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ABSTRACT

Brain-inspired spiking neural networks (SNNs) have drawn wide attention re-
cently since they are biologically plausible and neuromorphic hardware-friendly.
To obtain low-latency (i.e., a small number of timesteps) SNNs, the surrogate gra-
dients (SG) method has been widely applied. However, SNNs trained by the SG
method still have a huge performance gap from artificial neural networks (ANNs).
In this paper, we find that the knowledge distillation paradigm can effectively al-
leviate the performance gap by transferring the knowledge from ANNs (teacher)
to SNNs (student), but it remains a problem to find the architecture of teacher-
student pairs. We introduce neural architecture search (NAS) and find that the
performance is insensitive to the architectures of SNNs. Hence, we choose the
same architecture for ANN-teacher and SNN-student since it is easy to imple-
ment and the student can initiate the weight from the teacher. We thus propose
a Self-Architectural Knowledge Distillation framework (SAKD), which transfers
the knowledge (i.e., the features and logits) of ANNs to that of SNNs with the
same architecture. Although adopting a teacher model in training, SNNs trained
via our SAKD still keep ultra-low latency (T=4) compared with other methods
and achieve state-of-the-art performance on a variety of datasets (e.g., CIFAR-10,
CIFAR-100, ImageNet, and DVS-CIFAR10), and we demonstrate that this simple
training strategy can provide a new training paradigm of SNNs.

1 INTRODUCTION

Deep neural networks have achieved great success in the last decade and made breakthrough
progress on various tasks. Recently, there has been a lot of interest in brain-inspired spiking neural
networks (SNNs), which are third-generation neural networks by mimicking biological neurons and
spike firing patterns (Maass, 1997; Gerstner et al., 2014; Roy et al., 2019). At the same time, with the
development of neuromorphic hardware, spiking neural network has broad application prospects,
due to their advantages in low-energy computing and adaptability with neuromorphic hardware.
However, because of their complex neuronal dynamics and the non-differentiable spike firing, SNNs
still face optimization difficulties under the current deep learning framework dominated by gradient
backpropagation, which limits its performance.

A convenient solution is skipping the gradient backpropagation phase and directly conversing a pre-
trained ANN to SNN through weight sharing and substitution activation functions, named ANN-
to-SNN conversion as shown in Figure 1. However, the practice of this strategy is limited by the
extremely high latency. To achieve the performance of ANNs, the number of timesteps are always
large (e.g., 256 steps in Li et al. (2021); Bu et al. (2021) and 2048 steps in Han et al. (2020)),
which lead to extremely high computation cost. Better methods are in urgent need to reduce the
timestep while maintaining the performance. Another mainstream method is direct training SNNs
with backpropagation (Neftci et al., 2019; Meng et al., 2022), and we summarize this series of
methods as BP-for-SNN. These studies have addressed the problem of non-differentiable spiking
activation function for backpropagation learning. A typical solution is to design the backpropagation
gradient by accumulating inputs and outputs in a certain period of time (Meng et al., 2022; Wu et al.,
2021a). However, this method still needs a large number of timesteps to ensure the reliability of the
designed backpropagation gradient to maintain high performance. In contrast, to train an ultra-low-
latency SNN, some studies (Wu et al., 2018; Shrestha & Orchard, 2018; Lee et al., 2016; Huh &
Sejnowski, 2018; Lee et al., 2020; Neftci et al., 2019) have proposed the surrogate gradient (SG)
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Figure 1: An illustration of existing mainstream SNNs training methods. (a): Convert pre-trained
ANNs to SNNs (ANN-to-SNN). (b): Gradient back-propagation training SNNs (BP-for-SNN). (c):
Our proposed method: knowledge of ANNs is transferred to SNNs of the same architecture through
features and logits distillation (SAKD).

method. They train the SNN with backpropagation through time (BPTT) and greatly reduce the
timesteps. However, limited by the self-accumulating dynamics (Fang et al., 2021b) and the unique
spike activation function, the SG method usually suffers from the problems of gradient vanishing
or exploding, and deeper SNNs are still unable to converge completely ((e.g., ResNet-101/152)).
Moreover, the performance of directly trained SNNs is still far behind that of ANNs.

