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ABSTRACT

Understanding the loss landscapes of neural networks (NNs) is critical for opti-
mizing model performance. Previous research has identified the phenomenon of
mode connectivity on curves, where two well-trained NNs can be connected by
a continuous path in parameter space where the path maintains nearly constant
loss. In this work, we extend the concept of mode connectivity to explore con-
nectivity on surfaces, significantly broadening its applicability and unlocking new
opportunities. While initial attempts to connect models via linear surfaces in pa-
rameter space were unsuccessful, we propose a novel optimization technique that
consistently discovers Bézier surfaces with low-loss and high-accuracy connect-
ing multiple NNs in a nonlinear manner. We further demonstrate that even without
optimization, mode connectivity exists in certain cases of Bézier surfaces, where
the models are carefully selected and combined linearly. This approach provides a
deeper and more comprehensive understanding of the loss landscape and offers a
novel way to identify models with enhanced performance for model averaging and
output ensembling. We demonstrate the effectiveness of our method on CIFAR-
10, CIFAR-100, and Tiny-ImageNet datasets using VGG16, ResNet18, and ViT
architectures.

1 INTRODUCTION

Understanding the loss landscapes of deep neural networks (DNNs) is crucial for understanding the
training process in deep learning (Keskar et al., 2017). One of the most compelling phenomena
observed within these landscapes is mode connectivity - trained models (modes) in a model’s pa-
rameter space can be connected by paths of low loss (Garipov et al., 2018; Draxler et al., 2018). This
phenomenon reveals that neural networks, even when initialized differently and converging to dis-
tinct optima, may share underlying structural relationships that allow for smooth transitions between
them in parameter space. Understanding how these optima are connected can reveal key information
about a network’s performance across different tasks and datasets (Wortsman et al., 2022), as well
as its stability and susceptibility to adversarial attacks (Zhao et al., 2020; Wang et al., 2024; 2023).
One widely studied form of mode connectivity is linear mode connectivity, which describes a more
specific scenario where the linear interpolation between two trained neural networks maintains a
roughly constant loss (Frankle et al., 2020). Importantly, the discovery of mode connectivity has led
to many applications such as exploring the safety alignment of large language models (Peng et al.,
2024), where visualizing the safety landscape reveals how finetuning can compromise safety, and
improved model robustness by finding paths in flat regions of the loss landscape (Zhao et al., 2020;
Wang et al., 2024; Tatro et al., 2020), making models less sensitive to adversarial examples. Addi-
tionally, it enhances optimization efficiency by aiding escape from local minima and supports class
incremental learning by enabling smooth connections between tasks without forgetting (Wortsman
et al., 2022; Wen et al., 2023).

Despite the insights gained from mode connectivity, most existing studies focus on curve-based
approaches that are inherently limited. These methods rely on information derived from just
two endpoints—two neural networks with fixed parameters—restricting the exploration to a one-
dimensional path. This limitation prevents the capture of richer structural information that exists
beyond these endpoints and confines the search space to a narrow region within the parameter space.
The core motivation of this work is to extend mode connectivity from curves to surfaces, thereby
enabling a broader and deeper exploration of the parameter space. By constructing surfaces instead
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of simple curves, we can integrate information from multiple models simultaneously, allowing for a
more comprehensive search for optimal solutions. Surface connectivity offers a higher-dimensional
perspective on the loss landscape, facilitating the discovery of models that exhibit better gener-
alization and performance. In this paper, we present a novel learning framework that leverages
Bézier surfaces in a nonlinear manner to explore mode connectivity based on Bézier surfaces (See
Figure 1 for the loss landscape of Bézier surfaces before and after applying our method), offering
deeper insights into neural network loss landscapes and opening up new avenues in model opti-
mization. Additionally, We investigate the conditions under which the surface spanned by linear
combinations of models exhibits mode connectivity. Finally, we introduce practical applications of
our Bézier surface-based mode connectivity approach, including model averaging and output en-
sembling, demonstrating its potential to enhance performance in these tasks.

(a) (b)
Figure 1: (a) The loss values on the Bézier surface are high before applying our method; (b) The loss values
on the Bézier surface are consistently low after applying our method. Each point on the surface represents the
loss obtained by a model.

Contributions This paper makes the following key contributions:

• Bézier Surface-Based Mode Connectivity Framework and Algorithm: This paper in-
troduces a novel framework that extends mode connectivity from curves to surfaces using
nonlinear Bézier surfaces. It also presents an efficient algorithm that constructs these Bézier
surfaces to connect independently trained models, systematically optimizing the surface to
maintain low loss and high accuracy across the entire parameter space. This approach
provides a more comprehensive exploration of the neural network loss landscape.

• Investigation of Linear Surface Connectivity: The paper examines when surfaces formed
by linear combinations of neural network models exhibit mode connectivity properties,
identifying key conditions for this to occur. This provides a foundation for understanding
the limits of linear surface-based approaches.

• Applications of Bézier Surface Mode Connectivity: (1) Model Averaging: The Bézier
surface framework provides a new view for averaging models across the parameter space,
leading to improved model performance; (2) Output Ensembling: The approach enhances
model ensembling by connecting multiple models via Bézier surfaces, creating a more
effective ensemble of models.

