
Decentralized Learning with Random Walks and
Communication-Efficient Adaptive Optimization

Aleksei Triastcyn∗

aleksey.tryastsyn@alumni.epfl.ch
Matthias Reisser

Qualcomm AI Research
mreisser@qti.qualcomm.com

Christos Louizos
Qualcomm AI Research

clouizos@qti.qualcomm.com

Abstract

We tackle the problem of federated learning (FL) in a peer-to-peer fashion without
a central server. While prior work mainly considered gossip-style protocols for
learning, our solution is based on random walks. This allows to communicate only
to a single peer at a time, thereby reducing the total communication and enabling
asynchronous execution. To improve convergence and reduce the need for extensive
tuning, we consider an adaptive optimization method – Adam. Two extensions
reduce its communication costs: state compression and multiple local updates on
each client. We theoretically analyze the convergence behaviour of the proposed
algorithm and its modifications in the non-convex setting. We show that our method
can achieve performance comparable to centralized FL without communication
overhead. Empirical results are reported on a variety of tasks (vision, text), neural
network architectures and large-scale federations (up to ∼ 342k clients).

1 Introduction

Federated learning is typically set up with a central server coordinating the training process: selecting
clients to participate in each round, sending the current model weights to the clients, and aggregating
the received updates. However, in some situations, FL with a central server is impractical due to,
for example, costs, privacy concerns, or when peer-to-peer communication (e.g., using Bluetooth)
is preferred. This paper tackles the problem of peer-to-peer learning in which users are connected
via direct communication links into a potentially sparse communication graph. They perform local
updates to the model similarly to FL, but unlike in FL, the decision about what to do next and where
to send the model is taken locally (by random selection among clients’ neighbors in the graph). One
example of the basis for the communication graph is routing times between users; this way, less time
can be spent on model transfer and more on training in total.

Existing work has primarily focused on datacenter scenarios and gossip-style protocols for learn-
ing [11, 1], [12], [21, 22, 8] where messages are exchanged with all peers of a given client. These
methods have been shown to work successfully in data center settings to speed up training [1] and
to address unreliable or expensive communication [22]. On the other hand, there is very limited
literature on cross-device decentralized FL, and the scale of experiments is impractically small (<
100 clients) [9, 17, 6]. We focus on a different style of algorithms – random walks – which allow

∗Work done while at Qualcomm AI Research. Qualcomm AI Research is an initiative of Qualcomm
Technologies, Inc. and/or its subsidiaries.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

communicating only to a single peer at a time. They reduce total communication and enable asyn-
chronous execution. While such approaches have been considered before [2, 24, 3, 4], experimental
results in FL are similarly limited. We, therefore, aim to close this research gap with our paper.

Along with general learning, we consider the problem of adaptive optimization in the decentralized
setting with random walks. While adaptive optimization is straightforward to solve in centralized
scenarios by using, for example, Adam [7] on the server side, naively applying it to the random walk
setting leads to challenges. The main issue is that the optimizer state (primarily, moments, each of
which is equal in size to the model) needs to be transmitted along with the model, which can double
or even triple communication costs. We thus propose two strategies to mitigate this effect. Firstly, we
propose the use of compression for the optimizer’s state. Secondly, we propose performing multiple
local updates on each client before communicating to a neighbor. We prove the convergence of such
random walks to a vicinity of a stationary point in the non-convex setting and empirically show
that they allow for similar communication vs. accuracy tradeoffs to traditional centralized FL. In
summary, we make the following contributions in this work:

• we introduce Adam [7], a popular adaptive optimization method, in the decentralized setting
with random walks. This allows us to improve performance upon traditional random walk
SGD-type of approaches, especially in complex and sparse gradient tasks;

• we introduce two communication-efficient variants of Adam for this specific setting. More
specifically, we introduce a novel moment quantization method in the log domain and adopt
the multiple local updates paradigm, popularized by [15];

• we provide a theoretical analysis of the convergence behavior of this novel random-walk
Adam with our proposed modifications. We show that it has similar rates to what traditional
adaptive methods [25] obtain in the centralized setting;

• we perform extensive experiments on various datasets and architectures, with federation sizes
ranging from 100 to∼342k clients, showing that our method achieves similar performance to
the traditional centralized FedAvg. This is in contrast to prior works, which mostly consider
data center scenarios, synthetic data, or a small number of participants (i.e., < 100).

2 Related Work

Decentralized learning is typically approached from one of two angles: gossip averaging or random
walks. Gossip-style algorithms are rather extensively studied in the literature. [11] showed that
gossip averaging between computational nodes leads to speedup by eliminating the bottleneck on a
central coordinating node (and coincidentally, a central point of failure). [1] presented the stochastic
gradient push (SGP) algorithm, which enables asymmetric communication topologies (in contrast
to [11]) and therefore circumvents the need for deadlock-avoidance and synchronization. Reliability
and convergence speed were further improved by the RelaySGD method by [22] using spanning
trees over a communication network to relay model updates between nodes (without decaying
their magnitude). In addition to practical advantages over SGP and quasi-global momentum [12],
RelaySGD boasts theoretical independence of data heterogeneity (non-iid split between nodes). Since
a straightforward implementation of gossip protocols leads to a significant increase in communication,
even on sparse graphs, several approaches to compress the transferred updates have been proposed [8,
21]. For example, Choco-SGD and Choco-Gossip by [8], which converge linearly and allow arbitrary
compression operators for updates, and PowerGossip [21], which directly compresses the model
differences between neighboring nodes using low-rank linear approximation. Importantly, all these
works, as well as dedicated FL gossip papers [9, 17, 6], only consider a small number of nodes. For
scaled up problems, performance may drop noticeably (see [22, Appendix E.2]).

Algorithms based on random walks received less attention in this context, perhaps due to a potentially
high number of communication rounds required for convergence. However, these methods are worth
studying since the overall communication may be considerably lower. [2] and [3] presented uniform
and weighted random walk SGD algorithms, proved their convergence, and demonstrated a favorable
comparison with gossip averaging, but only on synthetic data. [24] proposed inexact stochastic
parallel random walk alternating direction method of multipliers (ISPW-ADMM), which utilizes
multiple parallel random walks speed up learning, and showed gains over gossiping; however, they
only considered 10 devices and it is unclear what kind of data were used. For non-convex problems,
[20] studied Markov chain gradient descent, its convergence and mixing rates, while [14] put forth

2

another ADMM-based random walk algorithm in a decentralized optimization setting. Again, large-
scale practical experiments are missing from these works. Therefore, there is a need to compare
gossip averaging and centralized FedAvg on realistic ML datasets and with sizeable federations of
devices.

Furthermore, adaptive optimization is often preferable to simple SGD due to faster convergence and
ease of learning rate tuning. Hence, in contrast to prior work, we study random walks in combination
with Adam. To limit the communication overhead from transmitting the optimizer state between
clients, we consider compression for moments, similar to [18] and multiple local updates on each
node, similar to FedAvg [15]. For moments compression, we look at research on memory-efficient
adaptive optimizers. [18] proposed to store per-row and per-column sums of moving averages instead
of full matrices for the second moment, using these sums to approximately reconstruct the full
moment, and removing the first moment. This approach could be extended to tensors for higher-
dimensional convolutional layers, and other factorization and low-rank approximation methods
(random projections, power iteration, etc.) could be considered to improve the accuracy of the
approximation. Addressing the problem from a different angle, [5] partitioned tensors into separate
blocks and quantized them independently (which can be parallelized for efficiency) and achieved
almost full-precision performance for 8-bit-per-parameter moments. Finally, count-sketch methods
can also be applied [19], reducing memory requirements to logarithmic and having a proven rate of
convergence similar to Adam with β1 = 0.

3 Decentralized Federated Learning via a Random Walk

Assume that we have a pool of S clients where each client s ∈ S has access to a local dataset Ds of
Ns datapoints. In federated learning (FL), we are interested in learning a vector of model parameters
w according to the following

w∗ = argmin
w∈Rd

Es∼p(s)

[
Eξ∼p(Ds) [f(w, ξ)]

]
, (1)

where p(s) = Ns/N and f(w, ξ) is the loss function computed with parameters w on a data sample
ξ. It is easy to see that this corresponds to sampling from the global data distribution (as if data of
all clients are pulled together and sampled uniformly at random) to optimize f(w). Traditional FL
approaches, such as FedAvg [15], optimize this objective by employing a central coordinator, i.e., the
server and exchanging messages in the form of model updates between the clients and the server. In
this work, we forego the notion of a central coordinator and instead design an algorithm where the
clients can learn a model by communicating amongst themselves in a peer-to-peer fashion.

3.1 Decentralized federated learning

Consider a set of clients S connected by a set of communication links E into a graph G : (S,E),
called the communication graph. For the rest of this work, we assume that G is connected, non-
bipartite and undirected. Clients can be personal devices, such as smartphones, IoT devices, and so
on, as well as organizations (e.g., hospitals, banks, etc.). The connections could be based on physical
networks, virtual networks, routing times, trust, or other concepts. Each client s, therefore, has a set
of neighbors N (s) := {v ∈ S : (s, v) ∈ E} defined by the connections available to this client.

Algorithm 1 Basic gradient-based decentralized
learning by a random walk

Client s receives a messageM from neighbor h
w(t) ←M
w(t+1) ← w(t) − η∇wf(w(t),D(t)

s)
j ← random neighbor from N (s)
return Send model w(t+1) to neighbor j

Gradient-based learning by a random walk
To learn the parameters w in a peer-to-peer fash-
ion, we can consider a random walk procedure.
At each step t of the training process, a client
s receives the current model from one of its
neighbors and updates this model with a gradi-
ent obtained using (a batch of) its private dataset.
Subsequently, the client samples one of its neigh-
bors j ∈ N (s), based on a predefined distribu-
tion overN (s), and forwards the updated model

along with any other relevant optimization parameters. Algorithm 1 summarizes the above in pseudo-
code. Each client can run additional routines to evaluate the model, and if the target metrics have
been achieved, stop the training and propagate the final model across the communication graph such

3

that every client has the most up-to-date copy. This could be based on aggregate validation metrics
across clients, or some collaborative decision-making process, like majority voting.

Designing the transition probability In order to optimize Eq. 1, we have to construct a random
walk procedure that has the correct stationary distribution over the clients, i.e., p(s) = Ns/N . This
will guarantee that, asymptotically, we are optimizing the global loss function. Let A ∈ {0, 1}S×S

be an adjacency matrix that denotes the connectivity according to G; if node i is connected to j,
then Aij = Aji = 1 and zero otherwise. Now consider P to be a simple S × S transition matrix
between the S nodes, such that the transition from a node j to a node i is given as Pij = p(i|j) =
1/|N (j)|,∀i ∈ N (j) and zero otherwise. |N (·)| returns the amount of neighbors of a specific node
(i.e., its degree). In this case, we can define D as a diagonal matrix with the degrees of each of the
nodes in the diagonal. Therefore, this simple strategy where each client samples a specific neighbor
uniformly at random can be encoded as P = AD−1. This transition probability requires only local
information and is therefore appropriate for the decentralized setting.