In this paper, we seek knowledge distillation (Hinton et al., 2015) to alleviate the problem. The
knowledge distillation can transfer the knowledge of the high-performance teacher to improve the
weak-performance student. In addition, features and logits distillation can provide effective super-
vision signals in the shallow, middle and deep layers of the network to optimize the convergence of
the model.

However, it remains a problem for the knowledge distillation to choose the architecture of the teacher
model and student model. To explore the impact of this architecture on knowledge distillation, we
use a single-stage neural architecture search (NAS) (Yu et al., 2020) to find the best student model
of the fixed teacher model. As discussed in Section.3.3, we find that the teacher does not favor a
particular architecture and the performance of the student with the same architecture is outstanding
enough. Based on the above observations, a natural idea is to choose ANNs of the same architecture
to teach SNNs, namely self-architecture knowledge distillation. Moreover, choosing the same ANNs
and SNNs is not only simple enough but also brings additional benefits for SNNs training, such as
weight initialization.

As a result, we proposed the Self-Architectural Knowledge Distillation (SAKD) framework. We
migrate the knowledge of the pre-trained ANNs into the SNNs of the same architecture to obtain
high-performance SNNs with ultra-low latency. Extensive experiments show that our method is
effective enough to achieve state-of-the-art performance on mainstream datasets.

Our main contributions are as follows:

• We introduce the NAS to explore the impact of architecture in SNN distillation. Based on
the above observation, we introduce the self-architecture knowledge distillation strategy to
SNNs.

• We introduce the self-architecture knowledge distillation strategy to effectively migrate the
knowledge of the pre-trained ANNs into the SNNs, it greatly reduces the performance gap
between SNNs and ANNs of the same architecture.

• We empirically show that this simple distillation strategy can overcome the convergence
difficulty of many SNNs with complex structures (e.g., ResNet-101/152), which makes
SNNs not limited to shallow networks.

• We conduct extensive experiments to demonstrate the superiority of our knowledge dis-
tillation framework. The proposed method is validated on on CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), and DVS-CIFAR10 (Li et al.,
2017) datasets with different architectures. Compared to current state-of-the-art (SOTA)
methods, we can achieve better performance while maintaining an ultra-low latency.
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2 RELATED WORK

ANN-to-SNN conversion. The conversion method obtains high-performance SNNs by replacing
the activation function of pre-trained ANNs with the spike activation function and sharing the weight
of ANNs. However, although there is no overhead in training SNNs, this method requires a large
enough number of timesteps to match the spike firing frequency with the activation value of ANNs,
which limits the performance of SNNs under low latency and affects their application deployment.
Some recent studies have made great efforts to reduce the latency of SNNs after conversion. Such
as, Rueckauer et al. (2017) proposed a soft reset mechanism, Li et al. (2021) proposed parameter
calibration, and Bu et al. (2021); Deng & Gu (2021) analyzed the source of conversion error of ANN-
to-SNN and alleviated the error from different perspectives. However, these methods still require a
lot of timesteps to maintain performance and are not suitable for training low-latency SNNs.

BP-for-SNN. Unlike the conversion method, which does not need to train SNNs, BP-for-SNN
uses gradient backpropagation to train SNNs. Recent studies have trained SNNs by solving the
non-differentiable problem of spike activation function in different ways. Among them, Wu et al.
(2021a;b); Meng et al. (2022) train SNNs by accumulating the input and output of neurons to design
the gradient of backpropagation, but a period of timesteps is needed to maintain high performance,
and it is difficult to achieve ultra-low-latency SNNs. Surrogate gradient as a method of training
SNNs by BPTT can achieve ultra-low inference latency with T = 4 (Fang et al., 2021b; Deng et al.,
2022). However, the biggest limitation of SG is that they can only achieve a suboptimal performance
of SNNs, especially in the face of the deeper network architecture (Zheng et al., 2021; Fang et al.,
2021a), gradient disappearance and explosion phenomenon begin to appear, which made it difficult
for SNNs to be effectively optimized and limited to the shallow network.

