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Abstract

Using large teacher models to guide the train-
ing of smaller student models has become the
prevailing paradigm for efficient and effective
learning. However, vocabulary mismatches be-
tween teacher and student language models pose
significant challenges in language modeling, re-
sulting in divergent token sequences and out-
put distributions. To overcome these limitations,
we propose Vocabulary-agnostic Teacher Guided
Language Modeling (VocAgnoLM), a novel ap-
proach that bridges the gap caused by vocab-
ulary mismatch through two key methods: (1)
Token-level Lexical Alignment, which aligns to-
ken sequences across mismatched vocabularies,
and (2) Teacher Guided Loss, which leverages
the loss of teacher model to guide effective stu-
dent training. We demonstrate its effectiveness in
language modeling with 1B student model using
various 7B teacher models with different vocab-
ularies. Notably, with Qwen2.5-Math-Instruct, a
teacher model sharing only about 6% of its vo-
cabulary with TinyLlama, VocAgnoLM achieves
a 46% performance improvement compared to
naive continual pretraining. Furthermore, we
demonstrate that VocAgnoLM consistently ben-
efits from stronger teacher models, providing a
robust solution to vocabulary mismatches in lan-
guage modeling.

1. Introduction
Large language models (LLMs) have increasingly adopted
guidance from teacher models to enhance student LLM
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Figure 1: Limitation in Utilizing Better LLMs as Teacher
Models due to Vocabulary Mismatch: Qwen2.5-Math (Yang
et al., 2024) outperforms Llemma (Azerbayev et al., 2024)
on math evaluation suite, but shares only 6.32% of its vo-
cabulary with the student model, TinyLlama (Zhang et al.,
2024a).

training. This paradigm has been instrumental in addressing
critical challenges, such as compensating for the limited ca-
pacity of smaller models during pretraining (Gemma-Team
et al., 2024; Meta, 2024; Muralidharan et al., 2024), optimiz-
ing language modeling with carefully selected or curated
data (Gu et al., 2024b; Lin et al., 2024), and providing
task-specific on-policy guidance for downstream tasks (Gu
et al., 2024a; Agarwal et al., 2024). By inheriting capabili-
ties from more advanced models, student LLMs can refine
their behaviors, align with specific objectives, and achieve
substantial performance gains.

Despite these advances, a critical bottleneck remains: the
vocabulary mismatch between teacher and student models.
Most current methods assume identical vocabularies, lim-
iting the student model’s ability to benefit from the latest
state-of-the-art or domain-specialized teacher models with
distinct tokenization schemes. This constraint not only pre-
vents student models from leveraging diverse open-source
LLMs but also imposes additional costs, such as the need to
train customized teacher models or rely exclusively on large
models with compatible vocabularies (Gu et al., 2024b;
Lin et al., 2024). As illustrated in Figure 1, the vocabu-
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Figure 2: Overview of Vocabulary-agnostic Teacher Guided Language Modeling. Left: Teacher models (such as Qwen,
Mistral, DeepSeek) produce token sequences that differ from those of the student model (TinyLlama), leading to misalign-
ment. Middle: To address this, Token-level Lexical Mapping establishes a one-to-many mapping from each student token to
corresponding teacher tokens. Right: To overcome logit distribution divergence, the mapped teacher token loss is utilized to
guide the training of the student model.

lary overlap ratio between Qwen (Qwen et al., 2024) and
TinyLlama (Zhang et al., 2024a) is only 6.32%, despite
Qwen’s strong performance. This disparity underscores
how vocabulary mismatches severely limit the adoption of
high-performing teacher models, creating an urgent need
for approaches that transcend these restrictions.

Given this mismatch, we analyze the tokenization discrep-
ancy between different LLMs to observe two primary lim-
itations: (1) token sequence mismatch and (2) logit dis-
tribution divergence. As illustrated in Figure 2, different
LLMs tokenize the same input phrase "Probability,
Uncertainty" into 4, 8, 6, and 7 tokens, respectively.
This tokenization variability disrupts sequence alignment,
complicating the student model’s ability to interpret the
teacher model’s outputs. Furthermore, even if two models
produce a similar number of tokens, their logit distributions
can vary significantly due to differences in architecture,
training data, or optimization techniques. This makes it
challenging to directly use teacher model’s logits as guid-
ance for student model.

To overcome these challenges, we propose a simple yet
effective approach, Token-level Lexical Alignment. Our
method achieves token-level alignment in a one-to-many
manner, enabling student models to receive fine-grained
guidance from teacher models without requiring additional
training to unify vocabularies. By bridging the gap be-
tween differing vocabularies, Token-level Lexical Align-
ment allows the efficient integration of emerging teacher
models and ensures the student model can effectively learn
from teacher models’ guidance. Additionally, we introduce
Teacher Guided Loss to leverage aligned tokens, allowing
the student to benefit from the aligned teacher outputs, even
when their logit distributions differ.

We evaluate VocAgnoLM by continual pretraining TinyL-
LaMA 1.1B (Zhang et al., 2024a) using 7B teacher models
built on a different vocabulary system, such as Mistral (Jiang
et al., 2023), DeepSeek (DeepSeek-AI et al., 2024), or
Qwen2.5 (Qwen et al., 2024). Notably, using Qwen2.5-
Math-Instruct (Yang et al., 2024), which has only 6% vo-
cabulary overlap with TinyLLaMA, VocAgnoLM achieves
a 46% performance improvement over naive continual pre-
training baseline and a 33% improvement over a a logit
distribution mapping baseline.

