
Saliency Guided Longitudinal Medical Visual Question
Answering

Jialin Wu
Dept. of Computer Science and Engineering

University of California, San Diego
San Diego, CA 92037
jlwu@ucsd.edu

Xiaofeng Liu
Dept. of Radiology and Biomedical Imaging

Yale University
New Haven, CT 06510

xiaofeng.liu@yale.edu

Abstract

Longitudinal medical visual question answering (Diff-VQA) requires comparing
paired studies from different time points and answering questions about clinically
meaningful changes. In this setting, the difference signal and the consistency of
visual focus across time are more informative than absolute single-image findings.
We propose a saliency-guided encoder–decoder for chest X-ray Diff-VQA that
turns post-hoc saliency into actionable supervision. The model first performs a
lightweight near-identity affine pre-alignment to reduce nuisance motion between
visits. It then executes a within-epoch two-step loop: step 1 extracts a medically
relevant keyword from the answer and generates keyword-conditioned Grad-CAM
on both images to obtain disease-focused saliency; step 2 applies the shared
saliency mask to both time points and generates the final answer. This closes the
language–vision loop so that the terms that matter also guide where the model
looks, enforcing spatially consistent attention on corresponding anatomy. On
Medical-Diff-VQA, the approach attains good performance on BLEU, ROUGE-
L, CIDEr, and METEOR while providing intrinsic interpretability. Notably, the
backbone and decoder are general-domain pretrained without radiology-specific
pretraining, highlighting practicality and transferability. These results support
saliency-conditioned generation with mild pre-alignment as a principled framework
for longitudinal reasoning in medical VQA.

1 Introduction

Medical Visual Question Answering (VQA) aims to answer open-ended clinical questions based on
medical images, serving as a critical bridge from visual perception to clinical decision support [1].
Numerous medical VQA approaches in recent years have relied on pretrained visual or multimodal
models [2, 3, 4]. However, most of these works focus on a single time-point following the natural
image VQA tasks. Radiologists routinely compare current and prior studies to localize change, judge
progression, and reconcile apparent discrepancies.

Difference/longitudinal visual question answering (Diff-VQA) operationalizes this workflow by
conditioning answers on paired images acquired at two time points, where the difference is often
the signal of interest rather than absolute appearance [5]. Recent benchmarks and methods for
longitudinal chest X-rays have made this task concrete by supplying paired images, questions,
and change-focused references [6, 7, 8]. Building on these resources, several approaches adapt
vision–language models or design task-specific architectures to better capture temporal discrepancies,
including prior work that emphasizes longitudinal pretraining [9], residual alignment in the feature
or pixel space [10], or region-level retrieval and mixing [11]. However, their attention in different
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time-points is not explicitly encouraged to be consistent, which is essential for the compare and
contrast to explore the difference.

Saliency maps are a type of saliency visualization used to interpret deep learning models. In medical
imaging tasks, they are widely employed to present verifiable evidence to clinicians and enhance
model interpretability and trustworthiness [12]. In medical VQA tasks, researchers frequently employ
attention/saliency visualizations to verify whether models focus on relevant image evidence when
generating responses, reflecting the critical need for explainable and traceable reasoning processes in
high-stakes medical contexts [1]. However, existing medical-VQA models often treat saliency as a
post-hoc explanation [13, 14, 15] rather than incorporating it as intrinsic supervision during training.
In longitudinal settings this is a missed opportunity because consistent focus on corresponding
anatomy across the two time points is essential to answering difference-type questions faithfully.

We introduce a saliency-guided longitudinal VQA framework that makes saliency actionable during
learning. The method has two design principles: (i) make the two images geometrically comparable
and (ii) ensure that what the model says it cares about also determines where it looks at both time
points, inspired by natural image co-attention [16, 17]. Specifically, we have two modules. • Micro
pre-alignment. A lightweight CNN-based module applies a near-identity affine warp to the current
study to mitigate small pose and scale variations without overfitting or erasing true changes [18]. •
Keyword-conditioned shared saliency. Within each training epoch we run a two-step loop akin to
the Expectation Maximization Algorithm [19]. First, a language model extracts one clinically salient
keyword from the ground-truth answer. We compute keyword-conditioned Grad-CAM on both time
points and take their union to form a shared saliency mask. Second, we re-encode masked images and
generate the answer with a multimodal decoder, which ties linguistic supervision to spatial evidence
and encourages consistent attention on the same anatomical regions across time.

The main contributions can be summarized as:

•We formalize a simple and effective way to enforce spatially consistent attention across paired
images by using keyword-conditioned, shared saliency as a training signal for Diff-VQA.

