
Improving Language Agents through BREW:
Bootstrapping expeRientially-learned Environmental

knoWledge

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Model (LLM)-based agents are increasingly applied to tasks re-1

quiring structured reasoning, tool use, and environmental adaptation, such as data2

manipulation, multistep planning, and computer-use automation. However, despite3

their versatility, current training paradigms for model weight optimization methods,4

like PPO and GRPO, remain relatively impractical with their high computational5

overhead for rollout convergence. In addition, the resulting agent policies are diffi-6

cult to interpret, adapt, or incrementally improve. To address this, we investigate7

creating and refining structured memory of experiential learning of an agent from8

its environment as an alternative route to agent optimization. We introduce BREW9

(Bootstrapping expeRientially-learned Environmental knoWledge), a framework10

for agent optimization for downstream tasks via KB construction and refinement.11

In our formulation, we introduce an effective method for partitioning agent memory12

for more efficient retrieval and refinement. BREW uses task graders and behavior13

rubrics to learn insights while leveraging state-space search for ensuring robustness14

from the noise and non-specificity in natural language. Empirical results on real15

world, domain-grounded benchmarks – OSWorld and τ2Bench – show BREW16

achieves 10− 20% improvement in task precision, 10− 15% reduction in API/-17

tool calls leading to faster execution time, all while maintaining computational18

efficiency on par with base models. Unlike prior work where memory is treated as19

static context, we establish the KB as a modular and controllable substrate for agent20

optimization – an explicit lever for shaping behavior in a transparent, interpretable,21

and extensible manner.22

1 Introduction23

Large Language Model (LLM) based agents are rapidly being deployed for structured reasoning,24

tool use, and autonomous interaction in real-world environments [16]. From computer-use and25

spreadsheet automation to software engineering pipelines, these agents drive tasks such as multi-step26

planning, data manipulation, and adaptive workflows [21, 13, 32, 2, 19]. For example, a language27

agent might help automate a multi-step workflow like collecting data from different sources, cleaning28

or validating it, and then uploading it onto a dedicated server, all while adjusting its plan if the29

format or structure of the data changes unexpectedly [31, 35, 25, 3]. Yet, despite these successes, top-30

performing agents generally score underwhelmingly on challenging real-world benchmarks—well31

behind human experts, who routinely exceed 70% success rates [34, 4, 27, 18]. As an example,32

consider the following scenario:33

Submitted to Multi-Turn Interactions in Large Language Models Workshop @ NeurIPS 2025

{agent-alignment,correctness}

 “Would the behavior and edits
of the agent remain robust if the
same task were performed on a
slightly different system setup?”

…

{agent-alignment,correctness}

 “Would the behavior and edits
of the agent remain robust if the
same task were performed on a
slightly different system setup?”

…

Example Rubric:
"How well does the agent handle
unexpected states or failures in the
environment? Does it adapt or
recover?"

Human-Validated
Rubrics and Task-

specific Grader

1

User Query:
"Can you enable the
'Do Not Track' feature
in Chrome to enhance
my online privacy?"

Agent Trajectory:
__file_diff__

__file_diff__
agent response…

Trajectory Generation

LLM
tools

planning

memory

Integrator Agent

trajectories guided for
alignment and correctness

Optimal
KB StateReflector Agent

Learned Insights +
Concept on trajectory

Concepts
Pack and

unpack archival
files

Create Charts
from Data

"Export as PDF"

…

Zip and unzip
fileslemmatization

2

Compress and
Extract Files
Compress and

Extract Files

Meta Concept List

Compress and
Extract Files

semantic
deduplication

{concept, insights}
Compress and Extract Files:

To compress:
Select files or folder → Right-click
→ Compress…
Choose .zip or .tar.gz → Set output
name → Confirm location
…

4

3

KB refinement

Expand-and-
Gather MCTS

5

Bootstrapping process

mapping

𝐌𝐂𝐓𝐒 𝒅𝟏(𝒔𝒊) 𝐌𝐂𝐓𝐒 𝒅𝑲(𝒔𝒊)

…

Figure 1: BREW architecture overview using examples from the OSWorld dataset. Step 1 indicates
the trajectory generation process with agent alignment to human-validated rubrics and correctness
using task-specific grader. Steps 2–4 indicate the Reflector Agent, which learns key concepts and
corresponding insights from trajectories. Step 5 indicates the Integrator Agent, which integrates
knowledge from the Reflector Agent to bootstrap the KB. We introduce Expand-and-Gather MCTS
to further find the best KB configuration as the KB is iteratively refined through reward-guided
optimization.

A computer-use agent in an Ubuntu environment tasked with automating software installa-
tion across multiple sessions. In its first encounter, it struggles through a 47-step process:
opening the wrong package manager, executing redundant dependency checks, and making
23 API calls to complete what could be a 6-step workflow. When presented with a similar
installation task in the next session, the agent repeats the same inefficient exploration – as
if encountering the problem for the first time. A human user, by contrast, would likely have
a recollection from internalized memory of the optimal sequence after the first attempt,
recognizing the environmental patterns and tool combinations that lead to success.