We highlight the effectiveness of vocabulary-agnostic dis-
tillation, enabling specialized teacher models to be directly
utilized without vocabulary constraints. Our approach not
only mitigates the vocabulary mismatch issue but also en-
hances the efficiency and performance of domain-specific
language modeling tasks.

Our contributions are summarized in three folds:

• We tackle the vocabulary mismatch problem in the
language modeling domain, which has remained un-
derexplored despite its critical impact on leverag-
ing teacher guidance. To address this, we intro-
duce Vocabulary-agnostic Teacher Guided Lan-
guage Modeling (VocAgnoLM), a novel approach
that bridges vocabulary discrepancies, enabling effec-
tive cross-vocabulary teacher guidance.

• We propose a Token-level Lexical Alignment ap-
proach that enables fine-grained, token-by-token guid-
ance to address sequence mismatches between student
and teacher tokens. Furthermore, we employ a teacher
loss based guidance to address the logit distribution
gap, ensuring the student model’s effective training
across vocabularies mismatch.
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Figure 3: Comparison of Sequence Overlap by Granularity.
Sequence overlap between the corresponding chunks of stu-
dent (TinyLlama) and teacher models differs significantly
across varying levels of granularity (Number of Chunks).
IoU (Intersection over Union) refers to the overlap ratio
between the two sequences, while IoS (Intersection over
Student sequence) denotes the coverage of the student se-
quence by the teacher sequence.

• We demonstrate that our method yields performance
improvements proportional to the strength of the
teacher model, regardless of vocabulary mismatch.
This flexibility allows new, high-performing teacher
models to be seamlessly integrated without the need for
vocabulary compatibility, showcasing the practicality
of our approach.

2. Preliminary Study
Our motivation begins with the challenge of aligning two
token sequences that have been segmented differently by
a teacher and a student model. According to the show-
case in Figure 2, various tokenizers generate quite different
length of token sequence. A straightforward approach to
align them is to divide both sequences into an equal number
of coarse-grained chunks (Xie et al., 2024; Xu et al., 2025).
We first equally chunk each sequence into a predefined num-
ber of chunks and then evaluate the Intersection over Union
(IoU) and Intersection over Student sequence (IoS) for each
pair of mapped chunks to assess the quality of the mapping.

As illustrated in Figure 3, we observe the degree of align-
ment mismatch at various levels of granularity to understand
how these two differently segmented sequences diverge. As
we increase the number of chunks (i.e., move toward a
finer-grained segmentation), the alignment between the two
sequences deteriorates. On the one hand, small number of
chunks shows higher overlap, however, this leads to a coarse-
grained mapping. On the other hand, fine-grained mapping
with large number of chunks exhibits lower overlap, due to
the equally chunking strategy. As shown in Figure 3, this

leads to a progressive decrease in the coverage of student
tokens by teacher chunks, thereby making it increasingly
difficult for the student to receive precise guidance from
the teacher. This motivates us to design comprehensive
alignment algorithm, where the student can receive token-
level guidance from fine-grained teacher token alignment,
ensuring precise and effective supervision.

3. Vocabulary-agnostic Teacher Guided
Language Modeling

We introduce Vocabulary-agnostic Teacher Guided Lan-
guage Modeling (VocAgnoLM) to address vocabulary mis-
match between a student model (S) and a teacher model
(T ). To tackle the token sequence mismatch, and logit distri-
bution divergence, we propose Token-level Lexical Align-
ment (Section 3.1) for sequence alignment and Teacher
Guided Loss (Section 3.2) to enable effective teacher guid-
ance despite differing logit distributions.

3.1. Token-level Lexical Alignment

Our primary objective is to enable the student model to
receive fine-grained, token-level guidance from a teacher
model during language modeling. The challenge arises
when the student and teacher models have different vocabu-
laries, leading to discrepancies in how the same text span is
split into tokens. For example, a single student token may
span multiple teacher tokens or vice versa due to their unique
vocabulary sets. To address this, we leverage character-level
offsets

[
st, ed

]
representing the starting and end positions

of a token, which can precisely map the tokens between two
sequences according to the original position in the raw text.

Let us denote student tokens {xS
1 , x

S
2 , . . . , x

S
N} with char-

acter offsets
[
stSi , ed

S
i

]
for each xS

i , and teacher tokens
{xT

1 , x
T
2 , . . . , x

T
M} with character offsets

[
stTj , ed

T
j

]
for

each xT
j . By tracking these offsets, we can determine the

exact text span covered by a student token xS
i and identify

the corresponding teacher tokens {xT
j ,. . . ,xT

k } that fully
cover that span. Specifically, for each student token xS

i , we
define the mapping function (mapping[i]) to be the index
range of teacher tokens that covers xS

i as follow as:

mapping[i] =


−1, if none teacher token covers xS

i ,

(j, k), if xS
i ⊆ xT

[j,k]

∧ xS
i ̸⊆ xT

[j+1,k]

∧ xS
i ̸⊆ xT

[j,k−1]

