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ABSTRACT

In the vast landscape of video content, breaking down lengthy videos into chapters
accompanied by concise, descriptive titles greatly enhances searchability and re-
trieval efficiency. While recent advancements in this field often incorporate mul-
tiple data modalities along with human-annotated chapter titles, access to such
data, like speech transcripts or audio, is not always guaranteed. Moreover, the
manual annotation of chapter titles is expensive and time-consuming. To address
these challenges, we introduce ZCTG, a novel and unified zero-shot framework
designed to generate video chapters and their concise titles for untrimmed videos.
ZCTG utilizes the combined capabilities of scene graphs and Large Language
Models (LLMs). The advantages of ZCTG are three-fold: 1) offers practical util-
ity, relying solely on video data; 2) eliminates the need for detailed chapter title
supervision; 3) exhibits excellent generalization capabilities in a completely zero-
shot setting, without any training needed. We conduct an extensive evaluation on
VidChapters-7M and GTEA datasets, which include videos of varying duration
and domains, to demonstrate the efficacy of our proposed framework.

1 INTRODUCTION

In today’s digital landscape, where online content serves diverse purposes such as marketing, tutori-
als, entertainment, etc., across multiple platforms, there has been a remarkable surge in the consump-
tion of video content. Yet, sifting through this vast array of videos can pose a challenge to users,
often overwhelming them, leading to a suboptimal user experience. Segmenting videos into smaller
chunks with concise, descriptive titles can significantly improve content accessibility, navigation,
and overall user experience. This process, known as video chapter generation, involves dividing a
video into segments based on its content and creating titles that accurately reflect each part.

This task is closely related to video captioning, where the goal is to provide detailed descriptions
(captions) for a given video, capturing all events/scenes detectable by an algorithm. On the other
hand, in video chapter generation, the focus is on partitioning a video into segments (chapters), each
with some notion of internal temporal coherence, and then crafting concise titles that summarize se-
mantic highlights of the chapters. Hence, while existing dense video captioning techniques Krishna
et al. (2017); Wang et al. (2021); Zhou et al. (2018); Zhu et al. (2022) may yield impressive results
for generating detailed descriptions for a video, they are not directly suitable for our task.

Video platforms like YouTube provide users with the option to manually add timestamps and titles
for video chapters. However, this manual process can become increasingly challenging, especially
for longer videos. To address this, efforts have been made to automate this task, as demonstrated in
works such as Cao et al. (2022); Yang et al. (2024), but the field remains relatively underexplored.
Such methods utilize both video content and Automatic Speech Transcripts (ASR) or audio and
require chapter title annotations for training. However, the availability of ASR data may be limited
across various video categories, posing a challenge to the performance of multimodal frameworks.
While we acknowledge the importance of multi-modal supervision in such challenging tasks, we
argue that a framework that takes only videos as input and generates chapter titles in a zero-shot
setting can mitigate these limitations.

In this paper, we introduce Zero-Shot Video Chapter Title Generator (ZCTG), a unified, novel
framework designed to generate chapter titles for video content without relying on annotated data
(chapter titles) or additional input modalities typically required during training in existing methods.
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The zero-shot nature of our framework also eliminates the need for any task-specific training/fine-
tuning, thereby enhancing its generalizability across diverse video types and domains. Unlike con-
ventional methods that require pre-existing annotations or multimodal data such as text or audio
inputs, ZCTG operates solely on video frames, leveraging visual information to comprehend the un-
derlying content and generate chapters. We employ scene graph representation and Large Language
Models (LLMs) to generate concise titles for each video chapter, capturing its essence effectively. To
the best of our knowledge, ZCTG is the first unified framework designed for automatic video chapter
and title generation in a zero-shot scenario. We evaluate the performance of ZCTG using two diverse
datasets: the GTEA dataset Fathi et al. (2011), which focuses on daily cooking videos captured in
controlled environments, and the VidChapters-7M dataset Yang et al. (2024), which consists of a
large collection of videos of varying lengths and subjects sourced from YouTube. Our experimental
results demonstrate the effectiveness of ZCTG in generating informative, relevant chapter titles in a
zero-shot setting.

2 RELATED WORK

The video chapter generation task comprises two primary stages: first, the temporal segmentation
of the video into distinct chapters, and the generation of a natural language title for each chapter.
Therefore, video chapter generation intersects with various other video-based tasks such as video
shot detection Rui et al. (1998); Sidiropoulos et al. (2011), temporal action localization Chao et al.
(2018); Cheng & Bertasius (2022); Shou et al. (2016), temporal action segmentation Farha & Gall
(2019); Sarfraz et al. (2021); Li et al. (2021b) and many more. However, the task of video chapter
title generation differs from these other tasks because it involves creating natural language titles for
each video chapter.

Temporal action segmentation methods require capturing the long-range dependencies across the
video to create segments of actions. Prior research has introduced temporal and dilated convolutional
networks as solutions to capture these dependencies Lea et al. (2017); Lei & Todorovic (2018);
Farha & Gall (2019); Huang et al. (2020); Ishikawa et al. (2021); Li et al. (2020); Wang et al.
(2020). However, these approaches typically depend on annotated datasets, which are resource-
intensive to acquire. Consequently, the field has witnessed a growing interest in weakly supervised
and unsupervised methods as a mitigation to these challenges Sarfraz et al. (2021); Chang et al.
(2019); Ding & Xu (2018); Huang et al. (2016); Kuehne et al. (2018).

