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ABSTRACT

Recent advances in chain-of-thought (CoT) and post-training have improved LLMs’ rea-
soning abilities, but often at the cost of generating redundant steps, leading to wasted com-
putation and increased latency in real-time applications. Existing reinforcement learning
(RL) approaches attempt to condense CoT by rewarding brevity, but they fall short in
two key aspects: (1) For highly difficult queries, they waste tokens on hopeless reasoning
attempts; (2) For medium-difficulty queries, models either stop too soon and miss the an-
swer, or continue beyond the correct answer and introduce errors. To address these issues,
we propose RazorReward—a novel reward scheme that sharply differentiates optimal from
suboptimal reasoning. For hard queries, RazorReward penalizes unnecessary CoT steps
and encourages abstention when no solution is possible. For medium-difficulty queries, it
rewards only reasoning paths that match the minimal sufficient CoT steps, heavily penal-
izing both under- and over-reasoning. Building on this, we introduce RazorReward-RL,
a novel RL framework that segments CoT into semantically meaningful blocks, enabling
more precise early stopping and targeted reward allocation. Extensive experiments on
six reasoning benchmarks show that RazorReward-RL consistently outperforms previ-
ous methods, boosting accuracy by 8.3%–9.3% while reducing average token usage by
38.4%–43.8%, thus achieving a better balance between accuracy and efficiency.

1 INTRODUCTION

Driven by advances in chain-of-thought (CoT) prompting (Wei et al., 2022; Dai et al., 2025a), Large Lan-
guage Models (LLMs) have demonstrated remarkable progress on complex reasoning tasks (Liu et al., 2025;
Li et al., 2025; Chen et al., 2024b). Notable models like DeepSeek-R1 (DeepSeek-AI et al., 2025) and
QwQ (Team, 2025) exhibit exceptional performance across diverse benchmarks. Despite these advance-
ments, such reasoning models often suffer from a critical limitation known as overthinking. As first identi-
fied by (Chen et al., 2024a), overthinking occurs when LLMs generate unnecessarily verbose or redundant
reasoning steps, even for easy queries. This leads to excessive token usage and slower responses, which can
harm user experience in latency-sensitive applications like search engines (Team et al., 2025).

To minimize redundant reasoning, recent studies leverage Reinforcement Learning (RL)(Shao et al., 2024;
Bai et al., 2022; Ouyang et al., 2022; Ramesh et al., 2024) to align LLM outputs with condensed CoT rea-
soning (Team et al., 2025; Hou et al., 2025; Yi & Wang, 2025). The key difference among these RL-based
methods lies in how rewards are constructed for positive and negative samples. To clarify this, we adopt the
sampling framework utilized in S-GRPO (Dai et al., 2025b): they truncate the generated CoT sequence at
predefined positions (e.g., token index pi) while appending an early-stopping prompt (e.g. “Thinking time is
up; please output the required answer”). The model is then prompted to generate an answer from this short-
ened CoT, with correct answers labeled as positive samples and incorrect ones as negative samples. Based
on this framework, we categorize input queries into three difficulty classes based on truncated CoT perfor-
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mance: Simple, Middle and Hard. (1) Simple: Queries where the model’s full CoT reasoning produces
the correct answer, and all truncated CoT sequences also yield correct answers. Here, minimal reasoning
suffices; (2) Middle: Truncated CoTs yield mixed results—some produce correct answers, while others fail.
This means that the model requires sufficiently extended reasoning to succeed; (3) Hard: Queries where the
full CoT reasoning leads to an incorrect answer, and all truncated CoT sequences fail. These queries remain
unresolved regardless of reasoning length.

Figure 1: Comparison of reward strategies in recent RL methods.

Figure 1 compares reward strategies in recent RL methods. Training Efficient (Arora & Zanette, 2025)
adopts a uniform strategy, granting comparable rewards to all positive samples and zero reward to negative
samples. Conversely, LCPO (Aggarwal & Welleck, 2025) and S-GRPO (Dai et al., 2025b) differentially
reward positive samples based on CoT length, assigning higher rewards to shorter successful reasoning
paths. Degrpo (Fang et al., 2025) advances prior approaches by applying significant negative rewards to all
negative samples. Recent state-of-the-art (SOTA) methods DAST (Shen et al., 2025) and Shorterbetter (Yi &
Wang, 2025) employ similar strategies for positive samples as previous methods, while diverging in handling
negative samples. DAST prioritizes answer correctness by progressively increasing rewards to encourage
extended reasoning when answers are wrong. Shorterbetter instead rewards negative samples based on length
proximity to the minimal sufficient CoT, incentivizing CoT lengths near optimal minima.