Here, xT
[j,k] denotes the concatenation of teacher tokens

xT
j , x

T
j+1, . . . , x

T
k . The conditions xS

i ̸⊆ xT
[j+1,k] ∧ xS

i ̸⊆
xT
[j,k−1] ensure that (j, k) is the minimal index range that

covers xS
i . And, mapping[i] = −1 corresponds to an un-
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Algorithm 1 Token-level Lexical Alignment

Input:
Student tokens {xS

i } with offsets {[stSi , edSi ]}
Teacher tokens {xT

j } with offsets {[stTj , edTj ]}
Output: Mapping mapping[i]
for each i-th student token xS

i do
(1) Get student character-level offsets:

stSi , ed
S
i ← xS

i

(2) Find overlapping teacher range via binary searches:
lowIdx← lower bound of { t | edTt > stSi }
highIdx← upper bound of { t | stTt < edSi } − 1
(j, k)← (lowIdx, highIdx)

(3) Map corresponding teacher tokens: xT
[j,k]

mapping[i]← {j, j + 1, . . . , k}
end for
return mapping

mapped student token, which is not lexically covered by any
teacher tokens.

These mappings can be efficiently determined by perform-
ing two binary searches for each student token: one to find
the earliest teacher token index (lowIdx) whose end offset
exceeds stSi , and another to find the latest teacher token
index (highIdx) whose start offset remains below edSi . The
detailed procedure is outlined in Algorithm 1. Since each of
these range searches can be completed in O(logM) time,
where M is the number of teacher tokens, the overall com-
plexity for all N student tokens is O(N logM).

By defining a clear token alignment procedure, we establish
a one-to-many mapping (one student token xS

i potentially
corresponding to multiple teacher tokens xT

[j,k]). This align-
ment enables the student model to more precisely leverage
the teacher model’s outputs, facilitating a form of token-
level supervision.

3.2. Teacher Guided Language Modeling

Although Token-level Lexical Alignment aligns the two
token sequences, the mismatch in logit distribution remains
a challenge due to the differing vocabularies of the student
and teacher models. To address this challenge, we leverage
the loss values of the mapped teacher tokens to guide the
importance of student tokens (Fan & Jaggi, 2023; Lin et al.,
2024).

Based on the Token-level Lexical Alignment described in
Section 2.1, the causal language modeling for the i-th stu-
dent token (xS

i ) and the corresponding token losses for the
teacher tokens (xT

[j,k]) spanning from j to k are defined as
follows:

LS(x
S
i ) = − logP (xS

i | xS
<i) (1)

LT (x
T
[j,k]) = Φl∈[j,k]

[
− logP (xT

l | xT
<l)

]
(2)

Here, Φ represents an aggregation function (e.g. summation,
maximum, or mean), applied to the teacher model’s token
loss over the range [j, k].

We utilize the mapped teacher token losses to guide the
reweighting of the student token’s importance, as defined
in 3.

L(S) = −Ei∼[1,N ]

[
W(xS

i ) · logP (xS
i | xS

<i;S)
]

(3)

Specifically, W(xS
i ) determines whether a given token is

adopted based on the difference between the student and
the corresponding teacher token losses, which reflects the
importance of the token (Fan & Jaggi, 2023; Lin et al.,
2024). We apply a top-k threshold to identify the most
important tokens, ensuring that only tokens with significant
contributions are retained, along with unmapped student
tokens (further discussed in Section 6.2).

W(xS
i ) =


1, if LS(x

S
i )− LT (x

T
[j,k]) ∈ Threshold

or mapping[i] == −1,
0, otherwise

(4)
Teacher token loss-based guidance enables the student
model to receive guidance from the teacher model even
when their vocabulary spaces differ, as each model com-
putes its logit dimensions independently.

4. Experimental Setup
4.1. Dataset

Pretraining Corpus. We utilize OpenWebMath (Paster
et al., 2024), containing about 15 billion tokens sourced
from math-related web pages in the Common Crawl.

Evaluation Setup. To evaluate performance, we assess
the model on 9 mathematical reasoning benchmarks cov-
ering diverse domains, question formats (multiple-choice
and open-ended), and difficulty levels (elementary to uni-
versity): GSM8k (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021b), GSM-Hard (Gao et al., 2022), SVAMP (Patel
et al., 2021), ASDiv (Miao et al., 2020), MAWPS (Koncel-
Kedziorski et al., 2016), TabMWP (TAB) (Lu et al.,
2023), MathQA (MQA) (Amini et al., 2019), MMLU-
STEM (Hendrycks et al., 2021a), and SAT (Azerbayev et al.,
2024). We utilize few-shot chain-of-thought (CoT) exam-
ples (Wei et al., 2022) following the settings in Lin et al.
(2024); Zhou et al. (2024).

4.2. Baselines

KLD. When the teacher model shares the same vocab-
ulary, one of the most representative teacher guided lan-
guage modeling is knowledge distillation based on Kull-
back–Leibler Divergence (KLD). Following Song et al.
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(2020); Gu et al. (2024a), we incorporates the teacher-
student logit KL divergence term to student model’s cross
entropy as defined in Equation (1). Detailed equation is
described in Appendix B.

