥ ≥ ⟨gradx f − PTyx(grady f ), Exp−1

x (y)⟩.

Since the right-hand side of this inequality is the same as the left-hand side of the strong
convexity inequality, we can substitute it in, yielding:

∥gradx f − PTyx(grady f )∥ · ∥Exp−1
x (y)∥ ≥ µ∥Exp−1

x (y)∥2.

This form of the inequality highlights the relationship between the difference in gradients
(after parallel transport) and the geodesic distance between points x and y.

B Proofs of Theorem 2 and Corollary 3

In this section, we prove our central result in Theorem 2. The crux of this analysis revolves around
determining the upper boundary of Vk+1 −Vk concerning the potential function Vk, as elucidated
in equation 4.3, tailored to our specific setting.

About xk and yk, as characterized in RF2SA within the manifold framework, we introduce the
following notations:

Ik := dN (yk, y∗λ,k)
2, Jk := dN (zk, y∗k )

2, (B.1)
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where y∗λ,k := y∗λk
(xk), y∗k := y∗(xk), and x∗ = argminx F(x), all situated. Here, dN (·, ·) signifies

the distance metric on manifold N .
Leveraging these notations, we redefine the potential function Vk as:

Vk := (F(xk)− F(x∗)) + λklg,1 Ik +
λklg,1

2
Jk, (B.2)

for each k ∈N. In the ensuing subsections, our aim is to delineate the upper limit of Vk+1−Vk vis-
à-vis Ik and Jk, giving due consideration to the manifold’s geometry and curvature characteristics.
The proof for the Theorem 2, aptly adapted to this scenario, will be explicated in Section B.4.

B.1 Estimation of F(xk+1)− F(xk)

The selection of the step size αk is carefully chosen to fit the context of the manifold:

(step-size rule): αk ≤
1

2ξ l̃F,1
, (B.3)

where l̃F,1 is appropriately adjusted to match the manifold’s geometric properties. This adjustment
is crucial for including the negative term − ξαk

4 ∥gradF(xk)∥2
xk

in our analysis. This term is key in
the demonstration of Theorem 2, as discussed in Section B.4.

Moreover, we also stipulate:

(step-size rule):
ξ

T
≤

µg

96l̃g,1
. (B.4)

The metrics d2
N (yk+1, y∗λ,k) and d2

N (zk+1, y∗k ), will be integral to deriving our upper bound
estimates, as detailed in Propositions 3 and 5, respectively.

Proposition 1. Under the step-size rules given in equations B.3 and B.4, and λk ≥ 2l f ,1/µg, it
holds that for each k ∈N

E [F (xk+1)− F (xk) | Fk] ≤−
ξαk

4

(
2 ∥∇F (xk)∥2 + ∥qx

k∥
2
)

+
Tµgαkλ2

k
32

(
2d2
N
(
yk+1, y∗λ,k

)
+ d2

N (zk+1, y∗k )
)

+
ξ2lF,1

2

(
α2

kσ2
f + β2

kσ2
g

)
+

ξαk

2
· 3C2

λλ−2
k

where qx
k is given in equation 1, and Cλ := 4l f ,0lg,1

µ2
g

(
l f ,1 +

2l f ,0lg,2
µg

)
.

Proof. From the smoothness of F,

E [F (xk+1)− F (xk) | Fk] ≤ E

[
⟨∇F (xk) , xk+1 − xk⟩+

lF,1

2
d2
M (xk+1, xk)

∣∣∣∣Fk

]
As qx

k satisfies E [xk+1 − xk | Fk] = αkqx
k ,

E [F (xk+1)− F (xk) | Fk] = −ξαk ⟨∇xF (xk) , qx
k ⟩+

lF,1

2
E
[
d2
M (xk+1, xk) | Fk

]
= − ξαk

2

(
∥∇F (xk)∥2 + ∥qx

k∥
2 − ∥∇F (xk)− qx

k∥
2
)
+

lF,1

2
E
[
d2
M (xk+1, xk) | Fk

]
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Note that
E
[
d2
M (xk+1, xk)

]
≤ ξ2α2

kE
[
∥qx

k∥
2 + ξ2

(
α2

kσ2
f + β2

kσ2
g

)
and thus with B.3 we have

E [F (xk+1)− F (xk) | Fk] ≤ −
ξαk

2
∥∇F (xk)∥2 − ξαk

4
∥qx

k∥
2

+
ξαk

2
∥∇F (xk)− qx

k∥
2 +

ξ2lF,1

2

(
α2

kσ2
f + β2

kσ2
g

)
.