Despite their promise, current SOTA methods still face two critical limitations. First, for Hard queries,
DAST promotes progressively longer CoTs while Shorterbetter converges to medium lengths. Given the
low solve probability for these queries, both approaches waste substantial tokens generating futile reasoning
paths. Second, for Middle queries, which require precise CoT lengths as slight deviations cause failure, both
DAST and Shorterbetter encourage extending CoTs before reaching successful lengths. However, accu-
mulating leading signals often causes models to overshoot the critical reasoning step, resulting in incorrect
answers despite approaching correctness.

To address these limiations, we introduce RazorReward: a novel reward principle enforcing a sharp boundary
between benefit and penalty. For Hard queries, it incentivizes minimal CoTs—solving directly without
thinking or abstaining if unsolvable. For Middle queries, where correctness is hypersensitive to CoT length,
RazorReward prioritizes exact attainment of the minimal sufficient reasoning length by heavily penalizing
outputs that fall short or exceed it—eliminating wasteful “approaching correct” paths.

Accordingly, we propose RazorReward-RL, a novel reinforcement learning framework to mitigate overthink-
ing. Unlike prior work (Dai et al., 2025b) that relies on arbitrary segmentation, our method partitions CoTs
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into structural reasoning blocks, enabling construction of semantically coherent positive and negative sam-
ples for RL training. We further design a reward function that grants higher rewards to shorter, correct rea-
soning, imposes increasing penalties on longer, incorrect reasoning, and severely penalizes failures near the
optimal length. This approach forces precise calibration of reasoning steps, eliminating token waste on “ap-
proaching correct” reasoning. Evaluation across six mathematical reasoning benchmarks (spanning varying
difficulty levels) using DeepSeek-R1-Distill-Qwen-7B/1.5B backbones demonstrates that RazorReward-RL
improves accuracy by 8.3%–9.3% while reducing average token consumption by 38.4%–43.8%, achieving
a superior accuracy-efficiency trade-off over prior methods.

2 RELATED WORK

Training-Free Methods These methods mitigate the overthinking problem without LLMs fine-tuning.
For instance, Deer (Dai et al., 2025b) dynamically halts generation by analyzing next-token logits; Con-
cise (Qiao et al., 2025) makes stopping decisions based on the model’s confidence in intermediate answers;
and Dynasor-CoT (Yang et al., 2025b) dynamically stops inference by monitoring certainty. Differently,
RouteLLM (Ong et al., 2025) employs routing strategies to assign queries to either strong or weak mod-
els, while ThinkSwitch (Liang et al., 2025) introduces a lightweight regressor to switch between different
reasoning modes.

Supervised Fine-Tuning Methods LS-Mixture (Yu et al., 2025a) constructs a dataset that combines long
CoT examples with structurally compressed short CoT examples for model fine-tuning. Similarly, Z1 (Yu
et al., 2025b) creates a dataset containing both short and long CoT variants while removing explicit thinking
markers. While these supervised fine-tuning (SFT) methods enable models to autonomously select reasoning
modes, it places high demands on the quality of training data, requiring substantial manual effort.

Reinforcement Learning Methods AdaptThink (Zhang et al., 2025) dynamically selects between long
and short reasoning modes, while Adacot (Lou et al., 2025) penalizes incorrect mode choices to prevent
over/under-thinking. De-GRPO (Fang et al., 2025) prioritizes concise and correct reasoning through tar-
geted rewards to enhance efficiency-accuracy tradeoffs. Other methods adopt explicit length-based rewards:
Training Efficient (Arora & Zanette, 2025) and LCPO (Aggarwal & Welleck, 2025) reward correct answers
shorter than an average/preset length. DAST (Shen et al., 2025) adjusts reasoning length by question diffi-
culty, encouraging longer chains for incorrect samples, whereas Shortbetter (Yi & Wang, 2025) incentivizes
lengths near the first correct answer. S-GRPO (Dai et al., 2025b) introduces serial sampling with early-
stopped inference paths to construct sampling groups.

Our method diverges from prior RL approaches in two key ways. First, instead of arbitrary segmentation
to generate RL samples, we segment using inherent phrase boundaries. Second, while existing methods
incrementally reward longer CoTs for incorrect answers—risking wasted tokens on futile paths—we employ
a razor-like reward mechanism. Chains leading towards or including key steps without the correct answer
face severe penalties. This forces the model to identify essential steps efficiently, minimizing wasted effort
on near-correct reasoning.

