
RepLDM: Reprogramming Pretrained Latent
Diffusion Models for High-Quality, High-Efficiency,

High-Resolution Image Generation

Boyuan Cao1 Jiaxin Ye1 Yujie Wei1 Hongming Shan1∗

1Institute of Science and Technology for Brain-Inspired Intelligence &
MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence &

MOE Frontiers Center for Brain Science, Fudan University
{caoby23, jxye22, yjwei22}@m.fudan.edu.cn, hmshan@fudan.edu.cn

[4096x4096] [4096x4096] [4096x7280]

[4096x2048] [4096x2048] [4096x2048]

[2048x2048]

[4096x7280]
[4096x4096]

[2048x4096]

[2048x4096] [2048x2048]

Figure 1: High-resolution images generated by our RepLDM using a single consumer-grade
3090 GPU. The corresponding thumbnails are generated by SDXL [36] at their training resolution.

Abstract

While latent diffusion models (LDMs), such as Stable Diffusion, are designed for
high-resolution (HR) image generation, they often struggle with significant struc-
tural distortions when generating images at resolutions higher than their training
one. Instead of relying on extensive retraining, a more resource-efficient approach
is to reprogram the pretrained model for HR image generation; however, existing
methods often result in poor image quality and long inference time. We introduce
RepLDM, a novel reprogramming framework for pretrained LDMs that enables
high-quality, high-efficiency, high-resolution image generation; see Fig. 1. Re-
pLDM consists of two stages: (i) an attention guidance stage, which generates a
latent representation of a higher-quality training-resolution image using a novel
training-free self-attention mechanism to enhance the structural consistency; and
(ii) a progressive upsampling stage, which progressively performs upsampling in
pixel space to mitigate the severe artifacts caused by latent space upsampling. The
effective initialization from the first stage allows for denoising at higher resolutions
with significantly fewer steps, improving the efficiency. Extensive experimental re-
sults demonstrate that RepLDM significantly outperforms state-of-the-art methods
in both quality and efficiency for HR image generation, underscoring its advantages
for real-world applications. Codes: https://github.com/kmittle/RepLDM.
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(a) SDXL (b) MultiDiffusion (c) Upsample Guidance (d) DemoFusion (e) RepLDM (Ours)
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Figure 2: Comparison of our RepLDM with prior work in generating 2048×2048 image. The
prompt is Neon lights illuminate the bustling cityscape at night, casting colorful reflections on the
wet streets. Zoom-in for a better view.

1 Introduction

Diffusion models (DMs) have demonstrated impressive performance in visual generation tasks,
particularly in text-to-image generation [7, 8, 16, 33, 34, 36, 46, 49–52, 55]. One notable variant
of DMs is the latent diffusion model (LDM), which performs diffusion modeling in latent space to
reduce training and inference costs, enabling HR generation up to 1024×1024. While it is plausible to
modify the input size for higher-resolution generation, this often results in severe structural distortions,
as illustrated in Fig. 2(a). Therefore, a recent research focus is on adapting trained LDMs for HR
image generation without the need for additional training or fine-tuning (i.e. training-free manner),
which can inherit the strong generation capacities of existing LDMs, especially open-sourced versions
like Stable Diffusion.

Existing training-free approaches for HR image generation can be roughly categorized into three
types: sliding window-based, parameter rectification-based, and progressive upsampling-based.
Sliding window-based methods first divide the HR image into several overlapping patches and use
sliding window strategies to perform denoising [1, 12, 25]. However, these methods could result in
repeated structures and contents due to the lack of communication between windows; see Fig. 2(b).
Parameter rectification-based methods attempt to correct models’ parameters for better structural
consistency through the entropy of attention maps, signal-to-noise ratio, and dilation rates of the
convolution layers [14, 20–22, 56]. Though efficient, they often lead to the degradation of texture
details; see Fig. 2(c). Unlike the two types mentioned above, progressive upscaling-based methods
are to iteratively upsample the image resolution, which maintains better structural consistency and
shows state-of-the-art (SOTA) performance [6, 27, 28, 37]. Unfortunately, these methods require fully
repeating the denoising process multiple times, leading to an unaffordable computational burden; e.g.,
AccDiffusion [28] takes 26 minutes to generate a 4096× 4096 image. In addition, their upsampling
operation in the latent space may introduce artifacts; see Fig. 2(d). To sum up, existing methods fail
to ensure the fast, high-quality HR image generation.

In this paper, we propose RepLDM, a novel reprogramming framework for pretrained LDMs that
is capable of generating high-quality, high-resolution images while keeping high-efficiency; see
Fig. 2(e). Specifically, RepLDM decomposes the denoising process of LDMs into two stages: (i) an
attention guidance stage, and (ii) a progressive upsampling stage. The first stage aims to generate a
latent representation of a high-quality image at the training resolution through the proposed attention
guidance, which is implemented via a novel training-free self-attention mechanism (TFSA) to improve
structural consistency2. The second stage aims to progressively upsample the resolution in the pixel
space rather than latent space, which can alleviate the severe artifacts caused by the latent space
upsampling. By leveraging the effective initialization from the first stage, RepLDM can perform
denoising in the second stage with significantly fewer steps, enhancing the overall efficiency with 5×
speedup. Extensive experimental results demonstrate the effectiveness and efficiency of RepLDM in
generating HR images over the SOTA baselines.

The contributions of this work are summarized as follows. (i) We propose RepLDM, a novel
framework for high-quality, high-efficiency, high-resolution image generation through reprogramming
pretrained LDMs. (ii) We propose attention guidance, which can utilize a novel training-free self-

2In this paper, structural consistency refers to the plausibility of the overall scene layout and the realism
of object structures within an image. Specifically, a reasonable layout should follow logical spatial relation-
ships—for example, the sky should appear above the ground—while realistic object structures should conform
to common sense, such as a cat having four legs rather than five.
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attention to improve the structural consistency of the latent representation towards high-quality
images at the training resolution. (iii) We propose progressively upsampling the resolution of
latent representation in the pixel space, which can alleviate the artifacts caused by the latent space
upsampling. (iv) Extensive experimental results demonstrate that the proposed RepLDM significantly
outperforms the SOTA models in terms of image quality and inference time, emphasizing its great
potential for real-world applications.

2 Related Work

HR image generation with super-resolution. An intuitive approach to generating HR images is
to first use a pre-trained LDM to generate training-resolution3 (TR) images and then apply a super-
resolution model to perform upsampling [26, 31, 47, 48, 54]. Although one can obtain structurally
consistent HR images in this way, super-resolution models are primarily focused on enlarging the
image, and shown to be unable to produce the details that users expect in HR images [6, 27, 28].

HR image generation with additional training. Existing additional training methods either
fine-tune existing LDMs with HR images [10, 19, 57] or train cascaded diffusion models to gradually
synthesize higher-resolution images [17, 44]. Though effective, these methods require expensive
training resources that are unaffordable for regular users.

HR image generation in training-free manner. Current training-free methods can be roughly
classified into three categories: sliding window-based, parameter rectification-based, and progressive
upsampling-based methods. Sliding window-based methods consider spatially splitting HR image
generation [1, 12, 25]. Specifically, they partition an HR image into several patches with overlap,
and then denoise each patch. However, due to the lack of communication between windows, these
methods result in structural disarray and content duplication. While enlarging the overlaps of the
windows mitigates this issue, it can result in unbearable computational costs. For the parameter
rectification-based methods, some researchers discovered that the collapse of HR image generation
is due to the mismatches between higher resolutions and the model’s parameters [14, 20–22, 56].
These methods attempt to eliminate the mismatches by rectifying the parameters such as the dilation
rates of some convolutional layers. While mitigating the structural inconsistency, they often lead
to the degradation of image details. Different from the aforementioned two types, the progressive
upsampling-based methods show SOTA performance in some recent studies [6, 27, 28, 37]. Though
promising, they require fully repeating the denoising process multiple times, which incurs unbearable
computational overhead. Additionally, these methods perform upsampling in the latent space, which
may introduce artifacts.

Although their remarkable results, these methods fail to improve the quality of HR images and
computational efficiency at the same time. In contrast, RepLDM aims to generate HR images with
high quality and high efficiency, towards practical applications.

3 Method

3.1 Overview of RepLDM

Fig. 3 presents the overview of RepLDM, which reprograms a pre-trained LDM to generate HR
images without further training. Formally, a pre-trained LDM utilizes a denoising U-Net model F to
iteratively denoise the latent representation of size h× w × c, which is then converted back to the
pixel space for final image generation through the decoder D of a variational autoencoder (VAE). We
note that the initial latent representation is sampled from a Gaussian distribution ϵ ∼ N (0, I), and
for inference the encoder E of VAE is not involved.

Our RepLDM extends pre-trained LDMs for higher-resolution image generation in a training-free
manner; i.e., E , D and F are fixed. RepLDM achieves this by decomposing the standard denoising
process in the latent space into two stages: (i) attention guidance stage, and (ii) progressive upsampling
stage. In the first stage, RepLDM aims to generate a latent representation of a higher-quality TR

3In this paper, training resolution refers to the resolution used during model training, while high resolution
denotes a resolution that substantially exceeds the training resolution—beyond the level at which the model can
directly produce satisfactory results.
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Figure 3: Overview of RepLDM. RepLDM divides the denoising process of a pre-trained LDM
into two stages. The first stage leverages the introduced attention guidance to enhance the structural
consistency by utilizing a novel training-free self-attention mechanism (TFSA). The second stage
iteratively upsamples the latent representation in pixel space to eliminate artifacts.

image through the proposed attention guidance. The attention guidance is implemented as linearly
combining the novel training-free self-attention mechanism (TFSA) and original latent representation
to improve the structural consistency. In the second stage, RepLDM uses the latent representation
provided by the first stage as a better initialization, and iteratively obtains higher-resolution images
via the pixel space upsampling and diffusion-denoising refinement.