Unfortunately, this simple strategy does not generally have the desired stationary distribution. We
can, however, impose a specific stationary distribution via a Metropolis-Hastings adjustment [3] of
this simple proposal distribution:

P̂ij =

{
Pij min

(
1,

p(i)Pji

p(j)Pij

)
, i ̸= j

1−
∑

k ̸=j P̂kj , i = j,
P̂ij =

{
Pij min

(
1,

NiPji

NjPij

)
, i ̸= j

1−
∑

k ̸=j P̂kj , i = j,
(2)

since the normalizing constant of the desired stationary distribution is the same in each node. This
new transition probability guarantees that the stationary distribution is p(s) and still requires only
local information sharing (i.e., data counts, and the number of neighbors), which can be done at the
beginning of training.

Figure 1: A small-
world graph

Structure of the communication graph For a random walk procedure to
be effective, we need a communication graph that facilitates fast “mixing." In
other words, we need a communication graph G that allows the random walk
to converge quickly to its stationary distribution. The main graph structure we
assume in this work is that of “small-world" graphs [23]. Such graphs arise
naturally in the context of social networks, wikis, and the internet. The main
property of small-world graphs is that, while they are sparsely connected, the
transition between any two pairs of nodes can be done in a small number of
steps. Intuitively, they can be understood as ring graphs where some random
connections have been replaced or added, with the new connections acting as
“shortcuts" that allow for fast traversal.

4 Random Walk with Adaptive Optimization

Adaptive optimization methods, such as Adam [7], use exponential moving averages of gradients
(first moment) and squared gradients (second moment) to correct for stochasticity in the gradient
direction and adaptively increase or decrease the effective learning rate in response to the gradient
variance across iterations. Each moment is equivalent in size to the gradient vector and needs to be
stored between optimization steps. In centralized settings, the moments can be stored on the server
and do not need to be transferred to the clients. In a decentralized setting, however, each client needs
to have access to these moments, and thus, they need to be transmitted along with other updates.

4.1 Reducing communication costs

Transmitting the moments of the optimizer on each step of the random walk increases communication
costs considerably. In this section, we propose two techniques that can effectively tackle this problem.

Quantization Our first strategy for reducing the communication cost is the compression of the
state of Adam. While it generally is possible to compress both moments, we choose to drop the first
moment (i.e., set β1 = 0), analogously to [18]. Not only does it help to save communication budget,
but it also simplifies the convergence proof because compression of this moment would introduce
bias in the update direction. Compression of the second moment can be done, for example, through
scalar quantization or factorisation [18, 21].

4

Algorithm 2 Decentralized learning by a random walk
with compressed-state Adam and multiple local steps

Client s receives a messageM from neighbor h
w(t), comp(m2), t←M
w1 ← w(t)

m2 ← decomp(comp(m2))
for k ← 1, . . . ,K − 1 do

gsk ← ∇wf(wk,Ds)
m2 ← β2m2 + (1− β2)g

2
sk

m̂2 ←m2/(1− βtK+k
2)

wk+1 ← wk − ηgsk/(
√
m̂2 + ϵ)

end for
w(t+1) ← wK

j ← random neighbor according to P̂:s

return Send w(t+1), comp(m2), t+ 1 to neighbor j

Algorithm 3 Neighbor selection procedure
for a client s according to P̂:s

j ← random neighbor from N (s)

C = min
(

Nj |N (s)|
Ns|N (j)| , 1

)
,

u ∼ U [0, 1]
if u < C then

next_node← j
else

next_node← s
end if
return next_node

In this work, we introduce a simple, effective, and novel scalar quantization procedure for the
second moment: Quantization in the log domain. More specifically, our procedure is motivated
by the observation that most of the values of the second moment are quite small and that uniform
quantization in the log domain provides more resolution for these lower values. Let v be the second
moment: we use a single bit to denote whether v is non-zero and then use b− 1 bits to do uniform
quantization on logv for the non-zero values on v. We choose a uniform quantization strategy that
represents the minimum and maximum values of the non-zero values of logv exactly; thus, there is
no clipping.

Multiple local steps Another strategy that can reduce the communication cost is to do multiple
local steps on each client, popularized by FedAvg [15] in the server-orchestrated setting. While
simple in nature, to the best of our knowledge, such a strategy has not been considered before in the
random-walk type of optimization literature. We thus introduce the notion of multiple local updates
in the random-walk type of optimization settings. More specifically, each client updates the model
K times on their local dataset before continuing the random walk. As a result, for a total of M
model updates, we only need to (roughly) communicate M/K times, thus cutting down the overall
communication cost by a factor of K.

Algorithm 2 presents the client-side logic of Adam with compressed moments and multiple local
updates, whereas Algorithm 3 in presents the strategy for selecting the next node in the random walk.

4.2 Convergence analysis

In this section, we analyze the convergence behavior of decentralized-FL using random walks with
no-momentum Adam and our proposed modifications in the non-convex setting. More specifically,
we investigate the convergence rate in three settings: (1) random walk with Adam, (2) random walk
with Adam and second-moment quantization, and (3) random walk with Adam, second-moment
quantization, and multiple local updates. All the proofs are provided in Appendix A.

One of the main challenges for the theoretical analysis of this setting is in considering the bias in the
gradient distribution that stems from performing a random walk to sample the gradients. In a similar
fashion to [20], we provide the following lemma that characterizes this bias.

Lemma 4.1. Let A ∈ {0, 1}S×S be an adjacency matrix of a connected, non-bipartite and undirected
graph with S nodes, and P a transition matrix (not necessarily symmetric) between the nodes that
respects the connectivity of A. Let the marginal distribution of the random walk over the nodes at
timestep t be

πt = Ptπ0, (3)

5

where π0 is the initial distribution over the nodes. Let λ1, . . . , λS be the eigenvalues of P. Provided
that 1 = λ1 > λ2 ≥ · · · ≥ λS > −1 we have that∣∣∣∣Eπt

[f]− E
π∗
[f]

∣∣∣∣ ≤ G
√
Nλt, (4)

where π∗ is the stationary distribution of the random walk, |f |∞ ≤ G and λ = max(λ2, |λN |).

Beside this lemma, we also make the following standard assumptions in the non-convex optimization
and federated learning literature [16].
Assumption 1 (Lipschitz gradient). Each local loss function fs is L-smooth ∀s ∈ S , i.e., ∥∇fs(x)−
∇fs(y)∥ ≤ L∥x− y∥, ∀x,y ∈ RD. The global loss function f =

∑
s

Ns

N fs is also L-smooth.
Assumption 2 (Bounded gradient norm). The stochastic gradient norm is upper bounded by a
constant G

∥∇f(w, ξ)∥∞ ≤ G, ∀ξ ∈ Ds,∀s,∀w ∈ RD. (5)
Assumption 3 (Bounded gradient variance). For any dimension i, the gradient variance at a client s
is upper bounded by σ2

li, ∀s, and the global gradient variance by σ2
gi

E
s,ξ

[(∇f(w, ξ)i −∇f(w)i)
2] = E

s,ξ

[
(∇f(w, ξ)i −∇fs(w))

2
i

]
+ E

s

[
(∇fs(w)i −∇f(w)i)

2
]

≤ σ2
li + σ2

gi = σ2
i . (6)

Furthermore, we define σ2 =
∑

i σ
2
i and σ2

l =
∑

i σ
2
li.

Based on the above, we can prove the following theorem about the convergence of random-walk
optimization with Adam and no momentum.

Theorem 4.1. Let w ∈ RD be the model parameter vector that is optimized for T random walk
steps. Under assumptions 1, 2, 3 and if the learning rate η and ϵ are chosen such that η ≤ ϵ

2L and
1− β2 ≤ ϵ2

16G2 then we have that the updates of random walk Adam without momentum satisfy

E[∥∇f(wa)∥2] ≤O

(
f(w1)− f(w∗)

ηT
+σ2+

λD
√
N

(1− λ)T

)
(7)

where wa is a randomly chosen iterate from w1, . . . ,wT .

Therefore, we can see that the asymptotic bound we obtain is similar to the traditional Adam [25]
with an additional error term stemming from decentralization which, however, decreases with the
number of iterations.

We now consider the case of performing b-bit scalar quantization to the second moment of Adam. To
the best of our knowledge, while a similar setting has been considered in practice by [5], it has not
been theoretically analyzed before. In order to analyze its convergence, we need one more assumption
for the quantization procedure.
Assumption 4 (Bounded quantization noise). Let v be a variable to be quantized and Q(·) the
quantization operation. We assume that there is a constant q ≥ 0 such that the quantization noise is
bounded as

∥Q(v)− v∥1 ≤ q∥v∥1.

Notice that our specific log-uniform quantization strategy conforms to this assumption since the
upper bound on the quantization noise is given by half the step size of the uniform quantizer ∆. For
any given dimension i we thus have |Q(vi)− vi| ≤ |vi exp

(
∆
2

)
− vi| = | exp

(
∆
2

)
− 1||vi|. In this

case, we can prove the following theorem.

Theorem 4.2. Let w ∈ RD be the model parameter vector that is optimized for T random walk
steps. Under assumptions 1, 2, 3, 4 and if the learning rate η and ϵ are chosen such that η ≤ ϵ

2L and
1− β2 ≤ ϵ2

16G2 then we have that the updates of random walk Adam without momentum and with
second moment quantization satisfy

E[∥∇f(wa)∥2] ≤ O
(
f(w1)− f(w∗)

ηT
+ σ2 + qDG+

λD
√
N

(1− λ)T

)
(8)

where wa is a randomly chosen iterate from w1, . . . ,wT .

6

For the second setting, we consider the case where each client does a fixed number of updates K
before deciding whether to send the model to one of its neighbors. While such a case has been
analyzed theoretically before in gossip type of approaches [10], it has not been analyzed for random
walks. In this specific case, we require one more assumption, which we can use to prove Theorem 4.3.

Assumption 5 (Bounded difference between local and global gradients). For any given point w ∈ RD

there is a constant ζ2 that upper bounds the squared L2 distance between the gradient on any given
client s and the global gradient:

∥∇fs(w)−∇f(w)∥22 ≤ ζ2. (9)

Theorem 4.3. Let w ∈ RD be the model parameter vector that is optimized for T random walk
steps and let K be the number of updates a client does before continuing the random walk. Under
assumptions 1, 2, 3, 4, 5 and if the learning rate η and ϵ are chosen such that η ≤ ϵ

4L and
1− β2 ≤ ϵ2

64G2 then we have that the updates of random walk Adam without momentum and second
moment quantization satisfy

E[∥∇f(wa)∥2] ≤ O
(
f(w1)− f(w∗)

ηKT
+

σ2

K
+ qDG+

K − 1

K
(σ2

l + ζ2 +G2) +
λD
√
N

(1− λ)KT

)
(10)

where wa is a randomly chosen iterate from w1, . . . ,wKT .

The bound is intuitive. We can see that we are essentially trading total variance σ2 for local gradient
variance σ2

l and bias ζ. As a result, this strategy will be useful whenever the data are close to i.i.d.
across the clients; in this case, ζ2 will be small, and since σ2

l ≤ σ2, it will be beneficial to do multiple
local steps K to reduce the number of communication rounds T required.

5 Evaluation

We consider several established centralized federated learning benchmarks (vision and text) to
evaluate the performance of our decentralized random walk optimization procedures with a variety of
models. Vision tasks include training ResNet-20 on non-i.i.d. splits of CIFAR-10, CIFAR-100, with
100 and 500 clients respectively, as described in [16]; LeNet-5 model on the naturally non-i.i.d. split
of FEMNIST (partitioned by writer IDs into ∼3.6k clients) [13]. Language tasks consist of next word
prediction using an LSTM model on a non-i.i.d. split of the Shakespeare dataset into 660 clients [15],
and the StackOverflow tag prediction with a logistic regression model [16] and ∼ 342k clients.

