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Figure 1: Comparison of ViT [1] (pretrained with MAE [2]) and our Mamba model (pretrained with
RoMA) in scene classification, change detection, and semantic segmentation. Mamba outperforms
ViT while being more computationally and memory efficient for high-resolution images. Notably,
Mamba-B achieves 1.56× faster inference and reduces GPU memory usage by 78.9% on 1248×1248
resolution images (6084 tokens per image) on a single NVIDIA 4090 GPU (batch size = 2).

Abstract

Recent advances in self-supervised learning for Vision Transformers (ViTs) have
fueled breakthroughs in remote sensing (RS) foundation models. However, the
quadratic complexity of self-attention poses a significant barrier to scalability, par-
ticularly for large models and high-resolution images. While the linear-complexity
Mamba architecture offers a promising alternative, existing RS applications of
Mamba remain limited to supervised tasks on small, domain-specific datasets. To
address these challenges, we propose RoMA, a framework that enables scalable
self-supervised pretraining of Mamba-based RS foundation models using large-
scale, diverse, unlabeled data. RoMA enhances scalability for high-resolution
images through a tailored auto-regressive learning strategy, incorporating two key
innovations: 1) a rotation-aware pretraining mechanism combining adaptive crop-
ping with angular embeddings to handle sparsely distributed objects with arbitrary
orientations, and 2) multi-scale token prediction objectives that address the extreme
variations in object scales inherent to RS imagery. Systematic empirical studies
validate that Mamba adheres to RS data and parameter scaling laws, with perfor-
mance scaling reliably as model and data size increase. Furthermore, experiments
across scene classification, changing detection, and semantic segmentation tasks
demonstrate that RoMA-pretrained Mamba models consistently outperform ViT-
based counterparts in both accuracy and computational efficiency. The source code
and pretrained models were released at RoMA.

1 Introduction

Over the past decade, advancements in remote sensing (RS) technology and more efficient data
acquisition have significantly enhanced applications in ecosystem monitoring [3], and natural disaster
management [4]. These applications rely on crucial model capabilities such as scene classification [5],
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object detection [6], change detection [7], and semantic segmentation [8]. However, training solely on
limited task-specific data restricts the scale and generalizability of current RS deep learning models.

Recent breakthroughs in self-supervised learning (SSL) [2, 9] have led to the development of RS
foundation models (RSFMs) [10, 11, 12, 13, 14, 15, 16] that offer robust feature representations and
excel across various remote sensing tasks. However, many of these tasks involve high-resolution
imagery—such as the 4,000×4,000 pixel images in the DOTA dataset for object detection. Most
RSFMs rely on Vision Transformer (ViT)-based attention architectures, whose quadratic complexity
limits their practicality on high-resolution data. To overcome this challenge, researchers are exploring
pretraining RSFMs on architectures with linear complexity, with Mamba [17] emerging as a promising
alternative.

The Mamba architecture is well-regarded in remote sensing for its efficient inference with high-
resolution images in downstream tasks [18, 19]. However, current Mamba-based studies are limited to
small-scale training datasets, restricting their exposure to diverse remote sensing data. This contrasts
with trends in ViT-based RSFMs, which use self-supervised pretraining to harness extensive unlabeled
data. Therefore, exploring self-supervised learning for Mamba to harness large-scale remote sensing
data—and thereby compete with ViT—presents a promising, yet underexplored, direction.

Autoregressive pretraining [20, 21] offers a principled solution to Mamba’s sequence continuity
challenges by representing images as 1-D sequences and employing next-token prediction. Its causal
token dependencies naturally align with Mamba’s unidirectional linear-time scanning, preserving
spatial coherence without the disruptions introduced by masking. While this approach has been
successfully applied to natural images [20, 21, 22], RS images present unique challenges that remain
largely unaddressed. We highlight three key challenges: (1) RS images often contain sparsely
distributed foreground objects amid complex backgrounds. (2) Unlike objects in natural images,
which typically maintain fixed orientations due to gravity, overhead RS images feature objects at
varying orientations. (3) The wide range of object sizes in RS images complicates the extraction of
effective representations. These challenges naturally lead to the question of whether Mamba-based
RSFMs can scale efficiently with both increasing model size and larger data volumes—mirroring the
performance improvements observed in self-supervised pretrained ViT architectures [23, 24].

To address these challenges, we propose Rotation-aware Multi-scale Autoregressive learning (RoMA),
a framework that enables scalable self-supervised pretraining of Mamba-based RSFMs using large-
scale, diverse, unlabeled data. Specifically, RoMA enhances scalability for high-resolution images
through a tailored autoregressive learning strategy, incorporating two key innovations: (1) a rotation-
aware pretraining mechanism combining adaptive cropping with angular embeddings to handle
sparsely distributed objects with arbitrary orientations. By identifying key regions for rotation
augmentation, it enhances rotation-invariant representation learning. Additionally, it embeds angle
information during rotated cropping and requires the model to predict angular changes during
autoregressive pretraining, further reinforcing rotation-invariant visual representations; and (2) multi-
scale token prediction objectives that address the extreme variations in object scales inherent to RS
imagery. By aggregating predicted token information across multiple spatial scales, this strategy helps
Mamba capture more complete and structurally robust object representations during autoregressive
pretraining.