2 RELATED WORK

Neural Network Loss Landscape and Mode Connectivity. Understanding the loss landscapes
of deep neural networks is critical for analyzing their optimization and generalization behaviors.
Despite the non-convex nature of neural network loss functions, overparameterized networks of-
ten converge to solutions with similar performance across different training runs. This observa-
tion has prompted investigations into the geometry of these loss landscapes, with a particular focus
on the sharpness and flatness of minima. Models trained with large batch sizes tend to converge
to sharper minima, associated with poorer generalization compared to flatter minima found using
smaller batches, emphasizing the relationship between the geometry of the minima and generaliza-
tion abilities (Keskar et al., 2017). Mode connectivity explores the pathways in the loss landscape
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that connect different minima. Studies have shown that simple, low-loss paths - often through weight
space interpolations - can connect independently trained models, indicating that minima are not iso-
lated but reside within a connected manifold of low-loss regions (Garipov et al., 2018; Draxler et al.,
2018). Techniques like Stochastic Weight Averaging (SWA) build on this concept by averaging
weights along the trajectory of stochastic gradient descent (SGD) to find flatter minima that general-
ize better (Izmailov et al., 2018). Furthermore, regularization techniques such as dropout and batch
normalization have been shown to promote smoother landscapes, which facilitate mode connectiv-
ity (Fort & Jastrzebski, 2019). Mode connectivity has also been applied in various tasks, including
transfer learning (Wortsman et al., 2022), robustness (Wang et al., 2024), safety alignment of large
language models (Peng et al., 2024), and class incremental learning (CIL) (Wen et al., 2023). For
instance, it has been explored to study and enhance ℓp robustness and to fine-tune pre-trained mod-
els for improved performance on downstream tasks (Wortsman et al., 2022; Zhao et al., 2020; Wang
et al., 2024; 2023). Additionally, mode connectivity has been utilized as a post-processing step after
each CIL phase to optimize continual learning performance (Wen et al., 2023). Several previous
works explored the extensions of mode connectivity. Some focused on identifying specific patterns
within loss surfaces of multiple neural networks (Skorokhodov & Burtsev, 2019; Czarnecki et al.,
2019). Others explored low-loss spaces using multiple simplices (Benton et al., 2021), which rely on
localized, piecewise-linear approximations, or modeled the loss landscape as a collection of high-
dimensional wedges (Fort et al., 2019), which formulate the problem as a linear interpolation of
manifolds and face challenges in scalability and interpretability. In contrast, our method focuses on
nonlinear, Bézier surface-based mode connectivity, offering a global, smooth mapping and efficient
optimization. While one study examined geometry across multiple loss subspaces, its focus was on
pairwise mode connectivity and did not extend to constructing surfaces with provable low-loss prop-
erties (Chen & Saidi). Despite these advancements, most works focus on curve-based approaches,
which restrict exploration to narrow regions of the parameter space. Our method uniquely empha-
sizes the exploration of mode connectivity through surfaces, providing insights beyond the scope of
these prior works.

(a) Bézier curve

(b) Bézier surface
Figure 2: An illustration of Bézier
curve and Bézier surface.

Linear Mode Connectivity. While mode connectivity typi-
cally involves non-linear paths between minima, an intriguing
possibility is the existence of linear paths that connect different
minima without encountering high-loss barriers. Linear Mode
Connectivity (LMC) refers to a special case of mode connec-
tivity where the low-loss path between two trained models is
a linear interpolation (Frankle et al., 2020), which exists when
models share initial weights or training data ordering. Fur-
ther theoretical work has demonstrated that overparameteriza-
tion in neural networks makes linear low-loss paths more com-
mon (Kuditipudi et al., 2019), and techniques such as weight
permutation alignment allow for linear mode connectivity be-
tween independently trained models by reordering neurons to
match across models (Entezari et al., 2022). These findings
have practical implications for model merging and model en-
sembling, where linear combinations of weights can result
in averaging or ensembles that outperform traditional meth-
ods (Rame et al., 2022; Ainsworth et al., 2023). While these
works primarily focus on linear combinations between two
models, we extend the exploration to settings involving more
than two models, generalizing the idea of linear mode connec-
tivity.

3 BÉZIER CURVE AND BÉZIER SURFACE

Bézier Curve. A Bézier curve is defined using a parametric equation where the parameter t varies
between 0 and 1. The general form of a Bézier curve of degree n is given by:

B(t) =

n∑
i=0

(
n

i

)
ti(1− t)n−iPi,

(
n

i

)
=

n!

i!(n− i)!
, (1)
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where Pi represent the control points. When n = 2, equation 1 reduces to the most commonly used
quadratic Bézier curve with three control points (P0, P1, and P2):

B(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2, (2)

which is illustrated in Figure 2 (a). blueIn the context of mode connectivity, Pi are neural networks
with the same architecture, and B(t) denotes a curve in the parameter space.

Bézier Surface. A Bézier surface is an extension of the Bézier curve from t to two parametric
directions, u ∈ [0, 1] and v ∈ [0, 1], with control points arranged in a grid. The surface is defined as:

B(u, v) =

n∑
i=0

m∑
j=0

PijBi,n(u)Bj,m(v), (3)

where Pi,j are control points, and Bi,n(u) and Bj,m(v) are the Bernstein polynomial:

Bi,n(u) =

(
n

i

)
ui(1− u)n−i, Bj,m(v) =

(
m

j

)
vj(1− v)m−j (4)

The Bézier surface can be expanded by first summing over j and then over i, yielding:

B(u, v) =

m∑
j=0

Bj,m(v)

[
n∑

i=0

Bi,n(u)Pij

]
(5)

When u and v equal to 0 or 1, we get the four corner control points that always lie on the Bézier
surface: B(0, 0) = P00, B(0, 1) = P0m, B(1, 0) = Pn0, B(1, 1) = Pnm. The Bézier surface is
illustrated in Figure 2 (b). Here, we use 9 control points by setting n = m = 2. Four of them
are placed at the corners. The remaining five points do not lie directly on the surface (see the red
points outside of the surface). Together, these nine models generate the entire parameter surface
by varying u and v. Similar to the Bézier curve case, Pij are neural networks in the context of
mode connectivity (We use θij to represent neural networks in the following sections), with B(u, v)
denoting a low-loss surface in the parameter space. In this paper, our focus is on the surface scenario.

4 MODE CONNECTIVITY ON SURFACES

Exploring mode connectivity through curves has already yielded valuable insights into the structure
of the loss landscape. However, examining the landscape using surfaces provides even deeper in-
sights, offering a more comprehensive understanding of how models traverse these spaces. Unlike
curves, surfaces enable the exploration of a broader parameter space and incorporate information
from more models, which can lead to the development of more advanced techniques applicable
across different domains. In this section, we outline our approach to constructing them and discuss
the advantages of using surfaces for mode connectivity. The central question we seek to answer is:

How can we find a surface that encompasses models with both low training loss and high test
accuracy?