For the majority of experiments, we used a “small-world" graph with an average degree of five,
implemented using the Watts–Strogatz model [23], with β = 0.5. Unless mentioned otherwise, we
use 4-bit per-tensor quantization for the second moment, and we consider a separate quantization
grid for the weights of each layer. Empirically, we found it beneficial to employ stochastic (in place
of deterministic) rounding in log-space for quantization. In the case of multiple local steps, we only
quantize the second moment whenever it is transmitted and not in-between the local optimization
steps. More details about the experimental setup can be found in the Appendix.

5.1 Comparison with other FL methods

Comparison against centralized FL First, we evaluate the performance of random walk learning
against a centralized baseline (FedAvg with Adam on the server [16] and one epoch of updates
on each client). Figure 2 depicts validation accuracy as a function of total communication costs
(both upload and download) for FedAvg and different versions of random walk optimization. As the
StackOverflow task consists of large validation and test sets, we plot the accuracy on the first 10%
of validation examples. The final numbers (including evaluation on the full test set) are provided in
Table 1.

We observe that even a simple RW-SGD performs well on vision tasks, provided that the learning
rate is chosen appropriately. Its accuracy on CIFAR-10 and FEMNIST is on par with or better
than FedAvg, while communication is lower (in case of FEMNIST, by 32%). RW-Adam provides
competitive performance even without hyperparameter tuning, thanks to learning rate adaptation via

7

(a) CIFAR 10 (b) CIFAR 100 (c) FEMNIST

(d) Shakespeare (e) StackOverflow

Figure 2: Accuracy as a function of the cumulative communication costs on the tasks considered.

Table 1: Test-set accuracy at the end of training and total communication (in GB).

CIFAR10 CIFAR100 FEMNIST Shakespeare StackOverflow
K = 1, b = 4 K = 1, b = 5 K = 1, b = 5 K = 10, b = 4 K = 1, b = 5

Method Acc. Comm. Acc. Comm. Acc. Comm. Acc. Comm. Acc. Comm.

FedAvg 69.9 120 43.4 121 86.9 263 56.4 33 61.4 522

RW SGD 72.8 99 39.3 86 87.0 177 57.0 28 23.5 463
RW Adam 73.1 211 42.2 180 86.6 302 56.2 58 62.5 1192
RW QAdam 73.7 112 42.2 100 86.3 163 56.2 31 62.1 535

the second moment. Our quantization procedure brings communication costs down to the level of
RW-SGD without impact on accuracy.

When gradients are sparse, like in the case of StackOverflow, or the task is more complex (CIFAR-
100), we see that adaptive optimization is crucial to obtain a better model. On CIFAR-100, RW-Adam
provides a 7% boost in validation accuracy compared to RW-SGD and gets closer to FedAvg. Even
more noticeably, on StackOverflow, RW-Adam maintains near-FedAvg performance, while RW-SGD
only reaches less than a half of centralized performance within a comparable communication budget.

Finally, we observe that Adam with the default hyperparameters shows robust performance in all the
experiments involving a neural network. At the same time, for SGD, we find it necessary to tune
parameters on a per-task basis. For instance, vision tasks run with a learning rate of 0.1, while 1.0 is
used for Shakespeare.

Comparison with gossiping To compare gossiping with random walks, we run both algorithms
on CIFAR-10 and the Shakespeare dataset. In both cases, we use the same small-world setup as
before. The choice of datasets is partially dictated by the limitations of gossiping for large-scale
federations since the other tasks have a significantly larger number of clients. In Table 2, we
can observe that the raw gossip averaging communication far exceeds both FedAvg and random
walks. For instance, it requires more than 2TB on CIFAR-10 to reach over 60% accuracy, which
is significantly lower than what is achieved by other methods. Even, hypothetically, applying
PowerGossip compression [21] to the updates (which would further reduce validation accuracy),
the overall communication remains high (∼ 41GB), and RW-QAdam reaches better performance.
Similarly, for Shakespeare: over 400GB of raw communication is necessary for 40% accuracy, and

8

Table 2: Comparison of decentralized paradigms. Accuracy and total communication (in GB; for
gossiping, marked with ∗, accounts for PowerGossip compression, full communication in parenthesis).

CIFAR10 Shakespeare
Method Acc. Comm. Acc. Comm.

Gossip Averaging 63.5 41 (2328)∗ 45.3 4.4 (442.7)∗

RW QAdam 72.6 41 51.9 3.4

even when accounting for possible compression, gossiping performance is considerably worse than
RW-QAdam with less communication.

5.2 Additional studies

Impact of the communication graph To empirically measure the dependence of our method
on the communication graph topology, we conduct a study on CIFAR-10 with 100 clients. We fix
RW-QAdam with 5 bits for the second moment and consider three specific communication graphs:
(a) a fully connected graph, (b) a small-world graph with an average degree of 5 (i.e., as in all
other experiments) and (c) a ring graph with a degree of 2. Figure 3a shows the convergence speed
of random walk training. We see that the small world and the fully connected graph have similar
convergence (indicating good “mixing"), whereas the ring topology is lagging behind.

(a) Training with different graphs. (b) Shakespeare with different K. (c) i.i.d. CIFAR 10 with different K.

Figure 3: Additional studies. (a) Performance on CIFAR-10 with different communication graph
topologies. (b, c) Effect of multiple local updates on Shakespeare and a CIFAR-10 i.i.d. split.

Impact of multiple local updates We argue for doing multiple local updates to improve perfor-
mance while reducing communication costs. Indeed, our theory suggests that if the data are close
to i.i.d. across the nodes, multiple local updates can be beneficial. Empirically, we observe that
K = 1 performed better on many (artificially or naturally) non-i.i.d. tasks, except Shakespeare. In
Figure 3b, we show that on the Shakespeare dataset, there is a big improvement in the communication
vs. accuracy tradeoff when we move from K = 1 to K = 10 local updates on each client. To
further test our theory, we set up an i.i.d. CIFAR-10 task with 100 clients. Figure 3c depicts the
communication vs accuracy tradeoffs of our quantized state Adam with K = 1 and K = 10 local
updates. We can similarly see the benefits of multiple local steps as our theory predicted. As a
reference, non-federated training reaches a test set accuracy of 78.9% in this setting, which is close
to the performance of our random walks.

6 Conclusion

In this paper, we proposed a random-walk-based learning algorithm with compressed-state adaptive
optimization to solve the problem of federated learning without a central server in a peer-to-peer
fashion. Since the communication graph of participating devices can be formed based on prox-
imity or connection speeds, this approach has the potential to minimize the overall time spent on
communication. Despite the increase in the number of rounds necessary for convergence, the total
communication cost of our approach is on par or better than that of federated averaging because
each round involves communication between only two clients (as opposed to typically 10–100 in

9

FedAvg). Our evaluation showed that compressed adaptive optimization on top of a random walk
enables performance comparable with centralized FL solutions, even on sparsely connected graphs.

One potential disadvantage of random walk learning is that client updates are sequential, while in
FedAvg or gossiping, they can be done in parallel. However, this drawback can be compensated by
parallelizing hyperparameter search and running multiple random walks with different configurations.
Since there is no dependency between them, no synchronization is needed in this process, allowing
to bypass stragglers and effectively gauge the performance of multiple models. We leave a detailed
methodology and evaluation of this approach for future work. Another important aspect for future
study is combining our approach with formal privacy notions. For example, [4] have proposed
network differential privacy and showed that it is well suited for simple random walks; continuing this
line of research for adaptive and communication-efficient random walk optimizers is an interesting
future direction.

Conceptually, a decentralized FL approach removes reliance on a central server, the independence
and trustworthiness of which cannot be taken for granted in many parts of the world. Beyond moving
the control over the data to the user through FL, our work takes a step towards putting users in control
over the entire learning process itself. The immediate societal consequence of such an approach is
more resilience to central interference but also less accountability and a higher potential of misuse
by individuals. Developing robust mechanisms against diverse forms of attacks will be crucial to
establishing decentralized FL in the future.

References
[1] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push

for distributed deep learning. In International Conference on Machine Learning, pages 344–353.
PMLR, 2019.

[2] Ghadir Ayache and Salim El Rouayheb. Random walk gradient descent for decentralized
learning on graphs. In 2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 926–931. IEEE, 2019.

[3] Ghadir Ayache and Salim El Rouayheb. Private weighted random walk stochastic gradient
descent. IEEE Journal on Selected Areas in Information Theory, 2(1):452–463, 2021.

[4] Edwige Cyffers and Aurélien Bellet. Privacy amplification by decentralization. In International
Conference on Artificial Intelligence and Statistics, pages 5334–5353. PMLR, 2022.

[5] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

[6] Chenghao Hu, Jingyan Jiang, and Zhi Wang. Decentralized federated learning: A segmented
gossip approach. arXiv preprint arXiv:1908.07782, 2019.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization
and gossip algorithms with compressed communication. In International Conference on
Machine Learning, pages 3478–3487. PMLR, 2019.

[9] Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar. Fully decentralized
federated learning. In Third workshop on Bayesian Deep Learning (NeurIPS), 2018.

[10] Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Communication-efficient local
decentralized sgd methods. arXiv preprint arXiv:1910.09126, 2019.

[11] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

[12] Tao Lin, Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Quasi-global mo-
mentum: Accelerating decentralized deep learning on heterogeneous data. arXiv preprint
arXiv:2102.04761, 2021.

[13] Christos Louizos, Matthias Reisser, Joseph Soriaga, and Max Welling. An expectation-
maximization perspective on federated learning. arXiv preprint arXiv:2111.10192, 2021.

10

[14] Xianghui Mao, Kun Yuan, Yubin Hu, Yuantao Gu, Ali H Sayed, and Wotao Yin. Walkman:
A communication-efficient random-walk algorithm for decentralized optimization. IEEE
Transactions on Signal Processing, 68:2513–2528, 2020.

[15] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[16] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[17] Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Christian Wachinger.
Braintorrent: A peer-to-peer environment for decentralized federated learning. arXiv preprint
arXiv:1905.06731, 2019.

[18] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[19] Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and Anshumali Shrivastava. Compressing
gradient optimizers via count-sketches. In International Conference on Machine Learning,
pages 5946–5955. PMLR, 2019.

[20] Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent. Advances in neural
information processing systems, 31, 2018.

[21] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powergossip: Practical low-rank
communication compression in decentralized deep learning. arXiv preprint arXiv:2008.01425,
2020.

[22] Thijs Vogels, Lie He, Anastasiia Koloskova, Sai Praneeth Karimireddy, Tao Lin, Sebastian U
Stich, and Martin Jaggi. Relaysum for decentralized deep learning on heterogeneous data.
Advances in Neural Information Processing Systems, 34, 2021.

[23] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998.

[24] Yue Xiao, Yu Ye, Shaocheng Huang, Li Hao, Zheng Ma, Ming Xiao, and Shahid Mumtaz. Fully
decentralized federated learning based beamforming design for uav communications. arXiv
preprint arXiv:2007.13614, 2020.

[25] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. Advances in neural information processing systems, 31,
2018.