Next, we bound
∥∥∇F (xk)− qx

k

∥∥ using the triangle inequality:

∥∇F (xk)− qx
k∥ ≤

∥∥∇x f (xk, yk+1)−∇x f
(
xk, y∗λ,k

)∥∥+ λk
∥∥∇xg (xk, yk+1)−∇xg

(
xk, y∗λ,k

)∥∥
+λk ∥∇xg (xk, zk+1)−∇xg (xk, y∗k )∥+

∥∥∥∇L∗λk
(xk)−∇F (xk)

∥∥∥
From Lemma 1, the term

∥∥∥∇L∗λk
(xk)−∇F (xk)

∥∥∥ is bounded by Cλ/λk. Combining with the
regularity of f and g yields the following:

∥∇F (xk)− qx
k∥ ≤ 2lg,1λkdN (yk+1, y∗λ,k) + lg,1λkdN (zk+1, y∗k ) + Cλ/λk.

Finally, from the Cauchy-Schwartz inequality (a + b + c)2 ≤ 3
(
a2 + b2 + c2), we get

E [F (xk+1)− F (xk) | Fk] ≤ −
ξαk

2
∥∇F (xk)∥2 − ξαk

4
∥qx

k∥
2

+
ξαk

2
· 3C2

λλ−2
k + 3ξαklg,1λ2

kdN (zk+1, y∗k )
2 + 6ξαklg,1λ2

kdN (yk+1, y∗λ,k)
2 +

ξ2lF,1

2

(
α2

kσ2
f + β2

kσ2
g

)
The step-size condition B.4 concludes our claim.

B.2 Descent Lemma for yk towards y∗λ,k

In this section, we provide the upper bounds of Ik+1 and dN (yk+1, y∗λ,k) in the context of a
manifold. The following step-size rule is adapted for the manifold’s geometry:

(step-size rule):
δk

λk
≤

Tβkµg

32
, and 2ξ2Ml2

∗,1β2
k <

Tβkµg

16
(B.5)

Proposition 2. Given the step-size rule B.7, for each k ∈N, we have

E [Ik+1 | Fk] ≤
([ √

|κ|dN (y∗λ,k+1, y∗λ,k)

tanh(
√
|κ|dN (y∗λ,k+1, y∗λ,k))

]
+ 2δk/λk + Tβkµg/8 + 2Mξ2l2

∗,1β2
k

)
E
[
d2
N (yk+1, y∗λ,k)

]
+ O

(
ξ2l2
∗,0α2

k

µgTβk

)
E
[
∥τxk(q

x
k )∥2]+ O

(
δk

λ3
k

l2
f ,0

µ2
g

)
+ O

(
ξ2l2
∗,0
)
·
(

α2
kσ2

f + β2
kσ2

g

)
Here, Ik is adapted to consider the geodesic distance, and qx

k is calculated in the tangent space of
the manifold.
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Proof. We start from the version of the distance and the inner product, considering the curvature
κ:

d2
N (yk+1, y∗λ,k+1) = d2

N (yk+1, y∗λ,k)︸ ︷︷ ︸
(i)

+ d2
N (y

∗
λ,k+1, y∗λ,k)︸ ︷︷ ︸
(ii)

− 2dN (yk+1, y∗λ,k)dN (y
∗
λ,k+1, y∗λ,k) cos(∠(yk+1, y∗λ,k, y∗λ,k+1))︸ ︷︷ ︸

(iii)

Incorporating the curvature κ, we apply the Alexandrov space cosine law (Zhang and Sra,
2016):

d2
N (yk+1, y∗λ,k+1)

≤
√
|κ|dN (y∗λ,k+1, y∗λ,k)

tanh(
√
|κ|dN (y∗λ,k+1, y∗λ,k))

(
d2
N (yk+1, y∗λ,k)

)
︸ ︷︷ ︸

(i)

+ d2
N (y

∗
λ,k+1, y∗λ,k)︸ ︷︷ ︸
(ii)