While temporal action segmentation can identify similar events throughout lengthy videos, navigat-
ing such content without the aid of natural language titles can be challenging, particularly for long
videos. The annotation of video chapters with concise titles can facilitate automated navigation of
the content. In this context, the video chapter title generation task has relevance to other caption
generation tasks such as video captioning Gao et al. (2017); Lin et al. (2022); Luo et al. (2020); Pan
et al. (2017); Wang et al. (2018); Zhang et al. (2020b), video title generation Zhang et al. (2020a);
Zeng et al. (2016); Amirian et al. (2021), and dense video captioning tasks Krishna et al. (2017);
Wang et al. (2021); Zhou et al. (2018); Zhu et al. (2022). Some of the recent and notable efforts
in video caption and description generation tasks are VideoLLaMA Zhang et al. (2023) and Intern-
Video2 Wang et al. (2024). However, these frameworks exhibit certain limitations, such as their
inability to capture temporal relationships in long videos, leading to the generation of erroneous
titles. Furthermore, they lack the capability to detect chapters within lengthy videos. Thus, there is
a pressing need for frameworks capable of automating chapter and its title generation for any video,
thereby minimizing manual effort.

The concept of video chapter title generation has been defined and studied by Yang et al. (2024) in
their work. It was observed that models trained on visual and ASR (Automatic Speech Recognition)
data outperformed those trained solely on visual data. Cao et al. (2022) employ a multi-modal
feature extraction method using video content and narration text to localize the video segments
(chapters) and generate titles in a supervised manner. However, the availability of ASR or other data
modalities as well as fine-grained annotations may be limited.

Hence, we present a zero-shot framework for video chapter title generation that eliminates the re-
quirement for multiple data modalities and training using densely annotated large datasets. Our
proposed approach utilizes only video content for chapter and its title generation and combines the
benefits of scene graph representation alongside the generative capabilities of Large Language Mod-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: ZCTG - Overview of the proposed framework.

els (LLMs). Owing to its zero-shot nature, this framework has wide applicability across videos of
varying lengths and genres, thereby enhancing its versatility.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Given a sequence of video frames X = {x1, x2, ..., xN}, where N represents the total number of
frames, our objective is to identify contiguous segments that encapsulate distinct actions in terms
of semantics and their titles describing the content in it. These segments are referred to as video
chapters, denoted by C = {c1, c2, ..., cM}, with M being the total number of video chapters. The
chapters are associated with chapter titles denoted by T = {t1, t2, ..., tM}. Since this is a zero-
shot setting, no information about the ground truth (video chapter boundaries or chapter titles) is
available, and no training has been performed using X .

3.2 ZCTG: PROPOSED FRAMEWORK

We propose the ZCTG framework for automatic video chapter and title generation, comprising of
two primary tasks: Video Chapter Generation and Chapter Title Generation. Figure 1 depicts the
overall framework of ZCTG. The top pipeline of the framework generates video chapters using the
spatio-temporal video frame features. The lower pipeline generates the titles for the chapters that
capture the content of the respective video chapters. To achieve this, the visual content is converted
to text representation using scene graphs which is then given to a Large Language Model (LLM).

3.2.1 VIDEO CHAPTER GENERATION

For generating semantically relevant chapter titles, creating meaningful video chapters is essential.
In order to generate meaningful video chapters, it is essential to consider both spatial and temporal
content. Hence, we use Spatio-Temporal Feature Extractor, which extracts spatio-temporal features
at the frame level using a pre-trained I3D Wang et al. (2019), a robust 3D convolutional neural
network represented by F (.). To extract features for a video frame xi, we incorporate its neighboring
frames within a window size of 2p+ 1, as illustrated in Equation 1.

fi = F

 i+p

∥
j=i−p

xj

 (1)
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where p is the number of frames to be considered before/after xi. This sliding window method en-
sures that the extracted features encompass spatial and temporal information, essential for producing
precise video segments.

Once the spatio-temporal features are extracted for all frames, they are fed into a Video Chapter
Generator module. It consists of a model designed to segment the video into chapters based on
their content. For this step, we employ an off-the-shelf, unsupervised temporal action segmentation
technique, TW-FINCH Sarfraz et al. (2021). We choose this unsupervised algorithm as we do not
assume the availability of fine-grained labels. The generated chapters are based on internal temporal
coherence derived from spatio-temporal frame features, which may typically differ from standard
video shot changes. While shot changes focus more on scene changes, the Video Chapter Generator
captures subtle variations within the scene more effectively.

Typically, TW-FINCH requires predefining the number of clusters. However, we refrain from as-
suming any prior knowledge about the number of segments or activities in a video. Considering
that natural videos usually contain around 10-15 actions on average, we set the number of clusters
K = 10 for all our experiments unless specified otherwise. Let D(.) represent our Video Chapter
Generator, then,

C = D

 N

∥
j=1

fj

 ,K

 , (2)

C = {c1, c2, ..., cM}, where C is the generated video chapters and M denotes the total number of
chapters. Note that M ≥ K, as the same action may occur at multiple time points within a video.

3.2.2 CHAPTER TITLE GENERATION

Once the video chapters C are generated, the next task is to create descriptive titles for each chapter.
Unlike existing methods Yang et al. (2024); Cao et al. (2022), which rely on both audio speech
transcripts (ASRs) with video data, our framework offers a novel alternative using visual data only.
This is particularly beneficial, as it removes the dependency on ASR for every video. The key
challenge lies in translating visual content into meaningful textual representations that effectively
capture both spatial and temporal cues. To address this, we make use of the expressive potential of
scene graphs. We choose scene graph representation as it captures the interactions among various
objects, thereby facilitating the understanding of the scene dynamics.