Building on RoMA, we investigate its potential for pretraining Mamba-based RSFMs. Through
systematic empirical studies, we confirm that Mamba aligns with RS data and parameter scaling
laws, exhibiting reliable performance improvements as model and data size increase. Additionally,
experiments across scene classification, changing detection, and semantic segmentation tasks show
that RoMA-pretrained Mamba models consistently surpass its ViT-based counterparts in both accuracy
and computational efficiency.

The contributions of this study are as follows:

(1) We introduce RoMA, the first self-supervised autoregressive pretraining framework for
Mamba architectures in remote sensing, enabling efficient scaling to high-resolution RS im-
agery. RoMA validates that Mamba-based RSFMs follow scaling laws, achieving consistent
performance gains with larger models and datasets.

(2) We propose a dynamic rotation-aware mechanism that integrates adaptive region cropping
and angle-aware embeddings. By guiding the model to predict angular variations dur-
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ing autoregressive learning, it effectively addresses rotational diversity and sparse target
distributions, enhancing rotation-invariant feature learning.

(3) We design a multi-scale prediction objective that addresses the extreme variations in object
scales, enabling the model to learn robust object representations for downstream tasks.

2 Related Work

Remote Sensing Foundation Models. While vast amounts of RS data exist, much of it remains
unlabeled and thus inaccessible for supervised learning [25]. Recently, self-supervised learning
frameworks have been employed to learn representations for tasks such as scene classification,
object detection, and semantic segmentation, with methods falling into generation-based [2] and
contrastive learning-based [26] categories. Notably, GASSL [27] and CACo [28] utilize spatio-
temporal information, while SeCo [29] focuses on multiple Earth locations at different timestamps.
Beyond representation learning, rotation-aware detection has also been widely studied in RS. ReDet
[30] introduces a rotation-equivariant backbone, CSL [31] addresses angle boundary issues by
turning regression into fine-grained classification, and S2A-Net [32] enhances detection accuracy by
aligning features with rotated anchors. Most recent work in RS has primarily focused on Masked
Image Modeling (MIM), categorized by general image knowledge [33], large parameter scales [34],
spatio-temporal information [11], and multi-sensor data [35, 36, 37, 38], with multi-scale methods
[13, 14, 15] improving performance. A recent study further explores plain ViT as a remote sensing
foundation model by introducing a Rotated Varied-Size Attention (RVSA) mechanism to better
handle arbitrarily oriented objects [39]. MA3E [40] incorporates angle factors into MIM training.
In parallel, multimodal foundation models have emerged to bridge heterogeneous RS modalities.
CROMA [41] combines contrastive radar–optical pretraining with masked reconstruction to learn rich
multimodal RS representations, while AnySat [42] adopts a JEPA-based joint-embedding framework
with scale-adaptive encoders to unify various resolutions, scales, and modalities. Despite these
advances, most methods focus on ViT-based RSFMs and MIM pretraining, while the Mamba-based
autoregressive models remain unexplored.

Vision Mamba in Remote Sensing. Recently, the Mamba architecture has excelled in NLP and
has been adapted to the vision domain to address visual problems. Vision Mamba (Vim) [17] uses
Vim blocks, consisting entirely of Mamba layers, with forward and backward scanning to model
bidirectional representations. Vmamba [43] incorporates Visual State Space (VSS) blocks, combining
Mamba and 2D convolution layers, supported by a Swin Transformer [44]-like pyramid architecture.
The vision Mamba architecture has also expanded into remote sensing, producing various Mamba-
based projects, categorized into four types: classification, detection, segmentation, and others. For
classification, SSMamba [45] and SpectralMamba [18] handle hyperspectral data, while RSMamba
[46] focuses on visible light. Detection methods like ChangeMamba [19] and RSCaMa [47] focus
on change detection. Segmentation methods include Samba [48] and RS-Mamba [49], which use
Mamba alone. Despite the growing research in RS using Mamba, current work is limited to supervised
training on small-scale datasets, not fully exploiting the vast RS data.