11

Appendix

A Convergence proof in the case of a random walk

A.1 Proof of Lemma 4.1

Let A be an undirected adjacency matrix that denotes the connectivity between N nodes; if node i is
connected to j, then Aij = Aji = 1 and zero otherwise. Now also let P be the N ×N transition
matrix between the N nodes, where we have that a transition from a node j to a node i is given
as Pij = p(i|j) = 1/d(j) ∀i ∈ N (j) and zero otherwise, where d(·) is a function that returns the
amount of neighbors of a specific node (i.e., the degree). In this case, we have that P = AD−1

where D is a diagonal matrix having the degrees of each of the nodes in the diagonal. Having access
to the above, we can compute the marginal distribution of being in a specific node i at time t as
πt(i) =

∑
j πt−1(j)p(i|j). This can be compactly written as

πt = AD−1πt−1 = (AD−1)tπ0, (11)

where π0 is the initial distribution over the nodes (e.g., a one-hot vector when we deterministically
start the random walk from a specific location). The stationary distribution of the walk will be π∗

and it will satisfy the relation π∗ = AD−1π∗.

For the purposes of this work, we are interested in bounding the divergence of πt from the stationary
distribution π∗, as in our case π∗ corresponds to sampling the global gradient distribution. To do that,
we will follow the analysis described at [34]. Let C = D−1/2AD−1/2 be the normalized connected
and non-bipartite adjacency matrix which will have that its eigenvalues will be 1 = λ1 > λ2 ≥ · · · ≥
λN > −1 and its corresponding orthonormal eigenvectors will be b1, . . . ,bN . As AD−1 is similar
to D−1/2AD−1D1/2 = D−1/2AD−1/2 = C, we will have that AD−1 has the same eigenvalues
as C. Furthermore, we will have that its eigenvectors will be

D−1/2AD−1D1/2bi = Cbi = λibi → AD−1D1/2bi = λiD
1/2bi, (12)

thus the eigenvector for the i’th eigenvalue of AD−1 will be b̂i = D1/2bi. Let the matrix of
eigenvectors be denoted as B̂ = D1/2B, where B is the set of eigenvectors for C. Now, since the
set of eigenvectors constitute a basis, we can express the initial distribution π0 under this basis,
π0 =

∑N
i=1 cib̂i, where ci = b̂T

i π0. We will then have that

πt = (AD−1)tπ0 = (B̂ΛB̂T)tπ0 = B̂ΛtB̂T
N∑
i=1

cib̂i =

N∑
i=1

ciλ
t
ib̂i. (13)

Now by taking the limit of t→∞ we can see that the stationary distribution of the above is

π∗ = lim
t→∞

N∑
i=1

ciλ
t
ib̂i =

N∑
i=1

lim
t→∞

ciλ
t
ib̂i = c1λ1b̂i = c1b̂1, (14)

as λ1 = 1 and is the only eigenvalue that doesn’t decay with t. Therefore, we have that the stationary
distribution will be associated with the first eigenvector of AD−1. We can now return to our original
question; finding a bound between the distribution of the chain at timestep t and the stationary
distribution. We will consider the total variation distance, i.e.,

TV (πt,π
∗) =

1

2
∥πt − π∗∥1 =

1

2

∥∥(AD−1)tπ0 − π∗∥∥
1

(15)

=
1

2

∥∥∥∥∥
N∑
i=1

ciλ
t
ib̂i − π∗

∥∥∥∥∥
1

=
1

2

∥∥∥∥∥π∗ +

N∑
i=2

ciλ
t
ib̂i − π∗

∥∥∥∥∥
1

(16)

=
1

2

∥∥∥∥∥
N∑
i=2

ciλ
t
ib̂i

∥∥∥∥∥
1

(17)

≤
√
N

2

∥∥∥∥∥
N∑
i=2

ciλ
t
ib̂i

∥∥∥∥∥
2

. (18)

1

We also have that ∥∥∥∥∥
N∑
i=2

ciλ
t
ib̂i

∥∥∥∥∥
2

2

=

N∑
i=2

c2iλ
2t
i , (19)

due to the b̂i forming an orthonormal basis. By taking λ = max(λ2, |λN |), we can now bound the
previous in the following way

N∑
i=2

c2iλ
2t
i ≤ λ2t

N∑
i=2

c2i ≤ λ2t
N∑
i=1

c2i ≤ λ2t, (20)

where the last inequality is due to

1 ≥ ∥π0∥22 =

∥∥∥∥∥
N∑
i=1

cib̂i

∥∥∥∥∥
2

2

=

N∑
i=1

c2i . (21)

Therefore, we have that∥∥∥∥∥
N∑
i=2

ciλ
t
ib̂i

∥∥∥∥∥
2

2

≤ λ2t →

∥∥∥∥∥
N∑
i=2

ciλ
t
ib̂i

∥∥∥∥∥
2

≤ λt (22)

and thus

TV (πt,π
∗) ≤

√
N

2
λt. (23)

Now, from the alternative representation of the total variation distance, we have that for f in
a space of functions F with an image in R that takes as inputs samples from distributions p, q,
TV (p, q) = 1

2 supf∈F,|f |≤1 (Ep[f]− Eq[f]) [29]. This can be generalized to arbitrary functions f
bounded by G; in this case, we have that TV (p, q) = 1

2G supf∈F,|f |≤G (Ep[f]− Eq[f]). Therefore,
applying this result to our distributions over selecting the nodes, we have that

TV (πt,π
∗) =

1

2G
sup

f∈F,|f |≤G

(
E
πt

[f]− E
π∗
[f]

)
≤
√
N

2
λt (24)

and, thus, for any f ∈ F with |f | ≤ G we have that

E
πt
[f] ≤ E

π∗
[f] +G

√
Nλt. (25)

We can see that this bound has a sublinear dependence on the number of nodes N . Furthermore, as
the total-variation distance is symmetric, we further have that

E
π∗
[f] ≤ E

πt
[f] +G

√
Nλt. (26)

Therefore, both of these facts can be combined to yield∣∣∣∣Eπt

[f]− E
π∗
[f]

∣∣∣∣ ≤ G
√
Nλt, (27)

which constitutes Lemma 4.1.

To analyze the transition matrix arising from the Metropolis-Hastings adjustment of the simple
proposal, P̂, we can work with the similar matrix

S = R1/2P̂R−1/2, (28)

here R is a diagonal matrix that has the desired stationary distribution, π∗, in its diagonal. From [31]
we know that the matrix S is symmetric (thus has only real eigenvalues) and satisfies the property
that 1 = λ1 > λ2 · · · ≥ λN > −1. Now let the eigenvectors of S be si, we can show that the left
eigenvectors of P̂ are sTi R

1/2 and the right eigenvectors are R−1/2si. From [31] we also know that
the left and right eigenvectors of P̂ associated with λ1 = 1 are π∗ and 1 respectively, therefore
c1b̂1 = π∗. As a result, the same analysis and bounds apply.

2

A.2 Convergence analysis in the non-convex case

We will base this proof on the proof technique of [25] for the case of Adam with only the second
moment; the main idea is to use the previous bounds in order to translate the expectation over the
Markov chain to an expectation over the stationary gradient distribution. With wt we will denote the
vector of optimized parameters at timestep t, with vt the vector of the second moments per parameter
at timestep t and with gt the stochastic gradient obtained at timestep t. we will We start with the
update rule of Adam (without the first moment) for a single dimension i

wt+1,i = wt,i − ηt
gt,i√
vt,i + ϵ

, wt+1,i −wt,i = −ηt
gt,i√
vt,i + ϵ

. (29)

where both ϵ and the second moment v are non-negative. We then assume an L-Lipschitz loss
function and proceed by:

f(wt+1) ≤ f(wt) +∇f(wt)
T (wt+1 −wt) +

L

2
∥wt+1 −wt∥2 (30)

= f(wt)− ηt

D∑
i=1

∇f(wt)i
gt,i√
vt,i + ϵ

+
Lη2t
2

D∑
i=1

g2
t,i(√

vt,i + ϵ
)2 . (31)

We then take an expectation over the distribution of the chain at timestep t, πt, along with the data
samples ξ given that we are at wt

E
πt,ξ

[f(wt+1)] ≤ f(wt)− ηt

D∑
i=1

∇f(wt)i E
πt,ξ

[
gt,i√
vt,i + ϵ

]
+

Lη2t
2

D∑
i=1

E
πt,ξ

[
g2
t,i(√

vt,i + ϵ
)2
]
,

(32)

and we then apply Lemma 4.1 to express the expectations in the r.h.s. to ones over the stationary
distribution at timestep t, π∗. For that, we need an upper bound on the functions, i.e., |f |∞ ≤ C, that
we take the expectation over. In this specific case, we have that∣∣∣∣ gt,i√

vt,i + ϵ

∣∣∣∣ ≤ |gt,i|√
β2vt−1,i + (1− β2)g2

t,i

≤ 1√
1− β2

, (33)

g2
t,i

(
√
vt,i + ϵ)2

=

∣∣∣∣ gt,i√
vt,i + ϵ

∣∣∣∣ ∣∣∣∣ gt,i√
vt,i + ϵ

∣∣∣∣ ≤ 1

1− β2
, (34)

and thus

E
πt,ξ

[f(wt+1)] ≤ f(wt)− ηt

D∑
i=1

∇f(wt)i E
π∗,ξ

[
gt,i√
vt,i + ϵ

]
+ ηt

D∑
i=1

∇f(wt)i

√
Nλt

√
1− β2

+

+
Lη2t
2

D∑
i=1

E
π∗,ξ

[
g2
t,i(√

vt,i + ϵ
)2
]
+

Lη2tD
√
Nλt

2(1− β2)︸ ︷︷ ︸
T2t

(35)

≤ f(wt)− ηt

D∑
i=1

∇f(wt)i E
π∗,ξ

[
gt,i√
vt,i + ϵ

]
+

ηtDG
√
Nλt

√
1− β2

+

+
Lη2t
2

D∑
i=1

E
π∗,ξ

[
g2
t,i(√

vt,i + ϵ
)2
]
+

Lη2tD
√
Nλt

2(1− β2)︸ ︷︷ ︸
T2t

. (36)

We then proceed in a similar manner to [25]

≤ f(wt)− ηt

D∑
i=1

∇f(wt)i E
π∗,ξ

[
gt,i√
vt,i + ϵ

+
gt,i√

β2vt−1,i + ϵ
− gt,i√

β2vt−1,i + ϵ

]
+

+
ηtDG

√
Nλt

√
1− β2

+ T2t. (37)

3

Given that∇f(wt) = Eπ∗,ξ[gt], we can continue with

= f(wt)− ηt

D∑
i=1

∇f(wt)i

(
∇f(wt)i√
β2vt−1,i + ϵ

+ E
π∗,ξ

[
gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ

])
+

+
ηtDG

√
Nλt

√
1− β2

+ T2t (38)

= f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
− ηt

D∑
i=1

∇f(wt)i E
π∗,ξ

[
gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ

]
+

+
ηtDG

√
Nλt

√
1− β2

+ T2t (39)

≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+ ηt

D∑
i=1

|∇f(wt)i|

∣∣∣∣∣∣∣∣∣ Eπ∗,ξ

 gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ︸ ︷︷ ︸

T1t


∣∣∣∣∣∣∣∣∣+

+
ηtDG

√
Nλt

√
1− β2

+ T2t. (40)

From [25] we have that the T1t term can be upper bounded by

T1t ≤
√
1− β2g

2
t,i

(
√

β2vt−1,i + ϵ)ϵ
. (41)

Therefore, taking this into account and with the additional assumption that each gradient coordinate
is upper bounded by G, we have that

≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

G
√
1− β2ηt
ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]
+

+
ηtDG

√
Nλt

√
1− β2

+ T2t. (42)

Furthermore, due to the positivity of
√
vt and ϵ we also have that

√
vt,i + ϵ ≥ ϵ → (

√
vt,i + ϵ)2 ≥ ϵ(

√
vt,i + ϵ). (43)

Therefore, we have that the the T2t term can be upper bounded by

T2t ≤
Lη2t
2ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

vt,i + ϵ

]
+

Lη2tD
√
Nλt

2(1− β2)
(44)

≤ Lη2t
2ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]
+

Lη2tD
√
Nλt

2(1− β2)
, (45)

since vt,i = β2vt−1,i + (1− β2)g
2
t ≥ β2vt−1,i. Putting everything together, we have that

≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

G
√
1− β2ηt
ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]
+

+
Lη2t
2ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]
+

(
Lη2t

2(1− β2)
+

ηtG√
1− β2

)
D
√
Nλt.