For every frame, we first extract its scene graph representation using the Scene Graph Generator
module, A(.). We use a pre-trained scene graph generation module Li et al. (2021a) as our A(.).
The scene graph is expressed as a group of triplets {oi, rk, oj}, where oi and oj denote objects within
the frame, and rk signifies the relation between them. For every frame xi, its corresponding scene
graph gi is extracted as gi = A(xi), where gi ∈ RQ×3 and Q represents the number of triplets. Li
et al. (2021a) considers the most confident 80 object predictions and derives all pairwise relations
among them. However, considering all (80 × 80) relations poses several challenges - first, less
confident relations may introduce irrelevant noise, which will affect the quality of generated chapter
titles; second, it increases the computational complexity in subsequent stages of the pipeline; and
lastly, the inclusion of all relations will be limited by the fixed input token size of the LLM. Hence,
we employ a two-step filtering mechanism to select the most confident Q triplets, aiming to mitigate
these challenges. First, we select the Q most confident predicted objects, followed by considering
only the Q most confident relations among these selected objects. We set Q = 10 empirically
and refer to A.1 for the corresponding experiments. This filtering minimizes the inclusion of noisy
predictions and is in the token limit of the LLM, to be used in later stages.

Even though the scene graphs for frames, G = {g1, g2, ...} convert the visual content in textual
form to be given as input to LLM, this presents several challenges - the scene graph triplets contain
information consisting solely of objects and their relations without any additional context; directly
aggregating all the triplets from the frames of a video chapter will not represent meaningful spatial
and temporal cues. Hence, we propose a novel two-step solution to tackle these challenges.

First, we leverage the contextual capabilities of LLMs to generate concise descriptions using gi
for each frame. This will provide the necessary context missing in the scene graph triplets. To
create a frame description di, the LLM, L(.) is provided with a system prompt Pdesc, a user prompt
Udesc combined with the current frame’s scene graph triplets gi, and the generated description for
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the previous frame di−1. We incorporate di−1 to introduce temporal context during description
generation. For the first frame, we set di−1 as ‘First Frame’.

After generating descriptions for each frame, the next step involves using them to generate chapter
titles T = {t1, .., tM}. For each chapter ci, the title ti is generated using the LLM L(.), with input of
a system prompt Ptitle and a user prompt Utitle combined with the preceding segment’s generated
title ti−1 and frame descriptions Gci for all frames Xci within segment ci (refer to Equation 3).
Similar to the previous step, the inclusion of ti−1 is employed to maintain temporal coherence and
consistency. We handle ti−1 for the first frame similar to frame descriptions by setting it as ‘Start of
the video’.

ti = L(Ptitle, Utitle∥

 R

∥
j=1

dj

 ∥ti−1), i = 1, 2, ..,M (3)

where R is the number of frames in a chapter and M is the total number of chapters.

Dividing the chapter title generation process into two steps, frame description generation followed
by title generation, offers several advantages - it augments scene graph representation with additional
context and ensures temporal consistency in the generated titles. We summarize the steps in our
framework ZCTG in Algorithm 1.

Algorithm 1 : ZCTG

1: Input: Video frames X={x1, . . . , xN}, F (I3D), D (Video Chapter Generator), A (Scene
Graph Generator), L (LLM), Pdesc, Udesc (System and user prompt for frame description),
Ptitle, Utitle (System and user prompt for chapter title generation)

2: Output: Video Chapters C = {c1, . . . , cM}, Chapter Titles T = {t1, . . . , tM}
3: Inference Strategy:
4: f = F (X) ▷ Extract spatio-temporal frame features
5: C = D(f) ▷ Generate video chapters
6: T = {}
7: for ci in C do
8: for xj in Xci do
9: gj = A(xj) ▷ Generate scene graph

10: dj = L(gj , Pdesc, Udesc, gj−1) ▷ Generate frame description
11: ti = L(∥|X

ci |
k=1 dk, Ptitle, Utitle, ti−1) ▷ Generate video chapter title

12: T.append(ti)
13: return C, T

4 EXPERIMENT RESULTS

In this section, we outline the experimental settings for conducting our experiments. Following
this, we discuss the evaluation results on VidChapters-7M and GTEA and discuss other analysis
experiments as well.

4.1 EXPERIMENT SETTINGS

4.1.1 DATASETS

For the evaluation of ZCTG, we use the VidChapters-7M Yang et al. (2024) and GTEA Fathi et al.
(2011) datasets. The VidChapters-7M dataset comprises 817,076 videos along with their chapter ti-
tles. The chapter titles are annotated by users, as the dataset is curated from YouTube and selectively
filtered to include only those videos with user-annotated chapter titles. These videos encompass a
diverse array of domains, including education and instructional content. On an average, a video lasts
1354 seconds. The dataset is partitioned into 801,000 training videos, with 8,200 each for validation
and testing. We report results on the test set, which consists of 6,762 videos (downsampled to 1
FPS) due to some videos being inaccessible or requiring special permissions for access.

The GTEA dataset comprises 28 egocentric videos featuring 7 distinct cooking activities, such as
preparing coffee and making a sandwich, conducted by 4 unique subjects. This dataset has 11 sub-
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actions annotations, including background. We utilize all 28 videos (1 frame sampled out of every
10 frames) from this dataset for our evaluation.

4.1.2 NETWORKS

Spatio-temporal feature extractor: We utilize a pre-trained I3D network as the spatiotemporal fea-
ture extractor F (.). The code and pre-trained model can be accessed here. For each frame, we
extract a 1024-dimensional spatio-temporal feature solely from the RGB input.