Self-Supervised Learning in Vision. Inspired by the success of self-supervised learning in NLP,
visual self-supervised learning methods are thriving in three main categories: contrastive learning
[26, 50], autoregressive learning [20, 51, 52], and Masked Image Modeling (MIM) [9, 2]. Current
research on MIM focuses on regression targets and masking strategies. Various targets include
discrete tokens [53], HOG features [54], deep features [55], and frequencies [56], have already
been explored. However, MIM methods often face training issues while pretraining the Mamba
architeture [22]. Recently, autoregressive pretraining in the visual domain has been explored. Most
works, like VAR [21], have explored the application of autoregression in image generation. We are
more focused on the work of autoregression in self-supervised pretraining. iGPT [20] first highlighted
the potential of autoregressive pretraining as a general self-supervised visual representation strategy.
SAIM [51], RandSAC [57] and AIM [52] explored further. These works mainly focus on pretraining
the ViT series and have not explored pretraining the Mamba series. ARM [22] firstly explored the
compatibility of autoregressive pretraining with Mamba on the ImageNet [58] dataset, but it has not
considered the specific issues of the RS field, like the rotation-invariant representations and various
sizes information in RS images Notably, while ARM has explored models of different sizes on natural
images, it has not evaluated Mamba’s autoregressive pretraining performance across varying data
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scales. In the RS field, we are the first to establish the relationships between Mamba’s pretraining
performance with data volume, and model size .

3 Method
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Figure 2: Comparison between our autoregressive pretraining strategy and the standard MAE
method. (1) RoMA encodes all patches using a Mamba encoder, whereas MAE encodes only a
randomly sampled subset. (2) RoMA predicts the next token in a sequence to capture continuity,
while MAE only reconstructs masked patches.

3.1 Preliminaries

Autoregressive Model. Considering a sequence of discrete tokens x = (x1, x2, . . . , xN ), where
xn ∈ [S] is an integer from a vocabulary of size S. The next-token autoregressive model posits that the
probability of observing the current token xn depends only on its preceding tokens (x1, x2, . . . , xn−1).
This unidirectional token dependency assumption enables the factorization of the sequence x’s
likelihood as follows:

p(x1, x2, . . . , xN ) =

N∏
n=1

p(xn | x1, x2, . . . , xn−1). (1)

Training an autoregressive model pϕ involves optimizing pϕ(xn | x1, x2, . . . , xn−1) over a dataset.
This process, known as the next-token prediction, allows the trained pϕ to generate new sequences.

MAE-based Pretraining of Mamba. Previous work [10, 16, 11, 15, 13] primarily used MAE-based
methods for pretraining Remote-Sensing Fundamental Models (RSFMs), where ViT is served as their
visual backbones in often.

3.2 RoMA: Rotation-aware Multi-scale Autoregressive learning

We propose the RoMA autoregressive pretraining framework for the Mamba architecture in RS field.
Specially, as shown in the Figure 3, we extend the iGPT [20] series with a KV cache-based prediction
method. The Mamba-Encoder processes the entire image to compute the Key and V alue for all
tokens. Then we calculate the learnable query vector from the Key and V alue, and compute the loss
between the Query and the target ground truth. Building on the autoregressive pretraining structure
for natural images, RoMA introduces two key contributions: an adaptive rotation encoding strategy
and a multi-scale prediction strategy.

3.2.1 Auto-regressive Pre-training of Mamba on RS Imagery

Disadvantages of MAE-based Pre-training of Mamba. First, we compare properties of general
visual pre-training tasks and RS tasks, together with reflection on why MAE-based pre-training are
suboptimal choice towards RS imagery data:

• Explosion of visual tokens on high-resolution RS data. As informed by Section 1, high-
solution RS imagery exhibits numerous visual tokens. In contrast, the quadratic complexity
of ViT-based MAT pre-training protocols is computational infeasible towards increasing
visual tokens in high-resolution RS tasks (see detailed comparisons on speed, GPU usage
and accuracy in Figure. 1).
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Figure 3: Overview of the RoMA Pretraining Pipeline. The input image is first divided into patches,
and high-value patches are selected for random rotation using the Adaptive Rotation Encoding Strat-
egy. These patches are then tokenized and processed by the Mamba encoder. The encoded features
undergo autoregressive next-token prediction, followed by a multi-scale strategy that computes loss
at different scales for gradient updates.

• Disruption of MAE on Visual Tokens in Mamba’s Architecture. To be specific, MAE
learns semantic representations by a first-masking-then-reconstructing pipeline. However,
we observe that the mask operation in MAE disrupts between adjacent tokens, i.e., breaking
sequential orders among tokens. As illustrated in Figure 2, the mask operation conflicts with
the linear scanning operation embodied in Mamba, which aggregates temporally related
tokens but not randomly related tokens.

Advantage of Autoregressive Pre-training of Mamba. Autoregressive pre-training aligns naturally
with the sequential nature of Mamba’s architecture, which processes input tokens in a temporally
ordered manner. Specifically, autoregressive modeling constructs image patches sequentially and
predicts the next token based on previous context, mirroring Mamba’s token-by-token scanning
mechanism. This architectural alignment facilitates more coherent temporal dependencies and better
token transition modeling, allowing Mamba to learn more structured and semantically meaningful
representations. Therefore, the autoregressive training paradigm not only complements Mamba’s
design but also enhances its ability to model spatial continuity and visual context in remote sensing
imagery.