ULD. Boizard et al. (2025) introduce the Universal Logit
Distillation (ULD) loss, designed to align the probability
distributions of a student model and a teacher model with
differing vocabularies. ULD loss minimizes the Wasserstein
distance between the two distributions during finetuning
on various downstream tasks, serving as an alternative to
KL divergence. In this work, we compare the ULD loss-
based logit distribution alignment with our teacher token
loss-based guidance in the context of language modeling.
Detailed equation is described in Appendix B.

Rho-1. Lin et al. (2024) utilize guidance from a well-
curated oracle reference model with a shared vocabulary
(e.g., trained on GPT-generated datasets or targeted cor-
pora) to enable efficient language modeling through vari-
ous scoring methods. In this study, we compare their ap-
proach, which employs the TinyLlama architecture as the
reference model initially trained on OpenWebMath (Paster
et al., 2024), using multi-criteria scoring based on token
entropy and loss delta.

4.3. Implementation Details

We use LitGPT (Lightning-AI, 2023) to continually pretrain
on 15B tokens from OpenWebMath (Paster et al., 2024).
Training is conducted on 32 H100 GPUs with a cosine
learning rate scheduler (decaying from 8e-5 to 8e-6), a
sequence length of 2048, and a global batch size of 2M
tokens, following prior works (Zhang et al., 2024a; Lin
et al., 2024; Zhou et al., 2024). We apply a top-k threshold
of 40%. Details are described in Appendix B.

Models. We conduct continual pretraining using TinyL-
lama 1.1B (Zhang et al., 2024a), which has a vocab-
ulary size of 32,000 tokens. To provide teacher guid-
ance, we utilize 7B-scale, math-specialized teacher models:
Llemma (Azerbayev et al., 2024), Mistral-ProXMath (Zhou
et al., 2024), DeepSeekMath (Shao et al., 2024), and
Qwen2.5-Math (Yang et al., 2024). Llemma (Azer-
bayev et al., 2024) shares the same vocabulary as TinyL-
lama (Zhang et al., 2024a), and we use it as a teacher model
to evaluate the impact of using a same vocabulary. Details of
teacher models are provided in Appendix A. Table 4 reports
the performance of the teacher models.

5. Experiments
5.1. Main Results

Comparision with KLD (Same Vocabulary). As shown
in Table 1, compared to the KLD approach that fully utilizes
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Figure 4: Performance Comparison Across Various Teacher
Models. VocAgnoLM consistently outperforms logit
distribution-based baselines.
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Figure 5: Comparison of Performance Improvements
Across Different Teachers. VocAgnoLM effectively miti-
gates vocabulary mismatch and leverages higher-performing
teacher models to achieve significant performance gains,
outperforming logit distribution-based baselines.

the logit distribution, VocAgnoLM demonstrates superior
performance. This difference becomes more pronounced
when using a stronger teacher model, Llemma (Azer-
bayev et al., 2024), compared to a weaker teacher model
(TinyLlama-CPT). By focusing solely on teacher guidance
under the same aligned token sequence, our teacher loss-
based guidance effectively facilitates student model training.

Comparison with ULD (Different Vocabulary). The
limitations of probabilistic distribution-based distillation be-
come more pronounced when using teacher models with dif-
ferent vocabularies. As shown in Figure 4, VocAgnoLM sig-
nificantly outperforms ULD (Boizard et al., 2025), with Ta-
ble 1 highlighting a substantial 33% performance gap when
using Qwen2.5-Math-Instruct (Yang et al., 2024) as the
teacher model. In the pretraining stage, where a large vol-
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Table 1: Performance Comparison of Student Model (S) Guided by Various Teacher Models. †Average scores for comparison
with the Rho-1, following Lin et al. (2024) setup. ‡Since SAT consists of only 32 multiple-choice questions, we report AVG
score without SAT to account for abnormal cases. The best results are in bold, while second-best ones are underlined.

Model Method GSM8K MATH SVAMP ASDiv MAWPS TAB∗ MQA MMLU∗

STEM SAT∗ AVG AVG†

(w/o *)

AVG‡

(w/o SAT)

TinyLlama (S) - 2.7 3 10.9 17.9 20.5 12.5 13.9 16.4 21.9 13.3 11.5 12.2
TinyLlama-CPT - 6.8 4.2 22 36.4 47.1 16.5 12.3 23.2 15.6 20.5 21.5 21.1

Teacher w/ Same Vocabulary

Rho-1 - 7.1 5 23.5 41.2 53.8 - 18 - - - 24.8 -

S + TinyLlama-CPT KLD 6.8 5.6 22.7 37.1 49.7 17.9 12.1 23.5 15.6 21.2 22.3 21.9
S + TinyLlama-CPT Ours 7.4 4.6 21.7 37.7 48.0 16.7 13.0 22.5 25.0 21.8 22.1 21.5

S + Llemma KLD 6.9 4.2 23.3 37.7 49.9 17.2 12.7 21.9 18.8 21.4 22.5 21.7
S + Llemma Ours 8.1 5.2 21.9 38.1 50.1 21.0 13.9 24.0 34.4 24.1 22.9 22.8

Teacher w/ Different Vocabulary

S + Mistral-ProXMath ULD 6.0 5.4 20.9 36.4 46.7 16.7 11.2 21.1 31.2 21.7 21.1 20.6
Ours 8.6 6.2 22.6 39.5 51.2 21.7 17.3 25.6 25.0 24.2 24.2 24.1