We detail the attention guidance stage in §3.2, followed by the progressive upsampling stage in §3.3.

3.2 Attention Guidance Stage

Motivation. Enhancing the structural consistency helps improve image quality [43]. However,
it is challenging to do this in a training-free manner. We observe that the self-attention mechanism
presents powerful global spatial modeling capability [5, 13, 29, 45], and this capability is parameter-
agnostic. It is determined by the paradigm of global similarity calculation inherent to the self-attention
mechanism [45, 58]. These insights motivate us to consider designing a novel training-free self-
attention mechanism to elegantly enhance the global structural consistency of the latent representation.

Denoising with attention guidance. To improve the structural consistency of the latent repre-
sentation at the training resolution z ∈ Rh×w×c, we propose a simple yet effective training-free
self-attention mechanism for attention guidance, termed TFSA, formulated as:

TFSA(z) = f−1

(
Softmax

(
f(z)f(z)T

λ

)
f(z)

)
, (1)

where the operation f reshapes the latent representation into shape (hw) × c and f−1 reshapes it
back; λ is the scaling factor, with a default value of λ =

√
c.

However, we empirically observe that directly using the TFSA in Eq. (1) to improve the structural
consistency of the latent representation could lead to unstable denoising. Therefore, we propose
linearly combining the outputs of TFSA and the original latent representation as attention guidance,
which is formulated as:

z̃ = γTFSA (z) + (1− γ) z, (2)
where z̃ is the structurally enhanced latent representation and γ is the guidance scale. In Appendix A,
we demonstrate that TFSA functions by modulating the distribution of latent representations. The
term (1−γ)z in Eq. (2) serves as a statistical anchor, helping to keep the guided latent representations
on the data manifold and ensuring smooth transitions in their distribution.

As shown in Fig. 3, we append the attention guidance in Eq. (2) to denoising U-Net model F and
repeat the denoising process for a total of T0 times for the first stage. We note that the denoising
process starts from step T0 to 1, and the final output of the first stage is denoted as z(0)

0 .

Adaptive guidance scale. Considering that the latent representation is mostly non-semantic noise
in the first few steps of denoising, we delay k steps in introducing attention guidance. Moreover,
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(d) upsampling in latent space(c) upsampling in pixel space(b) Processed only by VAE (e) PSNR and SSIM(a)
[2048x2048]

Figure 4: Comparison between upsampling in pixel space and latent space. (a) RepLDM with
latent space upsampling leads to severe artifacts. (b)-(e): Qualitative and quantitative comparisons of
different upsampling methods.

during the denoising process, the image structure is generated first, followed by local details [32, 44,
53]. Therefore, we primarily employ attention guidance in the early to mid-steps of denoising to
focus on enhancing the structural consistency of the latent representation. Specifically, we introduce
the adaptive guidance scale γt by applying a decay to a given guidance scale γ, formulated as:

γt =

γ
[
1
2

[
cos

(
T0−k−t
T0−k π

)
+ 1

]]β
if t ≤ T0 − k,

0 otherwise,
(3)

where β is the decay factor. In practice, considering that k depends on T0 for different resolutions,
we use a delay rate η1 = k

T0
to control the number of steps for delaying attention guidance.

3.3 Progressive Upsampling Stage

Motivation. Fig. 2(a) shows that pre-trained LDMs still retain some ability to generate high-
frequency information when directly used to synthesize HR images, although they exhibit structural
disarray. Therefore, intuitively, we can utilize the latent representation produced by the first stage
as a structural initialization, and generate the HR images through the “upsample-diffuse-denoise”
iteration in the latent space. However, this pipeline leads to severe artifacts, as shown in Fig. 4(a). We
speculate that this is due to the upsampling of latent representations in the latent space.

Pilot study. To examine this hypothesis, we conduct the following experiments. Specifically,
we randomly select 10k images from ImageNet [4] to create an image set P . For each image
x ∈ P , we perform the following operations to obtain three additional image sets: (i) x̂ = D ◦ E(x),
which use VAE to obtain the reconstructed image set Pref; (ii) x̂ = up ◦D ◦ E ◦ down(x), which
performs upsampling in pixel space to obtain the image set Ppix; and (iii) x̂ = D ◦ up ◦E ◦ down(x),
which performs upsampling in latent space to obtain the image set Plat. Both upsampling up and
downsampling down are performed using bicubic interpolation. Fig. 4(e) reports the quantitative
results, where r represents the upsampling or downsampling rate. We calculate the PSNR and
SSIM for pixel space upsampling set Ppix and latent space upsampling set Plat with respective to the
reference set Pref. It can be clearly observed that the latent space upsampling leads to a significant
performance decline compared to pixel space upsampling. Fig. 4(b-d) shows upsampling in the pixel
space produces images close to the reference while upsampling in latent space leads to severe artifacts
and detail loss.

Progressive denoising with pixel space upsampling. Based on the above conclusion, we propose
performing upsampling in the pixel space rather than latent space and utilize diffusion and denoising
to refine the upsampled higher-resolution image. Specifically, the second stage consists of n sub-
stages to progressively upsample the training resolution to target resolution, each corresponding to
one upsampling operation. For i-th sub-stage, i = 1, . . . , n, we prepend an upsample and diffuse
operation before the denoising process, which can be defined as:

ẑ
(i−1)
0 = E ◦ U ◦ D(z

(i−1)
0 ),

z
(i)
Ti

=
√

ᾱTi
ẑ
(i−1)
0 +

√
1− ᾱTi

ϵ,
(4)

where U represents upsampling operation, ᾱTi
is the noise schedule hyper-parameter of the Ti-th

diffusion time step, and z
(i−1)
0 is the output of the (i − 1)-th sub-stage; we use z

(0)
0 to denote the

output from the first stage. Then, F is used to iteratively denoise z(i)
Ti

from time step Ti to obtain z
(i)
0 .
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After completing all sub-stages, we obtain z
(n)
0 , which is then decoded to produce the final output

x(n) = D(z
(n)
0 ).

We empirically found that generating higher-resolution images requires more sub-stages. Addition-
ally, when refining images using diffusion and denoising, higher resolutions demand larger time
steps [44]. In practice, for flexibility, RepLDM allows users to customize the number of sub-stages
n, and the diffusion time steps Ti for each sub-stage by a pre-specified variable-length progressive
scheduler η2 =

[
T1

T0
, T2

T0
, . . . , Tn

T0

]
. The elements of η2 represent the denoising steps of each sub-stage,

normalized by T0.

4 Experiments

4.1 Implementation Details

Experimental settings. We use SDXL [36] as the pre-trained LDM and conduct inference using a
single NVIDIA 4090 GPU. To ensure consistency when testing inference speed, we use a single 3090
GPU, aligning with other methods. We randomly sample 33k images from the segment anything
model (SAM) [24] dataset as the benchmark. Following the released code from DemoFusion [6], we
use the EulerDiscreteScheduler [23] setting T0 = 50 and the classifier-free guidance [18] scale to 7.5.
Pixel space upsampling is performed using bicubic interpolation, and the decay factor β is fixed at 3.

Evaluation metrics. The widely recognized metrics Frechet Inception distance (FID) [15],
Inception score (IS) [40], and contrastive language-image pre-training (CLIP) score [38] are used to
evaluate model performance. Additionally, since calculating FID and IS requires resizing images to
299× 299, which may not be suitable for evaluating HR images, we follow the experimental settings
of [6, 28] to perform ten 1024× 1024 window crops on each image to calculate FIDc and ISc. Since
FID is known to be sensitive to small implementation details [35], we employ a widely recognized
implementation from a publicly available repository [42].

4.2 Quantitative Results

We compare RepLDM with the following models: (1) SDXL [36]; (2) MultiDiffusion [1]; (3)
ScaleCrafter [14]; (4) DemoFusion [6]; (5) Upsample Guidance (UG) [21]; (6) AccDiffusion [28];
and (7) HiDiffusion [56]. For fair comparisons, we disabled the FreeU trick [43] in all experiments.

Table 1: Quantitative comparison results. The best results are marked in bold, and the second best
results are marked by underline.