4.1 A PILOT EXPLORATION IN LINEAR SETTINGS

To answer this question, we begin with a pilot exploration in the simplest case, where the surface
in the parameter space is spanned by a linear combination of three models. Consider these three
models, θ1, θ2, and θ3, where the coefficients satisfy α1 + α2 + α3 = 1 and αi can vary. These
coefficients form a surface parameterized by:

ϕ(α1, α2, α3) = α1 · θ1 + α2 · θ2 + α3 · θ3

One can see that given a fixed group of (α1, α2, α3), ϕ is a fixed model on the surface. Therefore,
there is no optimization or learnable variables involved in the surface generation.

4
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Figure 3: Each point on the triangu-
lar surface represents the accuracy of a
model obtained through a linear combi-
nation of the three corner models in pa-
rameter space. The accuracies are low on
the parameter surface, which is defined
by the simple linear combination of three
distinct models trained with different ini-
tializations in the parameter space.

In our experiments, we train these three models indepen-
dently with different initializations. This experiment is con-
ducted on the CIFAR10 dataset using VGG16 architecture.
By varying α1, α2, and α3, we generate a surface through
the linear interpolation of these three model parameters. We
then evaluate the accuracy of the models on this surface and
present the results in Figure 3.

From Figure 3, it is evident that the surface generated by lin-
ear combinations of models does not achieve low loss and
high accuracy. In most cases, linear combinations of dif-
ferent models fail to create a surface with these desirable
properties. This raises the question: if simple linear combi-
nations are inadequate, can we learn such a surface through
nonlinear methods?

4.2 MODE CONNECTIVITY ON A BÉZIER SURFACE

Here, we propose a novel optimization method that ad-
dresses the surface construction question in a nonlinear man-
ner. Our approach leverages Bézier surfaces in equation 3
to connect multiple models, consistently yielding a smooth
surface with low loss and high accuracy.

Connecting Procedure. We begin by explaining how the models are connected on the given sur-
face1. We redefine equation 3 from the perspective of model combinations:

ϕθ(u, v) =

n∑
i=0

m∑
j=0

Bi,n(u)Bj,m(v)θij , (6)

where θ = {θij}, i ∈ {0, 1, 2, · · · , n − 1}, j ∈ {0, 1, 2, · · · ,m − 1} are the learnable control
points, except for θ00, θ0m, θn0, and θnm, which are weights of four independently trained neural
networks. These four control points have fixed parameters and will always be on the surface. We
will use the four control points as anchors of the surface, and the remaining control points are free
to be optimized.

Learning Objective. Next, we define the objective of the proposed surface optimization problem.
The core idea is to learn a Bézier surface where all points exhibit low-loss and high-accuracy prop-
erties. Notice that the Bézier surface is defined by control points, with the four corner control points
fixed, as they already demonstrate acceptable performance. By optimizing the remaining trainable
control points θ, we can enhance the performance across the surface. We introduce our loss l̂(θ) on
the entire surface ϕθ(u, v) over uniform distribution below:

ℓ̂(θ) =

∫ 1

0

∫ 1

0

L(ϕθ(u, v))quv(u, v) du dv = E(u,v)∼quv(u,v) [L(ϕθ(u, v))] , (7)

Here, we specify the loss function L as task specific loss on the surface, we use cross-entropy loss
to calculate different between the output of the network and the target classes for our following
description. And distribution quv(u, v) on (u, v) ∈ [0, 1]2 is defined as:

quv(u, v) =

∥∥∥∥∂ϕθ

∂u
× ∂ϕθ

∂v

∥∥∥∥ · (∫ 1

0

∫ 1

0

∥∥∥∥∂ϕθ

∂u
× ∂ϕθ

∂v

∥∥∥∥ du dv)−1

, (8)

where quv represents the normalized density of points on the Bézier surface, weighted by the gradi-
ent of the parameterized surface. This density accounts for the varying distribution of points across
the surface, ensuring the loss integral reflects the true geometric properties of the surface. Direct

1We remark that our method can be easily generalized to more types of nonlinear surfaces. We choose
Bézier surface because of its simplicity.
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computation of quv is intractable for stochastic gradient-based optimization because it relies on the
gradients of the parameterization ϕθ(u, v), where ϕθ(u, v) depends on learned parameters θ.

Then the numerator of ℓ̂(θ) is the surface integral of the loss L(ϕθ) on the surface, and the denomi-
nator is the normalizing constant of the uniform distribution on the surface defined by ϕθ(·, ·).
We aim to minimize this loss with respect to θ. However, due to the computational intractability of
directly optimizing this loss, we propose a more computationally feasible loss below:

ℓ(θ) =

∫ 1

0

∫ 1

0

L(ϕθ(u, v))du dv = E(u,v)∼U([0,1]2) [L(ϕθ(u, v))] (9)

where U([0, 1]2) represents the uniform distribution over [0, 1]2. This yields an expectation of
L(ϕθ(u, v)) with respect to a uniform distribution on (u, v) ∈ [0, 1]2, while ℓ̂(θ) is an expecta-
tion with respect to a uniform distribution on the surface. The two losses align, for instance, when
ϕθ(·, ·) defines a bilinear surface with four corner control points and linear parametrization in u and
v. To minimize ℓ(θ), the intuitive way is to sample ũ, ṽ from the uniform distribution U([0, 1]2)
and make a gradient step for θ with respect to the loss L(ϕθ(ũ, ṽ)). This way, we obtain unbiased
estimates of the gradients of ℓ(θ), as

∇θL(ϕθ(ũ, ṽ))
def
= E(u,v)∼U([0,1]2) [∇θL(ϕθ(u, v))] = ∇θℓ(θ). (10)

We repeat these updates until convergence. To achieve this in a more efficient way, we employ a
three-phase optimization process in the Learning Algorithm below.