3.2.2 Adaptive Rotation Encoding Strategy

Rotation-Invariant Pre-training is critical for RS Data. As shown in Figure 4, RS images
contain redundant airport runway pixels, and varying airplane angles lead to different postures
and shapes. RS images often contain redundant airport runway pixels, while airplanes appear at
various orientations, leading to different postures and shapes. Such directional diversity has been
extensively addressed in supervised change detection through rotation-equivariant or rotation-invariant
designs [30, 31, 32]. However,Autoregressive pretraining for natural images does not consider the
uneven, sparse information distribution and rotational invariance in RS images. For instance, as
shown in Figure 4, RS images contain redundant airport runway pixels, and varying airplane angles
lead to different postures and shapes. These unique characteristics prompt us to rethink how the
encoder can learn high knowledge density features with rotational invariance. In RoMA, we outline
an adaptive rotation encoding strategy to enhance autoregressive pretraining for remote sensing.
RoMA omits explicit angle prediction. Instead, angle embeddings introduce directional priors that
help the model learn rotation-invariant representations during pre-training, without supervision from
angle labels.

1. Split the input image.
2. Associate each patch xp with a score.
3. Selecting the patch (16×16) with the highest score.
4. Compute all 96×96 candidate boxes containing the patch and select the one with the highest
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value.
5. Compare the 96×96 patch to the image-wide patch mean. If it exceeds the mean, select it;
otherwise, proceed to 64×64 patches until one surpasses the mean.

We then detail each step outlined above for rotation-invariant encoding strategy: (1) Step 1 of
ARES: We split the input image. x ∈ RH×W×C into N = (H ×W )/p2 non-overlapping patches
xp ∈ RN×(p2C), where p is the patch size, (H,W ) is the size of the input image, and C is the
number of channels; (2) Step 2 of ARES: We associate each patch xp with a score, computed via a
efficient feature descriptor F , e.g., LBP [59], and then select the token with the highest values; (3)
Step 3 of ARES: Let tokentop denote the selected token. Then, centered on the patch represented
by tokentop, we expand its size to obtain a larger, more suitable region. (4) Step 4 of ARES: After
extracting a square token region with an edge length of L = {96, 64, 32}, we compute its average
feature value and compare it with the average feature value of each patch in the original image; (5)
Step 5 of ARES: If tokenL has a higher average feature value, it is identified as a high-value region
and proceeds to the rotation step. Otherwise, a smaller L is selected, and step 4 is reapplied. This
process repeats up to three times until a region with a higher average feature value than the original
image is reached.

or
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Figure 4: Illustration of the Adaptive Rotation Encoding
Strategy. (a) Pipeline of the Adaptive Rotation Encoding
Strategy. LBP refers to Local Binary Pattern. (b) Random
patch selection for rotation without adaptive selection. The
random approach in (b) disrupts object information in the RS
image.

Migrating Information Loss. The
selected patch is cropped to generate
diverse rotated remote sensing scenes,
while potential information loss on the
edge pixels might occur. To mitigate
this, we follow MA3E [40] and apply
center cropping to retain the inscribed
square (marked in yellow) within the
largest inscribed circle. This region,
oriented in any direction, replaces the
original scene and introduces explicit
angular variations. In addition to po-
sitional embeddings, we also incor-
porates learnable angle embeddings
shared across patches within the ro-
tated crop, i.e., served as implicit
cues, aiding the model perceive angu-
lar changes while distinguishing them
from the background.

Finally, the Adaptive Rotation Encod-
ing Strategy processes the image before feeding it into the Mamba-based encoder for representation
learning. RoMA follows the standard Mamba architecture [22] without modifications, focusing purely
on pretraining Mamba for RS field. While architectural improvements could enhance performance
and efficiency, RoMA prioritizes pretraining strategies, leaving further Mamba optimizations to future
research.

3.2.3 Multi-scale Prediction Strategy

Images are continuous 2D signals. To apply autoregressive pretraining via next-token prediction, two
steps are required: (1) Convert images into discrete tokens. (2) Define them as a one-dimensional
sequence for unidirectional modeling. Methods like iGPT [20] and VAR [21] tackle these challenges
by slicing images into segments and arranging them into a feature sequence in a specified one-
dimensional order.