Method 2048× 2048 2048× 4096 4096× 2048 4096× 4096
FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

SDXL [36] 99.9 14.2 80.0 16.9 25.0 149.9 9.5 106.3 12.0 24.4 173.1 9.1 108.5 11.5 23.9 191.4 8.3 114.1 12.4 22.9
MultiDiff. [1] 98.8 14.5 67.9 17.1 24.6 125.8 9.6 71.9 15.7 24.6 149.0 9.0 70.5 14.4 24.4 168.4 6.5 76.6 14.4 23.1

ScaleCrafter [14] 98.2 14.2 89.7 13.3 25.4 161.9 10.0 154.3 7.5 23.3 175.1 9.7 167.3 8.0 21.6 164.5 9.4 170.1 7.3 22.3
UG [21] 82.2 17.6 65.8 14.6 25.5 155.7 8.2 165.0 6.6 21.7 185.3 6.8 175.7 6.2 20.5 187.3 7.0 197.6 6.3 21.8

HiDiff. [56] 81.0 16.8 64.1 14.2 24.9 120.7 12.2 93.0 13.6 24.2 128.4 12.8 98.3 11.3 23.1 144.1 12.5 147.0 7.4 21.2
DemoFusion [6] 72.3 21.6 53.5 19.1 25.2 96.3 17.7 62.3 15.0 25.0 99.6 16.4 61.9 14.7 24.4 101.4 20.7 63.5 13.5 24.7

AccDiff. [28] 71.6 21.0 52.7 17.0 25.1 95.5 16.4 62.9 11.1 24.5 102.2 15.2 65.4 11.5 24.2 103.2 20.1 65.9 13.3 24.6
RepLDM 66.0 21.0 47.4 17.5 25.1 89.0 20.3 56.0 19.0 25.0 93.2 19.5 56.9 16.5 24.9 90.6 21.1 59.0 14.8 24.6

We report the performance of all methods on four different resolutions (Height × Width): 4096×4096,
4096× 2048, 2048× 4096, and 2048× 2048. Considering that the generation time for HR images
far exceeds that for low-resolution images, we used 2k prompts at the resolution of 2048 × 2048,
and 1k prompts for resolutions greater 2048× 2048. For all resolutions, we set γ = 0.004, β = 3
and η1 = 0.06 for RepLDM. Given that the 4096× 4096 resolution is significantly larger than other
resolutions, we set η2 = [0.1, 0.2] (i.e., T0 = 50, T1 = 5, T2 = 10) for 4096× 4096, and η2 = [0.2]
(i.e., T0 = 50 and T1 = 10) for other resolutions. When generating images with an aspect ratio of r′,
we reshape the initially sampled Gaussian noise ϵ in the first stage to match r′. This process keeps
the number of tokens in ϵ unchanged, preventing drastic fluctuations in the entropy of the attention
maps in the transformer [22] leading to higher-quality images.

Table 1 manifests that RepLDM significantly outperforms previous SOTA models, AccDiffusion
and DemoFusion. This indicates that RepLDM generates images with higher quality. For more
comprehensive analyses, we repeat the experiments of Table 1 with different random seeds to perform
error analyses and conduct a further comparison of the models on the LAION-5B benchmark [41];
see Appendix G.
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Table 2 indicates that RepLDM demonstrates remarkable advantage in inference speed compared to
the SOTA models. On a single 3090 GPU, RepLDM requires only about one-fifth of the inference
time needed by SOTA models such as DemoFusion and AccDiffusion.

Table 2: Model inference time. The best results are marked in bold. Unit of Time: minute.
Resolutions SDXL [36] MultiDiff. [1] ScaleCrafter [14] UG [21] DemoFusion [6] AccDiff. [28] HiDiff. [56] RepLDM

2048 × 2048 1.0 3.0 1.0 1.8 3.0 3.0 0.8 0.6
2048 × 4096 3.0 6.0 6.0 4.0 11.0 12.7 1.9 2.0
4096 × 4096 8.0 15.0 19.0 11.1 25.0 26.0 3.4 5.7

4.3 Qualitative Results

In Fig. 5, RepLDM is qualitatively compared with AccDiffusion, DemoFusion, and MultiDiffusion.
MultiDiffusion fails to maintain global semantic consistency. As indicated by the red boxes, Demo-
Fusion and AccDiffusion tend to result in chaotic content repetition and severe artifacts, which we
speculate are caused by upsampling in the latent space (as analyzed in §3.3). In contrast, RepLDM
not only preserves excellent global structural consistency but also synthesizes images with more
details. More qualitative comparison results can be found in Appendix B.

(b) MultiDiffusion (c) DemoFusion (d) AccDiffusion (e) RepLDM (Ours)(a) SDXL

[2048x2048]

A beautiful swan gliding on 
a pond.

[2048x4096]

A medieval knight in armor.

A historic castle on a hill.

[2048x4096]

Warm light spills from the 
windows of the cottage.

[4096x2048]

A dog running through a 
field of wildflowers.

[4096x4096]

Figure 5: Qualitative comparison with other baselines. The prompts used to generate the images
are presented in the white boxes. MultiDiffusion fails to maintain global semantic consistency.
DemoFusion and AccDiffusion exhibit severe artifacts and content repetition. The red boxes indicate
some synthesis errors. Zoom-in for a better view.
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4.4 User Study

Table 3: Results of the user study.
Method Structural Consistency Color Abundance Detail Richness

score ↑ score* ↑ score ↑ score* ↑ score ↑ score* ↑
AccDiff. [28] 6.28 0.88 6.78 0.60 6.18 0.53

DemoFusion [6] 5.99 0.59 6.69 0.51 6.18 0.53
RepLDM 7.42 2.02 7.64 1.45 7.41 1.76

We invite 16 volunteers to partici-
pate in a double-blind experiment
to further evaluate the performance
of the models. Each volunteer is re-
quired to answer 35 questions. In
each question, three images gener-
ated by AccDiffusion, DemoFusion, and RepLDM are presented. The volunteer needs to rate each
image from 1 to 10 in terms of structural consistency, color abundance, and detail richness. We
calculate the average of their scores. Moreover, to eliminate bias in each volunteer’s ratings for
each metric in each question, we subtract the minimum value among the three scores given by each
volunteer for each metric in each question. The rectified score is denoted as score*. Table 3 shows
that RepLDM surpasses previous SOTA models across all metrics.

5 Ablation Study

5.1 Attention Guidance

In this section, we first conduct ablation experiments on attention guidance, followed by ablation
experiments on the hyper-parameters of attention guidance. In Appendix A, we provide a detailed
analysis of how attention guidance improves latent structural consistency and image quality.

Ablation on attention guidance. We keep η2 unchanged and analyze the effect of attention
guidance through qualitative and quantitative experiments. Table 4 shows that attention guidance
leads to improvements across various metrics, indicating that using attention guidance to enhance
the consistency of latent encoding results in higher-quality images. The qualitative experiments in
Fig. 6 demonstrate that using attention guidance eliminates image blurriness and enriches the image
details. Note that FID and IS quantify the statistical differences between two distributions [2, 15, 40].
Since attention guidance mainly enhances visual quality by modifying the mid- and high-frequency
components while preserving the low-frequency structure of the image, it has limited impact on the
overall distributional statistics. Although attention guidance may not yield significant improvements
in quantitative metrics, it provides a noticeable enhancement in human visual perception; see Table 3.
Please refer to Appendix C.2 for additional qualitative ablation results.

Table 4: Ablation on attention guidance (AG). The best results are marked in bold.
Method 2048× 2048 2048× 4096 4096× 2048 4096× 4096

FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

w/o AG 66.8 21.6 47.5 17.4 25.3 91.6 20.3 58.0 14.5 25.0 95.3 19.9 58.4 14.5 24.9 92.0 21.6 59.8 13.6 24.5
w/ AG 66.0 21.0 47.4 17.5 25.1 89.0 20.3 56.0 19.0 25.0 93.2 19.5 56.9 16.5 24.9 90.6 21.1 59.0 14.8 24.6

(b) w/o attention guidance
[2048x2048] [4096x4096]
(a) w/ attention guidance (c) w/ attention guidance (d) w/o attention guidance

Figure 6: Ablation on attention guidance. Zoom-in for a better view.
Ablation on attention guidance with ControlNet. To further demonstrate the generalization
ability of attention guidance, in this section, we perform an qualitative ablation study of attention
guidance with ControlNet [55]. Specifically, we conducted comparative experiments using two
types of conditional guidance (canny and depth) across two resolution scales: 4096 × 4096 and
2048× 2048. As shown in Fig. 7, the integration of attention guidance with ControlNet substantially
enhances chromatic fidelity and structural granularity in synthesized images.

Ablation on guidance scale γ. We fix η1 = 0.06, η2 = [0.2] and then explore the effect of
the guidance scale γ through both quantitative and qualitative experiments. For the quantitative
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w/ Attention Guidance w/o Attention Guidance w/ Attention Guidance w/o Attention GuidanceCondition image: depthCondition image: canny

[4096x4096] [4096x4096]

[2048x2048] [2048x2048]

Figure 7: Ablation on attention guidance with ControlNet.

experiments, we find that γ = 0.004 performs better. Interestingly, when a larger γ is used, the visual
quality of the images can be further enhanced. As shown in Fig. 8, using a larger guidance scale
results in richer image details. This allows users to generate images according to their preferences
for detail richness and color contrast by adjusting the guidance scale. The setup and results of the
quantitative experiments are detailed in Appendix C.2.

(a) γ=0.000 (w/o AG) (b) γ=0.004 (c) γ=0.006 (d) γ=0.009
[2048x2048]

Figure 8: Ablation on guidance scale. Zoom-in for a better view.

(a) 𝜂1 = 0.00 (b) 𝜂1 = 0.06 (c) 𝜂1 = 0.00 (d) 𝜂1 = 0.06
[2048X2048] [2048X2048]

Figure 9: Ablation on delay rate. Errors indicated by
red boxes can be eliminated by delaying attention guidance.
Zoom-in for a better view.