Video chapter generator: To segment videos into chapters, we utilize TW-FINCH Sarfraz et al.
(2021) for its strong performance in unsupervised temporal segmentation. The implementation pro-
vided by the authors1 is used in our experiments, with K = 10 as the default setting unless specified
otherwise. Additionally, we explore alternative temporal segmentation techniques and experiment
with value of K, which is discussed in Section 4.2.

Large langauge models (LLMs): To generate frame-level descriptions and chapter titles, we utilize
the Vicuna v1.5 (13B) model Zheng et al. (2023), which contains 13 billion parameters and supports
a context length of up to 16,000 tokens. Built on the Llama 2 architecture, Vicuna v1.5 is fine-tuned
using user conversations from ShareGPT. We also explore other LLM models in our experiments,
discussed further in Section 4.2. Refer to A.6 for details about the prompts used for ZCTG.

Baseline using Video-LLaMA: Since existing baselines do not directly align with our proposed
framework, we use Video-LLaMA Zhang et al. (2023) (based on finetuned Llama 2 (7B) model2)
as a reference point. While Video-LLaMA demonstrates excellent performance in generating video
and image descriptions, it lacks a dedicated chapter generation module. To ensure a fair compar-
ison, we adapt the Video-LLaMA framework to incorporate chapter creation and title generation
functionalities. In line with our proposed method, we employ a pretrained I3D network as the spa-
tiotemporal feature extractor to extract frame embeddings and generate video chapters (K = 10).
Each segmented chapter is then fed into the Video-LLaMA for title generation. Further details on
the textual prompts used for this task can be found in A.7.

4.1.3 EVALUATION METRICS

Considering the multimodal nature of our problem, which involves both videos and generated textual
titles, we evaluate our proposed approach, ZCTG using a range of metrics.

Vision-Language metrics: We use CLIPScore (CS) Hessel et al. (2021) to measure the similarity
between the frames of the video chapter and its generated title. The CLIPScore ranges between 0 to
100 and calculated using Torchmetrics library Nicki Skafte Detlefsen et al. (2022).

Language metrics: We also report purely language-based metrics i.e. comparing generated titles
with the ground-truth titles. We report BLEU (Bn) Papineni et al. (2002) where n = {1, 2, 3, 4} is
the n-gram value, and METEOR (M) Banerjee & Lavie (2005). Following Yang et al. (2024), we
also report SODA c (S) Fujita et al. (2020) for overall evaluation as it first finds optimal matching
of the generated chapters with the ground-truth ones and then calculates METEOR scores for the
titles. The F-scores are then calculated to penalize the redundant chapters.

Video chapter generation metrics: To evaluate the chapters generated by Video Chapter Generator
module, we use two metrics - Mean over Frames (MoF) and Intersection over Union (IoU). Fol-
lowing the evaluation of TW-FINCH Sarfraz et al. (2021), we perform Hungarian matching of the
generated chapters and ground-truth chapters for calculating these metrics.

LLM-based metrics: Given the exceptional ability of LLMs to understand the context of the gener-
ated text, we also evaluate our method using a Judge LLM. Inspired by evaluation criteria used in
Maaz et al. (2023), we evaluate three aspects of the generated titles (on a scale of 0-5):

i. Contextual understanding: Assessing if the generated titles capture the overall context of
the video and its chapters.

ii. Temporal understanding: Gauging how well the generated titles grasp the temporal se-
quence of events happening in the video.

1https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH
2https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Finetuned
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Figure 2: Frame descriptions generated by ZCTG for videos from GTEA (left) and VidChapters-7M
(right).

iii. Correctness of information: Verifying how accurate the generated titles are.

For this evaluation, we utilize the ChatGPT-3.5 model. We minimally adapt the prompts from Maaz
et al. (2023) to suit our specific task of video chapter title generation. Details about the prompts and
the evaluation process can be found in A.2.

For the VidChapters-7M dataset, ground-truth chapter titles are provided. Since our proposed
method follows a fully zero-shot scenario not having any form of supervision, the generated chapters
and their titles may differ from the ground-truth. In these instances, we compute the evaluation met-
rics as follows: for each ground-truth segment, we treat all generated titles by ZCTG as predictions
to be compared against the ground-truth title and calculate the evaluation metric. Refer to A.2 for
examples. In the case of the GTEA dataset, where ground-truth titles are not available, we report the
CLIPScore (CS) only.

4.2 RESULTS AND DISCUSSION

Chapter title generation: To yield chapter titles, we begin by generating frame descriptions using the
visual information represented using scene graphs. Figure 2 showcases the descriptions produced
by ZCTG for frames at different timestamps from the GTEA and VidChapters-7M datasets. These
descriptions depict the scene and effectively capture the ongoing activities. For example, in the
second column, the description accurately recognizes the person squeezing the sauce, identifying
the objects in view and their interactions, such as ‘pouring liquid’. These descriptions play a key
role in generating precise chapter titles.

Table 1: Evaluation results using Vision-Language and Language metrics on VidChapters-7M
Dataset. ∗Numbers are quoted from Yang et al. (2024).

Method Modalities CS B1 B2 B3 B4 M S
Vid2Seq∗ Visual+Speech - 0.1 0.0 0.0 0.0 0.1 0.1

Ours Visual 20.90 0.24 0.00 0.00 0.00 0.03 4.1

We present the evaluation results of ZCTG on the VidChapters-7M dataset in Table 1. The results
for Vid2Seq Yang et al. (2023), originally proposed for dense video captioning, are quoted from
Yang et al. (2024) and it is pretrained on C4 and Howto100M datasets and uses visual and speech
data modalities. As videos in VidChapters-7M dataset are typically long, we perform an additional
step of summarizing the frame descriptions after an uniform interval (20 frames) to address resource
constraints. The details about this step can be found in A.3. Notably, ZCTG outperforms or achieves
results comparable to the baseline, Vid2Seq Yang et al. (2023), despite relying solely on the videos,
unlike Vid2Seq, which uses multiple modalities.