Knowledge Distillation. Knowledge distillation (KD) was proposed by Hinton et al. (2015) as a
method of model compression and followed by many works. Romero et al. (2014) first proposed
knowledge distillation through features transfer and a series of works improved this method (Heo
et al., 2019; Chen et al., 2021; Yang et al., 2022). Yuan et al. (2020) reviewed the relationship be-
tween knowledge distillation and label smoothing, then pointed out that KD is not only a model
compression method, but also a regularization method. Touvron et al. (2021); Li et al. (2022) took
this view further and introduced ANN’s knowledge to help the training process of Vision Transform-
ers. Some recent work has attempted to introduce distillation of knowledge into the SNNs domain
(Kushawaha et al., 2021; Takuya et al., 2021). However, they mostly start from a model compression
perspective and fail to achieve competitive performance. In this paper, we explored the knowledge
distillation paradigm of ANN as the teacher and SNN as the student, introducing features-based and
logits-based knowledge distillation to significantly improve SNNs’ performance.

Neural Architecture Search. NAS is designed to automatically find the optimal architecture with-
out manual design. Some recent advances define a super network (supernet) including all architec-
tures (subnet) through weight sharing strategy and train the supernet only once (one-shot NAS). This
results in a significant reduction in the computational overhead of NAS, making the lightweight of
NAS a success. Li & Talwalkar (2020) propose that random search has comparable performance
and is simple enough compared to other complex search strategies. Guo et al. (2020) proposed the
single-path one-shot NAS, which uses simple search space to achieve competitive performance. Yu
et al. (2020) use a series of training methods to achieve competitive performance without the need
for fine-tuning or retraining of subnets after the completion of supernet training, which implements
the single-stage NAS. Some recent work on NAS combined with KD has also led to many novel per-
spectives (Liu et al., 2020). Li et al. (2020) use knowledge distillation to improve NAS performance.
Liu et al. (2020) found that structure knowledge was also very important in the process of KD, and
the specific teacher model would be biased towards the student model with a specific structure. This
also inspired our exploration of architecture in distillation.

3 METHOD

3.1 SPIKING NEURON MODEL

The spiking neuron is the core of the SNNs, which integrates inputs, adjusts membrane potentials,
and controls the firing of spikes. In this paper, we chose LIF neurons as the basic computational
unit of SNNs. First, the neuron adjusts the membrane potentials based on the input it receives at the
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Figure 2: An illustration of the proposed method, i.e. the knowledge distillations for SNNs. We
forced SNNs to learn the features and logits distribution of pre-trained ANNs of the same archi-
tecture. Since the features of SNNs and ANNs are located in discrete space and continuous space
respectively, a convolutional layer is used to map the features of SNNs to the continuous space to
match the features of ANNs.

current moment:
U t = λ ∗ U t−1 +X, (1)

where λ is the delay (usually set to a hyperparameter like 0.5), U t is the membrane potential of the
neuron at time-step t, and X is the input for the current layer. Then, the neuron will choose whether
to fire a spike according to the current membrane potential and threshold:

St = Θ(U t − Vth), (2)

where St is the spike output of the neuron at time-step t (the output of the current layer, S0 = 0).
Θ is the Heaviside step function, when membrane potentials at the time-step t exceeds a threshold
(usually set to 1, Vth = 1), the neuron will fire a spike ( U t − Vth ≥ 0 : St = 1, U t − Vth<0 :
St−1 = 0 ) and membrane potentials will adjust at the same time-step t. We choose the hard reset
mechanism (Ledinauskas et al., 2020) to adjust membrane potentials after firing spikes:

U t = U t ∗ (1− St), (3)

Because the step function is not derivable, we usually choose the surrogate gradient to replace it.
Same to Deng et al. (2022); Rathi & Roy (2021), we choose the triangle surrogate gradient. The
gradient of its backward is:

Θ′(x) = max (0, 1− |x|). (4)

3.2 TEACHER-STUDENT PARADIGM

We implement a teacher-student framework, which treats ANNs as teachers and SNNs as students.
To be specific, the knowledge is transferred from ANNs to SNNs with the knowledge distillation,
composed of features distillation and logits distillation. The overall loss can be formulated as follow:

Lall = α ∗ Lce + β ∗ LfeaKD + γ ∗ LlogKD. (5)

where Lce denotes the typical cross-entropy loss to help the model learn from the image-label pair,
LfeaKD and LlogKD represent the loss of features and logits from ANNs and SNNs, respectively,
and α, β, and γ are the hyperparameters that control the weight of different loss.