3 METHOD

This section introduces RazorReward-RL, a two-stage approach. In the first stage, CoT sequences are trun-
cated and appended with an early-stopping prompt to generate positive and negative samples. In the second
stage, we construct the RazorReward function and then perform RL to optimize the model. The overview of
RazorReward-RL is presented in Figure 2.
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Figure 2: Overview of our RazorReward-RL framework.

3.1 SAMPLE CONSTRUCTION

Given an input query q, the policy model πθ first generates a complete chain of thought and a final answer,
i.e., ⟨s0, c0⟩ = πθ(q), where s0 = [t1, t2, . . . , tn] is the token sequence representing the chain of thought,
consisting of n reasoning tokens, and c0 is the model’s final answer derived from the chain of thought.

3.1.1 SEGMENTATION POINTS IDENTIFICATION

A chain of thought typically consists of a sequence of logically coherent and atomic steps. Segmentation
points should align with natural transitions or stage boundaries in the reasoning process. To identify such
segmentation points, our approach leverages a predefined lexicon of structural phrases. This lexicon serves as
a reservoir of markers indicative of reasoning boundaries. Segmentation occurs by matching entries from this
lexicon against the CoT sequence. For efficient and comprehensive matching across the lexicon, we employ
the Aho-Corasick multi-pattern string matching algorithm (Thorbecke et al., 2024). The lexicon includes a
diverse range of markers indicating reasoning transitions, stepwise progression, hypothesis formation and
summary statements. A comprehensive enumeration of the phrases is provided in the Appendix A.1.

3.1.2 EARLY-STOPPING GENERATION

To this end, we derive a list of segmentation points P = [p1, · · · , pm]. Each point pi specifies a token
index within the CoT sequence, and m represents the total number of points. These points partition the CoT
sequence c0 into m + 1 distinct reasoning steps {T1, · · · , Tm+1}, where Ti denotes the token sequence of
the i-th reasoning step.

Given a segmentation position pi, the original CoT sequence is truncated, forming the sequence si = T1 ⊕
· · · ⊕ Ti, where i = 1, . . . ,m, and ⊕ denotes sequence concatenation. The policy model πθ is then queried
with each truncated sequence si alongside the original question q , generating a corresponding answer ci as
ci = πθ(q ⊕ si ⊕ Pes), where Pes represents the token sequence of the early-stopping prompt (e.g., “The
thinking time is up, please output the answer according to the format requirements.”).

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

All generated answers, paired with their respective (original or truncated) CoT sequences, are aggregated
into a serial training group G: G = {< c1, s1 >, · · · , < cm, sm >,< c0, s0 >}. A sample < ci, si > is
labeled as a positive example if ci is correct; otherwise, it is labeled as a negative example. This group G
facilitates direct comparison and targeted reward assignment across answers generated at different reasoning
depths, providing diverse positive and negative samples crucial for enhancing reinforcement learning.

3.2 REINFORCEMENT LEARNING

Leveraging the samples within G, we build the RL framework for model optimization. This section details
the proposed reward function, RazorReward, and the corresponding training objective.

3.2.1 REWARD FUNCTION

The RazorReward function scores samples in G, extending beyond conventional binary correctness to incor-
porate three components: correctness reward (i.e., Rcorrect prioritizes answer accuracy), format reward (i.e.,
Rformat ensures structural compliance), and length reward (i.e., Rlength promotes reasoning efficiency). The
total reward for a sample xi ∈ G is:

RRazorReward(xi) = Rcorrect(xi) +Rformat(xi) +Rlength(xi). (1)

Correctness Reward: A sample receives 2 points for a fully correct answer and 0 otherwise. This prioritizes
accuracy over efficiency or early termination, aligning with standard RL practices. Format Reward: To en-
sure structured outputs for reliable evaluation, a sample must adhere to the format <think>...</think>
<answer>...</answer>—requiring all tags to appear exactly once in the correct order. Compliance
yields 1 point; non-compliance yields 0, eliminating ambiguity from inconsistent formatting. Length Re-
ward: This component mitigates redundant reasoning via stepwise reward. Let Indexright denote the index
of the first correct sample in G (or n if none exists), and Numi

right the cumulative correct samples up to xi.
The reward ri for xi =< ci, si > is:

ri =


1

2Numi
right−1

, if ci is correct.

− 0.5

2Indexright−i−1
, if i < Indexright and ci is incorrect.

−0.5, if i > Indexright and ci is incorrect.