Ablation on delay rate η1. We fix
γ = 0.004, η2 = [0.2] and then in-
vestigate the impact of the delay rate
η1 through both quantitative and qual-
itative experiments. The quantitative
analysis results indicate that better
generation results can be achieved
when η1 = 0.06, indicating that ap-
propriately delaying the effect of at-
tention guidance contributes to fur-
ther improving the quality of the images. We conjecture that this is because, at the very beginning of
the denoising process, the structural information in the latent encoding has not yet emerged, and thus
attention guidance cannot effectively enhance structural consistency. As shown in Fig. 9, delaying
the effect of attention guidance eliminates some generation errors, further improving image quality.
The setup and results of the quantitative experiments are detailed in Appendix C.2.

(a) Steps: 47~33 (Best quality) (b) Steps: 32~17 (c) Steps: 16~1 (d) w/o attention guidance
[2048x2048]

Figure 10: Applying attention guidance at different denois-
ing steps. Zoom-in for a better view.

Ablation on the time steps of atten-
tion guidance. To explain why at-
tention guidance needs to be applied
during the early to middle steps of
denoising, we apply attention guid-
ance during different denoising steps
of the first stage: (a) 47 to 33, (b) 32
to 17, and (c) 16 to 1. Fig. 10 shows
that when attention guidance is ap-
plied during the early to middle steps of denoising, the image becomes clearer and more detailed;
however, when attention guidance is applied during the later steps of denoising, it has negligible
effect on the generated image. We speculate that this is because diffusion models tend to synthesize

9



structural information first [32, 44, 53], and once the structural information is generated, attention
guidance may have a limited impact on structural consistency.

5.2 Progressive High-Resolution Denoising

(a) 𝜂2 = [0.9] (b) 𝜂2 = [0.7] (c) 𝜂2 = [0.5] (d) 𝜂2 = [0.1]
[2048x2048]

Figure 11: Generated images using different η2. (a): When
the value of progressive scheduler is too large, the structural
repetition issue may reappear. (b) to (d): The visual effects are
similar. Therefore, we can use a smaller progressive scheduler
value to accelerate inference.

In this section, we conduct abla-
tion experiments on the progressive
scheduler η2 in the second stage of
RepLDM. Specifically, we fixed γ =
0, η1 = 0 and then explore the ef-
fect of the progressive scheduler η2
through both quantitative and quali-
tative experiments. Quantitative ex-
perimental results indicate that an ex-
cessively large progressive scheduler
value may result in a decline in image
quality. This can also be observed in
Fig. 11. It is evident that a too large progressive scheduler value may lead to structural misalign-
ment and repetition issues observed in pre-trained SDXL. When the progressive scheduler value
is sufficiently small, changing it yields similar visual effects. Therefore, we can choose a smaller
progressive scheduler value (e.g., 0.2) to accelerate inference. The setup and quantitative results are
detailed in Appendix C.2.

6 Limitations And Future Work

(b) RepLDM (d) RepLDM(c) SDXL(a) SDXL

[1024x1024] [2048x2048] [1024x1024] [2048x2048]

Figure 12: Limitations of RepLDM. The generation results
of SDXL at its training resolution and those of RepLDM at
higher resolutions are provided. As indicated by the white
boxes, RepLDM fails to address the text structure errors in-
herited from SDXL.

RepLDM exhibits limitations in the
following aspects: (i) Effectively con-
trolling text in images is challeng-
ing, as demonstrated by examples in
Fig. 12. This may be due to the inher-
ent limitations of SDXL in generat-
ing textual symbols. Text, due to its
more regular structure compared to
other image content, is difficult to re-
store by directly enhancing the struc-
tural consistency of the latent repre-
sentation. We speculate that the most
reliable approach would be to fine-tune the model specifically on images containing text. (ii) When
generating ultra-high resolution images, such as 12800 × 12800, the second stage of RepLDM
inevitably needs to be decomposed into more sub-stages, which increases the model’s inference time.

Developing a low-cost and effective fine-tuning method to correct text generation errors may be a
promising topic. Moreover, adapting attention guidance to other tasks, such as video generation can
be an interesting issue.

7 Conclusion

In this paper, we reprogram pretrained LDMs, unlock their potentials, and propose RepLDM for
high-quality, high-efficiency, high-resolution image generation. RepLDM divides the denoising
process of an LDM into two stages: (i) attention guidance stage, and (ii) progressive upsampling
stage. The first stage generates structurally enhanced latent representations through the proposed
attention guidance, employing a novel parameter-free self-attention mechanism. The second stage
iteratively performs upsampling in the pixel stage, thus eliminating the artifacts caused by latent
space upsampling. Extensive experiments show that our proposed RepLDM significantly outperforms
SOTA models while achieving 5× speedup in HR image generation.
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A How Does TFSA/Attention Guidance Work?

In this section, we further elaborate on the working mechanism of attention guidance. Our attention
guidance enhances the structural consistency of the latent representation by integrating the output of
TFSA. Therefore, we conduct a detailed analysis of TFSA. Specifically, the functionality of TFSA can
be described in two aspects: (i) clustering the related tokens in the latent representations; (ii) adjusting
the amplitude of the high-frequency and low-frequency components in the latent representations.

A.1 TFSA Clusters Semantically Related Tokens

Visualization of the clustering effect of TFSA. TFSA reorganizes tokens based on their simi-
larities. Intuitively, this enables TFSA to perform token clustering, which enhances the structural
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consistency of latent representations. To demonstrate the clustering effect of TFSA, we calculated the
deviation of the tokens’ mean (DTM) of the latent representations z̃t and zt. Concretely, assuming
zt ∈ Rh×w×c, and Zt = Flatten(zt) = [yt1, . . . ,ytN ] ∈ RN×c, where N = h× w, we calculate
DTM as:

DTM = [mean(yti)−mean(Zt) for i = 1, . . . , N ] (5)

To provide an intuitive illustration of the clustering effect of TFSA, we visualize the DTM based
on token indices (i.e., i = 1, . . . , N ) when t is relatively large. As shown in columns (A) and (B)
of Fig. 13, compared to the DTM of zt (blue points), the DTM of z̃t (red points) becomes more
dispersed and exhibits distinct stripe patterns, indicating that TFSA indeed clusters the tokens of the
latent representations. This clustering effect can be more directly demonstrated when t is smaller. As
shown in the heatmaps in columns (C) and (D) of Fig. 13, it is evident that TFSA clusters semantically
related tokens.

(A) (B) (C) (D) (E)

(a)

(b)

[1024x1024]

[1024x1024]

Figure 13: The clustering effect of TFSA. Columns (A), (B), (C), and (D) show the DTM of latent
representations, while column (E) presents the corresponding generated RGB images.

The clustering effect of TFSA leads to accelerated structural denoising. Fig. 13 shows that the
clustering effect of TFSA clarifies the semantic structures of objects, enabling the model to complete
the denoising of low-frequency structures earlier. This early revelation of the overall image layout
provides a stronger prior for subsequent fine-detail generation. To illustrate this, Fig. 14 presents the
denoising process for the ablation of attention guidance. Note the regions highlighted by red boxes.
With the incorporation of attention guidance, these areas exhibit clearer structures, which facilitates
the generation of more affluent details and more vivid colors in subsequent steps.

Figure 15: Quantitatively analysis on the clus-
tering effect of TFSA. We calculate the SSIM
between noised latents zt (1 ≤ t ≤ 49) and their
corresponding clean latent z0.

To quantitatively demonstrate that TFSA ac-
celerates structural emergence, we calculate
the SSIM between zt and z0, where t ∈
1, 2 . . . , T − 1, and T = 50. As shown in
Fig. 15, compared to the naive denoising pro-
cess, attention guidance consistently drives the
latent representations closer to their final states
at each step, indicating the structural foresee-
ability of TFSA.

A.2 TFSA Adjusts the Amplitude
of High- and Low-frequency Components

The aim of this experiment is to explain: (i) why
appropriately delaying attention guidance can
resolve structural deformation issues (as shown
in Fig. 9); (ii) why attention guidance enhances the details and colors of the image (as shown in Fig. 6
and 8); and (iii) why applying attention guidance in the later stages of denoising does not enhance the
image details and colors (as shown in Fig. 10).
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Figure 14: Denoising visualization for the ablation of attention guidance. As indicated by the red
boxes, the clustering effect of TFSA prompts earlier structural emergence, delivering better prior for
subsequent fine-detail generation. Resolution: 1024× 1024.

Figure 16: The Fourier transform of the latent representation and the mean of the standard
deviations across all channels. zt is represented in blue, while z̃t is represented in red; the Fourier
transforms are shown as solid lines, and the standard deviations are shown as dashed lines. The
results are based on the generation process of 5k images.

To explain the aforementioned three points, as shown in Fig. 16, we calculate the Fourier transforms
of zt (blue solid line) and z̃t (red solid line), along with the mean of the standard deviations for all
their channels (dashed line). It can be observed that TFSA significantly alters the relative amplitudes
of the high- and low-frequency components in the latent representations during the initial denoising
steps (from t = 49 to t = 47), particularly affecting the low-frequency components, which results
in structural deformation. During the early and middle stages of denoising (from t = 44 to t = 29),
TFSA increases the amplitudes of high-frequency components in the latent representations, which
explains why attention guidance leads to richer details and colors. In the later stages of denoising
(from t = 28 to t = 0), TFSA slightly suppresses the high-frequency components of the latent
representations while almost leaving the low-frequency components unchanged. This explains why
applying attention guidance in the later stages of denoising cannot enrich details and colors of the
generated images.