How to choose the structure of ANNs and SNNs and how to efficiently transfer knowledge from
ANNs to SNNs are the necessary factors for a successful knowledge distillation of SNNs. We
discussed how to choose the architecture in Section.3.3 and the specific distillation implementation
form in Section.3.4.
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3.3 ARCHITECTURE SEARCH UNDER KNOWLEDGE DISTILLATION

Table 1: The search space of SNNs contains 36,288 subnets. BasicBlock is the component of the ResNet.

Stage Operator Channel Nums of Block

1 BasicBlock [48,64,80] [2,3,4,5]

2 BasicBlock [96,128,160] [2,3,4,5]

3 BasicBlock [192,256,320] [2,3,4,5,6,7,8]

4 BasicBlock [384,512,640] [2,3,4,5]

To explore the impact of this architectural knowledge on distillation, we utilize the single-stage one-
shot NAS to find the best student model for a fixed teacher model. Inspired by Yu et al. (2020), we
train a supernet without fine-tuning and retraining the subnets. First, the one-shot NAS will define
the search space (a supernet A containing all subnets a), and the overall training goal is to optimize
the weight of the supernet. Second, after the supernet training, the subnet with the best performance
is searched.

Specifically, the subnet is selected for training each time according to a certain strategy (i.e., random
sampling) (Guo et al., 2020),

W∗
A = min

WA
(Ltrain(N (a,WA(a)))) (6)

where WA is the overall weight of the supernet, WA(a) is the weight of the sampled subnet,
N (a,WA(a)) denotes the sampled subnet.

Our search space is shown in Table 1. We choose ResNet-34 as the teacher, and use features and
logits distillation during supernet training according to Section.3.2. After the training, we sampled
300 structures (i.e., bayesian search ) and evaluated their performance to explore whether the teacher
favored the student with a particular structure. As shown in Figure 3, we find that the teacher does
not favor a particular architecture, which means that the impact of this architecture knowledge is not
so significant in the SNN distillation process.
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Figure 3: Performance of different architectures in the search space. The rightmost column represents the
performance metrics, and we mark the lines of architectures that achieve higher performance with darker blue.
The left column represents the search space of the network structure. The red line represents the performance
of the student with the same structure as the teacher. Left: performance of students with the different number
of channels under distillation. Right: performance of students with the different number of layers under distil-
lation.

Table 2: Different teachers for SNNs

Dataset SNNs ResNet Teacher Model
R50 R101 R152

CIFAR-100 R50 79.58 79.62 79.61

ImageNet R50 71.71 71.03 70.62

As shown in Table 2, our experiment also shows that the
teacher with higher performance may not bring better im-
provement to the student. More importantly, the teacher
with the same architecture can bring more significant im-
provement to the student on the large dataset than the
teacher with a larger scale and higher performance.

Based on these observations, we think it is the best choice
to choose ANNs with the same architecture as SNNs to guide the training of SNNs, which is not only
simple and flexible but also has some additional benefits (e.g., weight-initialization in Section.A.2).

5



Under review as a conference paper at ICLR 2023

3.4 SELF-ARCHITECTURAL KNOWLEDGE DISTILLATION

In this section, we discuss in detail how to efficiently transfer the knowledge of ANNs into SNNs
with the same architecture. As shown in Figure 2, the features of intermediate layers in SNNs are
aligned to the corresponding features in ANNs, and the logits of final layers in SNNs are constrained
by the logits of ANNs. The Transform is used to map the discrete features of SNNs to the continu-
ous space, and it can also solve the problem of dimension mismatch of the features when ANNs and
SNNs with different architectures are encountered.

Logits Knowledge Distillation. We first introduce the logits knowledge distillation by letting the
student learn the predicted distribution of the teacher. As shown in Figure 2, the predicted distri-
bution of the teacher contains more information (e.g., the correlation between categories) than the
traditional one-hot label. We utilize the KL-divergence loss to restrain the distribution of student
output to the teacher distribution as follows:

LlogKD = τ2
∑

ptτ log(
ptτ
psτ

), psτ (i) =
exp(ps(i)/τ)∑

exp(ps/τ)
, (7)

where ptτ and psτ represents the predicted distribution of ANNs and SNNs, respectively. τ is the
temperature to smooth the logits.

Features Knowledge Distillation. We introduce features knowledge distillation additionally, which
transmits the teacher’s knowledge by forcing the student to imitate the teacher’s features map.