(2)

The interpretation is as follows: (1) Correct samples: Rewards decay exponentially with each subsequent
correct answer (e.g., 1 for the first, 0.5 for the second), incentivizing concise reasoning; (2) Errors before
first correct: Penalties intensify near Indexright, discouraging mistakes close to correctness; (3) Errors
after first correct: Fixed penalty of −0.5 suppresses any subsequent incorrect or redundant steps, once a
correct sample has appeared. With such length reward, RazorReward jointly prioritizes the shortest correct
CoT path, discourages excessively long reasoning when queries are unsolvable, and mitigates token wastage
on near-correct reasoning through severe penalties on samples near the correct samples in G.

3.3 TRAINING OBJECTIVE

For a query q, consider a group of m + 1 samples G = {⟨c1, s1⟩, . . . , ⟨cm, sm⟩, ⟨c0, s0⟩}, each assigned
a reward ri by the reward function. The advantage Âi for the sample xi ∈ G is computed as Âi = ri −

1
m+1

∑m
j=0 rj , where the denominator m+ 1 is the group size. To maintain training stability, the computed

advantage Âi is assigned uniformly to every token in the corresponding answer ci, such that for any token
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(e.g., index t) in ci, we set Âi,t = Âi. The policy optimization employs a clipped surrogate objective:

J (θ) = E
q∼P (Q), {ci}|G|

i=1∼πθold (C|q) 1

|G|

|G|∑
i=1

1

|ci|

|ci|∑
t=1

{
min

(
πi,t
θ

πi,t
θold

Âi, clip

(
πi,t
θ

πi,t
θold

, 1− ϵ, 1 + ϵ

)
Âi

)} , (3)

Here, q represents the input query. πθ and πθold are the current and reference policy parameters before
optimization, respectively. The expression πi,t = π(ci,t | q′, ci,<t) designates the probability of generating
token ci,t at position t in answer ci, given prompt q′ and preceding tokens ci,<t, where q′ = q ⊕ si ⊕ Pes

denotes the prompt constructed by appending the CoT sequence si and early-stopping prompt Pes to the
input query. The hyperparameter ϵ clips the importance sampling ratio to ensure stable policy updates.

4 EXPERIMENT

4.1 SETUP

Datasets Following prior works (Dai et al., 2025b), we constructed DeepMath-30K Balanced, a difficulty-
balanced training set, by sampling problems from the DeepMath-103K dataset (He et al., 2025) (covering
grades 5-10 mathematics). After pre-processing, we obtain a training set of 30190 samples.1 We evaluate
our model on six math and science reasoning benchmarks: GSM8K (Cobbe et al., 2021) test set (1319 grade
school math problems),MATH500 (Hendrycks et al., 2021b)(500 high-school competition problems), AIME
2024(MAA Committees, 2024) and AIME 2025(MAA Committees, 2025) (30 Olympiad-level problems
each year), AMC 2023 (AI-MO, 2024) (40 high school competition problems), and GPQA D (Rein et al.,
2023) (198 graduate-level science questions).

Baselines The RL methods include ShorterBetter (Yi & Wang, 2025), DAST (Shen et al., 2025), L1-
Max (Aggarwal & Welleck, 2025) and AdaptThink (Zhang et al., 2025). Turning to training-free methods,
we evaluate against DEER (Dai et al., 2025b). For detailed descriptions, please refer to the Related Works
section. Additionally, we include the Vanilla model for comparison. This model directly uses the backbone
for inference without any fine-tuning.

Implementation Details For each query, we constrain the number of segmentation points to 8. Key
hyperparameters during training include a 2048-token response length, batch size of 128, and learning
rate of 1e-6. The 2048-token limit aligns with production systems like Baidu Search (Baidu, 2025) and
Doubao (ByteDance, 2025), where most user queries need responses shorter than 2000 tokens (Lou et al.,
2025). The selected response limit facilitates adaptation to production environments like search engines in
the future. All baselines are rigorously reproduced using their officially released model weights. Following
prior work (Yi & Wang, 2025), Deepseek-R1-Distill-Qwen-7B and 1.5B are used as backbones.