Learning Algorithm. Solving equation 9 necessitates updating all control models simultaneously,
which complicates the training process and is inefficient if done from scratch. Therefore, we found
that ensuring the curves formed by control points achieve low loss and high accuracy can help
shape the surface, resulting in the entire surface that also exhibits low loss and high accuracy. To
improve efficiency, we adopt an “outer-to-inner” optimization strategy, progressing from curves to
the surface. The idea is that optimizing the surface becomes significantly easier once the key curves
achieve acceptable performance. Therefore, we first focus on optimizing the two parallel horizontal
curves at the surface edges when u = 0 and 1 while v changes. (Phase 1), followed by optimizing
on the curves

∑n
i=0 Bi,n(u)θij by varying u and fixing values of v and j (Phase 2). Finally, we

update the entire surface by refining all the trainable control points (Phase 3). A detailed explanation
is provided below, with the algorithm outlined in Algorithm 1. We also provide a detailed algorithm
in the Appendix.

(a) Loss surface before training (b) Loss surface after training

Figure 4: The losses on the Bézier surface decrease significantly after
training. Each point in the figures represents a loss value obtained by a
model on the surface, evaluated on the test data. There are nine control
points (n = m = 2). Loss values at (u, v) = (0, 0), (0, 1), (1, 0), (1, 1)
are the values obtained by four corner control points θ00, θ20, θ02, and
θ22.

Phase 1: In this phase,
we focus on optimizing
the control points along
the horizontal curves at
the surface edges, pa-
rameterized by v when
u = 0 and u = 1.
This optimization is per-
formed iteratively over
E1 epochs. As seen in
equation 5, only the con-
trol points θ0j and θnj
(j ∈ {1, . . . ,m − 1})
contribute to the updates
when u = 0 and u =
1, while the corner points
remain fixed. Phase 1 cor-
responds to lines 2-4 in Algorithm 1.

Phase 2: In this phase, we optimize the control points along the curves
∑n

i=0 Bi,n(u)θij (essentially
the inner summations in equation 5) by varying u while keeping v and j fixed, over E2 epochs.
The goal of this phase is to separate the variables and ensure that the curves perform well when
considering only u and n models along the curve. Phase 2 corresponds to lines 5-7 in Algorithm 1.

6
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Phase 3: In this final phase, we optimize all control points for E3 epochs, except the fixed corners,
by uniformly sampling over u and v and minimizing the expected loss across the entire surface. This
process is repeated until convergence, producing a smooth Bézier surface that connects the corner
points while minimizing the loss. Phase 3 corresponds to lines 8-10 in Algorithm 1.

Algorithm 1: Bezier Surface Mode Connectivity Algorithm (Summary)
Input: Initial weights of the four corner control points θ00, θn0, θ0m, and θnm, number of

total epochs E = E1 + E2 + E3, number of random samples k, batch size B
Output: Optimized Bezier surface control points

1 Initialize control points θ

2 for epoch from 0 to E1 do
3 Sample B training data in each batch and sample u ∼ U(0, 1) for k times
4 Update curves ϕθ(0, v) and ϕθ(1, v) from sampled points by minimizing equation 9
5 for epoch from 0 to E2 do
6 Sample B training data in each batch and sample u ∼ U(0, 1) for k times for each given v
7 Optimize the control points along the curves

∑n
i=0 Bi,n(u)θij by varying u while keeping

∀j ∈ {0, 1, · · · , n− 1} fixed.
8 for epoch from 0 to E3 do
9 Sample B training data in each batch and sample u, v ∼ U(0, 1) for k times

10 Update full Bézier surface ϕθ(u, v) from sampled points by minimizing equation 9.

To demonstrate the effectiveness of our method, we present results using the VGG16 architecture
on the CIFAR-10 dataset when n = m = 2. Figures 4 and 5 illustrate the loss and accuracy surfaces
before and after training, respectively. Unlike Figure 1, here we show loss and accuracy values on
the surface in 2D. Once the optimization is complete, all θ values are fixed, spanning the surface
along u and v. Each point in the figures represents a loss or accuracy value obtained by a model on
the surface, evaluated on the test data. As shown, our method successfully optimizes the surfaces,
transforming them from high loss (Figure 4 (a)) to low loss (Figure 4 (b)) and from low accuracy
(Figure 5 (a)) to high accuracy (Figure 5 (b)). These results confirm that our method can effectively
identify surfaces with low loss and high accuracy. One can also see from these two figures that the
valleys in the training loss surface correspond closely to the peaks in test accuracy, enabling the
efficient selection of optimal models without extensive test set evaluations. Further discussions and
additional results across various datasets and model architectures are provided in the Experimental
Section. We further propose a more efficient method by updating only specific layers of the model,
significantly reducing computational overhead. Details of this layer-specific optimization approach
can be found in the Appendix.

(a) Accuracy surface before training (b) Accuracy surface after training

Figure 5: The accuracies on the Bézier surface increase significantly
after training. Each point in the figures represents an accuracy value
obtained by a model on the surface, evaluated on the test data. There
are nine control points (n = m = 2). Accuracy values at (u, v) =
(0, 0), (0, 1), (1, 0), (1, 1) are the values obtained by four corner control
points θ00, θ20, θ02, and θ22.

Existence of Linear Sur-
face Mode Connectivity.
While we have shown
that linear combinations
of models often fail to
produce a desirable sur-
face, we have identified
special cases where they
can succeed. Specifically,
when n = 4 and any two
pairs of these four mod-
els satisfy the linear mode
connectivity property, it
is possible to construct a
Bézier surface where ev-
ery model exhibits low
loss and high accuracy.
By selecting θ00, θn0, θ0m, and θnm from a training trajectory, we ensure that the pairs of these
models meet the linear mode connectivity condition. The interior control points θij are then obtained

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

via linear interpolation of the four corner points, with θij calculated as a weighted combination -
θij = (1−t)(1−s)θ00+t(1−s)θn0+(1−t)sθ0m+tsθnm, where t = i

n and s = j
m . The models

on the surface are thus pure linear combinations of the four initial models. We demonstrate that this
surface exhibits low loss and high accuracy using VGG16 on the CIFAR-10 dataset, as shown in
Figure 6. We select the four corner points from epochs 220, 200, 180, and 160, then combine them
using the process outlined above. As a result, the surface demonstrates similarly low loss and high
accuracy, comparable to that of the four corner points.

4.3 APPLICATIONS OF MODE CONNECTIVITY WITH BÉZIER SURFACE

(a) Loss values on the surface (b) Accuracy values on the surface

Figure 6: The Bézier surface linearly spanned by the four corner points
shows similarly low loss and high accuracy, matching the performance
of the corner points. The four corner points are VGG16 models selected
from epochs 220, 200, 180, and 160 during the training on CIFAR-10
dataset.