Due to the teacher and the student being of the same architecture, we choose to directly match the
original features of the ANNs instead of indirectly designing new knowledge forms (Ahn et al.,
2019; Tung & Mori, 2019) to transfer knowledge.

Features transformation mainly solves the problem that the teacher and the student have different
features dimensions (Chen et al., 2021; Heo et al., 2019; Yue et al., 2020; Zagoruyko & Komodakis,
2016). In this work, although the features of ANNs and SNNs share identical architecture, there is a
natural gap between the binary features of SNNs and the continuous space features of ANNs. So we
introduce the additional convolutional transformation to map the features to the same content space,
which can be formulated as follow:

F̂s = Ts(Fs) = BN(Conv(
1

T

∑
T

Fs)), F̂t = Tt(Ft) = Ft, (8)

where Fs and Ft are the features of SNNs and ANNs, Ts and Tt denote the feature transform used
for SNNs and ANNs, T represents the time dimension of Fs, BN(·) and Conv(·) represent the
convolutional layer and batch normalization layer, respectively. The convolutional layer maps the
SNN’s features to a continuous space and does not transform ANN’s features to preserve the original
information.

In addition, previous studies have shown that the distillation position and the distance function will
directly affect the effect of features distillation, and most of the features distillation positions will
select the end of each stage (Zagoruyko & Komodakis, 2016; Yue et al., 2020) and the distance
function usually adopts L2 distance or L1 distance. Meanwhile, some studies (Heo et al., 2019)
have shown that the selection of features before or after the activation function will also have a great
impact on the distillation effect. We discussed the influence of feature transformation and distance
function on features distillation in detail in Section.4.3. By default, we adopt L2 distance as our
distance function, that is, the feaKD loss is:

LfeaKD = ∥F̂s − F̂t∥2 (9)

4 EXPERIMENTS

In this part, we perform vast experiments with different architectures on various datasets including
CIFAR-10/100, ImageNet, and DVS-CIFAR10 to validate the efficiency of our proposed method.
We discuss comparisons with other methods in Section.4.1, and the performance of distillation when
the network gets deeper in Section.4.2. We show ablation experiments and some experimental details
in Section.4.3 and Section.4.4.
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Table 3: Comparisons with current state-of-the-art methods. All of our models use the ResNet
structure with only 4 timesteps.

Dataset Method Model Time-step Accuracy

CIFAR-10

(Han et al., 2020) ANN2SNN VGG-16 2048 93.63
(Li et al., 2021) ANN2SNN VGG-16 32 93.71
(Bu et al., 2021) ANN2SNN ResNet-18 4 90.43

(Zheng et al., 2021) STBP-tdBN ResNet-19 6 93.16
(Deng et al., 2022) TET ResNet19 6 94.50
(Guo et al., 2022) Rec-Dis ResNet-19 6 95.55

(Meng et al., 2022) DSR pre-ResNet-18 20 95.40
ours ResNet19 4 96.06

CIFAR-100

(Han et al., 2020) ANN2SNN VGG-16 2048 70.93
(Li et al., 2021) ANN2SNN VGG-16 256 77.68
(Bu et al., 2021) ANN2SNN VGG-16 32 77.01

(Zheng et al., 2021) STBP-tdBN ResNet-19 6 71.72
(Deng et al., 2022) TET ResNet-19 6 74.72
(Guo et al., 2022) Rec-Dis ResNet-19 6 74.10

(Meng et al., 2022) DSR pre-ResNet-18 20 78.50
ours ResNet-19 4 80.10

ImageNet

(Han et al., 2020) ANN2SNN ResNet-34 4096 69.89
(Li et al., 2021) ANN2SNN ResNet-34 32 64.54
(Bu et al., 2021) ANN2SNN ResNet-34 32 67.37

(Zheng et al., 2021) STBP-tdBN ResNet-34 6 63.72
(Fang et al., 2021a) SEW SEW-ResNet-50 4 67.78

(Deng et al., 2022) TET ResNet-34 6 64.79
SEW-ResNet-34 4 68.00

(Guo et al., 2022) Rec-Dis ResNet-19 6 67.33
(Meng et al., 2022) DSR pre-ResNet-18 20 67.74

ours
ResNet-18

4
68.04

ResNet-34 70.04
ResNet-50 71.71

DVS-CIFAR10

(Zheng et al., 2021) STBP-tdBN ResNet-19 10 67.80
(Fang et al., 2021a) SEW Wide-7B-Net 16 74.40
(Deng et al., 2022) TET VGG-11 10 83.17
(Meng et al., 2022) DSR VGG-11 20 77.27
(Guo et al., 2022) Rec-Dis ResNet-19 10 72.42

ours VGG-11 4 81.50
ResNet-19 80.30

4.1 COMPARISON WITH THE OTHER METHOD

As presented in Table 3, the proposed framework is compared to previous works on four datasets.