Additionally, we assess our baseline, VideoLlama, on this dataset. However, a limitation of Vide-
oLlama is its ability to handle very long videos. Due to this limitation and resource constraints, we
report metrics only on a subset of VidChapters-7M. In this subset, ZCTG surpasses VideoLlama
with a CLIPScore of 21.3, compared to VideoLlama’s score of 17.30. Details on the experimental
setup and these results are available in A.4.
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Figure 3: Generated video chapters and their titles by ZCTG and ground-truth for a video about
minimal aesthetic from VidChapters-7M dataset.

Figure 4: Generated video chapters and their titles by VideoLlama (baseline) and ZCTG for a video
of making coffee from GTEA dataset.

Figure 3 is an example of chapters and their corresponding titles generated for a video about mini-
mal aesthetics from the VidChapters-7M dataset. The generated titles closely align with the visual
content (capturing events like changed outfits and accessorizing), while the ground-truth titles show
less coherence (such as ‘shape’ and ‘color’) with both the generated titles and the visual content.
This discrepancy explains the low language metric scores, which are generally based on n-gram
comparisons. However, the low scores do not imply that the generated titles are inaccurate. As a
matter of fact, they effectively capture the underlying semantics of the video chapters. Refer A.8 for
more such examples.

Table 2: Evaluation results on
GTEA Dataset.

Method CS
Video-Llama 19.42

Ours 25.40

The evaluation results for the GTEA dataset are summarized in
Table 2. We report only the CLIPScore for this dataset, as other
metrics depend on ground-truth titles, which are unavailable.
Our results indicate that ZCTG significantly outperforms the
VideoLlama baseline. The titles generated by VideoLlama, il-
lustrated in Figure 4, are often neither concise nor well-aligned
with the visual content. For instance, it inaccurately describes
a yellow table as a ‘red table’. On the other hand, the chap-
ter titles produced by ZCTG are highly aligned with the visual

content, effectively capturing events such as ‘pouring liquid from a bottle’.

LLM-based evaluation: Table 3 shows the results obtained using ChatGPT 3.5 as the Judge LLM
on the VidChapters-7M dataset. These results reveal that the chapter titles generated by ZCTG are
contextually rich, supporting our earlier experiments and observations. Similar to language metrics,
the generated titles are evaluated against the ground truth. As discussed previously, ground truth
titles do not always show a strong correlation with the visual content. It may be one of the reasons
why the scores for correctness of information and temporal understanding are lower. We will address
potential improvements in these areas in future work.

Influence of different LLM models: The LLM is a fundamental component of ZCTG. These models
are pretrained on large-scale datasets. To examine their effect on ZCTG, we interchange the LLM

8
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Figure 5: Generated chapters and their titles from ZCTG using different LLM models for a video of
making a hotdog from GTEA.

block with various LLMs while keeping all other elements same. This allows us to evaluate how
different factors, such as the pretrained knowledge and size of the LLM, influence the generated
titles.

Table 3: Evaluation results using Judge
LLM (ChatGPT- 3.5) on VidChapters-
7M dataset.

Criterion Ours
Contextual understanding 1.63
Temporal understanding 0.77

Correctness of information 0.45

Table 4 contains the evaluation results for three LLM
models: Llama 2 (7B) Touvron et al. (2023), a fine-tuned
version of Llama 2 (7B) on the R-VQA Lu et al. (2018)
dataset, and Vicuna v1.5 (13B) Zheng et al. (2023). For
more details on the fine-tuning process for Llama 2,
please refer to A.5. Figure 5 illustrates the generated
titles for a video of hotdog preparation from the GTEA
dataset, using different LLMs. We observe that the Vi-
cuna v1.5 model consistently produced the best results.
In contrast, the titles generated by Llama 2 tend to be ex-
cessively lengthy and often fail to accurately reflect the
video content. Although the titles from the fine-tuned Llama 2 are more concise, they sometimes
include inaccuracies, such as mentioning a ‘banana on top of pizza’. This experiment highlights that
larger models (13B compared to 7B here), which incorporate additional knowledge, tend to yield
superior results.

Table 4: Evaluation results when different LLM
models are used in ZCTG on GTEA dataset.

LLM CS
Llama 2 (7B) 14.01

Fine-tuned Llama 2 (7B) 21.08
Vicuna 1.5 (13B) 25.40

Video chapter generator evaluation: Segment-
ing videos into chapters often requires prior
knowledge of the true number of segments,
a requirement even for many existing unsu-
pervised methods Sarfraz et al. (2019; 2021).
However, this assumption may not always be
practical. That is why we refrain from assum-
ing any such prior knowledge. Nonetheless,
for our chapter generation module, we use TW-
FINCH, which necessitates defining the num-

ber of clusters beforehand. On average, videos on platforms like YouTube typically comprise 10-15
segments, each with distinct semantics. It is important to note that the number of clusters does not
necessarily equate to the number of chapters. A cluster can encompass one or more video chapters.
Thus, we set K = 10.

9
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Figure 6: Video Chapter Generation by segmenting temporally using K-Means and TW-FINCH for
a video of making tea from GTEA dataset.