S + DeepSeekMath ULD 6.3 4.8 22.4 36.8 46.0 16.6 12.2 22.4 31.2 22.1 21.4 20.9
Ours 9.5 6.2 23.1 41.6 53.3 22.6 15.9 25.6 18.8 24.1 24.9 24.7

S + Qwen2.5-Math ULD 5.8 3.6 21.3 36.1 47.1 18.0 11.7 22.4 34.4 22.3 20.9 20.8
Ours 9.9 5.4 25.6 42.2 54.1 20.8 17.4 26.9 31.2 25.9 25.8 25.3

S + DeepSeekMath-RL ULD 6.7 4.6 20.8 36.1 45.8 17.9 11.2 19.5 31.2 21.5 20.9 20.3
Ours 10.8 7.2 27.3 45.9 59.6 22.6 19.1 28.1 21.9 26.9 28.3 27.6

S + Qwen2.5-Math-Inst ULD 6.7 4.6 22.6 36.8 46.9 17.3 13.2 22.4 31.2 22.4 21.8 21.3
Ours 11.3 7.6 28.9 46.8 60.7 22.5 20.5 30.3 40.6 29.9 29.3 28.6

ume of tokens are processed, the impact of vocabulary mis-
alignment becomes increasingly pronounced. This high-
lights the inherent limitations of probabilistic distance-based
logit alignment while emphasizing the necessity and effec-
tiveness of a fine-grained, token-level alignment approach.

5.2. Scalability with Different Teachers.

As illustrated in Figure 5, VocAgnoLM demonstrates
consistent performance improvements when leveraging
stronger teacher models, showing a clear correlation with
teacher quality. Compared to ULD (Boizard et al., 2025),
VocAgnoLM achieves significantly greater performance
gains and effectively follows the performance trends of the
teacher model. Notably, even though the strongest teacher
model, Qwen2.5-Math-Instruct (Yang et al., 2024), has the
lowest vocabulary overlap ratio (6.32% in Figure 1) with the
student vocabulary, VocAgnoLM still effectively transfers
more knowledge and achieves superior performance over
logit distribution-based guidance. Additionally, when using
DeepSeekMath (Shao et al., 2024) as the teacher model,
VocAgnoLM demonstrates competitive performance against
Rho-1 (Lin et al., 2024). Further mapping and guidance ex-
amples across different teacher models are provided in Ap-
pendix C.

6. Analysis
6.1. Importance of fine-grained sequence alignment

In this section, we extend the preliminary study presented
in Section 2 to analyze the significance of Token-level Lexi-
cal Alignment’s fine-grained, token-level mapping. Follow-
ing the Section 2, we compare the effectiveness of teacher
guidance under two alignment strategies: coarse-grained
alignment using chunking and fine-grained alignment by
Token-level Lexical Alignment. For this analysis, we em-
ploy the Mistral-ProXMath 7B (Zhou et al., 2024) as the
teacher and train on 5B tokens from OpenWebMath (Paster
et al., 2024), applying the same teacher loss-based guidance
detailed in Section 3.2.

In Table 2, we observe performance changes by increasing
the number of chunks from 8 to 64. As shown in Fig-
ure 6, the performance improves as the chunks become
more fine-grained at first. However, when the number of
chunks reaches 64, performance begins to degrade, and be-
comes even worse than the results where chunks are selected
randomly instead of using teacher guidance. According to
the preliminary study, we measure the character-level IoU
and IoS between teacher and student chunks. We find that
as the number of chunks increases from 32 to 64, IoU de-
creases sharply, and this drop corresponds to the significant
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Table 2: Performance Comparison of Chunking and Token-level Lexical Alignment.

Guidance Num
Chunk GSM8K MATH SVAMP ASDiv MAWPS TAB∗ MQA MMLU∗

STEM SAT∗ AVG AVG†

(w/o *)

AVG‡

(w/o SAT)

Chunking Alignment

Random 8 3.6 3.2 19 30.3 39.5 15.7 10.6 20 25 18.5 17.7 17.7
Teacher 8 4.9 3.4 18.9 29.7 41.3 16.5 11.5 19.5 21.9 18.6 18.3 18.2

Random 16 3.6 2.4 18.3 29.7 39.0 16.4 11.0 19.3 25.0 18.3 17.3 17.5
Teacher 16 5.1 3.8 18.8 30.7 40.8 17.7 10.5 20.0 21.9 18.8 18.3 18.4

Random 32 4.2 2.6 19.5 30.2 39.6 16.6 11.5 19.1 25.0 18.7 17.9 17.9
Teacher 32 5.2 4.0 18.5 30.3 41.6 17.2 11.3 20.3 21.9 18.9 18.5 18.6

Random 64 3.9 3.0 19.0 29.7 38.5 16.0 11.5 19.1 25.0 18.4 17.6 17.6
Teacher 64 4.2 3.6 17.7 29.7 38.5 17.0 11.4 20.3 18.8 17.9 17.5 17.8

Token-level Lexical Alignment

Teacher - 5.3 5.4 18.0 30.8 42.8 17.1 12.4 21.8 28.1 20.2 19.1 19.2
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17.5