− 2dN (yk+1, y∗λ,k)dN (y
∗
λ,k+1, y∗λ,k) cos(∠(yk+1, y∗λ,k, y∗λ,k+1))︸ ︷︷ ︸

(iii)

The upper bound of (i) is given in Proposition 3 below. To bound (ii), we invoke Lemma 2,
yielding

(ii) E
[
d2
N
(
y∗λ,k+1, y∗λ,k

)
| Fk

]
≤

4δ2
k

λ2
kλ2

k+1

l2
f ,0

µ2
g
+ l2
∗,0E

[
d2
N (xk+1, xk) | Fk

]
≤

4δ2
k

λ4
k

l2
f ,0

µ2
g
+ ξ2l2

∗,0

(
α2

kE
[
∥τxk(q

x
k )∥2]+ α2

kσ2
f + β2

kσ2
g

)
where τxk(q

x
k ) denotes the parallel transport of the search direction qx

k at the point xk along the
manifold.

For (iii), considering the smoothness property of y∗λ(x) as per a generalized version of Lemma
A.3, and thus Lemma A.6, we set v = Exp−1

y∗λ,k
(yk+1) and ηk = Tµgλk/(16ξ), we obtain

(iii) ≤
(
2δk/λk + Tβkµg/8 + 2Mξ2l2

∗,1β2
k
)

E
[
d2
N (yk+1, y∗λ,k) | Fk

]
+ ξ2

(
α2

k
2

+
8α2

k l2
∗,0

µgTβk

)
E
[
∥τxk(q

x
k )∥2]+ ξ2

2

(
α2

kσ2
f + β2

kσ2
g

)
+

2δk

λ3
k

l2
f ,0

µ3
g

We sum up the (i), (ii), (iii) to conclude

E [Ik+1 | Fk] ≤
([ √

|κ|dN (y∗λ,k+1, y∗λ,k)

tanh(
√
|κ|dN (y∗λ,k+1, y∗λ,k))

]
+ 2δk/λk + Tβkµg/8 + 2Mξ2l2

∗,1β2
k

)
E
[
d2
N (yk+1, y∗λ,k)

]
+ O

(
ξ2l2
∗,0α2

k

µgTβk

)
E
[
∥τxk(q

x
k )∥2]+ O

(
δk

λ3
k

l2
f ,0

µ2
g

)
+ O

(
ξ2l2
∗,0
)
·
(

α2
kσ2

f + β2
kσ2

g

)
Lastly, the step-size rule B.5 yields our conclusion.
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Next, we note that αk and βk are chosen to satisfy

(step size rules): αk ≤
1

8l f ,1
and βk ≤

1
8lg,1

(B.6)

Note that βk ≤ 1
8lg,1

is given from the step-size condition (3a), and αk ≤ 1
8lg,1λk

≤ 1
8l f ,1

since
λk ≥ l f ,1/µg.

Proposition 3. Under the given step-size rules, it holds that for each k ∈N

E
[
d2
N
(
yk+1, y∗λ,k

)
| Fk

]
≤

 √
|κ|dN

(
y(t+1)

k , y(t)k

)
tanh(

√
|κ|dN

(
y(t+1)

k , y(t)k

)
)

− 3Tµgβk/4

 Ik + T
(

α2
kσ2

f + β2
kσ2

g

)
Proof. Since the expected value of the difference between successive iterations in a manifold can

be expressed as E

[
Exp−1

y(t+1)
k

(y(t)k ) | Fk

]
= −αk∇yq(t)k = −αk∇yLλk(xk, y(t)k ), we have

E
[
d2
N

(
y(t+1)

k , y∗λ,k

)
| Fk

]
≤

√
|κ|dN

(
y(t+1)

k , y(t)k

)
tanh(

√
|κ|dN

(
y(t+1)

k , y(t)k

)
)

(
d2
N

(
y(t)k , y∗λ,k

))
+ d2

N

(
y(t+1)

k , y(t)k

)
− 2dN

(
y(t)k , y∗λ,k

)
dN
(

y(t+1)
k , y(t)k

)
cos(∠(y(t)k , y∗λ,k, y(t+1)

k ))