(46)

Now we have one more assumption, namely that the gradient variance of each dimension is bounded
by σ2

i . In this way, we have that V[gt,i] = E[g2
t,i] − E[gt,i]

2 ≤ σ2
i → E[g2

t,i] ≤ σ2
i + E[gt,i]

2.

4

Therefore, we have that

≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

G
√
1− β2ηt
ϵ

D∑
i=1

∇f(wt)
2
i + σ2

i√
β2vt−1,i + ϵ

+
Lη2t
2ϵ

D∑
i=1

∇f(wt)
2
i + σ2

i√
β2vt−1,i + ϵ

+

(
Lη2t

2(1− β2)
+

ηtG√
1− β2

)
D
√
Nλt (47)

= f(wt)−
(
ηt −

ηtG
√
1− β2

ϵ
− Lη2t

2ϵ

) D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+

(
ηtG
√
1− β2

ϵ
+

Lη2t
2ϵ

) D∑
i=1

σ2
i√

β2vt−1,i + ϵ
+

(
Lη2t

2(1− β2)
+

ηtG√
1− β2

)
D
√
Nλt. (48)

There are some further assumptions taken from [25], namely that ηt, β2, ϵ are chosen such that
Lηt
2ϵ
≤ 1

4
,

G
√
1− β2

ϵ
≤ 1

4
. (49)

Using these, we have that

≤ f(wt)−
(
ηt −

ηt
4
− ηt

4

) D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+

(
ηtG
√
1− β2

ϵ
+

Lη2t
2ϵ

) D∑
i=1

σ2
i√

β2vt−1,i + ϵ
+

(
Lη2t

2(1− β2)
+

ηtG√
1− β2

)
D
√
Nλt (50)

= f(wt)−
ηt
2

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+

(
ηtG
√
1− β2

ϵ
+

Lη2t
2ϵ

) D∑
i=1

σ2
i√

β2vt−1,i + ϵ
+

(
Lη2t

2(1− β2)
+

ηtG√
1− β2

)
D
√
Nλt, (51)

and due to 0 ≤ vt,i ≤ G2 and defining σ2 =
∑D

i=1 σ
2
i we have that

≤ f(wt)−
ηt

2(
√
β2G+ ϵ)

∥∇f(wt)∥2 +
(
ηtG
√
1− β2

ϵ2
+

Lη2t
2ϵ2

)
σ2

+

(
Lη2t

2(1− β2)
+

ηtG√
1− β2

)
D
√
Nλt. (52)

Therefore,

E
πt

[f(wt+1)]− f(wt) ≤ −
ηt

2(
√
β2G+ ϵ)

∥∇f(wt)∥2 +
(
ηtG
√
1− β2

ϵ2
+

Lη2t
2ϵ2

)
σ2+

+

(
Lη2t

2(1− β2)
+

ηtG√
1− β2

)
D
√
Nλt. (53)

Now by setting ηt = η and taking a telescoping sum, i.e., taking the expectation over πt for all t we
have that∑

t

E
πt,ξ

[f(wt+1)]− E
πt−1,ξ

[f(wt)] ≤ −
η

2(
√
β2G+ ϵ)

T∑
t=1

∥∇f(wt)∥2

+

(
ηG
√
1− β2

ϵ2
+

Lη2

2ϵ2

)
Tσ2 +

(
Lη2

2(1− β2)
+

ηG√
1− β2

)
D
√
N

T∑
t=1

λt (54)

E
πT ,ξ

[f(wT+1)]− f(w1) ≤ −
η

2(
√
β2G+ ϵ)

T∑
t=1

∥∇f(wt)∥2 +
(
ηG
√
1− β2

ϵ2
+

Lη2

2ϵ2

)
Tσ2

+

(
Lη2

2(1− β2)
+

ηG√
1− β2

)
D
√
N

T∑
t=1

λt. (55)

5

Rearranging the inequality and assuming that f(w∗) ≤ f(wt)∀t (i.e., w∗ is the optimum) we have
that

η

2(
√
β2G+ ϵ)

T∑
t=1

∥∇f(wt)∥2 ≤ f(w1)− E
πT ,ξ

[f(wT+1)] +

(
ηG
√
1− β2

ϵ2
+

Lη2

2ϵ2

)
Tσ2+

+

(
Lη2

2(1− β2)
+

ηG√
1− β2

)
D
√
N

T∑
t=1

λt (56)

1

T

T∑
t=1

∥∇f(wt)∥2 ≤ 2(
√

β2G+ ϵ)

(
f(w1)− EπT ,ξ[f(wT+1)]

ηT
+

(
G
√
1− β2

ϵ2
+

Lη

2ϵ2

)
σ2

+

(
Lη

2(1− β2)
+

G√
1− β2

)
D
√
N

1

T

T∑
t=1

λt

)
(57)

1

T

T∑
t=1

∥∇f(wt)∥2 ≤ 2(
√

β2G+ ϵ)

(
f(w1)− f(w∗)

ηT
+

(
G
√
1− β2

ϵ2
+

Lη

2ϵ2

)
σ2

+

(
Lη

2(1− β2)
+

G√
1− β2

)
D
√
N

1

T

T∑
t=1

λt

)
. (58)

Furthermore, since λ < 1, we have that the
∑

t λ
t forms a geometric series, and therefore it is upper

bounded by

T∑
t=0

λt ≤ 1

1− λ
→ 1 +

T∑
t=1

λt ≤ 1

1− λ
→

T∑
t=1

λt ≤ λ

1− λ
. (59)

Therefore, the above can be simplified to

1

T

T∑
t=1

∥∇f(wt)∥2 ≤ 2(
√

β2G+ ϵ)

(
f(w1)− f(w∗)

ηT
+

(
G
√
1− β2

ϵ2
+

Lη

2ϵ2

)
σ2

+
λ

T (1− λ)

(
Lη

2(1− β2)
+

G√
1− β2

)
D
√
N

)
. (60)

Therefore, we have that

E[∥∇f(wa)∥2] ≤ O

(
f(w1)− f(w∗)

ηT
+ σ2 +

λD
√
N

(1− λ)T

)
, (61)

where wa is randomly chosen iterate from w1, . . . ,wT . This ends up being a result similar to the
one at [25], except with an additional term that depends sublinearly on the number of nodes (N) and
decays with the number of iterations T .

A.3 Adding compression

To use adaptive optimizers effectively in our setting, it show in the main text that it is useful to
quantize the second moment. We will have to take this into account in the proof. We begin the proof
in a similar manner; the updates when the second moment is quantized are given as

wt+1,i = wt,i − ηt
gt,i√
vt,i + ϵ

, wt+1,i −wt,i = −ηt
gt,i√
vt,i + ϵ

, (62)

where

vt,i = β2(vt−1,i + rt−1,i) + (1− β2)g
2
t,i. (63)

rt−1,i is the quantization noise on the second moment, i.e., rt−1,i = Q(vt−1,i)− vt−1,i, with Q(v)
representing the quantized second moment. We then assume a L-Lipschitz loss function and proceed

6

by:

f(wt+1) ≤ f(wt) +∇f(wt)
T (wt+1 −wt) +

L

2
∥wt+1 −wt∥2 (64)

= f(wt)− ηt

D∑
i=1

∇f(wt)i
gt,i√
vt,i + ϵ

+
Lη2t
2

D∑
i=1

g2
t,i(√

vt,i + ϵ
)2 . (65)

We then take an expectation over the distribution of the chain at timestep t, πt, and the data-samples
ξ given that we are at wt along with an expectation over the quantization noise of round t− 1, rt−1.

E
πt,rt−1,ξ

[f(wt+1)] ≤ f(wt)− ηt

D∑
i=1

∇f(wt)i E
πt,rt−1,ξ

[
gt,i√
vt,i + ϵ

]

+
Lη2t
2

D∑
i=1

E
πt,rt−1,ξ

[
g2
t,i(√

vt,i + ϵ
)2
]
, (66)

and we then apply Lemma 4.1 to express the expectations in the r.h.s. to ones over the stationary
distribution at timestep t, π∗.

E
πt,rt−1,ξ

[f(wt+1)] ≤ f(wt)− ηt

D∑
i=1

∇f(wt)i E
π∗,rt−1,ξ

[
gt,i√
vt,i + ϵ

]
+

ηtDG
√
Nλt

√
1− β2

+
Lη2t
2

D∑
i=1

E
π∗,rt−1,ξ

[
g2
t,i(√

vt,i + ϵ
)2
]
+

Lη2tD
√
Nλt

2(1− β2)︸ ︷︷ ︸
T2t

, (67)

and then proceed in a similar manner as before.

≤ f(wt)− ηt

D∑
i=1

∇f(wt)i E
π∗,rt−1,ξ

[
gt,i√
vt,i + ϵ

+
gt,i√

β2vt−1,i + ϵ
− gt,i√

β2vt−1,i + ϵ

]

+
ηtDG

√
Nλt

√
1− β2

+ T2t, (68)

and since Eπ∗,rt−1,ξ[gt] = Eπ∗,ξ[gt] = ∇f(wt) (as the quantization noise on timestep t− 1 does
not affect the gradient at timestep t once we condition on wt),

= f(wt)− ηt

D∑
i=1

∇f(wt)i

(
∇f(wt)i√
β2vt−1,i + ϵ

+ E
π∗,rt−1,ξ

[
gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ

])

+
ηtDG

√
Nλt

√
1− β2

+ T2t (69)

= f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
− ηt

D∑
i=1

∇f(wt)i E
π∗,rt−1,ξ

[
gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ

]

+
ηtDG

√
Nλt

√
1− β2

+ T2t (70)

≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+ ηt

D∑
i=1

|∇f(wt)i|

∣∣∣∣∣∣∣∣∣ E
π∗,rt−1,ξ

 gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ︸ ︷︷ ︸

T1t


∣∣∣∣∣∣∣∣∣+

ηtDG
√
Nλt

√
1− β2

+ T2t.