CIFAR-10/100. The ResNet-19 architecture is employed in our experiments on CIFAR-10 and
CIFAR-100. We can achieve the top-1 accuracy of 96.06% and 80.10% on CIFAR-10 and CIFAR-
100, respectively which exceeds all the other compared methods. Especially, on CIFAR-100, the
proposed method outperforms the current best method by 5.38%.

ImageNet. We choose the representative ResNet-18/34/50 to verify our algorithm on ImageNet.
Our method outperforms all the other compared methods and achieves the best performance with
only 4 timesteps. Especially, the ResNet-50 trained with our method can achieve 71.71% top-1
accuracy with timesteps of only 4.

DVS-CIFAR10. We adopt the VGG-11 and ResNet-19 architecture on DVS-CIFAR10, achieving
the top-1 accuracy of 81.50% and 80.30% with 4 timesteps, respectively. Although the TET method
adopts the VGG-11 and can achieve an accuracy of 83.17%, its timesteps are more than twice those
of ours. It is worth noting that our approach can bring 6.80% and 6.30% improvement in baseline
performance of VGG-11 (i.e., 75.20% w/o KD) and ResNet-19 (i.e., 73.50% w/o KD) respectively.
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4.2 DEEPER SPIKING RESNET UNDER SAKD

In this part, we adopt a series of experiments with ResNet of different depths on CIFAR to verify
the effect of distillation on the deeper network. For each structure, the result of ANNs, SNNs
trained with SG, and SNNs trained with our SAKD are listed in Table 4, it can be seen that for deep
nets (ResNet-101/152), the traditional SNN suffers a severe degradation problem, while our SAKD
converges normally with the help of ANNs. As stated by Fang et al. (2021a), the spiking activation
cannot achieve the identity mapping, and the residual connection in SNNs cannot solve the gradient
problem. However, knowledge distillation can significantly alleviate this problem by transferring
the knowledge of ANNs to optimize the shallow, middle and final layers of deep SNNs.

Table 4: Performance of SNNs with different depths on CIFAR.

CIFAR-10 CIFAR-100
Model ANN SNN SAKD-SNN ANN SNN SAKD-SNN

ResNet-18 95.65 94.33 94.99 78.35 75.03 77.85
ResNet-34 95.69 93.50 95.15 79.30 71.72 78.50
ResNet-50 95.85 93.54 95.55 80.49 70.34 79.58
ResNet-101 95.92 55.83 95.13 80.83 35.72 79.72
ResNet-152 96.38 10.00 95.36 81.36 10.00 79.21

4.3 ABLATION EXPERIMENT

Features-based Distillation. To select the best setting for feature-based distillation, we take a lot of
experiments to analyze the influence of features transformation, distance function, and distillation
position (in Section.A.3) on features distillation according to Section.3.4.

Table 5 shows the necessity of processing the original features map. Conv represents a convolutional
layer to project SNNs features into continuous space (parametric). Norm (Liu et al., 2022) repre-
sents that the original features of ANNs and SNNs are normalized (non-parametric). Both methods
can significantly improve distillation performance, and we default to using the method with a con-
volutional layer to project SNNs features.

Table 6 shows the effect of different distance functions on distillation. We choose the loss coefficient
from { β = 1, 10, 100 } to control the loss value obtained by different distance functions. The results
show that different distance functions can have good performance, and we adopt L2 by default.

Table 5: Effect of features transform on CIFAR-100.

Baseline None Conv Norm

ResNet-18 75.03 76.00 77.78 76.93

ResNet-34 71.72 75.63 78.05 77.88

Table 6: Effect of distance function on CIFAR-100.