Given that λ0 ≥ 2µ f /µg, and all Lk is strongly convex in y, the following inequality holds

max
(

λkµg

2
d2
N

(
y(t)k , y∗λ,k

)
,

1
l f ,1 + λklg,1

∥∇yq(t)k ∥
2
)
≤ ⟨∇yq(t)k , Exp−1

y(t)k

(y∗λ,k)⟩

Using the Alexandrov space result to approximate the expected squared distance, we have

E
[
d2
N

(
y(t+1)

k , y∗λ,k

)
| Fk

]
≤

 √
|κ|dN

(
y(t+1)

k , y(t)k

)
tanh(

√
|κ|dN

(
y(t+1)

k , y(t)k

)
)
−

3µgβk

4

 d2
N

(
y(t)k , y∗λ,k

)
+ α2

kσ2
f + β2

kσ2
g ,

where αk
(
l f ,1 + λklg,1

)
= αkl f ,1 + βklg,1 ≤ 1/4 under condition B.6. Repeating this process

T times as per the algorithm leads to the conclusion in Proposition 3, where yk+1 = y(T)k and

yk = y(0)k .

B.3 Descent Lemma for zk towards y∗k
Similar to the previous section, we provide the upper bound of Jk+1 first and then estimate
dN (zk+1, y∗k ) that appears in the upper bound. We work with the following step-size condition:

(step-size rule): 2Ml2
∗,1ξ2β2

k ≤ Tµgγk/16 (B.7)

This condition holds since βk ≤ γk, and βk ≤ 1
4Tµg

and ξ2

T2 ≤
µ2

g
8

(
Ml2
∗,1

)−1
.
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Proposition 4. Under the step-size rule B.7, at each kth iteration, the following holds:

E [Jk+1 | Fk] ≤
( √

|κ|dN
(
y∗k+1, y∗k

)
tanh(

√
|κ|dN

(
y∗k+1, y∗k

)
)
+

3Tγkµg

8

)
·E
[
d2
N (zk+1, y∗k ) | Fk

]
+ O

(
ξ2α2

k l2
∗,0

Tµgγk

)
∥qx

k∥
2 + O

(
ξ2l2
∗,0
) (

α2
kσ2

f + β2
kσ2

g

)
Proof. We estimate each term in the following decomposition.

dN
(
zk+1, y∗k+1

)2 ≤
√
|κ|dN

(
y∗k+1, y∗k

)
tanh(

√
|κ|dN

(
y∗k+1, y∗k

)
)

(
dN (zk+1, y∗k )

2
)

︸ ︷︷ ︸
(i)

+ dN
(
y∗k+1, y∗k

)2︸ ︷︷ ︸
(ii)

− 2dN (zk+1, y∗k ) dN
(
y∗k+1, y∗k

)
cos(∠(zk+1, y∗k , y∗k+1))︸ ︷︷ ︸

(iii)

Lemma 2 (A.6) implies that

(ii) E
[∥∥y∗k+1 − y∗k

∥∥2 | Fk

]
≤ l2
∗,0ξ2

(
α2

k ∥∇xqk∥2 + α2
kσ2

f + β2
kσ2

g

)
For (iii), we recall Lemma A.5 with vk = zk+1 − y∗k and ηk = Tµgγk/ (8ξαk), we have

(iii) ⟨Exp−1
y∗k
(zk+1), Exp−1

y∗k
(y∗k+1)⟩ ≤

(
Tγkµg/8 + Mξ2l2

∗,1β2
k
)

E
[
d2
N (zk+1, y∗k ) | Fk

]
+

(
ξ2α2

k
4

+
2ξ2α2

k l2
∗,0

Tµgγk

)
∥∇xqk∥2 +

ξ2

4

(
α2

kσ2
f + β2

kσ2
g

)
The above bounds and Proposition 5 imply that

E [Jk+1 | Fk] ≤
( √

|κ|dN
(
y∗k+1, y∗k

)
tanh(

√
|κ|dN

(
y∗k+1, y∗k

)
)
+

Tγkµg

4
+ 2Mξ2l2

∗,1β2
k

)
·E
[
dN (zk+1 − y∗k )

2 | Fk

]
+ ξ2α2

k ·
(

l2
∗,0 +

4l2
∗,0

Tµgγk
+

1
2

)
∥qx

k∥
2 + ξ2 ·

(
1
2
+ l2
∗,0

)(
α2

kσ2
f + β2

kσ2
g

)
Using B.7, we conclude.