While this paper primar-
ily focuses on introduc-
ing a surface mode con-
nectivity method to ex-
plore the neural network
loss landscape, we also
aim to demonstrate its
potential for various ap-
plications. In this sec-
tion, we explore two
key applications of our
proposed Bézier surface-
based mode connectivity
framework: model aver-
aging and output ensem-
bling. By extending mode
connectivity from curves to surfaces, we enable more effective methods for model optimization and
generalization.

Model Merging. The concept of model soups, first introduced by Wortsman et al. (Wortsman
et al., 2022), involves averaging the weights of multiple fine-tuned models to improve accuracy with-
out increasing inference time. Unlike traditional ensemble methods, which aggregate the outputs of
multiple models, model soups merge the weights of independently fine-tuned models, leveraging the
observation that models trained on the same dataset or task often reside in similar low-loss basins
of the error landscape. This principle aligns with findings in linear mode connectivity, which sug-
gests that multiple neural networks can be connected by paths of non-increasing loss between them
(Garipov et al., 2018; Draxler et al., 2018).

Building on these ideas, our proposed Bézier surface connectivity framework acts as a model merg-
ing method that enables a more thorough exploration of the model parameter space by averaging
across surfaces rather than linear paths. Unlike conventional model merging methods such as Lion
et al. (2024), which operate under the constraint that models lie within a single basin, our method
allows for connecting and merging models across basins. This enables a wider utilization of di-
verse models. Since each control point lies in the parameter space and represents a model, surface-
based averaging allows us to connect more than two models, leading to the discovery of new, high-
performing models that outperform those created by traditional weight averaging techniques. As
seen in equation 6, each point on the surface represents a model merged with different weights.
In our implementation, we select the point on the surface that yields the best performance (Model
Merging Accuracy), and compare it with the average accuracy of the four corner control models
(Avg Initial Model Accuracy). As shown in Table 1, we report the accuracy of the best-performing
model on the surface. Our experimental results show that model merging through Bézier surfaces
consistently outperforms the component models, achieving better generalization and accuracy. Ad-
ditionally, in Figure 5 (b), you can see a highland on the accuracy surface, indicating regions with
higher accuracy than the four initial corner models. We remark that model merging can also be
conducted in our linear surface mode connectivity setting.

Output Ensembling. Ensembling techniques traditionally combine the predictions of multiple
models to improve generalization. However, the use of simple linear averaging in these methods
limits the potential to fully explore the parameter space. Recent advancements in mode connectivity
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research (Wortsman et al., 2021; Rame et al., 2022) have demonstrated that models can be con-
nected by paths of constant or non-increasing loss in parameter space, which leads to more robust
ensembling strategies. Our Bézier surface-based method expands upon these findings by connect-
ing up to four independent models, allowing for a broader and more nuanced exploration of the
parameter space. Unlike linear mode connectivity, which only considers paths between two models,
surface-based connectivity explores multidimensional relationships, resulting in models that gener-
alize better on different tasks and datasets.

In our approach, we perform model ensembling by combining the output probabilities of different
models positioned on the Bézier surface. To do this, we uniformly sample values of u and v at regular
intervals (defaulting to 0.1 in our experiments) across the surface, creating a diverse set of models.
By averaging the outputs of these sampled models, we generate ensemble predictions. We found
that this ensembling strategy consistently led to improved accuracy, surpassing the performance of
the best individual model on the Bézier surface.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

The main goal of this section is to further demonstrate that the methods proposed in Section 4
successfully identify low-loss, high-accuracy surfaces connecting given modes across various ar-
chitectures and datasets. In particular, we evaluate our method on three different datasets includ-
ing CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny-
Imagenet (Le & Yang, 2015) using ResNet18 (He et al., 2016), VGG16 (Simonyan & Zisserman,
2015), and ViT model architectures. In this paper, we primarily use CIFAR-10 and VGG16 as the
default dataset and architecture for presenting loss and accuracy surface plots. By default, we set
n = m = 2 unless otherwise specified.

5.2 MODE CONNECTIVITY ON BÉZIER SURFACE

(a) CIFAR-100 on ResNet18 (b) CIFAR-100 on VGG16 (c) Tiny-ImageNet on VGG16

Figure 7: Our Bézier surface approach can effectively identify low-loss surfaces after training on
various datasets and architectures. The loss values are similarly small across the surfaces.

Results on More Datasets & Architectures. We first evaluate the effectiveness of our Bézier
surface-based mode connectivity method by examining the loss and accuracy surfaces after training
on a variety of datasets and architectures. The surfaces depicted in Figure 7 illustrate our method’s
ability to identify low-loss landscapes, enhancing optimization in diverse settings. In Table 1, we
present results on more diverse datasets and architectures, and show comparisons of Model Merging
Accuracy, Average Surface Accuracy, and Average Corner Accuracy achieved by our method. The
Avg Corner Accuracy refers to the average accuracy of the four corner control models, while the
Avg Surface Accuracy represents the average accuracy of the sampled models on the surfaces. The
Model Merging Accuracy denotes the highest accuracy found on the Bézier surface. The results
demonstrate that our method consistently identifies low-loss surfaces (surface mode connectivity)
across different settings. In the Appendix, we conducted additional experiments on surfaces with
more control points. The results show that even with increased complexity, Bézier surfaces consis-
tently maintain low training loss and high test accuracy properties across all configurations.

9
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Table 1: Comparisons of Model Merging Accuracy, Average Surface Accuracy, and Average Corner
Accuracy obtained by our method across different datasets and architectures. The Avg Corner Accu-
racy represents the average accuracy of the four corner control models. The Avg Surface Accuracy
is the average accuracy of the models on the surfaces (by sampling). The Model Merging Accuracy
is the highest accuracy obtained on the Bézier surface. The results show that (1) our method can
always find low-loss surfaces in different settings; (2) model merging through the Bézier surface can
discover models with improved performance.