Function L2 L1 LKL

ResNet-18 77.78 77.00 77.47

ResNet-34 78.05 78.14 76.04

Logits-based Distillation. Although historically the best distillation methods have tended to be
features distillation (Zhao et al., 2022), some recent studies have shown that logits distillation can
also provide significant performance improvements (Beyer et al., 2022; Ridnik et al., 2022) and even
be more efficient than features-based methods (Hsu et al., 2022). As shown in Table 7, on the large
dataset (i.e., ImageNet), logits distillation alone is better than features distillation alone in most cases
and the best performance can be achieved when both are used together.

4.4 HYPERPARAMETER.

According to Ridnik et al. (2022); Kim et al. (2021), we set the logits loss hyper-parameter in Sec.3.2
as: { τ = 20, α = 0, γ = 1 } for CIFAR, { τ = 1, α = 1, γ = 10 } for ImageNet. We consider the
influence of features distillation factor β on the performance of the CIFAR-100, as shown in Table 8.
We set { β = 100 } for CIFAR, { β = 10 } for ImageNet (In general, the loss factor β on ImageNet is
0.1 times of that on CIFAR, which will perform well). It is worth noting that we find it unnecessary
or even harmful to force SNNs to make efforts to simulate ANN’s features on ImageNet. As Kim
et al. (2021) found out, the teacher’s information contains too much noise because the model is
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Table 7: Comparison of ImageNet classification performance between different distillation modes
and weight-initialization.

Initiation Logit features ResNet-18 ResNet-34 ResNet-50

61.13 64.40 67.45
✓ 63.31 67.32 70.37

✓ 62.03 65.99 69.09
✓ ✓ 63.56 68.05 71.18

✓ 65.00 66.57 66.21
✓ ✓ 66.11 67.98 69.45
✓ ✓ 64.68 67.92 69.96
✓ ✓ ✓ 66.09 70.04 71.71

difficult to fit the large dataset completely. Cho & Hariharan (2019) also pointed out that when the
capacity gap between the teacher model and the student model is too large, the continuous imitation
of the teacher’s knowledge will limit the ability of students. But this problem can be avoided by
ending the distillation process early. Interestingly, Chen et al. (2022) also found that matching
ANN’s features in the early training stage and canceling it in the later stage would better improve
the performance of ViT. Therefore, we greatly reduce the features loss coefficient β in the middle of
training on ImageNet (i.e., set β to 0.01 after 10 epochs during the entire 120 epoch training cycle).

Table 8: Ablation study results on the hyperparameter β in Equation 5.

β 0 1 5 10 100 500 1000

ResNet-18 75.04 75.98 76.73 77.22 77.85 unstable unstable

4.5 VISUALIZATION

Figure 4 shows the features in the intermediate layer and the gradient-weighted class activation
mapping (GradCAM) of ANNs and SNNs. The first row is the features of ANNs. The second row
represents SNNs without KD, which is difficult to produce rich features. The last row shows that
SNN’s features are more informative by mimicking ANN’s features, and GradCAM also shows that
SNNs are more focused on the core region after distillation.

Conv1 Stage1 Stage2 Grad_CAM

SNN w/ 
KD

SNN w/o 
KD

ANN

Figure 4: Visualization of features and GradCAM of ANNs and SNNs.

5 CONCLUSION

In this paper, we propose a self-architected knowledge distillation strategy to train SNNs with ultra-
low latency and high performance by migrating the knowledge from ANNs to SNNs with the same
architecture. Extensive experimental results with different models on different datasets show that
our method can significantly improve the SNNs performance. Since most existing SNNs are based
on ANNs’ architecture, we believe that SAKD can provide a new training paradigm for SNNs.

9
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6 REPRODUCIBILITY STATEMENT.

We describe the experimental details in the Appendix.A. The experimental results in this paper are
reproducible. We explain the details of model training and experimental setting in the main text and
supplement it in the appendix. Our codes of Neural Architecture Search and Knowledge Distillation
are uploaded as supplementary material and will be available on GitHub after review.
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A APPENDIX

A.1 DATASETS AND IMPLEMENTATION DETAILS.

CIFAR. It contains 60,000 images with the resolution of 32 × 32. The training and test sets con-
tain 50,000 and 10,000 images respectively. CIFAR-10 and CIFAR-100 contain 10 and 100 cat-
egories, respectively. We apply standard data augmentation to the input image: random cropping
and flipping, normalization. For shallow networks, such as ResNet-18/19/34, we used SGD opti-
mizer to train 200 epochs, and the learning rate was 0.1 cosine decayed to 0. For deep networks,
such as ResNet-50/101/152, we use the AdamW optimizer to train 200 epochs, the learning rate
increases linearly from 0 to 0.01 in the first five epochs, and then the cosine decays to 0. We set
the hyper-parameters according to Section.4.4, and the distillation position is selected according to
Section.A.3.