Next, γk is chosen to satisfy the following step-size rules:

(step-size rule): lg,1γk ≤ 1/4, Tµgγk ≤ 1/4 (B.8)

which directly comes from 4.1a.

Proposition 5. If B.8 holds, then for each k ∈N, the following holds:

E
[
dN (zk+1, y∗k )

2 | Fk

]
≤
(
C− 3Tµgγk/4

)
Jk + Tγ2

kσ2
g
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Proof. We analyze one step iteration of the inner loop: for each t = 0, · · · , T − 1.
Using the Alexandrov space cosine law:

dN
(

z(t+1)
k , y∗k

)2
≤

√
|κ|dN

(
z(t)k , y∗k

)
tanh

(√
|κ|dN

(
z(t)k , y∗k

))dN
(

z(t)k , y∗k
)2

+ γ2
kdN

(
hk,t

gz

)2

− 2γkdN
(

hk,t
gz

)
dN
(

z(t)k , y∗k
)

cos(∠(hk,t
gz , z(t)k , y∗k )),

Here, zk+1 = z(T)k and zk = z(0)k . Note that E
[

hk,t
gz

]
= ∇yg

(
xk, z(t)k

)
= ∇ygk

(
z(t)k

)
where

gk

(
z(t)k

)
:= g

(
xk, z(t)k

)
. Taking expectation,

E

[
dN
(

z(t+1)
k , y∗k

)2
| Fk

]
≤

√
|κ|dN

(
z(t)k , y∗k

)
tanh

(√
|κ|dN

(
z(t)k , y∗k

))dN
(

z(t)k , y∗k
)2

+ γ2
kσ2

g − γk(1− lg,1γk)dN
(
∇gk

(
z(t)k

))
dN
(

z(t)k , y∗k
)

,

The strong convexity and smoothness of gk imply the coercivity and co-coercivity (Nesterov
et al., 2018), that is,

max
(

µgd2
N (z

(t)
k , y∗k ),

1
lg,1

d2
N

(
∇gk

(
z(t)k

)
,∇gk (y∗k )

))
≤ dN

(
∇gk

(
z(t)k

)
,∇gk (y∗k ) , z(t)k , y∗k

)
Note that y∗k minimizes gk(y). Use this to cancel out γ2

kdN
(
∇gk

(
z(t)k

))2
, yielding

E
[
d2
N (z

(t+1)
k , y∗k ) | Fk

]
≤

√
|κ|dN (z(t)k , y∗k )

tanh
(√
|κ|dN (z(t)k , y∗k )

)d2
N (z

(t)
k , y∗k )

+ γ2
kσ2

g − γk(1− lg,1γk)dN
(
∇gk

(
z(t)k

)
,∇gk (y∗k ) , z(t)k , y∗k

)
≤

 √
|κ|dN (z(t)k , y∗k )

tanh
(√
|κ|dN (z(t)k , y∗k )

) − 3µgγk

4

 d2
N (z

(t)
k , y∗k ) + γ2

kσ2
g .

For this to hold we need step-size condition B.8. We can repeat this T times and get the result.

Here we’re using
√
|κ|dN (z

(t)
k ,y∗k )

tanh
(√
|κ|dN (z

(t)
k ,y∗k )

) < C for some C > 0 for all values of t.

B.4 Proof of Theorem 2

Let us revisit the potential function Vk within the Riemannian context:

Vk+1 −Vk = F(xk+1)− F(xk) + λk+1lg,1Ik+1 − λklg,1Ik

+
λk+1lg,1

2
Jk+1 −

λklg,1

2
Jk,
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Utilizing an adaptation of Proposition 1 and reorganizing terms, we obtain:

E[Vk+1 −Vk | Fk] ≤−
ξαk

2
∥ grad F(xk)∥2 − ξαk

4
E[∥qx

k∥2 | Fk] +
ξαk

2
· 3C2

λλ−2
k

+
ξ2lF,1

2
(α2

kσ2
f + β2

kσ2
g)

+ lg,1 E[λk+1Ik+1 +
λkTβkµg

16
dN (yk+1, y∗λ,k)

2 − λkIk | Fk]︸ ︷︷ ︸
(i)

+
lg,1

2
E[λk+1Jk+1 +

λkTγkµg

32
dN (zk+1, y∗k )