18.0

18.5

19.0

19.5

20.0

20.5

Pe
rfo

rm
an

ce

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Ov

er
la

p
Chunking Aligning w/ Mistral-ProXMath

Random Teacher IoU IoS

Figure 6: Correlation Between Performance and Sequence
Alignment. Chunking alignment initially improves perfor-
mance as the granularity increases, but performance sharply
declines when the overlap (Char-level IoU and IoS) de-
creases significantly. Token-level Lexical Alignment main-
tains high IoS and achieves superior performance with fine-
grained alignment.

performance degradation. In contrast, Token-level Lexical
Alignment demonstrates superior performance with a higher
IoU. Due to intrinsic token differences between the teacher
and student at fine-grained granularity, we further compare
character-level Intersection over Student (IoS). Token-level
Lexical Alignment achieves 100% overlap, indicating that
all student tokens are covered by teacher tokens, ensuring
precise fine-grained teacher guidance.

6.2. How to deal with unmapped student tokens?

For student tokens that are not lexically mapped to any
teacher tokens (e.g., special tokens), there exists ambigu-

ity in how they should be handled, as they do not receive
any guidance from the teacher model. To address this, we
compare three strategies: Mean, Exclude, and Include.

The Mean strategy average all teacher token losses within a
batch to maintain a consistent guidance scale in Equation (4).
The Exclude strategy discards all unmapped student tokens,
assuming they lack semantic information. In contrast, the
Include strategy trains all unmapped tokens, expecting the
role of special tokens.

As shown in Table 3, the Include strategy achieve the best
performance. Notably, the Exclude strategy results in a sig-
nificant performance degradation, highlighting the critical
role of special tokens in continual pretraining. This suggests
that unmapped tokens, such as start and end tokens, have
already been trained as critical elements during pretrain-
ing, providing explicit signals to effectively interpret large
amounts of text in the corpus (Devlin et al., 2019; Newman
et al., 2020; Yue et al., 2024).

6.3. How to aggregate multiple-mapped teacher tokens?

In Equation (2), various aggregation functions (Φ) can be
considered to handle the mapping of multiple teacher tokens
to a single student token. Intuitively, student tokens mapped
to teacher tokens exhibiting high loss values are discarded.
To effectively filter out abnormal teacher tokens, we evaluate
two aggregation strategies: Max and Mean. As discussed
in Section 6.2, the Include strategy is consistently applied
for unmapped student tokens in these experiments.

As shown in Table 3, when trained on a dataset of 2B tokens,
the performance difference between the two strategies was
minimal. However, when trained for a longer duration on
15B tokens, the Max strategy outperformed Mean, resulting
in an approximately 1.3% improvement in AVG (w/o SAT).
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Table 3: Performance Comparison by Unmapped and Multi-Mapped Token Strategies.

Function Train
Tokens GSM8K MATH SVAMP ASDiv MAWPS TAB∗ MQA MMLU∗

STEM SAT∗ AVG AVG†

(w/o *)

AVG‡

(w/o SAT)

Unmapped Student Tokens Strategy

Mean 2B 3.7 4.6 16.2 24.5 32.2 14.6 10.1 15.8 25.0 16.3 15.2 15.2
Exclude 2B 1.4 3.8 2.8 7.6 9.3 4.1 4.0 15.6 12.5 6.8 4.8 6.1
Include 2B 3.6 3.6 18.2 25.7 35.9 14.1 12.7 16.5 18.8 16.6 16.6 16.3

Multi-mapped Teacher Tokens Aggregation

Include+Mean 2B 3.6 3.6 18.2 25.7 35.9 14.1 12.7 16.5 18.8 16.6 16.6 16.3
Include+Max 2B 3.6 4.0 17 26.2 35.9 14.9 12.5 16.0 18.8 16.5 16.5 16.3

Include+Mean 15B 8.3 4.6 24.0 40.2 53.9 20.8 13.0 25.5 28.1 24.3 24.0 23.8
Include+Max 15B 8.6 6.2 22.6 39.5 51.2 21.7 17.3 25.6 25.0 24.2 24.2 24.1

7. Related Works
7.1. Cross Vocabulary Alignment

Cross-vocabulary alignment has emerged as a critical re-
search area due to tokenization discrepancies between dif-
ferent LLMs. This alignment has been applied to various
downstream tasks, such as knowledge distillation (Boizard
et al., 2025; Zhang et al., 2024b; Cui et al., 2025), model
ensemble (Xu et al., 2024; Huang et al., 2024; Yu et al.,
2024), cross-lingual transfer (Dobler & De Melo, 2023).
Previous studies primarily rely on matching-based meth-
ods (Fu et al., 2023; Wan et al., 2024), optimal transport
(Boizard et al., 2025; Cui et al., 2025) , vocabulary mapping
matrices (Xu et al., 2024; Huang et al., 2024; Yu et al., 2024)
or cross-model attention mechanism (Zhang et al., 2024b).
While these approaches have shown effectiveness in specific
contexts, they often lack generality when applied to causal
language modeling. In contrast, we propose Token-level
Lexical Alignment, a simple yet effective method that lever-
ages the guidance of teacher models to enhance general
causal language modeling. Furthermore, inspired by Xie
et al. (2024); Xu et al. (2025), we conduct a comprehensive
study on the effectiveness of alignment at various levels of
granularity for language modeling.