ImageNet. It contains a total of about 1.2 million training images, 50,000 validation images, and
1000 categories. We apply standard data augmentation to the input image: random cropping and
flipping, normalization. We used the AdamW optimizer to train 120 epochs for all models. For
shallow networks, such as ResNet-18/34, the learning rate was 0.001 cosine decayed to 0. For deep
networks, such as ResNet-50, the learning rate increases linearly from 0 to 0.001 in the first five
epochs, and then then decays cosinely to 0. We choose to match the features after each stage and set
the hyperparameters according to Section.4.4 for all models.

DVS-CIFAR10. It contains 10,000 images with the resolution of 128 × 128, which are generally
divided into 9,000 images for the training set and 1,000 images for the test set. Similar to the Meng
et al. (2022) processing method. We simply reduced the resolution of the input image from 128 ×
128 to 48 × 48 and apply random cropping. For all models, we used the SGD optimizer to train 200
epochs, and the learning rate was 0.1 cosine decayed to 0.

A.2 WEIGHT-INITIALIZATION TRAINING ON IMAGENET.

Some recent studies (Rathi et al., 2020; Rathi & Roy, 2021; Meng et al., 2022) show that load-
ing the weight of pre-trained ANNs before the start of SNNs training can accelerate convergence
and improve performances. We consider the influence of this weight initialization on distillation
and investigate the influence of ANN’s weights with different performances on training: PyTorch
(Paszke et al., 2017) and Timm (Wightman et al., 2021), respectively. The results are shown in
Table 9. Loading the pre-trained weight of ANNs can significantly improve the performance of
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shallow SNNs (i.e., Resnet-18/34), but it cannot guarantee that deeper SNNs will benefit from it
(i.e., ResNet-50). It is worth noting that our method achieves the best performance under weight ini-
tialization. Unfortunately, we observed that weight initialization hurts performance on small datasets
(e.g., CIFAR) under SAKD. Hence, like Meng et al. (2022), we only use this method on ImageNet.

Table 9: Comparison on ImageNet classification between the different pre-trained weights.

Model ANN SNN weight weight+SAKD

torch
ResNet-18 69.8 61.13 63.49 65.37
ResNet-34 73.3 64.40 65.05 67.59
ResNet-50 76.1 67.45 67.99 70.71

timm
ResNet-18 71.5 61.13 65.00 66.09
ResNet-34 76.4 64.40 66.57 70.04
ResNet-50 80.4 67.45 66.21 71.71

A.3 ABLATION STUDY ON DISTILLATION POSITION.

Table 10 shows the performance of different distillation positions. Because the SNNs share the
same architecture as ANNs, we are free to choose any layer of them to align their features. We
compare two strategies to determine the alignment position. Stage means we align features after
each entire stage, while Block means features after each single block (e.g., bottleneck or basicblock)
are aligned. Besides, we also explore whether the features-based distillation should be put before or
after the spike in experiments. The results show that in shallow networks, distillation for each stage
and before-spike may be a better choice. However, in deeper network architectures (such as ResNet-
101/152), only matching the features after the block and activation function can ensure the normal
convergence of SNNs (e.g., ResNet-101:79.41% (Block and After-spike) v.s. unstable (Block and
Before-spike) v.s. unstable (Stage)).

Table 10: Effect of different distillation positions on CIFAR-100. C and S respectively represent the
baseline performance of ANNs and SNNs. Stage and Block denote whether we align features after
each stage or each block. For example, the ResNet-18 structure contains four Stage modules, and
each Stage contains two Block modules.

Baseline ResNet-18 ResNet-34 ResNet-50 ResNet-101
C: 78.35 S: 75.03 C: 79.30 S: 71.72 C: 80.49 S: 70.34 C: 80.83 S: 35.72

Stage Block Stage Block Stage Block Stage Block

Before-spike 77.48 77.41 78.41 78.19 79.16 78.93 unstable unstable
After-spike 77.78 77.04 78.05 78.11 78.59 78.66 unstable 79.41
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