•We couple this with a minimal pre-alignment module that improves longitudinal comparability
while preserving true differences.

•We demonstrate competitive results on Medical-Diff-VQA using only general-domain pretrained
backbones and decoders, yielding strong practicality and inherent interpretability without radiology-
specific pretraining.

2 Methods

We use the longitudinal chest radiograph Diff-VQA dataset, Medical-Diff-VQA [5, 6], which con-
structs samples from paired studies of the same subject at two time points together with a difference-
focused question–answer pair. The dataset is derived from MIMIC-CXR [20] and MIMIC-CXR-
JPG [21] and was obtained from PhysioNet [22]. All usage follows the PhysioNet credentialed-access
license and de-identification guidelines. The corpus contains 164,223 samples, split into 131,556 for
training, 16,278 for validation, and 16,389 for testing.

An overview appears in Figure 1. The pipeline has two components: a micro image registration
module and a keyword-conditioned saliency extraction module, followed by image–text encoders and
a multimodal decoder.

2.1 Micro Image Registration Module

Given a main image Imain ∈ R3×H×W and a reference image Iref ∈ R3×H×W , a shallow CNN
predicts 2D affine parameters Θ = [A t] ∈ R2×3. We warp only the main image with a differentiable
grid sampler:

x = Axtgt + t.

To keep the transform near identity and avoid erasing true anatomical change, we regularize

Lreg = wsmall∥Θ− I∥2F + wdet(det(A)− 1)2 + wtrans∥t∥22,

with wsmall = 10−4, wdet = 10−5, and wtrans = 10−6. The registered image is Îmain.
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Stage 2: Saliency-Guided Answer Generation
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Figure 1: Overview of our proposed method. The step 1 is for saliency extraction, and step 2 is for
answer generation. Saliency extraction and application are based on the after-registration images.
Grad-CAM uses the keyword as the explanation target. Zmain, Zref, Zqtn are extracted representations
for the main image, reference image and question. ⟨·⟩ denotes special tokens for separation.

2.2 Saliency Extraction Module

We compute gradient-based saliency on the registered pair using Grad-CAM [23, 24]. A single
clinical keyword is extracted from the answer using Llama 3:70B [25, 26] and used as the target
concept for saliency. We obtain maps Smain and Sref on Îmain and Iref, respectively, then form a shared
mask by element-wise maximum, S = max(Smain, Sref). After min–max normalization of S to [0, 1],
we apply it multiplicatively to both images:

I ′main = S ⊙ Îmain, I ′ref = S ⊙ Iref.

This encourages consistent focus on corresponding anatomy at both time points while retaining
non-salient context with attenuated weight.

2.3 Encoders and Decoders

Image encoder and projector. We use ResNet-50 [27] pretrained on ImageNet-1k [28]. From its
penultimate feature map RH×W×C we form a token sequence RN×C with N = HW . A projector
with one linear layer, one 8-head Transformer encoder [29], and a two-layer MLP maps image tokens
to the text-representational space.

Text encoder. Questions are tokenized with embeddings shared by the decoder, then added with a
learnable positional embedding and passed through six 12-head Transformer encoder layers.

Multimodal decoder. A GPT-2 [30] decoder from HuggingFace [31] consumes masked image
tokens and question tokens to generate the answer. We add special tokens ⟨pad⟩, ⟨img⟩, ⟨qtn⟩, and
⟨ans⟩. Denote the main image representation as Zmain, the reference image representation as Zref, and
the question representation as Zqtn .The input sequence is

concat(⟨img⟩, Zmain, ⟨img⟩, Zref, ⟨qtn⟩, Zqtn, ⟨ans⟩).

2.4 Training and Inference

Training. During training, the ground-truth answer provides the keyword for saliency. The total
loss is the sum of registration and language modeling terms, LTotal = Lreg + LLM. We run a 1-epoch

3



warm-up without saliency masking, then enable the two-step loop for the remaining epochs of a
16-epoch schedule.

Inference. We use a two-pass procedure. First, the decoder generates a preliminary answer without
masking, from which we extract a keyword. Second, we compute keyword-conditioned saliency on
both images, apply the shared mask, and regenerate the final answer using the masked inputs. For
latency-sensitive use, a single-pass variant without masking is available, but the two-pass variant
better enforces longitudinal consistency.