DATASET MODEL Model Merging Accuracy Avg Surface Accuracy Avg Corner Accuracy
CIFAR-10 ResNet18 90.9% 89.3% 90.1%
CIFAR-10 VGG16 90.7% 89.8% 89.6%
CIFAR-10 ViT 70.2% 65.4% 70.0%
CIFAR-100 VGG16 70.8% 69.3% 70.7%
Tiny-ImageNet VGG16 51.1% 47.4% 50.7%

Linear Surface Mode Connectivity. We have shown the result of applying this approach to the
VGG16 architecture on CIFAR-10 in Figure 6. Here, we repeat the experiment using ResNet18 on
CIFAR-100. We select four corner points from epochs 220, 200, 180, and 160 during the training.
Similarly, we found that the linear combinations of models create a surface with desirable properties,
demonstrating high accuracy throughout, as shown in Figure 8(b). The loss surface is shown in the
Appendix. Across both experiments, we observed that the central region of the surface typically
exhibited slightly lower loss and higher accuracy compared to the corner models, further supporting
the utility of linear surface mode connectivity in certain settings.

5.3 MODEL MERGING AND ENSEMBLING BASED ON SURFACE MODE CONNECTIVITY

We further explore model merging and output ensembling to highlight the potential applications of
surface mode connectivity.

Model Merging. For model Merging, we obtain the optimal model on the surface to evaluate
model merging. Table 1 demonstrates the boost in validation accuracy for models obtained from the
surface using our Bezier surface as a model merging method compared to the four corner control
points. We obtained the model with high accuracy. You may also check the validation accuracy
surface after training shown in Figure 5, showing that there’s a plateau with higher accuracy than
four models on the surface. The central high accuracy region in Figure 8(b) also illustrates that linear
surface mode connectivity can be utilized for model merging without the need for optimization.

Output Ensembling. For model ensembling, we sampled values of u and v uniformly between
0 and 1 at intervals of 0.1, generating diverse models along the Bézier surface. By averaging the
output probabilities from these sampled models, we created an ensemble that consistently improved
accuracy. In our experiments, we apply the Bézier surface-based model ensembling method on the
CIFAR-10 dataset using VGG16 models, which results in notable accuracy improvements. Specif-
ically, the average accuracy of the four independently trained models (corner points) was 89.96%,
while the best-performing model on the Bézier surface achieved 90.70%. After applying our ensem-
bling technique, the accuracy further increased to 92%, demonstrating the effectiveness of surface-
based model ensembling in enhancing generalization and outperforming both individual models and
traditional linear interpolation methods.

6 CONCLUSION

In this paper, we extend the concept of mode connectivity from curves to surfaces, offering a broader
exploration of neural network loss landscapes. By leveraging Bézier surfaces, we demonstrate the
ability to connect multiple models with low-loss and high-accuracy regions, enhancing both model
merging and optimization. Our approach not only uncovers deeper insights into the structure of the
parameter space but also improves model averaging and ensembling performance. We validate the
effectiveness of this method across various datasets and architectures, including CIFAR-10, CIFAR-
100, and Tiny-ImageNet.
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A APPENDIX

A.1 ALGORITHM DETAILS

We enclose the full algorithm below

Algorithm 2: Bezier Surface Mode Connectivity Algorithm
Input: Initial weights θ00, θnm, θ0m, and θn0 (fixed four end control points), number of

epochs E1, E2, E3, with epoch E = E1 + E2 + E3, learning rate η, number of random
samples k, training dataset D0, batch size B

Output: Optimized Bezier surface control points

1 Initialize control points θij with linear interpolation
2 for i, j ∈ {0, . . . , n} do
3 if (i, j) ̸= (0, 0), (0,m), (n, 0), (n,m) then
4 Let t = i

n and s = j
m

5 Initialize θij using linear interpolation as:
6 θij = (1− t)(1− s)θ00 + t(1− s)θn0 + (1− t)sθ0m + tsθnm

7 Define θ00, θ0m, θn0, and θnm as fixed endpoints
8 for epoch e in 1 to E1 do
9 for each data batch Db ∈ D0 do

10 for v in sampled vi ∼ U(0, 1) do
11 B1(0, v) = θ00B0,m(v) + θ01B1,m(v) + · · ·+ θ0mBm,m(v)
12 B2(1, v) = θn0B0,m(v) + θn1B1,m(v) + · · ·+ θnmBm,m(v)
13 for each x ∈ Db do
14 compute loss l(θ) = 1

k

∑
vi
(Ltask(B1(0, vi);x) + Ltask(B2(1, vi);x))

15 Compute gradients∇θij = ∂l
∂θij

for each learnable θij , i ∈ {0, n}
16 Update θij ← θij − η∇θij

17 for epoch e in E1 + 1 to E1 + E2 do
18 for each data batch Db ∈ D0 do
19 for u in sampled ui ∼ U(0, 1) do
20 for i = 1 to n do
21 Bi(u) = θ00B0,n(u) + θ01B1,n(u) + · · ·+ θ0nBn,m(u)

22 add tuple (B1(t, v), B2(t, v), . . . , Bn(t, v)) to sampled points
23 for each x ∈ Db do
24 compute loss l = 1

k

∑n
i=1 Ltask(Bi(t, vi);x)

25 Compute gradients∇θij = ∂l
∂θij

for each learnable θij , i ∈ {0, n}
26 Update θij ← θij − η∇θij

27 for epoch e in E1 + E2 + 1 to E1 + E2 + E3 do
28 for each data batch Db ∈ D0 do
29 for v in sampled vi ∼ U(0, 1) and u in sampled ui ∼ Uniform(0, 1) do
30 B(u, v) =

∑n
i=0

∑m
j=0 θijBi,n(u)Bj,m(v)

31 for each x ∈ Db do
32 compute loss L = 1

k

∑
ui,vi

Ltask(B(ui, vi))

33 Compute gradients ∇θij = ∂L
∂θij

for each learnable θij

34 Update θij ← θij − η∇θij

35 empty sampled points
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A.2 LINEAR SURFACE MODE CONNECTIVITY

We construct a Bézier surface where the control points are the learnable parameters, denoted as θij .
The intermediate control points on the surface are calculated as linear combinations of four corner
models θ00, θn0, θ0m, and θnm, as follows:

θij = (1− t)(1− s)θ00 + t(1− s)θn0 + (1− t)sθ0m + tsθnm

where t = i
n and s = j

m . This results in a surface composed of linear combinations of the four
initial models.