(71)

7

As we have quantization of the second moments, the bound from [25] doesn’t apply. However, we
can construct the following upper bound:

T1t ≤ |gt,i|

∣∣∣∣∣ 1
√
vt,i + ϵ

− 1√
β2vt−1,i + ϵ

∣∣∣∣∣ (72)

= |gt,i|

∣∣∣∣∣
√
vt,i −

√
β2vt−1,i

(
√
vt + ϵ)(

√
β2vt−1,i + ϵ)

∣∣∣∣∣ (73)

=
|gt,i|

(
√
vt + ϵ)(

√
β2vt−1,i + ϵ)

∣∣∣∣∣ vt,i − β2vt−1,i
√
vt,i +

√
β2vt−1,i

∣∣∣∣∣ (74)

=
|gt,i|

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

|(1− β2)g
2
t,i + β2rt−1,i| (75)

≤
(1− β2)|gt,i|g2

t,i

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

+
β2|gt,i||rt−1,i|

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

. (76)

With our assumptions, we can show that
|gt,i|√
vt,i + ϵ

=
|gt,i|√

β2(vt−1,i + rt−1,i) + (1− β2)g2
t,i + ϵ

≤ |gt,i|√
(1− β2)g2

t,i

=
1√

1− β2

(77)
|gt,i|

√
vt,i +

√
β2vt−1,i

=
|gt,i|√

β2(vt−1,i + rt−1,i) + (1− β2)g2
t,i +

√
β2vt−1

≤ |gt,i|√
(1− β2)g2

t,i

=
1√

1− β2

, (78)

since the minimum value of vt−1,i + rt−1,i ≥ 0, i.e., the quantized second moment cannot be
negative. Thus, using these upper bounds we have that

T1t ≤
√
1− β2g

2
t,i

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)

+
β2|rt−1,i|√

1− β2(
√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

(79)

≤
√
1− β2g

2
t,i

ϵ(
√
β2vt−1,i + ϵ)

+
β2|rt−1,i|√

1− β2(
√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

, (80)

and due to our assumptions on the quantization noise, i.e., Assumption 4 we have that
|rt−1,i|√

β2vt−1,i + ϵ
≤ |rt−1,i|√

β2vt−1,i

≤ qt−1vt−1,i√
β2
√
vt−1,i

=
qt−1
√
vt−1,i√
β2

. (81)

We thus end up with

T1t ≤
√
1− β2g

2
t,i

ϵ(
√

β2vt−1,i + ϵ)
+

qt−1

√
β2vt−1,i√

1− β2(
√
vt,i +

√
β2vt−1,i)

(82)

≤
√
1− β2g

2
t,i

ϵ(
√

β2vt−1,i + ϵ)
+

qt−1√
1− β2

. (83)

Therefore, taking the bound on T1t into account and with the additional assumption that each gradient
coordinate is upper bounded by G, we have that

≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

G
√
1− β2ηt
ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]

+
DGηtqt−1√

1− β2

+
ηtDG

√
Nλt

√
1− β2

+ T2t (84)

8

Let us now take a look at the second term T2t. For that term we have that

T2t =
Lη2t
2

D∑
i=1

E
π∗,rt−1,ξ

[
g2
t,i(√

vt,i + ϵ
)2
]
+

Lη2tD
√
Nλt

2(1− β2)
(85)

≤ Lη2t
2ϵ

D∑
i=1

E
π∗,rt−1

[
g2
t,i√

vt,i + ϵ

]
+

Lη2tD
√
Nλt

2(1− β2)
(86)

=
Lη2t
2ϵ

D∑
i=1

E
π∗,rt−1,ξ

[
g2
t,i√

vt,i + ϵ
+

g2
t,i√

β2vt−1,i + ϵ
−

g2
t,i√

β2vt−1,i + ϵ

]
+

Lη2tD
√
Nλt

2(1− β2)

(87)

=
Lη2t
2ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]
+

Lη2tD
√
Nλt

2(1− β2)
+

+
Lη2t
2ϵ

D∑
i=1

E
π∗,rt−1,ξ

 g2
t,i√

vt,i + ϵ
−

g2
t,i√

β2vt−1,i + ϵ︸ ︷︷ ︸
T3t

 . (88)

We now turn to bounding T3t. We have that

T3t ≤ g2
t,i

∣∣∣∣∣ 1
√
vt,i + ϵ

− 1√
β2vt−1,i + ϵ

∣∣∣∣∣ (89)

= g2
t,i

∣∣∣∣∣
√
vt,i −

√
β2vt−1,i

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)

∣∣∣∣∣ (90)

= g2
t,i

∣∣∣∣∣ (
√
vt,i −

√
β2vt−1,i)(

√
vt,i +

√
β2vt−1,i)

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

∣∣∣∣∣ (91)

= g2
t,i

∣∣∣∣∣ vt,i − β2vt−1,i

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

∣∣∣∣∣ (92)

=
g2
t,i

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)

∣∣∣∣∣ (1− β2)g
2
t,i + β2rt−1,i

√
vt,i +

√
β2vt−1,i

∣∣∣∣∣ (93)

≤
(1− β2)g

4
t,i

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

+

+
β2g

2
t,i|rt−1,i|

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

. (94)

For the first term, we have that

(1− β2)g
4
t,i

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

≤
√
1− β2|gt,i|g2

t,i

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)

(95)

≤
g2
t,i√

β2vt−1,i + ϵ
. (96)

For the second term, we have that

β2g
2
t,i|rt−1,i|

(
√
vt,i + ϵ)(

√
β2vt−1,i + ϵ)(

√
vt,i +

√
β2vt−1,i)

≤
qt−1g

2
t,i√

vt,i + ϵ
≤ qt−1|gt,i|√

1− β2

≤ qt−1G√
1− β2

. (97)

Thus, by putting everything together, we have that

T3t ≤
g2
t,i√

β2vt−1,i + ϵ
+

qt−1G√
1− β2

. (98)

9

Therefore, we have that T2t can be bounded as follows

T2t ≤
Lη2t
2ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]
+

Lη2tD
√
Nλt

2(1− β2)

+
Lη2t
2ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ
+

qt−1G√
1− β2

]
(99)

=
2Lη2t
2ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]
+

Lη2tD
√
Nλt

2(1− β2)
+

LDGqt−1η
2
t

2ϵ
√
1− β2

. (100)

Thus, putting everything together, we have that

≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

G
√
1− β2ηt
ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]

+
DGηtqt−1√

1− β2
+

2Lη2t
2ϵ

D∑
i=1

E
π∗,ξ

[
g2
t,i√

β2vt−1,i + ϵ

]
+

LDGqt−1η
2
t

2ϵ
√
1− β2

+

+
Lη2tD

√
Nλt

2(1− β2)
+

ηtDG
√
Nλt

√
1− β2

(101)

≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

G
√
1− β2ηt
ϵ

D∑
i=1

∇f(wt)
2
i + σ2

i√
β2vt−1,i + ϵ

+
DGηtqt−1√

1− β2

+
2Lη2t
2ϵ

D∑
i=1

∇f(wt)
2
i + σ2

i√
β2vt−1,i + ϵ

+
LDGqt−1η

2
t

2ϵ
√
1− β2

+

+
Lη2tD

√
Nλt

2(1− β2)
+

ηtDG
√
Nλt

√
1− β2

(102)

≤ f(wt)− ηt

(
1− G

√
1− β2

ϵ
− 2Lηt

2ϵ

) D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+ ηt

(
G
√
1− β2

ϵ
+

2Lηt
2ϵ

) D∑
i=1

σ2
i√

β2vt−1,i + ϵ

+ ηt

(
G√

1− β2
+

LGηt

2ϵ
√
1− β2

)
Dqt−1 + ηt

(
Lηt

2(1− β2)
+

G√
1− β2

)
D
√
Nλt. (103)

We adopt some further assumptions from [25], namely that ηt, β2, ϵ are chosen such that
Lηt
2ϵ
≤ 1

4
,

G
√
1− β2

ϵ
≤ 1

4
. (104)

Using these, along with the fact that σ2 =
∑

i σ
2
i and v ≥ 0 we have that

≤ f(wt)−
ηt
4

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+ ηt

(
G
√
1− β2

ϵ2
+

Lηt
ϵ2

)
σ2

+ ηt

(
G√

1− β2
+

LGηt

2ϵ
√
1− β2

)
Dqt−1 + ηt

(
Lηt

2(1− β2)
+

G√
1− β2

)
D
√
Nλt, (105)

and due to our quantization procedure that preserves the maximum value of the second moment, we
have that vt−1,i ≤ G2 and therefore

≤ f(wt)−
ηt

4
(√

β2G+ ϵ
)∥∇f(wt)∥2 + ηt

(
G
√
1− β2

ϵ2
+

Lηt
ϵ2

)
σ2

+ ηt

(
G√

1− β2

+
LGηt

2ϵ
√
1− β2

)
Dqt−1 + ηt

(
Lηt

2(1− β2)
+

G√
1− β2

)
D
√
Nλt. (106)

10

Therefore, we have that

E
πt,rt−1,ξ

[f(wt+1)]− f(wt) ≤ −
ηt

4
(√

β2G+ ϵ
)∥∇f(wt)∥2 + ηt

(
G
√
1− β2

ϵ2
+

Lηt
ϵ2

)
σ2

+ ηt

(
G√

1− β2
+

LGηt

2ϵ
√
1− β2

)
Dqt−1

+ ηt

(
Lηt

2(1− β2)
+

G√
1− β2

)
D
√
Nλt. (107)

Now by setting ηt = η and taking a telescoping sum we have that
T∑

t=1

E
πt,rt−1,ξ

[f(wt+1)]− E
πt−1,rt−2,ξ

[f(wt)] ≤ −
η

4
(√

β2G+ ϵ
) T∑

t=1

∥∇f(wt)∥2

+ η

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)
Tσ2 + η

(
G√

1− β2
+

LGη

2ϵ
√
1− β2

)
D

T∑
t=1

qt−1

+ η

(
Lη

2(1− β2)
+

G√
1− β2

)
D
√
N

T∑
t=1

λt. (108)

Rearranging the inequality, doing the cancellations and noting that f(w∗) ≤ EπT ,rT−1,ξ[f(wT+1)]
we have that

η

4
(√

β2G+ ϵ
) T∑

t=1

∥∇f(wt)∥2 ≤ f(w1)− f(w∗)

+ η

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)
Tσ2

+ η

(
G√

1− β2

+
LGη

2ϵ
√
1− β2

)
D

T∑
t=1

qt−1

+ η

(
Lη

2(1− β2)
+

G√
1− β2

)
D
√
N

T∑
t=1

λt (109)

1

T

T∑
t=1

∥∇f(wt)∥2 ≤ 4(
√

β2G+ ϵ)
f(w1)− f(w∗)

ηT

+ 4(
√

β2G+ ϵ)

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)
σ2

+ 4(
√

β2G+ ϵ)

(
G√

1− β2
+

LGη

2ϵ
√
1− β2

)
D

1

T

T∑
t=1

qt−1

+ 4(
√
β2G+ ϵ)

(
Lη

2(1− β2)
+

G√
1− β2

)
D
√
N

1

T

T∑
t=1

λt

(110)

1

T

T∑
t=1

∥∇f(wt)∥2 ≤ 4(
√

β2G+ ϵ)
f(w1)− f(w∗)

ηT

+ 4(
√

β2G+ ϵ)

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)
σ2

+ 4(
√

β2G+ ϵ)

(
G√

1− β2
+

LGη

2ϵ
√
1− β2

)
Dq

+ 4(
√
β2 + ϵ)

(
Lη

2(1− β2)
+

G√
1− β2

)
D

λ
√
N

T (1− λ)
, (111)

11

with q = maxt qt. Thus, we end up with something that has similar asymptotic convergence as
before, albeit with an additional error term that depends on the quantization procedure of the second
moment, i.e.,

E[∥∇f(wa)∥2] ≤ O

(
f(w1)− f(w∗)

ηT
+ σ2 + qDG+

λD
√
N

(1− λ)T

)
(112)

where wa is randomly chosen iterate from w1, . . . ,wT .