3 Results

We adopt common generation metrics in VQA, BLEU-1/2/3/4 [32] (n-gram precision with a brevity
penalty), METEOR [33] (stem matching with an emphasis on recall), ROUGE-L [34] (overlap and
longest common subsequence), and CIDEr [35] (a TF-IDF based consensus metric) to evaluate
different aspects such as surface-level matching, semantic alignment, and consistency with human
references. To emphasize the medical keyword and semantic meaning, also considering the scale of
the metrics, we combine METEOR and CIDEr as

0.6 · CIDEr

1 + CIDEr
+ 0.4 ·METEOR,

to select the model that performs the best at the end of training.

Table 1: Evaluation on Medical-Diff-VQA comparing ours with prior works.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

MCCFormers [36] 0.214 0.190 0.170 0.153 0.319 0.340 0
IDCPCL [37, 10] 0.614 0.541 0.474 0.414 0.303 0.582 0.703
EKAID [5, 10] 0.628 0.553 0.491 0.434 0.339 0.557 1.027
RegioMix [11] 0.705 0.633 0.572 0.517 0.381 0.651 1.804
PLURAL [9] 0.704 0.633 0.575 0.520 0.381 0.653 1.832
ReAl [10] 0.710 0.636 0.580 0.530 0.395 0.736 2.409
VED [38] 0.716 0.647 0.590 0.537 0.389 0.670 2.119

Ours 0.628 0.510 0.418 0.341 0.651 0.627 1.263

Table 1 shows that, although our BLEU-1/2/3/4 scores are modest, they still indicate non-trivial
lexical precision: the model reliably reproduces key clinical tokens (e.g., anatomy, laterality, lesion
attributes) across paired studies rather than collapsing to generic templates. Conversely, METEOR
is notably high (0.651), evidencing strong synonym and inflectional coverage, while ROUGE-L
(0.627) and CIDEr (1.263) suggest that the generated answers preserve sentence-level coverage
and place appropriate emphasis on TF-IDF-informative, clinically salient phrases. Together, these
metrics indicate that saliency guidance and keyword-conditioned targets help the decoder to provide a
focus on disease-bearing regions/terms, resulting in good semantic adequacy with more conservative
n-gram precision.

The overall room for improvement is understandable. First, none of our components were adapted
to medical data: the general-purpose image backbone and text decoder were used off-the-shelf
without further pretraining on radiology images and texts, and the keyword extractor relied on a
general-purpose LLM rather than a domain-specialized model. Second, the current checkpoint was
trained for 16 epochs, which likely limited convergence of our model; longer training (with an
extended warm-up before enabling saliency) could benefit n-gram precision. Third, our registration is
intentionally lightweight and near-identity, which may under-correct inter-visit motion differences;
such residual misalignment can depress BLEU-n while still allowing METEOR/CIDEr to reflect
correct semantics.
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A Appendix and Discussions

This paper proposes a generative framework for longitudinal medical image differential question-
answering. It combines near-identity affine registration, dual-image encoding, and a text-image
generation decoder to establish a closed-loop process from keywords to saliency (CAM) to feature
weighting. This ensures consistent alignment between linguistic cues and visual evidence during
both training and inference phases, thereby enhancing the localizability of lesion-related regions and
the interpretability of answers. It is crucial to emphasize that all backbone models and decoders in
this work are pre-trained on general-purpose datasets without further training on medical data. The
LLM used for keyword extraction is also a general-purpose model, further highlighting the method’s
transferability and engineering feasibility.

Despite the aforementioned progress, this study has limitations. The additional saliency extraction
step introudces large time complexity. When keyword extraction relies on general-purpose LLMs
rather than medically specialized pre-trained models, it may omit critical lesion terminology or
introduce overly generic vocabulary, thereby weakening visual alignment effectiveness. Additionally,
the currently employed affine registration is relatively simple and may struggle to accommodate
drastic variations in pose and imaging conditions. Apart from that, since current data and tasks focus
on the difference problem within the MIMIC framework, cross-dataset generalization remains to be
validated. Furthermore, the absence of medical retraining may limit the upper performance bound.
Finally, as this is an ongoing study, further exploration is needed regarding the impact of additional
ablation studies, keyword extraction and saliency method selection, and larger encoders on model
performance.

Despite these limitations, this study holds substantial significance and value. We pioneered the
conversion of medically relevant keywords automatically extracted by general-purpose LLMs into
saliency targets for feature weighting. This establishes a closed-loop mechanism where language
supervision directly constrains visual attention, systematically enhancing evidence utilization and
model interpretability without requiring medical pre-training. Given that medical question-answering
is often driven by lesion nouns and key anatomical locations, these keywords provide sparse yet
strongly constrained supervisory signals, demonstrating both necessity and novelty. The compre-
hensive workflow provides a reusable baseline and engineering paradigm for future extensions to
stronger visual backbones, more sophisticated deformation models, and larger language models.
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