Evaluation Protocol We evaluate model performance using three primary metrics: Accuracy (Acc↑),
Output Length (Tok↓) and Accuracy-Efficiency Score (AES↑). Output Length measures the average
number of tokens generated per sample, where lower values reflect more concise responses. The Accuracy-
Efficiency Score (AES), introduced to jointly evaluate output brevity and accuracy preservation (Luo et al.,
2025). A higher AES indicates better efficiency with minimal or no loss in correctness.2

1Due to space limitations, pre-processing details are provided in the Appendix A.3
2Due to space limitations, the details of AES are provided in the Appendix A.4
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Table 1: Experimental results on six mathematical and scientific reasoning benchmarks. Best and second-
best performance for both Acc and AES are marked in bold and underline, respectively.
Method GSM8K AIME24 AMC23 MATH-500 GPQA D AIME25 Summary

Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ AES↑

DeepSeek-R1-Distill-Qwen-7B
Vanilla 77.5 406 28.5 3735 59.5 2739 73.5 1580 21.1 2604 22.9 3700 47.17% 2461
ShorterBetter 86.6 109 31.0 2299 68.6 1000 76.6 492 36.9 780 20.0 2030 53.28%(+6.11%) 1118 (-54.6%) 0.934
DAST 91.3 628 25.6 3754 66.1 2709 80.5 1802 20.6 3061 23.8 3717 51.32%(+4.15%) 2612 (+6.1%) 0.203
L1-Max 57.4 515 30.8 2075 68.4 1434 70.1 1059 30.6 1152 18.8 1873 46.02%(-1.15%) 1351(-45.1%) 0.378
AdaptThink 83.2 365 33.3 3454 72.8 2240 81.7 1296 27.7 2579 26.0 3481 54.12%(+6.95%) 2236(-9.1%) 0.533
Deer 85.7 382 20.0 1969 67.5 1261 70.0 772 29.3 1552 16.7 1930 48.20%(+1.03%) 1311(-46.7%) 0.533
RazorReward-RL 89.2 447 33.3 2490 74.7 1656 81.2 1088 39.0 1243 21.3 2168 56.45%(+9.28%) 1515(-38.4%) 0.975
DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 73.8 442 14.6 3952 48.3 3021 66.6 2063 8.1 2790 13.3 3912 37.45% 2697
ShorterBetter 78.0 362 15.2 2824 56.7 1594 73.0 992 22.9 1149 13.3 2653 43.18%(+5.70%) 1596(-40.8%) 0.867
L1-Max 73.0 1480 22.7 2847 69.2 2777 76.5 2408 30.2 1166 19.2 2796 48.47%(+11.0%) 2246(-16.7%) 1.050
AdaptThink 81.8 303 16.5 2012 55.5 1279 74.7 782 15.2 1667 12.3 1861 42.67%(+5.20%) 1317(-51.2%) 0.930
Deer 59.5 329 3.3 1948 25.0 1448 37.6 846 2.0 1827 3.3 1948 21.78%(-15.7%) 1391(-48.4%) -1.608
RazorReward-RL 80.9 383 17.9 2684 59.4 1661 71.2 1104 30.4 1037 14.4 2222 45.7% (+8.25%) 1515 (-43.8%) 1.099

4.2 MAIN RESULTS

Table 1 compares our method with recent baselines across six mathematical and scientific reasoning datasets
and two LLM backbones. First, RazorReward-RL consistently outperforms the Vanilla model in accu-
racy across most datasets and both LLM backbones. Using the 7B backbone, RazorReward-RL achieves
an average accuracy of 56.45% – a 9.28 percentage-point improvement over Vanilla – while reducing to-
ken consumption by approximately 38.4%. Similarly, on the 1.5B backbone, RazorReward-RL delivers an
8.25% accuracy gain alongside a 43.8% reduction in reasoning sequence length. These results collectively
demonstrate the effectiveness and generalizability of our approach across diverse datasets and model scales.

Second, against recent baselines, RazorReward-RL achieves the best average accuracy on the 7B backbone
and the second-best on the 1.5B backbone. Crucially, it attains the best AES across both backbones, demon-
strating superior overall trade-offs. While ShorterBetter ranks second in AES on 7B, RazorReward-RL
outperforms it on the 1.5B backbone in both accuracy and token reduction, leading to significantly higher
AES. On 1.5B, L1-Max achieves higher accuracy but ranks second in AES; this reverses on the 7B back-
bone, where RazorReward-RL exceeds L1-Max by 10.43% in accuracy and significantly in AES. These
results underscore RazorReward-RL’s superior generalizability.

4.3 ABLATION STUDY

This section presents an ablation study to quantify the contributions of our framework across six benchmarks
and two backbone models. The compared models are: (1) Vanilla: This baseline utilizes the backbone for
inference without fine-tuning; (2) Basic RL: This model optimizes the Vanilla baseline using the basic
RL framework outlined in S-GPRO (Yi & Wang, 2025). It serves as our primary ablation point due to its
similar pipeline as ours; (3) Our RazorReward: This model optimizes the Vanilla baseline using our full
RL framework. Specifically, it replaces the random CoT segmentation used in Basic RL with our structural
segmentation and substitutes the reward function with RazorReward. The results are shown in Table 2.