Additionally, Fig. 16 shows that TFSA increases the standard deviation of z̃t during the early and
middle stages of denoising, while decreasing it in the later stages. The trend of the standard deviation
changes is closely consistent with the variation in the amplitude of the high-frequency components.
We conjecture that this is because the amount of information in the latent representations is positively
correlated with the standard deviation, where a larger standard deviation corresponds to more image
details and larger high-frequency components.

A.3 Visualization of Attention Maps in TFSA

To further demonstrate the clustering effect of TFSA on related tokens, we visualize its attention
maps. As shown in Fig. 17, without using projection matrices, the correlations between tokens are
determined jointly by their represented colors and semantics. For example, in Fig. 17(a), the key
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(a)

(b)

Figure 17: Visualization of attention maps in TFSA. The query tokens are highlighted with red
boxes, and the heatmap color ranges from blue to red, indicating increasing correlation strength
between the key tokens and the query tokens. Resolution: 1024× 1024. Zoom-in for a better view.

tokens correlated with the query token at the selected car location are related not only to the car itself
(i.e., the concept of the car) but also to its color. TFSA leverages such correlations to fuse token
information, thereby accelerating the formation of the overall image layout.

B Supplementary Qualitative Comparison of §4.3

Fig. 18 presents additional qualitative comparison results. MultiDiffusion continues to struggle with
maintaining global consistency; as indicated by the red boxes, DemoFusion tends to produce repetitive
content, a problem somewhat alleviated in AccDiffusion but not fully resolved. As highlighted by
the black boxes, another issue with AccDiffusion is the presence of noticeable streak artifacts in the
images.

C Supplementary Ablation Experiments of §5

C.1 Further Qualitative Analysis of Attention Guidance

Fig. 19 provides additional qualitative ablation results on attention guidance. Individual preferences
for contrast, color vividness, and detail richness may vary. attention guidance allows users to adjust
parameters such as the guidance scale to synthesize images according to their preferences.

C.2 Ablation on the hyper-parameters of Attention Guidance

Quantitative analysis of guidance scale. We sampled 1k prompts, fixed η1 = 0.06, η2 = [0.2]
and performed ablation studies for guidance scale γ. The quantitative results are shown in Table 5.
Considering all metrics, we find that γ = 0.004 achieved better quantitative results.

Quantitative analysis of delay rate. We sampled 1k prompts, fixed γ = 0.004, η2 = [0.2] and
performed ablation studies for delay rate η1. Table 6 presents the experimental results, indicating that
better results can be achieved when η1 = 0.06. This means that appropriately delaying the effect of
attention guidance can further enhance the quality of the generated images.

C.3 Ablation on Progressive Scheduler Value

This section presents the results of quantitative ablation analysis on the progressive scheduler η2
in the second stage of RepLDM. We fixed γ = 0, η1 = 0, sampled 500 prompts, and generated 1k
images to investigate the optimal value of the progressive scheduler. Table 7 presents the quantitative
results, indicating that using an excessively large progressive scheduler may lead to a decline in
image quality.
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(b) MultiDiffusion (c) DemoFusion (d) AccDiffusion (e) RepLDM (Ours)(a) SDXL
A historic ship sailing on the open sea.

[2048x2048]

[2048x2048]

A dragonfly hovers above the pond's 
surface.

A rabbit nibbles on clover in a meadow.

[2048x4096]

The sun sets behind the hills, casting a 
warm, golden light over the landscape.

[2048x4096]

[4096x2048]

A serene autumn forest.

[4096x4096]

A fisherman casts his line into the 
calm lake, waiting patiently.

A calm meadow with grazing deer.

[4096x4096]

Figure 18: Qualitative comparison with other baselines. Zoom-in for a better view.
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w/ AG w/o AG w/ AG w/o AG w/ AG w/o AG

Figure 19: Further qualitative analysis of attention guidance (AG). Using attention guidance
significantly enhances image quality. The details were enriched, for example: the clouds in the sky,
ripples on the water, reflections on the lake, and even the expressions in a person’s eyes. Resolution:
2048×2048. Best viewed ZOOMED-IN.

Table 5: Quantitative ablation experiments on the guidance scale γ. The best results are marked
in bold, and the second best results are marked by underline.

Method
1024 × 1024 1600 × 1600 2048 × 2048

FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑

γ = 0.000 90.85 58.18 21.21 17.69 25.09 90.91 54.74 21.45 15.41 24.93 91.78 59.08 21.57 17.36 24.86
γ = 0.001 90.50 58.04 21.34 16.76 25.08 91.17 54.31 21.19 15.47 24.93 91.40 58.75 21.87 15.85 24.86
γ = 0.002 89.82 57.54 21.28 17.04 25.08 90.39 53.71 21.26 15.00 24.97 90.81 58.34 21.45 17.16 24.90
γ = 0.003 90.10 57.08 20.80 16.61 25.08 90.56 53.95 21.35 15.46 24.98 90.87 58.40 21.47 17.60 24.92
γ = 0.004 89.40 56.64 20.96 16.63 25.09 89.91 54.23 20.91 15.54 25.01 90.11 58.11 21.18 16.78 24.94s
γ = 0.005 90.17 57.50 20.89 16.34 25.12 90.24 55.19 20.67 15.21 25.02 90.46 58.91 20.79 16.87 24.97
γ = 0.006 89.79 58.18 20.33 15.93 25.16 90.36 56.71 20.33 14.59 25.06 90.32 59.86 20.37 16.12 25.00
γ = 0.007 90.42 60.29 20.07 16.20 25.21 90.91 59.35 20.36 14.16 25.12 90.86 61.81 20.14 15.70 25.06
γ = 0.008 91.64 63.63 19.66 14.25 25.25 91.98 63.93 19.13 13.71 25.13 92.16 64.82 19.59 14.24 25.08
γ = 0.009 94.29 67.87 19.15 13.00 25.25 94.38 70.21 19.45 12.12 25.16 94.39 68.84 19.22 13.63 25.12

Table 6: Quantitative ablation experiments on the delay rate η1. The best results are marked in
bold, and the second best results are marked by underline.

Method
1024 × 1024 1600 × 1600 2048 × 2048

FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑

η1 = 0.00 89.98 58.29 20.74 16.48 25.06 90.89 55.54 21.00 14.42 24.98 90.75 59.41 20.54 16.99 24.91
η1 = 0.02 89.96 57.67 20.99 16.87 25.05 90.76 54.77 21.08 15.35 24.95 91.78 59.08 21.57 18.16 24.86
η1 = 0.04 89.47 57.28 20.98 16.63 25.07 90.22 54.14 20.86 15.43 24.98 90.52 58.47 20.76 17.02 24.91
η1 = 0.06 89.44 56.64 20.92 16.58 25.11 89.91 54.23 20.91 15.54 25.01 90.11 58.11 21.18 16.78 24.94
η1 = 0.08 89.95 56.97 21.05 16.76 25.09 89.87 54.10 21.22 15.65 24.98 90.74 58.45 20.99 17.06 24.92
η1 = 0.10 89.29 56.88 21.11 16.84 25.09 89.97 53.99 21.04 15.37 24.99 90.41 58.45 20.99 17.12 24.92
η1 = 0.12 89.84 57.32 21.05 16.58 25.08 90.00 53.85 21.24 15.81 24.93 90.24 58.45 21.24 17.36 24.90
η1 = 0.14 89.85 57.12 20.91 16.40 25.09 90.06 53.83 21.33 15.62 24.99 90.69 58.25 21.17 16.74 24.91
η1 = 0.16 90.06 57.28 21.10 16.53 25.09 90.91 54.74 21.45 15.41 24.93 90.76 58.37 20.97 16.87 24.91
η1 = 0.18 90.16 57.29 20.88 15.10 25.08 90.26 53.79 21.06 15.07 24.97 90.78 58.33 21.05 17.21 24.90

D Ablation on the Attention Guidance Components

D.1 Ablation on the Guidance Scale Decay Strategy

To investigate the impact of different guidance scale decay strategies, we conduct ablation studies
using two additional schemes—linear decay and exponential decay—and analyze their quantitative
and qualitative performance. For quantitative ablation, we generate 2k samples at a resolution of
2048× 2048 using each strategy and calculate the criterions on the SAM benchmark. Table 8 shows
that different strategies yield similar results, indicating that RepLDM is not sensitive to a specific
decay strategy. Fig. 20 illustrates the qualitative results. Qualitatively, these decay strategies also
produce similar visual experience.
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Table 7: Quantitative ablation study of the progressive scheduler Value. The best results are
marked in bold, and the second best results are marked by underline.

Method
1600 × 1600 2048 × 2048

FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑

SDXL 101.56 25.78 73.67 21.23 26.87 112.64 18.44 79.03 20.61 26.55
η2 = [0.9] 94.59 27.04 67.60 23.01 26.97 97.14 24.48 64.34 22.14 26.59
η2 = [0.8] 93.13 28.80 65.67 24.83 26.99 93.93 26.75 60.84 23.27 26.77
η2 = [0.7] 92.05 29.44 65.35 24.97 27.07 92.50 28.17 57.34 24.05 26.93
η2 = [0.6] 92.94 30.79 64.57 24.29 27.11 91.86 30.45 55.38 24.96 26.98
η2 = [0.5] 92.73 30.65 63.43 24.26 27.13 91.80 31.18 54.32 24.48 27.02
η2 = [0.4] 93.04 30.96 63.33 24.77 27.14 91.71 32.47 53.72 25.16 27.03
η2 = [0.3] 92.93 30.91 63.09 24.84 27.15 92.39 30.72 53.32 26.63 27.07
η2 = [0.2] 93.09 31.17 63.23 25.71 27.17 92.71 30.45 53.19 26.19 27.12
η2 = [0.1] 93.44 30.69 63.75 25.18 27.22 92.94 30.69 53.77 24.71 27.18

Table 8: Ablation on the guidance scale decay strategies. The best results are marked in bold, and
the second best results are marked by underline.