A.4 The case of multiple local updates

It can be beneficial to do multiple local updates at each client, in order to decrease the overall
communication cost to reach a specific target accuracy. We will thus extend the convergence proof
in order to consider such an approach. Remember that the updates when the second moment is
quantized are given as

wt+1,i = wt,i − ηt
gt,i√
vt,i + ϵ

, wt+1,i −wt,i = −ηt
gt,i√
vt,i + ϵ

, (113)

where

vt,i = β2(vt−1,i + rt−1,i) + (1− β2)g
2
t,i. (114)

We will now further assume that each client performs K local updates before it decides whether to
send the model to a neighbor. Similarly as before, assume an L-Lipschitz loss function and proceed
by:

f(wt+1) ≤ f(wt) +∇f(wt)
T (wt+1 −wt) +

L

2
∥wt+1 −wt∥2 (115)

= f(wt)− ηt

D∑
i=1

∇f(wt)i
gt,i√
vt,i + ϵ

+
Lη2t
2

D∑
i=1

g2
t,i(√

vt,i + ϵ
)2 . (116)

We will then take an expectation over the randomness at round t, given that we are at wt. We will
distinguish two cases; if t (mod K) is zero, then we know that the client will use the randomness
of the random walk in order to determine the next node, and if t (mod K) > 0, we know that the
model will continue staying on this particular client for an update. In the first case, we established the
following upper bound

E
πt,rt−1,ξ

[f(wt−1)]− f(wt) ≤ −
ηt

4
(√

β2G+ ϵ
)∥∇f(wt)∥2 + ηt

(
G
√
1− β2

ϵ2
+

Lηt
ϵ2

)
σ2

+ ηt

(
G√

1− β2
+

LGηt

2ϵ
√
1− β2

)
Dqt−1 + ηt

(
Lηt

2(1− β2)
+

G√
1− β2

)
D
√
Nλt.

(117)

For the second case, we have to do some more work. We first take the expectation over the randomness
of timestep t. This specific randomness involves only the data samples of a client s, i.e., ξs and the
quantization noise r. Therefore, we have that

E
rt−1,ξs

[f(wt+1)] = f(wt)−ηt
D∑
i=1

∇f(wt)i E
rt−1,ξs

[
gt,i√
vt,i + ϵ

]
︸ ︷︷ ︸

T1

+
Lη2t
2

D∑
i=1

E
rt−1,ξs

[
g2
t,i(√

vt,i + ϵ
)2
]

︸ ︷︷ ︸
T2

. (118)

12

We then work towards bounding T1. We have that

T1 = −ηt
D∑
i=1

∇f(wt)i E
rt−1,ξs

[
gt,i√
vt,i + ϵ

+
gt,i√

β2vt−1,i + ϵ
− gt,i√

β2vt−1,i + ϵ

+
∇f(wt)i√
β2vt−1,i + ϵ

− ∇f(wt)i√
β2vt−1,i + ϵ

]
(119)

= −ηt
D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
− ηt

D∑
i=1

∇f(wt)i E
rt−1,ξs

[
gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ

]

− ηt

D∑
i=1

∇f(wt)i E
ξs

[
gt,i√

β2vt−1,i + ϵ
− ∇f(wt)i√

β2vt−1,i + ϵ

]
(120)

≤ −ηt
D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+ ηt

D∑
i=1

|∇f(wt)i|

∣∣∣∣∣ E
rt−1,ξs

[
gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ

]∣∣∣∣∣
+ ηt

D∑
i=1

∣∣∣∣∣ ∇f(wt)i√
β2vt−1,i + ϵ

∣∣∣∣∣
∣∣∣∣Eξs [gt,i −∇f(wt)i]

∣∣∣∣ (121)

= −ηt
D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+ ηt

D∑
i=1

|∇f(wt)i|

∣∣∣∣∣ E
rt−1,ξs

[
gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ

]∣∣∣∣∣
+ ηt

D∑
i=1

∣∣∣∣∣ ∇f(wt)i√
β2vt−1,i + ϵ

∣∣∣∣∣ |∇fs(wt)i −∇f(wt)i| , (122)

where ∇fs(wt) denotes the gradient computed on the full dataset of client s, i.e., Eξs [g]. From
previous derivations and assumptions, we have that

gt,i√
vt,i + ϵ

− gt,i√
β2vt−1,i + ϵ

≤
√
1− β2g

2
t,i

ϵ(
√
β2vt−1,i + ϵ)

+
qt−1√
1− β2

, (123)

thus, we can continue the upper bound as

≤ −ηt
D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

ηtG
√
1− β2

ϵ

D∑
i=1

E
ξs

[
g2
t,i√

β2vt−1,i + ϵ

]
+

ηtDGqt−1√
1− β2

+
ηtG

ϵ
∥∇fs(wt)−∇f(wt)∥1. (124)

≤ −ηt
D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

ηtG
√
1− β2

ϵ

D∑
i=1

E
ξs

[
g2
t,i√

β2vt−1,i + ϵ

]
+

ηtDGqt−1√
1− β2

+
ηtG
√
D

ϵ
∥∇fs(wt)−∇f(wt)∥2. (125)

≤ −ηt
D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

ηtG
√
1− β2

ϵ

D∑
i=1

E
ξs

[
g2
t,i√

β2vt−1,i + ϵ

]
+

ηtDGqt−1√
1− β2

+
ηt
√
DG2

2ϵ
+

ηt
√
D

2ϵ
∥∇fs(wt)−∇f(wt)∥22, (126)

where the last step is due to Young’s inequality applied to G∥∇fs(wt)−∇f(wt)∥2.

By then using two of our assumptions, namely, the bounded (local) variance and bounded difference
between the local and global gradients, we have that

T1 ≤ −ηt
D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ
+

ηtG
√
1− β2

ϵ

D∑
i=1

E
ξs

[
g2
t,i√

β2vt−1,i + ϵ

]

+
ηtDGqt−1√

1− β2

+
ηt
√
DG2

2ϵ
+

ηt
√
Dζ2

2ϵ
. (127)

13

By reusing previous derivations, we can also show that

T2 ≤
2Lη2t
2ϵ

D∑
i=1

E
ξs

[
g2
t,i√

β2vt−1,i + ϵ

]
+

LDGqt−1η
2
t

2ϵ
√
1− β2

. (128)

Thus, by putting everything together,

E
rt−1,ξs

[f(wt+1)] ≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+

(
ηtG
√
1− β2

ϵ
+

Lη2t
ϵ

) D∑
i=1

E
ξs

[
g2
t,i√

β2vt−1,i + ϵ

]
︸ ︷︷ ︸

T3

+

(
ηt√

1− β2
+

Lη2t
2ϵ
√
1− β2

)
DGqt−1 +

ηt
√
D

2ϵ

(
G2 + ζ2

)
. (129)

We will now bound T3.

T3 = E
ξs

[
g2
t,i√

β2vt−1,i + ϵ

]
≤ ∇fs(wt)

2 + σ2
li√

β2vt−1,i + ϵ
(130)

=
(∇fs(wt)−∇f(wt) +∇f(wt))

2 + σ2
li√

β2vt−1,i + ϵ
(131)

≤ 2√
β2vt−1,i + ϵ

(
σ2
li

2
+ (∇fs(wt)i −∇f(wt)i)

2 +∇f(wt)
2
i

)
. (132)

Therefore, we have that

E
rt−1,ξs

[f(wt+1)] ≤ f(wt)− ηt

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+ 2

(
ηtG
√
1− β2

ϵ
+

Lη2t
ϵ

) D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+ 2

(
ηtG
√
1− β2

ϵ2
+

Lη2t
ϵ2

)(
σ2
l

2
+ ∥∇fs(wt)−∇f(wt)∥22

)
+

(
ηt√

1− β2
+

Lη2t
2ϵ
√
1− β2

)
DGqt−1 +

ηt
√
D

2ϵ

(
G2 + ζ2

)
(133)

≤ f(wt)−
(
ηt −

2ηtG
√
1− β2

ϵ
− 2Lη2t

ϵ

) D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+ 2

(
ηtG
√
1− β2

ϵ2
+

Lη2t
ϵ2

)(
σ2
l

2
+ ζ2

)
+

(
ηt√

1− β2

+
Lη2t

2ϵ
√
1− β2

)
DGqt−1 +

ηt
√
D

2ϵ

(
G2 + ζ2

)
. (134)

In order to maintain an upper bound, we have to impose some further assumptions, namely that

2Lηt
ϵ
≤ 1

2
,

2G
√
1− β2

ϵ
≤ 1

4
. (135)

14

In this way, we have that

E
rt−1,ξs

[f(wt+1)] ≤ f(wt)−
ηt
4

D∑
i=1

∇f(wt)
2
i√

β2vt−1,i + ϵ

+ 2

(
ηtG
√
1− β2

ϵ2
+

Lη2t
ϵ2

)(
σ2
l

2
+ ζ2

)
+

(
ηt√

1− β2
+

Lη2t
2ϵ
√
1− β2

)
DGqt−1 +

ηt
√
D

2ϵ

(
G2 + ζ2

)
(136)

E
rt−1,ξs

[f(wt+1)]− f(wt) ≤ −
ηt

4
(√

β2G+ ϵ
)∥∇f(wt)∥2

+ 2

(
ηtG
√
1− β2

ϵ2
+

Lη2t
ϵ2

)(
σ2
l

2
+ ζ2

)
+

(
ηt√

1− β2
+

Lη2t
2ϵ
√
1− β2

)
DGqt−1 +

ηt
√
D

2ϵ

(
G2 + ζ2

)
,

(137)

which constitutes our final bound for the case of a client locally updating the model without doing the
random walk. We now assume ηt = η, q = maxt qt and take a telescoping sum while considering
both of these cases, where Et corresponds to an expectation over all randomness at round t.