We first applied this approach with the ResNet-18 architecture on the CIFAR-100 dataset, selecting
corner points from epochs 220, 200, 180, and 160. The surface generated through these linear
combinations exhibited low loss and high accuracy, comparable to the performance of the corner
models. See the figure below.

(a) Loss values on the Bézier surface. The sur-
face linearly spans the four corner points, show-
ing similarly low loss, matching the performance
of the corner points. The corner points are
ResNet18 models from epochs 220, 200, 180,
and 160 during training on CIFAR-100.

(b) Accuracy values on the Bézier surface. This
surface also spans the four corner points, show-
ing high accuracy across epochs, matching the
performance of the individual models.

Figure 8: Comparison of loss and accuracy surfaces on the Bézier surface spanned by four ResNet18
models, selected from epochs 220, 200, 180, and 160 during training on CIFAR-100. Both surfaces
show consistency, with low loss and high accuracy distributed evenly across the surface, indicating
that the corner models generalize well across the parameter space.

A.3 EXISTENCE OF LINEAR SURFACE MODE CONNECTIVITY

While linear combinations of models often fail to produce a desirable surface, we have identified
special cases where success is possible. Specifically, when n = 4 and any two pairs of four models
satisfy the linear mode connectivity property, a Bézier surface can be constructed where every model
exhibits low loss and high accuracy. By selecting θ00, θn0, θ0m, and θnm from a training trajectory,
the pairs meet the linear mode connectivity condition. The interior control points θij are obtained
through linear interpolation of the four corner points:

θij = (1− t)(1− s)θ00 + t(1− s)θn0 + (1− t)sθ0m + tsθnm,

where t = i
n and s = j

m . The models on the surface are thus linear combinations of the initial
models.

The Bézier surface S(u, v) can be expressed as:

S(u, v) = C00(u, v)P00 + C02(u, v)P02 + C20(u, v)P20 + C22(u, v)P22,

14
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where the coefficients Cij(u, v) are combinations of the basis polynomials and the relationships
between control points.

Computational Definition of the Basis Polynomials: The Bernstein polynomials Bi,n(u) are
defined as:

Bi,n(u) =

(
n

i

)
ui(1− u)n−i, i = 0, 1, . . . , n.

Similarly, the polynomials Bj,m(v) are defined as:

Bj,m(v) =

(
m

j

)
vj(1− v)m−j , j = 0, 1, . . . ,m.

In our case, we have n = m = 2, so:

B0,2(u) = (1− u)2, B1,2(u) = 2u(1− u), B2,2(u) = u2,

B0,2(v) = (1− v)2, B1,2(v) = 2v(1− v), B2,2(v) = v2.

Coefficients for Each Corner Control Point: The coefficients Cij(u, v) are expressed in terms
of the Bernstein polynomials:

C00(u, v) = B0,2(u)B0,2(v) +
1

2
B0,2(u)B1,2(v) +

1

2
B1,2(u)B0,2(v) +

1

4
B1,2(u)B1,2(v),

C02(u, v) = B0,2(u)B2,2(v) +
1

2
B0,2(u)B1,2(v) +

1

4
B1,2(u)B1,2(v) +

1

2
B1,2(u)B2,2(v),

C20(u, v) = B2,2(u)B0,2(v) +
1

2
B1,2(u)B0,2(v) +

1

4
B1,2(u)B1,2(v) +

1

2
B2,2(u)B1,2(v),

C22(u, v) = B2,2(u)B2,2(v) +
1

2
B1,2(u)B2,2(v) +

1

4
B1,2(u)B1,2(v) +

1

2
B2,2(u)B1,2(v).

One can verify that C00(u, v) + C02(u, v) + C20(u, v) + C22(u, v) = 1.

These coefficients sum to one, ensuring that S(u, v) remains a convex combination of the corner
points. We demonstrate this surface’s effectiveness using VGG16 on the CIFAR-10 dataset, achiev-
ing low loss and high accuracy, comparable to that of the four corner points, as shown in Figure
6.

Relationships Among the Coefficients Although the coefficients C00(u, v), C02(u, v), C20(u, v),
and C22(u, v) are functions of the parameters u and v, they exhibit inherent relationships due to the
properties of the Bernstein polynomials and the construction of the Bézier surface.

• Sum-to-One Property: For all u, v ∈ [0, 1], the coefficients satisfy:

C00(u, v) + C02(u, v) + C20(u, v) + C22(u, v) = 1.

This ensures that S(u, v) is a convex combination of the corner control points, and the
surface lies within their convex hull.
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• Symmetry Relations: The coefficients exhibit symmetry properties due to the symmetrical
nature of the Bernstein polynomials:

C00(u, v) = C22(1− u, 1− v),

C02(u, v) = C20(u, 1− v),

C20(u, v) = C02(1− u, v),

C22(u, v) = C00(1− u, 1− v).

These relationships reflect the inherent symmetry in the Bézier surface construction.

• Interdependence of Coefficients: Any coefficient can be expressed in terms of the others
using the sum-to-one property:

Cij(u, v) = 1−
∑
(k,l)

(k,l)̸=(i,j)

Ckl(u, v).

This highlights the interconnectivity among the coefficients.

• Proportional Relationships: The ratios of certain coefficients are related through the pa-
rameters u and v. For example:

C00(u, v)

C22(u, v)
=

(
(1− u)(1− v)

uv

)2

.

Similarly, the ratio between C02 and C20 is:

C02(u, v)

C20(u, v)
=

(
(1− u)v

u(1− v)

)2

.

These proportional relationships demonstrate how changes in u and v affect the relative
influence of each corner control point on the surface.