Intuitively, well-constructed chapters should yield superior titles. To examine this, we compare the
video chapters generated by K-Means and TW-FINCH. The results are presented in Table 5 and an
example of video chapters or segments for a video of making tea from GTEA dataset is shown in
Figure 6. We use the Hungarian matching algorithm to match the generated segments and ground-
truth to calculate the metrics. We observe that TW-FINCH achieves higher scores compared to
K-Means. This can be attributed to the temporal weighting in TW-FINCH, which mitigates over-
segmentation and outperforms K-Means.

Table 5: Evaluation of algorithms in Video Chap-
ter Generator on GTEA dataset. ∗The number of
clusters is set to ground-truth number of clusters
for every video.

Method K MoF IoU
K-Means 10 22.46 0.121

TW-FINCH 10 26.47 0.155
K-Means GT∗ 27.72 0.157

TW-FINCH GT∗ 29.98 0.177

Varying Q from Scene Graph Generator: The
Scene Graph Generator plays a vital role in
ZCTG by transforming visual content into tex-
tual input suitable for LLM interpretation. We
used a pre-trained module Li et al. (2021a) as
our Scene Graph Generator. To examine the
effect of the amount of information from the
scene graph given as input to LLM on the fi-
nal results, we experiment with different values
of Q, which represents the number of subject-
object triplets included in the LLM input. The
results, including evaluation scores when Q is
varied, and an example of generated titles is in
A.1. We observe that the best performance is

achieved when Q = 10, which is the value used in all our experiments. This indicates that a very
low or high value of Q can reduce the quality of generated titles.

5 LIMITATIONS AND FUTURE WORK

We introduced a novel zero-shot framework, ZCTG, designed to simplify video content navigation
by generating video chapters and their corresponding titles. While ZCTG demonstrates strong ca-
pabilities in generating chapter titles that align closely with visual content in a zero-shot setting,
it has certain limitations. One limitation is relying only on visual features to create video chapters,
which can often result in oversegmentation. A promising future work to address this issue is refining
chapter boundaries using semantic information from scene graphs.

Although ZCTG integrates temporal information at multiple steps in the framework, it does not
always capture and reason about specific actions in videos, partly due to limited context from scene
graphs. A future direction would be to leverage LLMs to enhance both spatial and temporal context,
thereby improving the quality of the generated titles. We envision ZCTG to help advance research
in video comprehension, especially in the genre of video chapter generation.

10
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset, Ivan Laptev,
Josef Sivic, and Cordelia Schmid. Vid2seq: Large-scale pretraining of a visual language model
for dense video captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10714–10726, 2023.

13

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Antoine Yang, Arsha Nagrani, Ivan Laptev, Josef Sivic, and Cordelia Schmid. Vidchapters-7m:
Video chapters at scale. Advances in Neural Information Processing Systems, 36, 2024.

Kuo-Hao Zeng, Tseng-Hung Chen, Juan Carlos Niebles, and Min Sun. Title generation for user
generated videos. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 609–625. Springer, 2016.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

Shengyu Zhang, Ziqi Tan, Zhou Zhao, Jin Yu, Kun Kuang, Tan Jiang, Jingren Zhou, Hongxia Yang,
and Fei Wu. Comprehensive information integration modeling framework for video titling. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2744–2754, 2020a.

Ziqi Zhang, Yaya Shi, Chunfeng Yuan, Bing Li, Peijin Wang, Weiming Hu, and Zheng-Jun Zha. Ob-
ject relational graph with teacher-recommended learning for video captioning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 13278–13288, 2020b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher, and Caiming Xiong. End-to-end dense
video captioning with masked transformer. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 8739–8748, 2018.

Wanrong Zhu, Bo Pang, Ashish V Thapliyal, William Yang Wang, and Radu Soricut. End-to-end
dense video captioning as sequence generation. arXiv preprint arXiv:2204.08121, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

We present the following in this Appendix section:

i. Experiment on varying Q from Scene Graph Generator A.1

ii. Details about LLM-based evaluation (A.2)

iii. Details about summarization step in VidChapters-7M evaluation (A.3)

iv. VideoLlama results for VidChapters-7M dataset (A.4)

v. Fine-tuning Llama 2 (A.5)

vi. LLM prompts used for our approach, ZCTG (A.6)

vii. Prompts used for VideoLlama baseline (A.7)

viii. Additional examples of generated chapters and their titles from ZCTG (A.8)

A.1 VARYING Q EXPERIMENT RESULTS

Table 6: Results for varying Q values from
Scene Graph Generator module on GTEA
dataset.

Q CS
5 25.32
10 25.40
15 25.28
20 25.18

We present the results for varying Q, number of
triplets considered from Scene Graph Generator. Ta-
ble 6 shows the CLIPScore when value of Q is var-
ied. We find that Q = 10 yields the best score.

To further support this finding, we present an exam-
ple of generated titles for a video on hotdog prepa-
ration from the GTEA dataset, illustrating how dif-
ferent values of Q affect output quality. These re-
sults indicate that using significantly fewer or more
triplets (as in the cases of Q = 5 or Q = 20) leads
to lower quality titles and a decline in overall perfor-
mance.

Figure 7: Generated chapter titles using ZCTG for a video of making a hotdog from the GTEA
dataset when the number of triplets from the Scene Graph Generation module is varied.
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A.2 LLM-BASED EVALUATION

We adapt the evaluation prompts used by Maaz et al. (2023) with Judge LLM, ChatGPT 3.5. As pre-
viously mentioned, due to the zero-shot nature of our framework, the number of ground-truth titles
may differ from the generated titles because of the varying number of video chapters. To address
this discrepancy, we employ the following evaluation strategy: for each ground-truth segment and its
corresponding title, we include all predicted titles for that segment when calculating the evaluation
metrics.