7.2. Teacher Guided Language Modeling

Soft label Guidance. Soft label guidance, a.k.a knowl-
edge distillation, relies on a large teacher model to transfer
its logits distribution to a student model. A common ap-
proach is to use the logits distribution of teacher model to
guide the student model through well-designed optimization
objectives (Hinton et al., 2015; Gu et al., 2024a; Agarwal
et al., 2024; Boizard et al., 2025), particularly for specific
downstream tasks. However, these approaches typically
require the the teacher and student models to share the
same vocabulary, which limits their applicability when trans-
ferring knowledge across models with different tokeniza-
tion schemes. MiniPLM (Gu et al., 2024b) enables cross-

vocabulary distillation through an offline strategy based on
difference sampling. In contrast, VocAgnoLM supports both
offline and online strategy, offering greater flexibility in the
choice of pretraining strategies. Moreover, while MiniPLM
performs distillation at the instance-level, VocAgnoLM fo-
cuses on token-level, allowing for more fine-grained guid-
ance.

Hard label Guidance. Another guidance is training the
student model using text generated by teacher model (a.k.a
hard labels). (Kim & Rush, 2016; Hsieh et al., 2023; Peng
et al., 2023; Zhou et al., 2024; Maini et al., 2024; Gunasekar
et al., 2023). However, this method involves substantial
overhead, as it requires constructing new training corpora
for pretraining. An alternative strategy is leveraging teacher
models for data sample selection (Albalak et al., 2024),
using heuristic filtering, classifier or perplexity-based fil-
tering, domain specific filtering, deduplication. Irreducible
Curriculum (Fan & Jaggi, 2023) extends this idea through
batch selection methods for pretraining. However, these
coarse-grained approach lack the granularity required for
more precise guidance. Rho-1 (Lin et al., 2024) addresses
fine-grained token-level data selection. Nevertheless, the
requirement of same teacher and student vocabulary limits
the capability to transfer knowledge from various teacher
models with different vocabulary. In this work, we propose
a novel method that enables token-level guidance without
requiring the creation of new corpora or identical vocabu-
laries between teacher and student models. By facilitating
token-level alignment with any pre-trained or newly released
model, our approach significantly enhances the flexibility
and applicability of teacher-guided pretraining.

8. Conclusion
In this work, we propose Vocabulary-agnostic Teacher
Guided Language Modeling (VocAgnoLM), a method for
training student models with strong teacher models re-
gardless of vocabulary differences. We identify two key
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challenges: token sequence mismatch and logit distribu-
tion divergence, and introduce Token-level Lexical Align-
ment along with teacher loss-based guidance to address
these issues. Our results demonstrate that student perfor-
mance improves in proportion to the teacher model’s ca-
pabilities, effectively overcoming vocabulary mismatches.
Furthermore, we highlight the significance of token align-
ment by analyzing the impact of sequence misalignment
caused by differences in granularity. Our findings suggest
that precise token correspondence plays a crucial role in
teacher guidance, providing insights for future research on
the effective utilization of teacher models in a vocabulary-
agnostic setting.

Limitations
While we demonstrate VocAgnoLM on TinyLlama
1.1B (Zhang et al., 2024a) using the 15B OpenWeb-
Math (Paster et al., 2024), VocAgnoLM is designed to
be broadly applicable across different models and datasets.
Due to computational constraints, we present a case study
demonstrating its effectiveness in continual pretraining on
a mathematical domain corpus, leaving further large-scale
validation for future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning by improving pretraining for student
models using a vocabulary-agnostic teacher model. Our
study is conducted on OpenWebMath, a publicly available
dataset, and focuses solely on mathematical reasoning. We
do not foresee significant ethical concerns but acknowledge
that language models may still inherit biases from training
data, which should be considered in broader applications.
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Table 4: Performance of Teacher Models on Math Evaluation Suite.

Teacher Model Num.
Vocabs GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM SAT AVG

Llemma 32K 38.8 17.2 56.1 69.1 82.4 48.7 41.0 45.4 59.4 50.9
Mistral-ProXMath 32K 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2
DeepSeekMath 100K 64.1 34.2 74.0 83.9 92.4 63.4 62.4 56.4 84.4 68.4
DeepSeekMath-RL 100K 86.2 50.2 87.7 91.1 96.6 64.9 56.9 24.5 15.6 63.7
Qwen2.5-Math 150K 85.8 57.4 88.2 91.7 96.3 67.3 75.9 69.4 93.8 80.6
Qwen2.5-Math-Instruct 150K 88.3 74.0 90.3 90.8 93.8 81.6 81.0 65.2 90.6 84.0

A. Teacher Model Details
Vocabulary Details. The tokenization schemes of the teacher models vary significantly. Mistral-ProXMath (Zhou et al.,
2024) adopts Byte Pair Encoding (BPE) with a vocabulary size of 32,000 tokens. DeepSeekMath (Shao et al., 2024) employs
Byte-level Byte Pair Encoding (BBPE) with a larger vocabulary size of 100,000 tokens, while Qwen2.5-Math (Yang et al.,
2024) utilizes BPE with the largest vocabulary size of 150,000 tokens among the teacher models. These variations highlight
the diversity of vocabularies for each teacher models.