Strategies FID ↓ ISc ↑ FIDc ↓ ISc ↑ CLIP ↑

Linear 66.2 21.5 47.2 20.3 25.4
Exponential 66.8 21.8 47.0 16.3 25.3

Cosine (default) 66.0 21.0 47.4 17.5 25.1

Linear

Exp

Cosine

(Default)

Figure 20: Qualitative ablation on guidance scale decay ctrategies.

D.2 Ablation on the Attention Calculation Paradigm

For TFSA, our objective is to remove the learnable parameters from the Self-Attention mechanism,
while maintaining its computational paradigm as unchanged as possible. In TFSA, Q, K, and V
are identical. Therefore, TFSA is a totally symmetric formula. As analyzed before, this paradigm
encourages the clustering of semantically related tokens, and finally leads to finer details and richer
colors. An interesting question arises: if we spatially downsample Q, K, or V before applying TFSA
and reformulate it into an asymmetric paradigm (denoted as TFSA-A), would TFSA-A encourage the
model to attend more explicitly from fine details to coarse structures?

To answer this question, we design an asymmetric variants, TFSA-A. Specifically, TFSA-A performs
a 2×2 pooling operation to downsample the K and V matrices before the attention calculation
operation, ensuring that the output of Softmax(QKT /

√
d)V remains the of shape (hw)×c. Table 9

shows that TFSA-A produces comparable quantitative results. In Fig. 21, we observe that although
TFSA-A achieves quantitative results comparable to those of TFSA, its visual quality is significantly
inferior. In fact, TFSA-A tends to reduce image details. This aligns with our hypothesis: the
2 × 2 pooling acts as a low-pass filter, causing the loss of fine-grained information in the latent
representations and leading the model to focus more on low-frequency structures.

E Further Model Efficiency Analysis

Computational complexity analysis of TFSA. Note that attention guidance is only applied during
the first stage of generation. Assume we have a HR image x0 with a resolution of H ×W × C. we
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Table 9: Ablation on the attention calculation paradigm. The best results are marked in bold, and
the second best results are marked by underline.

Paradigm FID ↓ ISc ↑ FIDc ↓ ISc ↑ CLIP ↑

w/o guidance 66.8 21.6 47.5 17.4 25.3
w/ TFSA-A 67.4 22.6 47.9 20.4 25.3

w/ TFSA 66.0 21.0 47.4 17.5 25.1

w/o

AG

w/

TFSA-A

w/

TFSA

Figure 21: Ablation on the attention calculation paradigm. Resolution: 2048× 2048.

encode the image x0 into latent space and obtain latent representation z0 ∈ Rh×w×c. Before feeding
z0 into TFSA, we reshape it to a (hw)× c matrice. The computation of TFSA follows a formulation
similar to that of self-attention: Softmax(z0z

T
0 /

√
c)z. Thus, the computational complexity of TFSA

is O((hw)2c). Taking SDXL as an example, the training resolution is H = 1024, W = 1024. After
VAE encoding, c = 4, h = H/8 = 128, w = W/8 = 128. For each denoising step, the FLOPs of
TFSA is approximately 2× (h× w)2 × c, which is around 2.15 GFLOPs—negligible compared to
the FLOPs of the denoising network (several TFLOPs per step).

How does pixel space upsampling accelerate generation? To answer this question, we analyze
the time consumption of each component in DemoFusion and RepLDM when generating images at
the resolution of 4096× 4096.

Table 10: The time consumption of DemoFusion when generating 4096×4096 resolution images.
Metric Denoise 1024 Denoise 2048 Denoise 3072 Denoise 4096 Decode 4096 Total

number of steps 50 50 50 50 - 200
Time (s) 12 185 480 901 106 1684

Table 11: The time consumption of RepLDM when generating 4096× 4096 resolution images.
The intermediate encoding/decoding operations are highlighted in underline.

Metric Denoise 1024 Decode 1024 Encode 3304 Denoise 3304 Decode 3304 Encode 4096 Denoise 4096 Decode 4096 Total

number of steps 50 - - 5 - - 10 - 65
Time (s) 12 0 12 20 64 11 118 106 343

Table 10 shows that denoising at high resolutions is a time-consuming process. DemoFusion requires
substantial generation time because it performs the full denoising process at high resolutions. Note
that, compared with the cost of the denoising process at high resolutions, the costs of encoding
and decoding are negligible. Table 11 shows that RepLDM significantly accelerates generation by
substantially reducing the number of denoising steps at high resolutions. This is because RepLDM
performs pixel space upsampling through multiple rounds of encoding and decoding, producing
high-quality low-resolution images that serve as better initialization. As a result, RepLDM can
significantly reduce the number of sampling steps required for HR generation, thereby accelerating
the process. Moreover, Table 11 shows that the additional overhead from multiple intermediate
encoding and decoding operations is also relatively minor compared to the total generation cost.

Further efficiency comparison across different models. To provide a more comprehensive
assessment of model efficiency, we further report the NFE and FLOPs of different models when
generating a single image at resolutions of 2048× 2048 and 4096× 4096. Tables 12 and 13 show
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that RepLDM significantly reduces the NFE and FLOPs required for inference by decreasing the
number of denoising steps at high resolutions, thereby substantially reducing the time needed to
generate HR images.

Table 12: Inference cost of generating a 2048× 2048 Image for different models.
Model SDXL [36] MultiDiff. [1] ScaleCrafter [14] HiDiff. [56] UG [21] DemoFusion [6] AccDiff. [28] RepLDM

NFE 50 50 50 50 80 100 100 60
TFLOPs 3010 5420 2437 1857 3608 9015 8597 1140

Time (min) 1.0 3.0 1.0 0.8 1.8 3.0 3.0 0.6

Table 13: Inference cost of generating a 4096× 4096 Image for different models.
Model SDXL [36] MultiDiff. [1] ScaleCrafter [14] HiDiff. [56] UG [21] DemoFusion [6] AccDiff. [28] RepLDM

NFE 50 50 50 50 80 200 200 65
TFLOPs 12026 29566 9759 5211 12624 72167 74225 7140

Time (min) 8.0 15.0 19.0 3.4 11.1 25.0 26.0 5.7

Qualitative analysis on the progressive upsampling stage. To clearly illustrate the progressive
upsampling process of RepLDM, we set η2 = [0.2, 0.2, 0.2] to generate 4096 × 4096 images. As
shown in Fig. 22, the images generated at different sub-stages of RepLDM exhibit a high degree of
consistency, with only minor differences in details. Since our task focuses on generating HR images
rather than traditional image super-resolution, these differences in details are reasonable. As discussed
in Table 10 and Table 11, for each denoising step, the time required for HR images is several times
that for low-resolution images. Consequently, repeating a full denoising process at high resolution
is extremely time-consuming [6, 28]. Considering that HR and low-resolution images should share
the same low-frequency structure, and that DMs naturally generate low-frequency structures first
during denoising [44, 53], RepLDM leverages the prior knowledge of low-frequency structures in
low-resolution images, thereby effectively accelerating the generation process.

Prompt: A futuristic samurai 
standing on the edge of a neon-
lit rooftop, katana glowing with 
blue energy, wearing a sleek, 
high-tech armor suit with 
glowing circuitry, overlooking a 
sprawling cyberpunk cityscape 
with flying cars, dramatic rain 
and lightning, ultra-realistic, 
cinematic lighting, inspired by 
Akira and Blade Runner, 8k 
resolution.

Prompt: A colossal dragon 
perched on a jagged mountain 
peak, scales glimmering in 
shades of emerald and gold, 
fiery eyes staring at the 
horizon, a storm raging in the 
background with lightning 
illuminating its massive wings, 
ultra-detailed textures, epic 
composition, inspired by high-
fantasy art, 8k resolution.

Attention Guided Stage

1024x1024

50 steps ~0.23 min

Progressive Upsampling Sub-stage 1

2504x2504

10 steps ~3.32 min

Progressive Upsampling Sub-stage 2

3392x3392

10 steps ~2.59 min

Progressive Upsampling Sub-stage 3

4096x4096

10 steps ~3.90 min

Figure 22: Illustration of the progressive upsampling generation process. The inference speed is
evaluated on a single 3090 GPU.

F RepLDM Algorithm

The implementation details of RepLDM can be found in Algorithm 1, and further information is
available in our code repository.
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Algorithm 1 RepLDM Inference Pipeline
Require: The number of inference time steps of the first stage T0; progressive scheduler η2; attention guidance

scale γ; attention guidance delay rate η1; the decay factor β; target image size tuple (H ′,W ′); the denoising
model F ; denoising model’s training resolution tuple (H,W ); VAE encoder E; VAE decoder D; noise
scheduler’s hyper-parameter list ᾱ1:T0 .