A.4 EXPERIMENTS ON SURFACES WITH MORE CONTROL POINTS

To further evaluate the scalability of our method, we conducted additional experiments on Bézier
surfaces using 3×3, 4×4, and 5×5 control points on the CIFAR-10 dataset. These experiments were
performed using a simple convolutional neural network (CNN) architecture, consisting of three con-
volutional layers with kernel size 3 and padding 1, followed by max-pooling layers for downsam-
pling. The fully connected layers include a 256-dimensional hidden layer and a final output layer
that matches the number of classes. Dropout is applied after the convolutional layers to mitigate
overfitting.

These configurations allow us to test our method’s ability to construct low-loss surfaces in increas-
ingly complex parameter spaces. Table 2 summarizes the results of these experiments.

Table 2: Accuracy achieved with Bézier surfaces of different configurations on CIFAR-10.

Control Points Avg Acc of Corners (%) Highest Acc (%) Avg Acc for Surface (%)
3×3 80.2 82.0 79.7
4×4 80.2 82.4 80.0
5×5 80.2 82.9 80.3

The results in Table 2 indicate that increasing the number of control points leads to better flexibility
of the Bézier surface, resulting in better performance. Specifically, the highest accuracy achieved on
the sampled points progressively increases as the number of control points grows from 3×3 to 5×5.

These findings demonstrate the robustness and scalability of our approach, showing its ability to
capture low-training loss and high-test-accuracy regions in the parameter space, even under more
complex configurations. This strengthens the potential for our method to extend to larger models
and datasets in future work.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 MODEL ENSEMBLING COMPARISONS

To illustrate the advantages of our method for model ensembling, we conducted additional experi-
ments comparing surface-based ensembling with traditional four-corner ensembling.

Table 3 summarizes the results of our experiments on CIFAR-10 with two architectures, VGG16 and
ResNet18. The results highlight the advantage of surface-based ensembling in capturing additional
diversity and achieving superior accuracy compared to four-corner ensembling.

Table 3: Comparison of four-corner ensembling and surface-based ensembling on CIFAR-10.

Model Four-Corner Ensemble (%) Surface Ensemble (%)
VGG16 90.4 92.0

ResNet18 90.1 92.7

The results demonstrate that surface-based ensembling consistently outperforms four-corner ensem-
bling. By exploring the parameter space more comprehensively, Bézier surfaces capture diverse
model predictions, leading to improved accuracy during model ensembling. This advantage is par-
ticularly significant in scenarios where corner models reside in different basins, as traditional meth-
ods fail to navigate the non-linear loss landscape effectively.

These findings reinforce the applicability and robustness of our method for model ensembling, show-
casing its potential in diverse configurations and datasets.

A.6 LAYER-SPECIFIC OPTIMIZATION FOR EFFICIENCY

To improve computational efficiency, we conducted experiments where only a subset of the model’s
layers were optimized instead of the entire network. Specifically, we updated only the last convo-
lutional layer and the fully connected layers in the Multi-Layer Perceptron (MLP) module. This
approach significantly reduced computational overhead while maintaining competitive accuracy.

Due to time constraints, these experiments were validated on a simple convolutional neural network
(CNN) architecture. The network consisted of three convolutional layers (kernel size 3, padding
1), max-pooling for downsampling, and a 256-dimensional fully connected hidden layer. The final
layer matched the number of classes. The experiments were performed on a single NVIDIA 4090
GPU with sample size 80, and the results are summarized in Table 4.

Table 4: Comparison of accuracy and efficiency for layer-specific optimization on CIFAR-10.

Updated Layers Avg Acc of Corners (%) Highest Acc (%) Avg Surface Acc (%) Time (26 Epochs)
All layers 80.2 82.0 79.7 47 min

Last conv + MLP 80.2 80.3 70.3 15 min

RESULTS AND TRADE-OFFS

The results demonstrate that optimizing only the last convolutional and MLP layers yields significant
efficiency gains, reducing runtime by over 68% with a single NVIDIA 4090 GPU, while incurring a
moderate drop in surface accuracy. These findings highlight the potential of layer-specific optimiza-
tion as a scalable approach for larger models and datasets.

B EFFICIENT EVALUATION OF LOSS AND ACCURACY SURFACES

B.1 USING BATCH-LEVEL APPROXIMATION FOR TRAINING LOSS SURFACE

During training, 80 points are sampled per batch, covering most of the regions on the surface. Evalu-
ating the losses for just the last few batches provides a reliable approximation of the full training loss
on the surface. This observation suggests that a smaller subset of batches can effectively represent
the overall surface, significantly reducing computation costs without sacrificing accuracy.
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In our experiment on CIFAR-10 with the VGG16 architecture, we evaluated the training loss surface
using a subset of data equivalent to four epochs. The results indicate strong consistency with evalua-
tions conducted on the full training dataset. Specifically, when evaluated on the full training dataset,
the valley of the loss surface was located at the (u, v) pair (0.9, 0.2). On the subset evaluation, this
shifted slightly to (0.9, 0.1). Both points, however, lie within the same low-loss region, underscoring
the robustness of this approximation. Similarly, the peak of the loss surface consistently remained
at (u, v) pair (0.4, 1.0) for both evaluations.

B.2 TEST ACCURACY AND ITS APPROXIMATION

The grid search for the accuracy surface occurs during the inference phase and is thus far less
computationally intensive than training. To further optimize efficiency, a subset of the test dataset
can be used for evaluation. In our experiment, using CIFAR-10 with the VGG16 architecture, the
accuracy surface evaluated on a subset of the test dataset showed a valley consistently located at
the (u, v) pair (0.4, 0), matching the results obtained from the full test dataset evaluation. The peak
shifted slightly, from the (u, v) pair (0.9, 0.2) to (0.9, 0.1), but both points fall within the same
high-accuracy region, demonstrating the surface’s structural robustness.

(a) Accuracy surface evaluated on a subset of the
test dataset. The valley is at (0.4, 0), and the
peak shifts slightly compared to the full dataset.

(b) Accuracy surface evaluated on the full test
dataset. The valley is at (0.4, 0), and the val-
ley remains same for both subset and full test
datasets.

Figure 9: Comparison of accuracy surfaces evaluated on a subset (left) and the full test dataset
(right) using CIFAR-10 with the VGG16 architecture. Both surfaces show consistent regions of
high accuracy, demonstrating the reliability of subset evaluation.
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