2 − λkJk | Fk]︸ ︷︷ ︸
(ii)

,

From proposition 2 and λk+1 = λk + δk, we get:

(i) ≤ λk

([ √
|κ|dN (y∗λ,k+1, y∗λ,k)

tanh(
√
|κ|dN (y∗λ,k+1, y∗λ,k))

]
+

5Tβkµg

16
+

δk

λk

)
E
[
d2
N (yk+1, y∗λ,k) | Fk

]
− λkIk

+ O
(
ξ2l2

λ,0
) λkα2

k
µgTβk

d2(qx
k , 0) + O

(
ξ2l2
∗,0
)

λk(α
2
kσ2

f + β2
kσ2

g) + O

(
l2

f ,0

µ3
g

)
δk

λ2
k︸ ︷︷ ︸

(iii)

.

Given the step-size rules B.7, we obtain:

(i) ≤ λk

([ √
|κ|dN (y∗λ,k+1, y∗λ,k)

tanh(
√
|κ|dN (y∗λ,k+1, y∗λ,k))

]
+

Tβkµg

2

)
E
[
d2
N (yk+1, y∗λ,k) | Fk

]
− λkIk + (iii).

Leveraging Proposition 3 within the framework to estimate d2
N (yk+1, y∗λ,k), we derive:

(i) ≤ −
λkTµgβk

4
Ik + O

(
ξ2l2
∗,0
) αk

µgT
+ (iii)

= −
λkTµgβk

4
Ik + O

(
ξ2l2
∗,0
) αk

µgT
+ O

(
T + ξ2l2

∗,0
)

λk(α
2
kσ2

f + β2
kσ2

g) + O

(
l2

f ,0

µ3
g

)
δk

λ2
k

.

Given the inequality (1 + a/2)(1− 3a/4) ≤ 1− a/4 for a > 0, we estimate the term (ii) using
Proposition 4:

(ii) ≤ λk

( √
|κ|dN (y∗k+1, y∗k )

tanh(
√
|κ|dN (y∗k+1, y∗k ))

+
δk

λk
+

3Tγkµg

8
+

λkTβkµg

32

)
E
[
dN (zk+1, y∗k )

2 | Fk

]
− λkJk

+ O
(
ξ2l2
∗,0
) λk+1α2

k
Tµgγk

∥qx
k∥

2 + O
(
ξ2λk+1l2

∗,0
) (

α2
kσ2

f + β2
kσ2

g

)
︸ ︷︷ ︸

(iv)

.

Assuming βk ≤ γk, and thus δk/λk < Tµgγk/32, we have:
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(ii) ≤ λk

( √
|κ|dN (y∗k+1, y∗k )

tanh(
√
|κ|dN (y∗k+1, y∗k ))

+
Tγkµg

2

)
E
[
d (zk+1, y∗k )

2 | Fk

]
− λkJk + (iv).

Following the argument for (i), Proposition 5 provides:

(ii) ≤ −
λkTµgγk

4
Jk + O

(
ξ2l2
∗,0
) αkβk

Tµgγk
∥qx

k∥
2 + O

(
ξ2λkl2

∗,0
) (

α2
kσ2

f + β2
kσ2

g

)
+ O (λk) Tγ2

kσ2
g .

Upon combining the bounds for (i) and (ii) and rearranging terms, we obtain:

E [Vk+1 −Vk | Fk] ≤ −
ξαk

2
∥∇F (xk)∥2 +

ξαk

2
· 3C2

λλ−2
k +

ξ2lF,1

2

(
α2

kσ2
f + β2

kσ2
g

)
− ξαk

4

(
1−O

(
ξlg,1l2

∗,0βk

µgTγk

)
−O

(
ξlg,1l2

∗,0
µgT

))
E
[
∥qx

k∥
2 | Fk

]
−

λklg,1Tµgβk

4
Ik −

λklg,1Tµgγk

4
Jk

+ O
(
T + ξ2l2

∗,0
)
· lg,1λk

(
α2

kσ2
f +

(
β2

k + γ2
k
)

σ2
g

)
+ O

(
lg,1l2

f ,0

µ3
g

)
δk

λ2
k

.