1: Initialization:
2: z

(0)
T0

= ϵ ∼ N (0, I) {Sampling from Standard Gaussian Distribution}
3: nstages = length(η2) + 1 {Get the total number of denoising stages}
4: r′ = H′

W ′ {Keep the aspect ratio and number of pixels unchanged}
5: H(0) = ceil(

√
H ×W × r′)

6: W (0) = ceil(
√

H×W
r′ )

7: H(n) = H ′

8: W (n) = W ′

9: arealist = linspace(H(0) ×W (0), H(n) ×W (n), nstages) {Upsampling according to the number of pixels}
10: Hlist = [ceil(

√
i× r′) for i in arealist] {Get the height and width of each stage}

11: Wlist = [ceil(
√

i/r′) for i in arealist]
12: kdenoising = [T0] {Get the number of denoising steps for each stage}
13: kdenoising.extend([i× T0 for i in η2])
14: k = T0 × η1 {Obtain the number of delay steps}

15: γlist = [γ(
cos(T−k−i

T−k
π)+1

2
)β for i = 1, ..., T − k] {Obtain the guidance scale for each step}

16: Denoising:
17: for s = 0, . . . , nstages − 1 do
18: nsteps ← kdenoising[s]
19: if s ≥ 1 then
20: x(s) ← upsample(x(s−1), Hlist[s],Wlist[s]) {Upsampling in pixel space}
21: z

(s)
0 ← E(x(s))

22: z
(s)
nsteps ∼ N (

√
ᾱ[nsteps]z

(s)
0 , (1− ᾱ[nsteps])I)

23: end if
24: for t = nsteps − 1, . . . , 0 do
25: z

(s)
t ← F(z

(s)
t+1, t+ 1) {Denoising}

26: if s == 0 and t ≤ T − 1− k then
27: z

(s)
t ← γlist[t]PFSA(z

(s)
t ) + (1− γlist[t])z

(s)
t {Attention Guidance}

28: end if
29: end for
30: x(s) ← D(z

(s)
0 ) {Obtain the pixel space image}

31: end for

G Robustness Analysis

In this section, we conduct a robustness analysis to complement the experiments in §4.2, providing a
more comprehensive evaluation of the models’ performance. Our robustness analysis is conducted
from two perspectives: (i) we vary the random seeds and repeat each experiment three times to
compute the mean and standard deviation of all results; (ii) we randomly sample 20k HR images from
the HR subset of LAION-5B dataset [41] to construct a new benchmark for evaluating the models’
generalization performance. Since HR generation requires substantial computational resources, we
analyze the four best-performing models from Table 1, i.e., HiDiffusion, DemoFusion, AccDiffusion,
and RepLDM.

Analysis on the SAM benchmark. We maintain the exact experimental settings as in §4.2 and
conduct the analysis at resolutions of 2048× 2048 and 4096× 4096. Table 14 shows that RepLDM
continues to exhibit superior performance across the repeated experiments.

Table 14: Robustness analysis on the SAM benchmark. The best results are marked in bold.
Method 2048× 2048 4096× 4096

FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑ FID ↓ IS ↑ FIDc ↓ ISc ↑ CLIP ↑

HiDiff. [56] 80.29±0.57 17.18±0.40 63.55±0.63 15.26±0.76 24.95±0.04 144.24±0.84 12.71±0.14 146.62±0.32 7.48±0.28 21.18±0.05
DemoF. [6] 71.89±0.60 22.10±0.37 53.58±0.22 19.21±0.27 25.21±0.01 101.83±0.49 20.81±0.11 63.60±0.46 14.92±1.24 24.75±0.03

AccDiff. [28] 71.37±0.48 21.21±0.32 53.04±0.33 19.24±1.72 25.13±0.01 102.41±1.40 19.88±0.24 65.86±0.17 12.73±0.71 24.65±0.02
RepLDM 66.08±0.02 22.13±0.74 47.31±0.11 20.38±2.03 25.30±0.12 91.46±0.61 21.63±0.46 58.93±0.20 15.02±0.16 24.62±0.02
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Analysis on the LAION-5B benchmark. Considering that only 1K samples were used for the
4096×4096 resolution in §4.2, which may lead to unstable metric evaluations, we double the number
of samples to 2k for this resolution in the current experiment. Regarding evaluation metrics, since
IS may lead to high variances beyond ImageNet, we follow some recent studies and adopt Kernel
Inception distance (KID) for more accurate evaluation [20, 37]. Table 15 shows that on the LAION
benchmark, RepLDM still demonstrates superior performance, surpassing previous SOTA models
across all metrics.

Table 15: Robustness analysis on the LAION-5B benchmark. The best results are marked in bold.
Since the magnitude of KID is relatively small, we multiply its mean and standard deviation by 103.

Method 2048× 2048 4096× 4096

FID ↓ KID↓ FIDc ↓ KIDc ↓ CLIP ↑ FID ↓ KID↓ FIDc ↓ KIDc ↓ CLIP ↑

HiDiff. [56] 48.17±0.41 8.06±0.20 36.26±0.37 10.93±0.11 23.16±0.03 92.81±0.78 35.36±0.60 120.26±0.91 103.45±0.27 18.55±0.06
DemoF. [6] 34.15±0.31 4.50±0.05 21.38±0.17 6.80±0.06 25.44±0.02 37.03±0.27 5.71±0.14 30.77±0.36 16.12±0.22 25.12±0.04

AccDiff. [28] 34.49±0.31 4.92±0.08 22.71±0.17 8.57±0.11 24.90±0.02 38.56±0.23 7.21±0.20 38.85±0.29 20.87±0.20 24.46±0.01
RepLDM 34.08±0.25 4.18±0.04 20.30±0.30 4.87±0.13 25.78±0.03 34.01±0.26 4.13±0.05 23.08±0.26 12.08±0.13 25.88±0.04

H Comparative and Ablation Analysis Based on StableDiffusion 2.1

H.1 Comparison Experiments

To validate the generalization capability of RepLDM, we conducted extensive quantitative and
qualitative analyses using StableDiffusion 2.1 (SD2.1) as the pretrained base model.

(a) SD2.1 (b) ScaleCrafter (c) RepLDM

1535x1536: A fierce lion roaring in the savannah.

1024x2048: A majestic elephant in the wild.

2048x1024: A sports car speeding down an empty highway.

2048x2048: The sun rises, casting a warm glow over the land.

Figure 23: Qualitative comparison using SD2.1
as the pretrained model.

Qualitative comparison. Fig. 23 presents the
results of the qualitative comparison. It can be
observed that, when generating high-resolution
images, SD2.1 also faces issues with repeti-
tive object structures. ScaleCrafter often ex-
hibits structural collapse during denoising with
SD2.1, resulting in suboptimal performance. In
contrast, RepLDM consistently produces high-
quality results across all resolutions, highlight-
ing the generalizability of the RepLDM gener-
ation framework.

Quantitative comparison. Since the code for
using SD2.1 as the pretrained model in AccDif-
fusion and DemoFusion is not publicly available,
we compare RepLDM with ScaleCrafter. We
compared the model performance at four resolu-
tions: 1536× 1536, 1024× 2048, 2048× 1024,
and 2048×2048. Considering that SD2.1’s gen-
eration capabilities are weaker than SDXL, we
set η2 = [0.2, 0.2, 0.3] for the experiments in
this section, while keeping other settings consis-
tent with §4.

Table 16 presents the results of the quantitative
comparison, showing that RepLDM maintains
strong performance when using SD2.1 as the
pre-trained model. In contrast, ScaleCrafter per-
forms suboptimally, as it tends to produce struc-
tural collapse in the generated images, a phe-
nomenon that is more apparent in the qualitative
analysis.

H.2 Ablation Study on Attention Guidance

Quantitative ablation. Table 17 shows the results of the quantitative ablation on attention guidance
using SD2.1 as the pretrained model. It can be observed that attention guidance leads to improvements
in metrics. These improvements are more evident in the qualitative ablation analysis.
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Table 16: Quantitative comparison results based on SD2.1. The best results are marked in bold.
Method 1536× 1536 1024× 2048 2048× 1024 2048× 2048

FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

SD2.1 [39] 95.4 17.8 83.4 15.8 25.0 85.8 15.9 76.1 16.3 25.2 101.8 15.8 79.8 16.8 24.6 121.7 14.4 92.7 14.4 24.5
ScaleCrafter [14] 140.4 10.6 136.4 9.7 21.9 150.0 10.1 139.3 10.1 21.7 149.8 10.4 135.6 11.5 21.8 144.2 10.4 135.2 10.3 23.4

RepLDM 60.3 21.0 50.6 18.3 25.4 61.1 19.9 54.1 18.4 25.0 63.7 19.2 50.4 18.2 24.7 60.5 21.5 48.8 17.2 25.3

Table 17: Quantitative ablation results based on SD2.1. The best results are marked in bold.
Method 1536× 1536 1024× 2048 2048× 1024 2048× 2048

FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

w/o AG 61.2 20.9 50.2 18.9 25.2 61.5 19.6 54.0 19.5 24.9 64.6 19.6 49.2 17.0 24.6 61.1 21.2 46.5 18.2 25.2
w/ AG 60.3 21.0 50.6 18.3 25.4 61.1 19.9 54.1 18.4 25.0 63.7 19.2 50.4 18.2 24.7 60.5 21.5 48.8 17.2 25.3

Qualitative ablation. Fig. 24 presents the ablation analysis of attention guidance based on SD2.1.
From the figure, it can be observed that attention guidance also enhances detail richness and color
vibrancy when using SD2.1, further demonstrating its generalization capability.

w/o AG

w/ AG

A majestic eagle 
soaring above the cliffs.