The Basic RL model significantly outperforms the Vanilla baseline across most datasets and backbones,
achieving an average token reduction rate ranging from 38% to 52%. This validates the effectiveness of the
basic framework in optimizing the backbone performance. Crucially, our RazorReward model consistently
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Table 2: Ablation study on six mathematical reasoning benchmarks.
Method GSM8K AIME24 AMC23 MATH-500 GPQA D AIME25 Summary

Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ Acc↑ Tok↓ AES↑
DeepSeek-R1-Distill-Qwen-7B

Vanilla 77.5 406 28.5 3735 59.5 2739 73.5 1580 21.1 2604 22.9 3700 47.17% 2461
w/ Basic RL 87.5 426 25.8 2642 71.4 1498 79.6 980 33.1 1273 21.0 2254 53.08%(+5.91%) 1512(-38.6%) 0.759
w/ Our RazorReward 89.2 447 33.3 2490 74.7 1656 81.2 1088 39.0 1243 21.3 2168 56.45%(+9.28%) 1515(-38.4%) 0.972
DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 73.8 442 14.6 3952 48.3 3021 66.6 2063 8.1 2790 13.3 3911 37.46% 2696
w/ Basic RL 77.3 315 14.4 2296 54.7 1369 70.6 912 26.8 859 12.7 1954 42.74%(+5.28%) 1284(-52.4%) 0.947
w/ Our RazorReward 80.9 383 17.9 2684 59.4 1661 71.2 1104 30.4 1037 14.4 2222 45.71%(+8.25%) 1515(-43.8%) 1.099

surpasses the Basic RL model on accuracy across all datasets and backbones. While the average token
reduction achieved by RazorReward is lower in certain cases, it delivers a consistently higher AES. This
demonstrates RazorReward’s superior ability to balance model accuracy against inference efficiency.

4.3.1 FURTHER ANALYSIS

Figure 3: Left: Breakdown of reasoning step categories and path lengths across different models. Right: Out-
of-distribution (OOD) generalization performance: accuracy and token reduction under 1.5B/7B backbones.

Reasoning Quality Analysis We evaluate reasoning quality by categorizing CoT paths (using Qwen3-
235B-A22B (Yang et al., 2025a); prompts in Appendix A.2) into five mutually exclusive classes (Pivotal
Reasoning, Productive Elaboration & Calculation, Exploring Alternatives, Verification & Self-Correction,
Non-substantive Statements), assessing category proportions at the token level. Comparisons against Vanilla
and RL baselines (DAST, Shortbetter) on the 7B backbone are shown in Figure 3 (Left).

First, RazorReward-RL achieves the highest share of Pivotal Reasoning + Productive Elaboration & Cal-
culation (76.6%), outperforming all compared baselines. Second, RazorReward-RL minimizes Exploring
Alternatives + Verification & Self-Correction (18.4%), indicating a more direct process (Shortbetter shows
more exploration). Third, RazorReward-RL maintains reasoning quality with a significantly shorter aver-
age path length (1240 tokens) than DAST and Vanilla. Overall, RazorReward-RL achieves more focused,
efficient, and concise reasoning than all baselines.

Performance under Different Difficulty Levels This section compares model performance across three
query difficulty levels (Easy, Middle, and Hard). We randomly selected 250 queries from the Math500
dataset with an Easy:Middle:Hard ratio of 1:2:2. Corresponding positive and negative samples were gener-
ated using the DeepSeek-R1-Distill-Qwen-7B model. Results are presented in Table 3.
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At Easy level, all models achieved accuracy higher than 90%, with RazorReward-RL performing best
(98.75%). This exceeds DAST by 0.25% and ShorterBetter by 5.25%. Although RazorReward-RL and
DAST demonstrate comparable accuracy, RazorReward-RL achieves significantly greater token reduction.

At Middle level, DAST achieved the highest accuracy (95.25%), while RazorReward-RL attained compa-
rable accuracy (94.88%) with greater reasoning efficiency. RazorReward-RL significantly reduced token
usage, especially on incorrect responses, and achieved the lowest Error/Correct Ratio, demonstrating its
effectiveness in minimizing exploration of near-correct paths and focusing tokens on correct reasoning, con-
sistent with our design principle to penalize deceptive reasoning and maintain a controllable process.