However, as discussed in Section 1, directly applying this method to RS images fails to consider
key factors. Unlike natural images, which focus on visual semantic understanding, RS images focus
on surface measurement information [60]. Arbitrarily disrupting spatial relationships in RS images
leads to fundamentally different interpretations. For example, token x(i,j) and its neighbors x(i±1,j),
x(i,j±1) are closely related due to planar surface measurements. As seen in Figure 2, the token x(i,j)
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(a) Data Volume Scaling

Error bars represent 95% 

confidence intervals

Error bars represent 95% 

confidence intervals

(b) Model Size Scaling

Figure 5: Scaling with Data Volume and Model Size. Each experiment was conducted three
times, and the average was reported as the final result. (a) We showcase the Mamba-Base model’s
performance on three downstream tasks after RoMA pretraining with different data scales. (b) We
compare the performance of various Mamba model sizes on three downstream tasks, all pretrained
with 4 million data using RoMA. Details on pretraining and downstream task configurations are
provided in Section 4.

representing the part of plane is closely related to vertical neighboring tokens and some distant vertical
tokens. The unidirectional flattening of autoregressive methods compromises surface information
representation in RS images. Therefore, we introduce a multi-scale prediction strategy to mitigate the
effects of unidirectional flattening.

The Mamba-based encoder generates key and value feature representations for each token. During
decoding, we apply cross-attention with token-level causal masking to sequentially predict tokens,
ensuring each token relies only on previously observed ones. The decoder performs autoregressive
prediction at the token level. After the decoder generates the reconstructed outputs, the autoregressive
module aligns them with the corresponding regions of the original image for supervision. The
reconstruction quality is optimized using the mean squared error (MSE) loss between the predicted
and original pixel values.

Building on MSE loss function, we concatenate token representations from each decoder block at a
higher scale following a predefined raster order. A fully connected multi-layer perceptron (MLP) then
reconstructs the pixel values of the next block. Notably, xk ∈ R16×16, while at a higher scale, spatial
aggregation results in yn ∈ Rs×s. s is the pixel size value of larger scale. The formula is as follows:

ℓ(θ) =
1

K − 1

K∑
k=2

∥x̂k(θ;x<k)− xk∥22 +
λ

N − 1

N∑
n=2

∥ŷn(θ; y<n)− yn∥22 (2)

where θ represents the network parameters, N is the number of cluster blocks in an image, yn is the
ground truth pixel value of the n-th cluster block, and ŷn(θ; y<n) denotes the reconstructed value
based on θ and preceding tokens (y<n), K is the number of all tokens in an image, xk denotes the
ground truth pixel value of the k-th token, and x̂k(θ;x<k) is the reconstructed value based on the
network parameters (θ) and preceding tokens (x<k) in the sequence. The parameter λ regulates the
contribution of the MSE loss from higher-scale cluster blocks to the overall loss.

3.3 Scaling Mamba-based RSFMs

Table 1: The configuration of different architec-
ture variants.

Model Block Width Depth Param.(M)

ViT-T Attention+MLP 192 12 5.7
Mamba-T Mamba+MLP 192 12 5.3

ViT-S Attention+MLP 384 12 22
Mamba-S Mamba+MLP 384 12 21

ViT-B Attention+MLP 768 12 86
Mamba-B Mamba+MLP 768 12 85

ViT-L Attention+MLP 1024 24 307
Mamba-L Mamba+MLP 1024 24 297

To investigate the scaling potential of the self-
supervised pretrained Mamba architecture for
developing powerful RSFMs. With RoMA, we
analyze the relationships between Mamba’s per-
formance with model parameters, and data scale.
The scalability of ViT architectures pretrained
with MAE has been well established, demon-
strating performance gains with increasing data
volume and model size [23, 24]. However, no
prior work has systematically examined whether
the Mamba architecture follows a similar trend
in RS field. For the first time, we explore Mamba’s scaling behavior in RS domain using the RoMA
pretraining method.
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Table 2: Results for scene classification, change detection, and semantic segmentation. “TR"
represents the ratio of training data. ⋆ indicates results from MA3E [40] and MTP [61]. † denotes
our reproduction with their official code.

Methods Publication Backbone Params

Scene Change Semantic
Classification Detection Segmentation

AID [62] UCM [63] OSCD [64] SpaceNetv1 [65]

OA(TR=50%) OA(TR=50%) F1 mF1

Natural Image pretraining
MoCo v3 ⋆ [50] ICCV’21 ViT-B 86M 78.72 38.34 - -
DINO ⋆ [26] ICCV’21 ViT-B 86M 78.51 40.04 - -
MAE ⋆ [2] CVPR’22 ViT-B 86M 84.21 52.75 - -
SimMIM ⋆ [9] CVPR’22 ViT-B 86M 83.19 51.48 - -
LoMaR ⋆ [66] Arxiv’22 ViT-B 86M 82.26 51.89 - -
MixMAE ⋆ [67] CVPR’23 Swin-B/W14 88M 81.53 50.63 - -
ARM †[22] ICLR’25 Mamba-B 85M 81.14 50.41 47.28 77.89