KT∑
t=1

E
t
[f(wt+1)]− E

t−1
[f(wt)] ≤ −

η

4
(√

β2G+ ϵ
) ∑

t(mod K)=0

∥∇f(wt)∥2

+ ηT

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)
σ2

+ ηT

(
G√

1− β2

+
LGη

2ϵ
√
1− β2

)
Dq

+ η

(
Lη

2(1− β2)
+

G√
1− β2

)
D
√
N

T∑
i=1

λi

− η

4
(√

β2G+ ϵ
) ∑

t(mod K) ̸=0

∥∇f(wt)∥2

+ 2T (K − 1)

(
ηG
√
1− β2

ϵ2
+

Lη2

ϵ2

)(
σ2
l

2
+ ζ2

)
+ T (K − 1)

(
η√

1− β2
+

Lη2

2ϵ
√
1− β2

)
DGq +

T (K − 1)η
√
D

2ϵ

(
G2 + ζ2

)
(138)

≤ − η

4
(√

β2G+ ϵ
) T∑

t=1

∥∇f(wt)∥2

+ ηT

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)
σ2 +

T (K − 1)η
√
D

2ϵ

(
G2 + ζ2

)
+ 2T (K − 1)

(
ηG
√
1− β2

ϵ2
+

Lη2

ϵ2

)(
σ2
l

2
+ ζ2

)
+ ηKT

(
1√

1− β2
+

Lη

2ϵ
√
1− β2

)
DGq

+ η

(
Lη

2(1− β2)
+

G√
1− β2

)
D
λ
√
N

1− λ
. (139)

15

Therefore, by simplifying and re-arranging we have that

η

4
(√

β2G+ ϵ
) KT∑

t=1

∥∇f(wt)∥2 ≤ f(w1)− f(w∗) + ηT

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)
σ2

+
T (K − 1)η

√
D

2ϵ

(
G2 + ζ2

)
+ 2T (K − 1)

(
ηG
√
1− β2

ϵ2
+

Lη2

ϵ2

)(
σ2
l

2
+ ζ2

)
+ ηKT

(
1√

1− β2
+

Lη

2ϵ
√
1− β2

)
DGq

+ η

(
Lη

2(1− β2)
+

G√
1− β2

)
D
λ
√
N

1− λ
(140)

1

KT

KT∑
t=1

∥∇f(wt)∥2 ≤ 4(
√
β2G+ ϵ)

f(w1)− f(w∗)

ηKT

+ 4(
√

β2G+ ϵ)

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)
σ2

K

+ 4(
√

β2G+ ϵ)
(K − 1)

√
D

2Kϵ

(
G2 + ζ2

)
+ 8(

√
β2G+ ϵ)

K − 1

K

(
G
√
1− β2

ϵ2
+

Lη

ϵ2

)(
σ2
l

2
+ ζ2

)
+ 4(

√
β2G+ ϵ)

(
1√

1− β2

+
Lη

2ϵ
√
1− β2

)
DGq

+ 4(
√
β2G+ ϵ)

(
Lη

2(1− β2)
+

G√
1− β2

)
D

λ
√
N

(1− λ)KT
.

(141)

We thus end up with

E[∥∇f(wa)∥2] ≤ O

(
f(w1)− f(w∗)

ηKT
+

σ2

K
+ qDG+

K − 1

K
(σ2

l + ζ2 +G2) +
λD
√
N

(1− λ)KT

)
,

(142)

where wa is randomly chosen iterate from w1, . . . ,wKT .

B Experimental details

The experiments in this paper were performed on workstations, each of which is equipped with a
single Nvidia RTX 2080Ti GPU, as well as on machines equipped with Nvidia V100 and A100 GPUs.
All experiments where performed on single GPUs only.

B.1 Models and datasets

FEMNIST FEMNIST is based on the extended MNIST (EMNIST) dataset [27] and is adapted to
the federated setting. Its images are MNIST-like and consist of 63 different classes of handwritten
letters and digits. In the federated setting, we consider all data-point written by an individual person
to constitute an individual client’s dataset. Any non-i.i.d. ness therefore stems from the different
writing-styles, as well as from the varying size of the clients’ datasets. Additionally, the size of
the individual clients’ datasets differ significantly. We experiment with the dataset that is originally
published by [26] and use their provided code to generate the dataset. We remark that the statistics
reported by the original creators do not align with the result of the provided code when we run
it. In Table 3, we report the dataset’s statistic as we compute them. We use the standard LeNet-5
convolutional network [28] in all FEMNIST experiments.

16

Table 3: Statistics of federated training sets
Dataset Number of clients Total samples Samples per device

mean std

FEMNIST 3597 734, 463 204.19 79.95
Shakespeare 660 3, 678, 451 5573.41 6460.77
StackOverflow 342, 477 135, 818, 730 396.58 1278.94
Cifar10 100 45, 000 450 102
Cifar100 500 50, 000 100 0

Shakespeare We follow [26] in the creation of the Shakespeare dataset. Each unique character’s
spoken lines across all of Shakespear’s plays constitutes the dataset for an individual client in the
federated setup. This dataset is naturally non-i.i.d due to the 660 different characters’ identities and
corresponding spoken lines. Our model architecture consists of the 2-layer LSTM model proposed
in [26]. The task is formulated as next-character-prediction task over an alphabet of 80 characters.
The cross-entropy term is computed only on the next character prediction based on an encoding of a
80 character long sentences. For the statistics in Table 3, we report each pair of 80 characters-long
sentences plus next character as a single sample. Please note that the differences between our statistics
and what is reported by [26] has been raised in a github issue2.

StackOverflow The StackOverflow dataset [32] is a collection of questions and answers scraped
from the StackOverflow website. Each user of that website who posted there within a specific
time-frame is a client and their posts constitute its dataset. In this work, we compare on the tag
prediction task described in [16] using a simple logistic regression model. Each posting is tagged
with one or multiple of 500 possible tags, such that a client performs one-vs-all classification across
these 500 tags. Each posting is represented as a normalized bag-of-words across the 10, 000 most
frequent words in the training set. Since the validation-set is very large, we report learning curves by
sampling in the main paper were created by selecting the first 10% of data-points. For the results in
Table 1, the final model was evaluated on the test set. We do 30k steps in the case of random walk
optimization and 1.5k steps for FedAvg.

CIFAR10/CIFAR100 For the CIFAR10 dataset, we split the 45k training examples across 100
clients in a non-i.i.d. way according to the label-skew setting presented in [16] with α = 1.0. For
CIFAR100, the training set is split across 500 clients in a non-i.i.d. way following the PAM method
in [16]. We keep α = 1.0, β = 10.0. Experiments on both datasets are performed with the standard
ResNet-20 architecture for CIFAR data-sets, albeit with BatchNorm replaced by GroupNorm with 2
groups.

Gossip Averaging For gossip averaging experiments, we use CIFAR10 and Shakespeare. The data
split for both tasks is equivalent to the one described above, and so are the models. We also use the
same small-world communication graph with the average degree of 5 and β = 0.5. Training is done
similarly to prior work on gossiping (e.g., [21]): using gradient descent with momentum (0.9) and
weight decay (10−4); learning rate is 0.1. In CIFAR10 experiment, all clients are updated in each
round, but in Shakespeare, due to a significant slow-down caused by the larger federation and model,
only 10 users get updated in every round. The latter, however, doesn’t appear to impact the accuracy-
communication trade-off, and thus our conclusions. Finally, the PowerGossip communication savings
are accounted by applying the compression ratio achieved in [21] for CIFAR10 (as the model is the
same, ResNet-20), and by computing the ratio directly, layer-by-layer, following the PowerGossip
method with 1 iteration for Shakespeare.

B.2 Hyperparameters

For all of the tasks involving a neural network (i.e., all tasks we considered, except StackOverflow)
for RW-Adam we used the default Adam hyperparameters (without momentum), i.e., a learning rate
of 1e− 3, β2 = 0.999, β1 = 0 and ϵ = 1e− 7. For the quantized version of Adam, we used either 4
or 5 bits per parameter, determined by comparing validation performance against the unquantized

2https://github.com/TalwalkarLab/leaf/issues/13

17

(a) CIFAR 10 (b) CIFAR 100 (c) FEMNIST

(d) Shakespeare

Figure 4: Average (over different random seeds) learning curves of validation accuracy as a function
of the cumulative communication costs.

Table 4: Average (over different random seeds) test-set accuracy at the end of training and total
communication (in GB) along with the standard error.

CIFAR10 CIFAR100 FEMNIST Shakespeare
K = 1, b = 4 K = 1, b = 5 K = 1, b = 5 K = 10, b = 4

Method Acc. Comm. Acc. Comm. Acc. Comm. Acc. Comm.

FedAvg 69.0± 0.4 120 41.3± 0.5 102 87.0± 0.3 263 56.0± 0.2 33

RW SGD 70.2± 1.3 99 36.6± 0.7 86 87.2± 0.1 177 56.8± 0.1 28
RW Adam 72.6± 0.2 211 41.5± 0.3 180 86.7± 0.1 302 56.0± 0.1 58
RW QAdam 73.8± 0.3 112 40.9± 0.7 100 86.7± 0.1 163 55.6± 0.1 31

version of Adam. For RW-SGD we tuned the learning rate on a per-experiment basis via a validation
set. The range we considered was [1e− 3, 1]. We found that a learning rate of 1e− 1 worked well on
all of the vision tasks, whereas a learning rate of 1 worked well for Shakespeare. For StackOverflow,
we found that we need much larger learning rates; for RW-Adam and RW-QAdam we used a learning
rate of 1e− 1 whereas for SGD we used a learning rate of 1e5. The number of local steps in the case
of random-walk optimization was picked from {1, 3, 5, 10}, again determined on a validation set.
We used a batch-size of 128 for CIFAR10/100, Shakespeare, FEMNIST, and a batch-size of 100 for
StackOverflow.

For FedAvg, we used the hyperparameters provided at [16] for StackOverflow, whereas for CIFAR
10 / CIFAR100 / FEMNIST, we used SGD locally with a learning rate of 0.05, 1 local epoch and
Adam with the default hyperparameters at the server (with momentum), i.e., a learning rate of 1e− 3,
β1 = 0.9, β2 = 0.999 and ϵ = 1e− 7. For Shakespeare we found it beneficial to use locally SGD
with a learning rate of 1.0, 1 local epoch and similarly SGD with a learning rate of 1.0 at the server.
For CIFAR10/CIFAR100/FEMNIST/StackOverflow we sampled 10 clients per round, whereas we
sampled 66 clients per round for Shakespeare.

C Additional results

In this section we provide an estimate of the variability of our results according to different random
seeds on CIFAR10, CIFAR100, FEMNIST and Shakespeare; we used 4 random seeds for CIFAR
10, Shakespeare and 3 random seeds for FEMNIST and CIFAR100. In Figure 4 and Table 4 we

18

provide the average learning curves and the average test-set accuracy along with its standard error
respectively. We can see that, overall, our results have similar variability to the ones from FedAvg
and do not change our conclusions; we can get similar or better accuracy to FedAvg with comparable
communication costs. Note that for CIFAR100, the performance of FedAvg is lower than what we
reported in the main text; this is due to choosing a point in training for FedAvg that has similar
communication costs as our RW-QAdam.

References
[26] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan

McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

[27] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending
mnist to handwritten letters. In 2017 international joint conference on neural networks (IJCNN),
pages 2921–2926. IEEE, 2017.

[28] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[29] Parimal Parag. Lecture 14: Total variation distance, 2019. URL https://ece.iisc.ac.in/
~parimal/2019/statphy/lecture-14.pdf.

[16] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[31] Yuji Sakai and Koji Hukushima. Eigenvalue analysis of an irreversible random walk with skew
detailed balance conditions. Physical Review E, 93(4):043318, 2016.

[32] TFF Authors. Tensorflow federated stack overflow dataset. Online: https:
//www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/
stackoverflow, 2019.

[21] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powergossip: Practical low-rank
communication compression in decentralized deep learning. arXiv preprint arXiv:2008.01425,
2020.

[34] David P. Williamson. Orie 6334 spectral graph theory, 2016. URL https://people.orie.
cornell.edu/dpw/orie6334/Fall2016/lecture11.pdf.

[25] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. Advances in neural information processing systems, 31,
2018.

19