At Hard level, DAST maintained the highest accuracy (76.38%) but exhibited excessive reasoning lengths.
RazorReward-RL balanced accuracy (74.88%) and efficiency effectively, while ShorterBetter’s aggressive
token reduction strategy resulted in significant accuracy loss (63.25%). With an optimal Error/Correct Ra-
tio of 1.68, RazorReward-RL demonstrates effective balancing—avoiding overthinking while preserving
problem-solving capability on challenging problems.

Table 3: Performance comparison across difficulty levels: Easy (purple), Middle (orange), Hard (green).
Error/Correct Ratio = Incorrect Tok / Correct Tok.

Model Acc↑ Avg Tok↓ Correct Tok↓ Incorrect Tok↓ Error/Correct Ratio↓
Vanilla 92.50 816.49 847.11 438.83 0.52
RazorReward-RL 98.75 668.82 665.28 948.80 1.43
DAST 98.50 1102.07 1056.48 4096.00 3.88
ShorterBetter 93.50 154.93 145.89 285.08 1.95

Vanilla 88.88 1129.93 1004.56 2131.48 2.12
RazorReward-RL 94.88 884.26 846.66 1580.37 1.87
DAST 95.25 1413.92 1284.28 4013.55 3.13
ShorterBetter 90.88 348.51 292.03 910.97 3.12

Vanilla 68.38 1435.01 1168.48 2011.27 1.72
RazorReward-RL 74.88 1066.36 910.83 1529.85 1.68
DAST 76.38 1707.25 1447.17 2548.05 1.76
ShorterBetter 63.25 446.53 316.49 670.33 2.12

Generalizability in Out-of-Distribution (OOD) Scenarios To further evaluate our approach under OOD
conditions, we test on MMLU (Hendrycks et al., 2021a) and GPQA Diamond. Both benchmarks diverge
significantly from our math-focused training corpus: MMLU covers 14K multi-choice questions across 57
diverse domains, while GPQA Diamond comprises scientific question-answering tasks.

As shown in Figure 3 (Right), our models exhibit robust generalization: (1) on MMLU, using both 7B
and 1.5B backbones, our approach achieves comparable or higher accuracy than the Vanilla model while
reducing response tokens by 30–40%; (2) On GPQA Diamond, our models improve accuracy by 18% and
substantially shorten response length, demonstrating enhanced efficiency and adaptability in OOD scenarios.

5 CONCLUSION

This study introduced RazorReward-RL, a novel RL framework addressing LLM overthinking. By seg-
menting CoTs into structural reasoning blocks, RazorReward-RL enables the construction of semantically
coherent training samples. Its core RazorReward function imposes large penalization on both under- and
over-reasoning relative to the minimal sufficient CoT. This allows precise calibration of reasoning steps,
effectively reducing model’s token waste on the failed reasoning near the optimal length. Extensive experi-
ments across six benchmarks demonstrate RazorReward-RL’s superior accuracy-efficiency trade-off. Further
analyses, including reasoning quality assessment, performance on queries of varying difficulty and OOD ex-
periments, consistently validate the framework’s efficacy.
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A APPENDIX

A.1 ENUMERATION OF REASONING MARKERS

To systematically identify and analyze reasoning processes in text, we curated a comprehensive set of struc-
tured linguistic markers. These phrases serve as signals for reasoning transitions, stepwise progressions,
analytical constructs, and conclusion statements. For clarity and reproducibility, we categorize the markers
as follows:

1. Transitions and Self-Verification
These phrases signal a shift in reasoning, pausing for self-checks, or considering alternatives. Ex-
amples include: but, wait, hold on, hmm, let’s check, let me double-check, alternatively

2. Sequential Progressions
These markers indicate the logical progression of steps or ideas: so, after that, next, then, therefore,
given that, together, in total, thus, alright, finally, first, now

3. Step Indicators
Explicit numbering or phrasing denoting individual steps: step 1, step 2, 1., 2., to find

4. Analytical and Hypothetical Constructs
Phrases that introduce analysis, hypotheses, or reference information: let’s analyze, let’s consider,
suppose, assume that, notice that, recall that

5. Summarization and Conclusion
Markers signaling the end of reasoning or summarization: in summary, in conclusion, overall

A.2 PROMPT TEMPLATE FOR REASONING QUALITY ANALYSIS

Prompt for Reasoning Quality Analysis

You are a reasoning trace analyst. Your task is to categorize each line (separated by a newline, except
for equations, which should not be considered standalone lines) in a given reasoning trace according
to its role in the reasoning process. The objective is to understand how different components of the
model’s reasoning contribute to the final answer.
You will receive a complete reasoning trace ending with a final answer after the </think> tag. You
must:

• Only analyze the content before the </think> tag.
• Split the reasoning trace into individual lines. Multiple sentences may appear in a single line;

a line ends at a newline character.
• Assign exactly one label to each line from the following mutually exclusive categories, based

on its primary function in context.