RS Image pretraining
SeCo ⋆ [29] ICCV’21 ResNet-50 25.6M 78.26 47.45 47.67 77.09
CACo ⋆ [28] CVPR’23 ResNet-50 25.6M 77.81 40.53 52.11 77.94
SatMAE ⋆ [11] NIPS’22 ViT-L 307M 55.10 34.28 52.76 78.07
ScaleMAE ⋆ [13] ICCV’23 ViT-L 307M 48.46 28.19 - -
GFM ⋆ [33] ICCV’23 Swin-B 88M- 80.58 49.73 - -
RVSA ⋆ [10] TGRS’23 ViT-B+RVSA 86M 84.06 50.86 50.28 79.56
SatMAE++ † [15] CVPR’24 ViT-L 307M 85.98 55.72 53.10 79.21
MA3E ⋆ [40] ECCV’24 ViT-B 86M 85.86 55.69 - -

RoMA - Mamba-B 85M 87.36 59.45 55.63 79.50

Scaling with Data Volume: Mamba shows a clear performance boost on downstream tasks as the
pretraining data volume grows. We pretrain the Mamba-Base model with RoMA across various
data scales and evaluate its performance in the downstream tasks. As illustrated in Figure 5a, larger
datasets lead to significant improvements. Mamba-based RSFMs exhibit no significant performance
bottlenecks across a broad pretraining data scale from 62.5K to 4M, achieving data learning capa-
bilities on par with ViT-based RSFMs. We look forward to future advancements of data volume in
remote sensing, where larger datasets can further enhance Mamba-based RSFMs through our RoMA
pretraining framework.

Scaling with Model Size: Mamba’s performance also improves with increasing model size. We
conduct extensive pretraining on four model variants—Tiny, Small, Base, and Large—following
the configurations in our code. As shown in Figure 5b, larger models consistently achieve superior
results on downstream tasks. Although Mamba-Large surpasses Mamba-Base in AID dataset, its
performance gain remains limited, likely due to insufficient pretraining. With only 300 epochs on 4
million samples, the training may not be adequate for a 297M-parameter model. Due to experimental
constraints, we did not extend pretraining to 800 epochs as in MAE. The OSCD and SpaceNet
experiments are ongoing, with updates to follow. However, these results do not alter our key findings:
Mamba-based RSFMs pretrained with RoMA demonstrate performance gains as model parameters
scale. While this growth remains inconclusive in more large-scale experiments, we anticipate future
research will further explore Mamba’s scaling potential.

4 Experiments

We pretrain Mamba extensively using RoMA and assess its effectiveness across diverse downstream
tasks. Finally, we conduct thorough ablation studies on RoMA’s design choices.

Pretraining Setup. Our pretraining experiment setup largely follows ARM [22]. We train both the
Mamba-B on the OpticalRS-4M [16]. We adjust the input image to a size of 196× 196, with a patch
size of 16, using the AdamW optimizer and a cosine learning rate scheduler. The initial learning rate
is set to 1.5e-4, and batch size is set to 256, with a epoch of 400.

Downstream Tasks. We further evaluated RoMA across three key downstream tasks: scene clas-
sification, changing detection, and semantic segmentation. In addition to benchmarking against
ViT-based RSFMs, we compared RoMA with other pretraining methods for natural images. These
encompass methods leveraging contrastive learning and generative learning and autogressive pre-
training approaches, ARM [22]. The Mamba-B architectures strictly adhere to the simplest Mamba
design from ARM, without any modifications, allowing us to exhaustively test the advantages of the
RoMA pretraining framework.
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Table 3: Ablation study on the design choices of RoMA with Mamba-B backbone. We report the
top-1 accuracy (%). The default settings of RoMA are highlighted in grey.

(a) Main ablation. Adaptive Ro-
tation Encoding Strategy (ARE)
and Multi-scale Prediction Strategy
(MSP) significantly improve RoMA.

ARE MSP AID

OA (TR=20% ) OA (TR=50% )

69.59 76.80
✓ 71.70 78.00
✓ ✓ 72.69 79.16

(b) Feature Descriptor in Adaptive
Rotation Encoding Strategy. Local
Binary Pattern (LBP) measurement
outperforms the Wavelet Transform
and Histogram of Oriented Gradi-
ents (HOG).

Feature Descriptor AID

OA (TR=20% ) OA (TR=50% )

Wavelet 71.42 77.00
HOG 71.94 78.32
LBP 71.70 78.00

(c) Selecting Patch Size in Adaptive
Rotation Encoding Strategy. Three
layers is the most effective choice.

Patch Size AID

OA (TR=20% ) OA (TR=50% )

96 70.48 76.82
96-32 71.23 77.12

96-64-32 71.70 78.00

(d) Threshold for patch selection
in the Adaptive Rotation Encoding
Strategy is based on the image’s
overall average computed (Avg.)
from the Feature Descriptor.