A key requirement is that terms driven by E
[
d2(qx

k , 0)
]

remain negative. To ensure this, we
impose:

(Step-size rules): ξlg,1l2
∗,0βk ≤ c1µgTγk,

ξlg,1l2
∗,0 ≤ c2µgT,

(B.9)

for some absolute constants c1, c2 > 0, which are achievable given βk ≤ γk and condition (3b)
with sufficiently small cξ > 0. Upon satisfying these conditions, we derive that:

E [Vk+1 −Vk | Fk] ≤ −
ξαk

2
grad2 F(xk)−

λkTµgγk

4
d2
N (zk, y∗k )−

λkTµgβk

4
d2
N (yk, y∗λ,k)

+ O
(
ξC2

λ

) αk

λ2
k
+ O

(
lg,1l2

f ,0

µ3
g

)
δk

λ2
k
+ O

(
ξ2lF,1

)
(α2

kσ2
f + β2

kσ2
g)

+ O
(
T + ξ2l2

∗,0
)
· lg,1λk(α

2
kσ2

f + (β2
k + γ2

k)σ
2
g).

Summing over k = 0 to K− 1, and focusing on the dominant terms, given that ∑k δk/λ2
k = O(1)

(due to δk/λk = O(1/k) and λk = poly(k)), leads us to the theorem conclusion.
Note: The effect of the sectional curvature κ here is negligible because we’re implicitly

using the approximation x/ tanh(x) ≈ 1 + x2/3 + O(x4). Terms like
√
|κ|d(wk ,wk+1)

tanh(
√
|κ|d(wk ,wk+1))

≈ 1 +

|κ|d2(wk, wk+1)/3 + O(·) appear in the Alexandrov space cosine law. Summing from k = 0 to
K− 1 and focusing on dominant terms, the curvature κ’s effect on the final result is negligible, since
negative terms like −grad2F(xk), -d2

N (zk, y∗k ), and -d2
N (yk, y∗λ,k) do not affect the final inequality.
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B.5 Proof of Corollary 3

We begin by establishing that the step-size design within the theorem ensures λk = γk/(2αk) for
all k. This follows from the initial condition λ0 = γ0/(2α0) and, by mathematical induction, we
derive:

Tµg

16
αkλ2

k =
T
32

cγ

2cα
(k + k0)

−2c+a

and

cγ

2cα

(
(k + k0 + 1)a−c − (k + k0)

a−c) ≤ (a− c)cγ

2cα
(k + k0)

−1−c+a.

Given that c ≤ 1 and T ≥ 32, it holds that

λk+1 =
cγ

2cα
(k + k0 + 1)a−c =

γk+1

2αk+1
.

By applying the step-size designs to a manifold, we obtain:

K−1

∑
k=0

E[∥ grad F(xk)∥2]

(k + k0)a ≤ OP(1) ·∑
k

1
(k + k0)3a−2c

+ OP(σ
2
f ) ·∑

k

1
(k + k0)a+c

+ OP(σ
2
g) ·∑

k

1
(k + k0)3c−a + OP(1).

The choices of rates a, c ∈ [0, 1] depend on the specific stochasticity of the gradients. Letting
b = a− c, and with the step-size design, λk = γk/(2αk) = O(kb). Considering a random variable
R uniformly distributed over {0, 1, ..., K}, the inequality is reframed as:

K
(K + k0)a E[∥ grad F(xR)∥2] ≥ K1−a ·E[∥ grad F(xR)∥2]

We examine three scenarios based on the stochasticity in the upper and lower-level objectives:

1. Stochastic in both objectives (σ2
f , σ2

g > 0): Setting a = 5/7, c = 4/7 leads to λk = O(k1/7).
The dominating term becomes O(log K), resulting in:

E[∥ grad F(xR)∥2] = O
(

log K
K2/7

)
.

2. Stochastic only in the upper-level (σ2
f > 0, σ2

g = 0): Here, a = 3/5, c = 2/5 is chosen,
simplifying to:

E[∥ grad F(xR)∥2] = O
(

log K
K2/5

)
.
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3. Deterministic case (σ2
f = 0, σ2

g = 0): With a = 1/3, c = 0, we find:

∥ grad F(xK)∥2 = O
(

log K
K2/3

)
.

This proof adaptation ensures that the step-size and λk designs are tailored for the geometric
complexities of Riemannian manifolds, thereby facilitating convergence under various stochastic
settings.
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