For instance, if a ground-truth segment has title ‘A’ in the range {s1, s2}, and our framework predicts
three segments in this range with titles ‘B’, ‘C’, and ‘D’, we compare as follows: Ground-truth = ‘A’
and Predictions = ‘B’, ‘C’, ‘D’. For metrics requiring one-to-one comparisons, ‘A’ will be compared
individually with ‘B’, ‘C’, and ‘D’, and the average metric value will be calculated.

Following are the prompts used for each of the three aspects of this evaluation:

Contextual understanding

System Prompt:
You are an intelligent chatbot designed for evaluating the contextual
understanding of generative outputs for video-based chapter titles. Your
task is to compare the predicted chapter title with the correct title and
determine if the generated response aligns with the overall context of

the video content. Here’s how you can accomplish the task:
------
##INSTRUCTIONS:
- Evaluate whether the predicted chapter aligns with the overall context
of the video segment content. The content can be inferred from the video
title marked as Correct Answer. It should not provide information that is
out of context or misaligned.

- The predicted answer must capture the main themes and sentiments of the
video. If the predicted answer is able to capture the objects in the

segment its score should be less than the scenario where it detects
objects as well as the interaction between them (actions).
- Consider synonyms or paraphrases as valid matches.
- Provide your evaluation of the contextual understanding of the
prediction compared to the answer.

User Prompt:
Please evaluate the following video chapter titles:
Correct Answer: {Ground-truth}
Predicted Answer: {Predictions}
Provide your evaluation only as a contextual understanding score where
the contextual understanding score is an integer value between 0 and 5,
with 5 indicating the highest level of contextual understanding. Please
generate the response in the form of a Python dictionary string with keys
’score’, where its value is contextual understanding score in INTEGER,

not STRING. DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only
provide the Python dictionary string. For example, your response should
look like this: {’’score’: 4.8}.

Correctness of information

System Prompt:
You are an intelligent chatbot designed for evaluating the factual
accuracy of generative outputs for video-based chapters.
Your task is to compare the predicted answer with the correct answer and
determine if they are factually consistent. Here’s how you can accomplish
the task:

------
##INSTRUCTIONS:
- Focus on the factual consistency between the predicted answer and the
correct answer. The predicted answer should not contain any
misinterpretations or misinformation.
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- The predicted answer must be factually accurate and align with the
video content.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the factual accuracy of the prediction compared to the answer.

User Prompt:
Please evaluate the following video chapters:
Correct Answer: {Ground-truth}
Predicted Answer: {Predictions}
Provide your evaluation only as a factual accuracy score where the
factual accuracy score is an integer value between 0 and 5, with 5
indicating the highest level of factual consistency.
Please generate the response in the form of a Python dictionary string
with keys ’score’, where its value is the factual accuracy score in
INTEGER, not STRING.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the
Python dictionary string.
For example, your response should look like this: {’score’: 4.8}.

Temporal understanding

System Prompt:
You are an intelligent chatbot designed for evaluating the temporal
understanding of generative outputs for video-based chapters.
Your task is to compare the predicted answer with the correct answer and
determine if they correctly reflect the temporal sequence of events in
the video chapter’s content. Here’s how you can accomplish the task:
------
##INSTRUCTIONS:
- Focus on the temporal consistency between the predicted answer and the
correct answer. The predicted answer should correctly reflect the
sequence of events or details as they are presented in the video content.
- Consider synonyms or paraphrases as valid matches, but only if the
temporal order is maintained.
- Evaluate the temporal accuracy of the prediction compared to the answer
.

User Prompt:
Please evaluate the following video chapters:
Correct Answer: {Ground-truth}
Predicted Answer: {Predictions}
Provide your evaluation only as a temporal accuracy score where the
temporal accuracy score is an integer value between 0 and 5, with 5
indicating the highest level of temporal consistency.
Please generate the response in the form of a Python dictionary string
with keys ’score’, where its value is the temporal accuracy score in
INTEGER, not STRING.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the
Python dictionary string.
For example, your response should look like this: {’score’: 4.8}.

A.3 SUMMARIZATION PROMPT FOR VIDCHAPTERS-7M

To generate a chapter title, we first aggregate the descriptions of all frames within the chapter. How-
ever, for long videos, such as those in the VidChapters-7M dataset, the volume of frame descriptions
often exceeds memory and context length limits. To manage this, we summarize the descriptions
every 20 frames. We chose this interval to balance between minimizing information loss and stay-
ing within memory constraints. These summarized descriptions are then aggregated to generate the
chapter title. For example, if a chapter contains 100 frames, instead of aggregating 100 individual
descriptions, we use 5 summarized frame descriptions. A straightforward summarization prompt
(shown below) is used for this intermediate step.
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System Prompt:

Provide a concise summary (in less than 50 words) in one sentence for the
following frame descriptions:

User Prompt:

{list of frame descriptions}

A.4 VIDEOLLAMA EVALUATION ON VIDCHAPTERS-7M

Due to VideoLlama’s inability to process lengthy videos and memory limitations, we evaluate both
VideoLlama and ZCTG on a subset of 50 randomly selected videos from VidChapters-7M. In this
subset, the number of frames ranges from 100 to 700 when sampled at 1 FPS. With an FPS typically
ranging between 24 and 60, this subset of videos accurately reflects the average length of videos
across the entire dataset. ZCTG achieves a CLIPScore of 21.3, outperforming VideoLlama, which
scores 17.3.

Figure 8: Generated chapter titles by ZCTG and VideoLlama for a video about Tour de France from
VidChapters-7M dataset.