Teacher Performances. In Table 4, we report the performance of teacher models to compare the impact of teacher
guidance based on their capabilities.

B. Further Implementation Details
KLD. Following the setup outlined by Song et al. (2020) and Gu et al. (2024a), we combine the KL-Divergence loss
calculated between the teacher and student output distribution (pSi , p

T
i ) with the cross-entropy loss of the student model,

using the same weighting ratio.

LKLD(x
S , xT ) = −

|xS |∑
i=1

logP
(
xS
i | xS

<i

)
+

|xS |∑
i=1

KL
(
pSi ||pTi

)
(5)

ULD. Boizard et al. (2025) proposes a Universal Logit Distance (ULD) loss, as shown in Equation (6), to measure the
logit distribution distance between teacher and student with different vocabularies. ULD utilizes Wasserstein distance (WD)
to calculate the distance of teacher and student output distribution (pSi , p

T
j ). While Boizard et al. (2025) primarily focus on

downstream tasks, we explore the hyperparameter λ values [0.3, 0.5, 1.0, 1.5] to determine those most suitable for continual
pretraining on OpenWebMath (Paster et al., 2024). Based on the results in Figure 7b, we adopt λ = 0.5 in this study. For the
further details, please refer to Boizard et al. (2025).

LULD(x
S , xT ) = −

|xS |∑
i=1

logP
(
xS
i | xS

<i

)
+ λ ·

|xS |∑
i=1

|xT |∑
j=1

WD
(
pSi ∥ pTj

)
. (6)

Llemma. Llemma (Azerbayev et al., 2024) adopts the Llama-2 (Touvron et al., 2023) vocabulary, similar to TinyL-
lama (Zhang et al., 2024a), with the addition of 16 noise tokens. However, we observe that the cumulative probability of
these tokens is overally negligible, below 1× 10−7. Consequently, this study disregards the probabilities of noise token and
considers Llemma (Azerbayev et al., 2024) as a teacher model that shares the same vocabulary as TinyLlama (Zhang et al.,
2024a).

Threshold. We explore the impact of the top-k threshold on a 2B-token subset of the corpus, evaluating thresholds ranging
from 40% to 80%, following the settings in Lin et al. (2024). Based on the results in Figure 7a, we select 40% threshold for
our experiments.
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2025).

Figure 7: Performance Comparison for Hyperparameter Searching.
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Figure 8: Examples of teacher guidance demonstrating how teacher models influence the training of TinyLLaMA (Zhang
et al., 2024a). Orange solid arrows represent the guidance provided by the teacher model, while gray dashed arrows indicate
tokens that were not included in the top-k threshold by teacher guidance.

Table 5: Performance Comparison Using Teacher Models with Comparable Performance: Same vs. Different Vocabularies.
†‡Average scores for abnormal cases, following the setup in Table 1.

Model Vocab
w/ Student Method AVG AVG†

(w/o *)

AVG‡

(w/o SAT)

Teacher Performance

MetaMath-Llemma Same - 52.2 62.1 57.2
Mistral-ProXMath Different - 59.2 58.9 57.2

Student (S) Distilled Performance

S + MetaMath-Llemma Same KLD 14.2 14.3 14.4
S + Mistral-ProXMath Different Ours 16.6 16.6 16.3

C. Teacher Guidance Examples
Figure 8 illustrates how the teacher model effectively guides important tokens. Even when multiple teacher tokens are
mapped to a single student token (1:N mapping), the teacher provides meaningful alignment. Furthermore, less important
tokens (such as “-” and “.It” in Figure 8), do not pass the top-k threshold, highlighting the effectiveness of the guidance
process.

D. Additional Comparison with Other Baselines
Comparable Teacher Models with Same vs. Different Vocabularies. To assess the effectiveness of our approach, we
conduct an additional experiment on 2B tokens by comparing it against a standard distillation setup using two teacher
models with comparable performance: MetaMath-Llemma-7B (Yu et al., 2023), which shares the same vocabulary as the
student model, and Mistral-ProXMath-7B (Zhou et al., 2024), which uses a different vocabulary. As shown in Table 5,
VocAgnoLM performs better even when using a teacher model with a different vocabulary, despite both teacher models
achieving the same performance on the AVG‡ metric.
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Table 6: Comparison of Scaled Continual Pretraining Baseline and VocAgnoLM.

Model AVG
(w/o SAT)

CPT 13.6
CPT (lr /= 0.4) 15.3

S + Mistral-ProXMath 16.3
S + DeepSeekMath 17.3
S + Qwen2.5-Math 18.8

Scaled Continual Pretraining Baseline. To evaluate the utility of teacher loss based guidance, we compare our method
against a continual pretraining baseline (CPT) on 2B tokens, where the training signal is uniformly amplified. Specifically,
as we apply a top-40% threshold based on teacher guidance (see Appendix B), we rescale the learning rate by a factor
of lr

0.4 = 2.5× to match the overall signal strength delivered to the important tokens. As shown in Table 6, our method,
using various teacher models, outperforms CPT (lr/ = 0.4). Although CPT delivers a similar amount of signal strength
by increasing the learning rate, it also amplifies the effect of unimportant tokens. These results highlight the effectiveness
of our teacher guidance, and provide a way to estimate the impact of various teacher models in terms of CPT-equivalent
training scale.
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