Categories:
• Pivotal Reasoning: Steps that directly correspond to specific parts of the final summary or

solution (as shown after </think>). These include essential equations, key variable assign-
ments, or critical conclusions explicitly present in the summarized answer.

• Productive Elaboration & Calculation: Necessary calculations, logical deductions, plan-
ning, or explanations that support a pivotal step but are not themselves restated in the final
summary.

14
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• Exploring Alternatives: Attempts to try different approaches, propose hypotheses, or check
other methods that are ultimately not used in the final solution.

• Verification & Self-Correction: Sentences in which the model checks, verifies, or corrects
earlier results to catch errors or reconsider its approach.

• Non-Substantive Statement: Redundant comments, conversational fillers, or trivial rephras-
ings that do not advance the solution or add meaningful structure.

Additional Instructions:
• Stop processing as soon as the </think> tag is encountered. Do not categorize anything

beyond it. The content after </think> serves as the reference for “Pivotal Reasoning.”
• If a line repeats or paraphrases an earlier line without adding new value or serving a clear

structural purpose (such as summarizing inputs before a new calculation phase), categorize the
repeated instance as “Verification & Self-Correction,” even if the original served a different
purpose.

• If a line could arguably fit more than one category, choose the one that best describes its pri-
mary function or most specific contribution in context. For example, a calculation that corrects
a previous error is “Verification & Self-Correction” rather than “Exploring Alternatives.”

• Do not infer the logical correctness of the reasoning or the final answer. The categorization
concerns the structure and the perceived purpose of each statement within the model’s reason-
ing process.

• Treat each line independently, but utilize surrounding context (preceding and succeeding lines)
for understanding its function, especially in identifying repetitions, planning statements, or
logical flow.

• If the reasoning trace starts with the </think> tag, return an empty list.
Output Format:

• Return your output as a JSON array of objects.
• Each object should have: "text": the full original line (string), and "label": one of the

five category names above (string).
Example Output:
[{"text": "The problem asks for the speed of the train.",
"label": "Exploring Alternatives"},
{"text": "We set up the equation: d = s * t",
"label": "Pivotal Reasoning"}]

Return only the structured JSON list, without any extra commentary or explanation.
Reasoning trace to analyze:
{response}

A.3 TRAINING DATASET CONSTRUCTION DETAILS

We construct the training set by stratified sampling from DeepMath-103K, a large-scale math problem
dataset spanning grades 5-10, with difficulty levels annotated from 3 to 9 via multi-round AI assessment. To
ensure training stability and representativeness, we first exclude samples with unclassifiable answers (non-
numeric/yes-no), then compute the joint distribution of difficulty and topic. We sample 30,190 problems

15
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such that the marginal and conditional distributions over both difficulty and topic closely match those of the
filtered source data.

To further improve training stability and prevent sudden increases in problem difficulty within batch, we
reorder the sampled dataset so that the sum of difficulties in each batch (batch size 32 or 128) remains
nearly constant across all batches. This is achieved via a greedy assignment ensuring that every batch’s
average difficulty is approximately 6.0, with minimal variance. Empirically, this leads to consistent learning
dynamics and avoids training collapse due to abrupt difficulty spikes.

Sampling and balancing are implemented in Python, following a two-step process: (1) stratified sampling
by difficulty and topic, (2) batch-wise reordering for difficulty balancing.

A.4 ACCURACY-EFFICIENCY SCORE

The Accuracy-Efficiency (AE) Score, as proposed by Luo et al. (2025), offers a metric for assessing whether
a model can enhance inference efficiency—specifically, by shortening output length—while maintaining
accuracy. The AE Score is formally defined by the following piecewise equation:

AES =

{
∆Length + η · |∆Acc|, if ∆Acc ≥ 0

ϕ ·∆Length − θ · |∆Acc|, if ∆Acc < 0
(4)

where ∆Length and ∆Acc denote the percentage reductions in output length and accuracy relative to the
base model. Following prior work (Luo et al., 2025), we set ϕ = 1, η = 3, and θ = 5. A higher AES
indicates better efficiency with minimal or no loss in correctness.
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