A historic castle on a 
hill.

The boat rocks gently on 
the surface of the lake.

The sun rises over the 
calm sea.

A calm meadow with 
grazing deer.

A peaceful village by 
the sea.

(a) (b) (c) (d) (e) (f)

Figure 24: Ablation study of attention guidance using SD2.1 as the pre-trained model. Resolution:
2048× 2048.

I Attention Guidance Also Works in Other Generation Frameworks

In this section, we apply attention guidance to other generative frameworks to demonstrate its
generalization capability. Specifically, we apply attention guidance to the generative frameworks of
HiDiffusion and DemoFusion, and perform both quantitative and qualitative ablation studies.

I.1 Quantitative Ablation

In this section, considering the long inference time of DemoFusion, we perform quantitative ablation
studies on attention guidance using the HiDiffusion generation frameworks at a resolution of 2048×
2048. All experimental settings are consistent with those in §4.

Table 18: Quantitative ablation of atten-
tion guidance using HiDiffusion frame-
works. The best results are marked in bold.

Method FID IS FIDc ISc CLIP

HiDiffusion [56] 81.0 16.8 64.1 14.2 24.9
HiDiffusion+AG 79.4 17.0 62.4 14.6 24.9

Table 18 presents the quantitative ablation results using
the HiDiffusion framework. It is evident that incorporat-
ing attention guidance improves HiDiffusion across all
metrics. This is further corroborated by the qualitative
analysis in Fig. 25, which demonstrates that attention
guidance alleviates some of the structural collapses
observed in HiDiffusion.

I.2 Qualitative Ablation

HiDiffusion+attention guidance. We incorporate attention guidance into the generative framework
of HiDiffusion. Fig. 25 (a)-(c) demonstrate that using attention guidance effectively mitigates the
issue of structural collapse in synthesized images. Fig. 25 (d)-(f) further show that attention guidance
can also address the structural deformation inherent to HiDiffusion, enhance image details, and
improve overall image quality.
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sky.

A peaceful village by the 
sea.
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Figure 25: Qualitative ablation of attention guidance in the HiDiffusion Framework. All images
have a resolution of 2048× 2048. Figures (a)-(c) demonstrate that attention guidance can mitigate
the issue of structural collapse in generated images, while Figures (d)-(f) show that attention guidance
resolves structural deformation issues and enhances image details.

DemoFusion+attention guidance. We incorporate attention guidance into the generative frame-
work of DemoFusion. As shown in Fig. 26 (a)-(c), attention guidance effectively mitigates the issue
of repetitive structures in DemoFusion. Fig. 26 (d)-(f) further illustrate role of attention guidance in
enriching image details and enhancing overall image quality.

The moon casts a silver 
light on the lake.

(a)

DemoFusion

DemoFusion+

Attention

Guidance

A rabbit hops through 
the field.

A shepherd leads his 
flock across the meadow.

A gentle breeze rustles 
the leaves.

A futuristic cityscape 
at night.

The river flows gently.

(b) (c) (d) (e) (f)

Figure 26: Qualitative ablation of attention guidance in the DemoFusion Framework. All
images have a resolution of 2048 × 2048. Figures (a)-(c) demonstrate that attention guidance
effectively mitigates the issue of repetitive structures in images, while Figures (d)-(f) showcase
attention guidance’s ability to enrich image details.

J Super-Resolved Images Tend to Lack High-Resolution Details

To explain why using super-resolution models to obtain HR images is sub-optimal, in this section, we
conduct both qualitative and quantitative comparisons between RepLDM and the super-resolution
results. Specifically, we use BSRGAN [54] to upsample the generated results of SDXL [36] at its
training resolution.

Quantitative results. As shown in table. 19, the super-resolution model (SDXL + BSRGAN)
demonstrate comparable performance in quantitative experiments, a phenomenon also observed in
the DemoFusion’s experiments. This is because super-resolution models can at least preserve the
low-frequency structures of images without significant errors. However, quantitative metrics such as
FID and IS, are widely recognized as insufficient for comprehensively evaluating the performance
of model’s generation. As a result, user studies are commonly employed to provide human-level
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Figure 27: Qualitative comparison with SDXL+BSRGAN. The prompts for the generated images
are provided above the figures. The resolution of (a) to (c) are 2048× 2048, and the resolution of (d)
and (e) are 4096× 4096.

evaluation with more intuition [11, 14, 22, 30, 36, 39, 55]. For example, in ScaleCrafter [14], they
conducted both quantitative and user study analyses in comparison with the SD+SR approach. Their
results show that, although ScaleCrafter performs worse than SD+SR on quantitative metrics, users
significantly prefer the textures and details generated by ScaleCrafter. One important reason is that
the goal of the SR model is to produce images consistent with the input, which limits its performance
in high-resolution generation – needing more detail for true high-resolution visuals beyond simple
smoothing [6, 10, 14, 22, 27, 28, 57].

Table 19: Quantitative comparison results between RepLDM and SDXL+BSRGAN. The best
results are marked in bold.

Method 2048× 2048 2048× 4096 4096× 2048 4096× 4096
FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP FID IS FIDc ISc CLIP

SDXL+BSRGAN 66.2 21.1 47.5 16.6 25.7 80.7 19.8 50.2 12.3 25.1 92.7 17.6 57.9 12.1 24.9 90.0 20.9 56.0 13.8 25.2
RepLDM 66.0 21.0 47.4 17.5 25.1 89.0 20.3 56.0 19.0 25.0 93.2 19.5 56.9 16.5 24.9 90.6 21.1 59.0 14.8 24.6

Qualitative results. As shown in Fig. 27, compared to RepLDM, SDXL+BSRGAN, while
maintaining decent image structure, fails to generate the level of detail expected from HR images.
The absence of these details sometimes leads to the model’s inability to simulate realistic scenes. For
example, in Fig. 27 (c), SDXL+BSRGAN fails to generate realistic shadows.

K Memory Usage Analysis

We compare the GPU memory usage required by the models. Specifically, we test the minimum
GPU memory requirements during model inference based on the model’s open-source code. Table 20
shows the resource consumption of different models when generating images at various resolutions.

Table 20: Model Memory Usage (GB). The best results are marked in bold, and the second best
results are marked by underline.

Resolutions 2048 × 2048 2048 × 4096 4096 × 4096

SDXL [36] 15.9 16.1 16.6
MultiDiff. [1] 22.0 16.8 16.8

ScaleCrafter [14] 17.4 17.6 19.1
UG [21] 23.9 16.5 18.0

DemoFusion [6] 15.2 18.4 16.8
AccDiff. [28] 22.1 23.0 22.1

HiDiff. [56] 23.9 16.2 16.2
RepLDM 16.0 21.1 23.8

It is worth noting that for HR image generation tasks, the memory bottleneck lies in the encoding and
decoding of the VAE rather than interpolating the image in pixel space. To address the challenges of
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encoding and decoding HR images, researchers typically employ tiled encoders and tiled decoders. In
this work, we also utilize a tiled-encoder and decoder when generating ultra-high-resolution images,
allowing us to generate images with resolutions up to 4096 × 7280 or higher on a 24GB VRAM
NVIDIA 3090 GPU (as shown in Fig. 1).

It is important to note that different models have undergone varying degrees of additional optimization
in their official open-source implementations. Specifically, some open-source codes utilize existing
optimization tools, such as accelerate [9] or Flash Attention [3], which provide additional advantages
in terms of inference speed and memory usage performance. To ensure a fair comparison, in Table 20,
we did not use such additional optimizations in the implementation of RepLDM.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in §6, analyze their underlying causes, and discuss
potential directions for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the methodology and its underlying ideas
in §3. In addition, we present the full algorithmic pipeline using pseudocode in Appendix F.
We also commit to open-sourcing the code of our method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

31



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In Appendix F, we detail the method using pseudocode. Additionally, upon
acceptance, we will clean and release our code base and share it on GitHub. All data used in
this paper belongs to existing open source datasets and have been correctly cited to ensure
reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The proposed method requires no training. We provide a detailed explanation
of the inference and evaluation settings in §4.1. We determine the hyperparameters through
ablation studies, with details provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeated the experiments in Table 1 in Appendix G, computing the mean
and standard deviation, and also conducted additional replication experiments on the LAION
dataset [41].
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the resources needed to reproduce the experiments in §4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform to the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: the proposed method builds upon a pretrained generative model to produce
higher-resolution images in a training-free manner, and thus does not introduce any addi-
tional or specific societal impacts.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method does not rely on any specific publicly released model and requires
no specialized fine-tuning, and therefore does not necessitate additional safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all used resources such as implementations of baselines and data. We
release our work with CC-By 4.0 license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This study does not involve the release of any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: In the user study conducted in this work, we recruited volunteers to evaluate
the quality of the generated images. Detailed instructions were provided to the participants.
As the participants were volunteers, no compensation was involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: This study only required volunteers to evaluate the quality of generated images,
and therefore poses no particular potential risks. Furthermore, to protect the privacy of
participants’ preferences, all responses were anonymized and randomized, and no personal
information was collected.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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