We provide an example of generated titles in Figure 8. It is clear that the titles generated by Vide-
oLlama do not capture the spatio-temporal cues very well. For example, the second title displayed
describes the spinning wheel in the frame but fails to capture the broader context, whereas the title
generated by ZCTG, ‘Person packing for the trip,’, captures the ongoing activities in the chapter
accurately.

A.5 FINE-TUNING LLAMA 2

In order to examine the effect of fine-tuning LLM on the generated chapter titles, we fine-tune Llama
2 (7B) model. Since ZCTG does not have access to ground-truth titles and there are no frame-level
descriptions available, fine-tuning on either the GTEA or VidChapters-7M datasets is not feasible.
Hence, we opted for the Relation-VQA (R-VQA) dataset Lu et al. (2018) for this task. The R-VQA
dataset is derived from the Visual Genome (VG) dataset and includes a question, its correct answer,
and a supporting fact in the form of an object-relation triplet. We selected this dataset because it
includes supporting facts in the form of object relations, which closely aligns with the scene graph
information utilized in our task. Below is a sample input and the expected response from the dataset:

Below is an instruction that contains a question, paired with input that
provides context in the form of <subject, relation, object>. Write a
response that provides appropriate answer to the question.### Question:
What white lines are in the background?
### Input:
lines, are, white
### Response:
Crosswalk lines.
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For fine-tuning the Llama 2 model, we use the Low-Rank Adaptation technique (LoRA) technique
and HuggingFace Wolf et al. (2019) library. The base Llama 2 model is trained for 200 iterations
with an initial learning rate of 0.0002. The objective is to answer the question using the provided
supporting object-relation triplet.

We use the train, validation, and test splits provided by the authors for fine-tuning. Specifically,
the training set comprises 119,333 samples, the validation set includes 39,777 samples, and the test
set contains 39,779 samples. We observed that the fine-tuned Llama 2 model generated shorter and
descriptive titles compared to the base Llama 2, an observation reflected in the final results (refer to
Figure 5).

A.6 LLM PROMPTS FOR ZCTG

Here, we show the prompts used for our experiments. We use the same prompts for both datasets.
After multiple prompt optimization iterations, we use the following system and user prompt for
generating the frame descriptions di.

System Prompt:
You are a prompt engineer trying to optimize the text description of a
video action for action segmentation. You are given a list of triplets
where each triplet is in the format of {id1_object => action =>
id2_object}. Here "action" represents the interaction between the objects
"id1_object" and "id2_object". The list of triplets indicates the

actions taking place in a given video frame (or set of video frames).
Additionally, you will be provided with a previous frame description to
guide the description generation. Your goal is to optimize the
description for the given list of actions and the previous frame
description that uniquely identifies what is happening in the video and
where it is taking place.
Some tips to optimize the description:
1. Use the causal nature of physical events to predict the main action
for the given list. For example, bottle in hand can refer to several
actions, such as pouring out of the bottle, closing the cap on the bottle
, etc.
2. Each object is preceded by a number, identifying it as a different
category. Objects with the same number are the same objects, and vice
versa. For example, 1_bottle and 2_bottle refer to two different bottles
in the same scene. The description should not confuse the reader into
thinking they are the same bottle.
3. Please use the previous frame description as a reference to predict
what is happening in the scene and guide the description generation
process.

User Prompt:
Shared below is a list of triplets that represent the scene graph of a
video frame and the previous frame description. Please provide a short
description (strictly within 15 words) to describe the events or actions
happening in the frame.

To generate the video chapter titles, we use the following system and user prompts for our experi-
ments.

System Prompt:
You are a video annotator who is tasked to generate a single title given
a video segment information. The information is given as {<frame_desc>; <
prev_chap>} where frame_desc is a list of descriptions of events in the
set of frames in the current segment, and prev_chap is the chapter title
generated for the previous video segment. The list of descriptions
indicates the actions taking place in a given video frame (or set of
video frames). The prev_chap title is an indication of the flow of the
sequence of actions in the video. Please ensure that the action taking
place in the segment (for example, eating, drinking, running, etc.) is
mentioned in the title.
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User Prompt:
Below is a list of frame descriptions (<frame_desc>) and the title for
the previous video segment (<prev_chap>). Please generate an appropriate
title (STRICTLY less than 20 words) for the corresponding video clip
using the scene description given in frame_desc and prev_chap as a
reference. DO NOT copy the prev_chap (literally and semantically). For
context, <prev_chap> denotes the actions that took place just before this
video segment. So please try to consider the sequence of actions (causal
nature of physical events), the current frame description and previous

segment chapter title, and predict what is taking place in the current
video segment. Generate a title based on that information.

A.7 PROMPTS FOR VIDEOLLAMA

For Video-Llama experiments, we use the below system and user prompts. While these prompts
retain the core essence of those utilized in ZCTG experiments, they are subtly adjusted to maximize
the performance of the Video-Llama model. For instance, the inclusion of the phrase ’DO NOT
ADD any additional text like Sure! or Certainly! in your response.’ became necessary due to
frequent additions of such text, which is undesired in the chapter titles.

System Prompt:
You are a video annotator who is tasked to generate a single title for a
video segment or clip. Please generate an appropriate title (STRICTLY
less than 20 words) for the corresponding video clip using your ability
for scene understanding. DO NOT ADD any additional text like Sure! or
Certainly! in your response. The output only needs to be a title (less
than 20 words).

User Prompt:
Please provide a chapter title (STRICTLY less than 20 words) for the
provided video segment. DO NOT describe the scene in detail.

A.8 MORE EXAMPLES FOR ZCTG

Figure 9: Generated titles by ZCTG and ground-truth for a video about whiskey gift guide from
VidChapters-7M dataset.
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