Threshold AID

OA (TR=20% ) OA (TR=50% )

1.5×Avg. 68.33 72.39
0.5×Avg. 69.71 74.18
1.0×Avg. 71.70 78.00

(e) Coefficient λ. The variation of
the coefficient λ in Multi-scale Pre-
diction Strategy. λ balances autore-
gressive reconstruction and sparsity
regularization.

Coefficient λ AID

OA (TR=20% ) OA (TR=50% )

0.01 71.81 78.23
1.0 70.92 77.49
0.1 72.69 79.16

(f) Various Scales choices in Multi-
scale Prediction Strategy. Experi-
ments were conducted using the stan-
dard 16×16 patch as a baseline, with
additional combinations at multiples
of 2–6.

Multi-scale Prediction Strategy AID

OA (TR=20% ) OA (TR=50% )

2×+4×+6× 63.17 71.34
2×+4× 68.06 74.74
4×+6× 67.81 74.32

4× 72.46 78.72
6× 72.69 79.16

Scene Classification. By freezing the model’s parameters and fine-tuning only the final fully
connected (FC) layer, linear probing effectively demonstrates its feature extraction ability. Since
full-parameter fine-tuning already achieves over 99% performance on classification datasets, like
AID [62], we prefer linear probing rather than fine tuning. We use two scene classification datasets:
AID [62] and UCM [63], with training details, including the train-test split ratio, following [10, 13].
Evaluation is based on overall accuracy (OA). The results in Table 2 show RoMA’s competitive
performance compared to other pretraining methods.

Change Detection. We used the OSCD [64] dataset consisting of RGB images for change detection.
Following previous works [61], we kept the experimental setups consistent, using UNet [68] as the
decoder. On the OSCD dataset, our method outperforms ARM [22] and other methods that overlook
rotational invariance and information sparsity and varying object size issues in RS.

Semantic Segmentation. We further evaluate the pretrained model on semantic segmentation
tasks, using common remote sensing datasets: SpaceNetv1 [65]. Our implementation follows [61],
using UperNet [69] as the segmentation framework. However, in pixel-level tasks, Mamba-based
RSFMs show less pronounced advantages compared to other downstream tasks. We attribute this to
RoSA’s autoregressive pretraining, which prioritizes multi-scale patch-based targets over pixel-level
prediction.

Ablation Study. Due to resource constraints, we conducted the ablation experiments using the
MillionAID [70] dataset and trained for 400 epochs. Table 3a presents the performance of RoMA’s
two main contributions, with ARM as the baseline. The experiment shows a significant gain in
feature extraction capability. Tables 3b and 3c adding the Adaptive Rotation Encoding Strategy on
the baseline. Table 3b comparing the effects of different Feature Descriptors. We believe the Feature
Descriptor method can be further optimized without affecting the Adaptive Rotation Encoding
Strategy’s effectiveness. Table 3c evaluates patch sizes for rotation, showing that various sizes
improve performance. Tables 3d, 3e, and 3f examine the Multi-scale Prediction Strategy. The
parameter and threshold selections are shown in Tables 3d and 3e, while Table 3f presents the
performance of aggregating spatial features from multiple scales. Our results indicate that adding
excessive multi-scale information doesn’t guarantee improved performance; instead, using only
large-scale aggregated information along with the original 16×16 patch data yields better results.

Table 4: Peak GPU memory usage (MB) across
different input resolutions.

Resolution 768 1024 1248 1520 2048 3072 4096

RoMA-Base 2693 4504 6526 9434 16934 37485 66357
ViT-Base 4229 11726 24531 52106 OOM OOM OOM

Table 5: Inference speed (samples/sec) across
different input resolutions.

Resolution 768 1024 1248 1520 2048 3072 4096

RoMA-Base 24.98 15.91 11.43 7.86 4.37 2.00 1.15
ViT-Base 22.11 9.94 4.99 2.57 OOM OOM OOM
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5 Further Analyses

Scalability to Ultra-High-Resolution Inputs. To further examine RoMA’s scalability, we evaluated
it on inputs ranging from 768× 768 to 4096× 4096. Both RoMA-Base and ViT-Base were tested
for GPU memory usage and inference speed on a single NVIDIA A100 (batch size = 1). As shown in
Table 4 and Table 5, RoMA scales stably up to 4096×4096, while ViT-Base fails beyond 2048×2048.
These results further verify RoMA’s computational efficiency and suitability for ultra-high-resolution
remote sensing imagery.

Ability to Learn Small Targets. To further analyze RoMA’s ability to capture local information,
we evaluate its performance on small-object categories in the iSAID dataset [71]. We compare
UperNet [69] with different backbones, following the RingMo [72] fine-tuning protocol. As shown
in Table 6.Our method achieves the highest overall mIoU and also shows notable improvements on
small-object classes, especially Small Vehicle (average width 15 pixels), where RoMA surpasses
all other backbones. These results suggest that the proposed adaptive region cropping strategy
effectively increases the visibility of small foreground objects during pretraining, allowing the model
to learn more discriminative representations.

Table 6: Fine-tuning performance on iSAID [71] (following RingMo [72] settings).

Method Backbone mIoU Ship (332 px) Small Vehicle (152 px) Swimming Pool (342 px) Plane (532 px)

UperNet IMP-ResNet-50 61.9 65.9 48.8 44.5 83.8
UperNet SeCo-ResNet-50 57.2 63.9 44.8 9.3 83.3
UperNet RSP-ResNet-50 61.6 64.2 47.5 43.8 82.8
UperNet ViT-B+RVSA 63.8 68.9 51.9 46.7 85.6
UperNet ViTAE-B+RVSA 63.5 69.6 51.9 47.5 85.4
UperNet RingMo 67.2 73.5 51.2 48.9 85.7
UperNet RoMA-B (Ours) 67.4 73.8 53.7 51.8 86.0

Table 7: Foreground object capture
rate on SpaceNet V1 [65].

Cropping Strategy Accuracy (%)

Random Cropping 38.56
Top-k Adaptive Region Selection (Ours) 75.09

Effectiveness of Top-k Region Selection. To further
validate the effectiveness of the top-k token selection
mechanism, we conducted an additional experiment on the
SpaceNet V1 [65] building segmentation dataset. This ex-
periment aims to examine whether the proposed adaptive
region cropping can consistently capture target regions
compared with random cropping under the same resolution settings. As shown in Table 7, our method
achieves a foreground capture accuracy of 75.09%, significantly higher than the 38.56% of random
cropping. These results demonstrate that the top-k strategy effectively preserves informative regions,
leading to more reliable semantic representations for autoregressive modeling.

Table 8: Comparison between pixel-
space and token-space reconstruction
loss.

Pretraining Loss Type UCM-55 (%) AID-55 (%)

RoMA-Base (Pixel Space) 52.39 80.34
RoMA-Base (Token Space) 56.67 81.72

Feasibility of Token-space Reconstruction Loss. To
evaluate the flexibility of RoMA, we compared pixel-
space and token-space reconstruction losses. Following
BEiT [53] and CAE [73], the token-space loss was com-
puted using a frozen CLIP [74] teacher, where the student
predicted its latent features through a lightweight MIM
head. As shown in Table 8, token-space loss consistently outperforms pixel-space loss on UCM and
AID, indicating its stronger semantic representation capability and the adaptability of the RoMA
framework to diverse pretraining objectives.

6 Conclusion
We introduce RoMA, the first self-supervised autoregressive framework to scale Mamba-based foun-
dation models for RS. By leveraging large-scale, diverse, unlabeled data, RoMA enables scalable
self-supervised pretraining of Mamba-based RS models. Extensive experiments across scene classifi-
cation, changing detection, and semantic segmentation show that RoMA-pretrained Mamba models
consistently outperform ViT-based counterparts. Additionally, these models achieve significant
efficiency improvements, reducing GPU memory consumption by 78.9% and accelerating inference
speed by 1.56× at 1,248×1,248 resolution, while maintaining linear computational scaling. Our
findings also provide new insights into Mamba’s scaling laws, demonstrating consistent performance
gains with increasing data volume and model size, highlighting its potential for large-scale Earth ob-
servation tasks. Limitations. The current RoMA framework is evaluated mainly on optical imagery,
and future work will extend it to multi-source remote sensing data (e.g., SAR and hyperspectral) .
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide analysis for each theoretical result presented in the paper, including
formulas where necessary and visualizations when appropriate.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental results are reproducible. Detailed information is provided in
the appendix. We also plan to open-source our dataset and code to further contribute to the
community.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide detailed descriptions of the dataset and experimental setup in the
paper. Due to time constraints and submission size limits, the data and code cannot be
included at this stage, but we commit to open-sourcing all datasets and code as soon as
possible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All results are reproducible, with details in the appendix. We will also open-
source our dataset and code to support the community.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conducted extensive experiments in strict accordance with prior work in
the field and commit to open-sourcing our code to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Similar to previous work, we used 16–24 A100 GPUs as computing resources.
Variations in computational resources do not affect our experimental results. Detailed
information is provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly adhered to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the limitations of our work and directions for future research in the
final section of the paper.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We did not collect any potentially sensitive data from the internet. All provided
data comply with established protocols in the remote sensing imagery community, ensuring
there are no security concerns.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data, models, and API utilized in this paper are publicly available and
appropriately cited. The license and terms of use are properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide a new dataset, which will be released in the future for use by the
research community.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We only used LLMs to assist with writing, complying with the LLM policy.
For benchmark evaluation, MLLMs were employed as assessment tools, following a widely
accepted evaluation protocol in this field.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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