34

This scenario illustrates a fundamental limitation of current language agents: despite their impressive35

capabilities in reasoning and tool use, they lack the ability to accumulate and apply experiential36

knowledge across task sessions. Each interaction begins from a blank slate, forcing agents to37

repeatedly explore the same action spaces and rediscover the same solutions [9]. Real-world tasks38

like long horizon multi-stage automation demand more than just “reactive” [33] tool loops. They39

require persistent & interpretable learnings from past experiences - what works, what fails and why.40

To close this gap, recent work has explored learning agent behavior using model weight optimiza-41

tion [23, 22, 24], where agents are trained to maximize success across a wide variety of tool-use42

episodes. However, while conceptually sound, this suffers from practical limitations. First, it requires43

expansive exploration over large rollout spaces to converge, especially in domains where tasks are44

diverse, goals are sparsely defined, and intermediate feedback is noisy or delayed. Second, the45

resulting policies are often opaque—difficult to interpret, revise, or debug—limiting their real-world46

deployability. Finally, these policies are tightly coupled to the task distributions they were trained on,47

making it difficult to adapt or incrementally improve them when downstream requirements shift.48

In contrast, others have explored learning of knowledge onto a memory module that remains attached49

to an agent. These existing memory-augmented agents can be broadly classified into either ones which50

(i) store only transient trajectory contexts that vanish between episodes like Mem0 [7, 29], or (ii)51

2

embed high-level notes directly in the prompt such as MetaReflection [10] and GEPA[1]. While the52

latter often do not retain actionable details for future simple tasks, neither of these approach supports53

modular updates, fine-grained retrieval, or transparent inspection of what the agent “knows.” [28].54

Leveraging learnings from both camps, we introduce BREW (Bootstrapping experientially-learned55

environmental knowledge), a framework that incrementally constructs and refines a knowledge base56

(KB) a structured collection of concept-level documents in natural language, directly from an agent’s57

past interactions. This KB then serves as a persistent memory for the agent to retrieve knowledge in58

future executions to improve precision and efficiency outcomes. Our key contributions are–59

• Novel experience-driven KB construction. We propose a technique for leveraging agent’s past60

interaction trajectories to generate uniquely-partitioned concept-level KB documents. This process61

is guided by rubrics and task-specific graders which ensures that memories are both semantically62

aligned with task objectives and human-interpretable.63

• State-space search for memory optimization. We formalize the selection and update of KB entries64

as a state search problem and introduce an efficient reward-guided learning scheme, Expand-and-65

Gather Monte Carlo Tree Search (EG-MCTS), that learns to prioritize the most impactful memories66

for robust, multi-step reasoning.67

• State-of-the-art results. On domain-grounded benchmarks including OSWorld and τ2Bench,68

BREW achieves significant gains of in the range of 10− 20% towards task precision as well as69

10− 15% fewer steps leading to faster execution, while maintaining memory and compute costs70

comparable to base LLMs.71

2 Preliminary & Related Work72

Agent Learning from Demonstrations Recent work has leveraged LLMs to isolate reusable73

skills through interactive decomposition: one method distills sub-goals from expert trajectories into74

hierarchical planning and execution policies [11], and another synthesizes executable functional75

abstractions for advanced mathematical reasoning via program induction [14]. These approaches76

focus on structured skill extraction from LLM-guided interactions, yet remain reliant on static77

decomposition or offline synthesis. In contrast, BREW dynamically constructs and refines an78

experiential memory—learning necessary semantic fragments via rollout-generated insights and79

structured knowledge-base search (MCTS)—to support long-horizon, memory-augmented planning.80

Agentic Memory The concept of providing agents with controllable memory has a rich history.81

[17]. Memory mechanisms are attracting more and more attention lately [20, 26, 28, 7, 30, 12]. These82

works focus towards storing relevant context in a structured format like graph or a tree so as to RAG83

over it. Despite their effectiveness these methods perform well for most cases. However, when the84

queries are ambiguous, requires multi-hop reasoning and long range comprehension these techniques85

struggle to perform the tasks [12]. In contrast to prior works BREW uses a state search to explore86

possible memory states. This allows BREW to select the memory state where the reward during87

exploration is highest making it more robust to ambiguous queries and long range comprehension.88

We employ MCTS [8] as a state search algorithm to explore the potential states of the memory by89

expanding to new and potentially different states of memory based on same interactions. We discuss90

the state search process more formally in Section 3.3.91

3 BREW: Architecture92

This section describes our proposed Bootstrapping expeRientially-learned Environmental knoWledge93

model, BREW, which constructs and iteratively refines a KB using trajectory insights guided94

by human-validated general-purpose agent behavior metrics, task-specific evaluation, and latent95

insight generation. We introduce a novel decomposition the problem of learning the optimal KB by96

partitioning memory as local documents associated with semantic concepts, and formulate the KB97

learning problem as a state space search by proposing Expand-and-Gather Monte Carlo Tree Search98

(EG-MCTS). Figure 1 provides an architecture overview of BREW, and Algorithm 1 describes99

pseudocode.100

3

3.1 Trajectory Generation101

Given the training dataset, we generate full-length trajectories, hereby referred to as rollouts, for102

each query using an LLM-powered agent conditioned on its associated KB. At initialization, the KB103

is empty, and the LLM is used with a decoding temperature of 0 to ensure deterministic behavior.104

Further details on training and test splits are in Experiments Section. Each rollout is evaluated using a105

correctness grader, which assigns a binary label: success or failure and a qualitative rubric assessment106

against a set of human-validated general-purpose agent behavior rubrics [6] (Step 1 in Figure 1).107

3.2 Reflector and Integrator Agents108

Reflector Agent: ReflAgent takes as input a rollout with its rubric and correctness labels, and109

outputs sentence-level insights with mapped concepts:110

{concepts, insights} = ReflAgent({rollout, eval}). (1)

Examples of concept–insight pairs appear in Step 2 of Figure 1.111

Concept Deduplication: Concept–insight pairs are annotated independently per rollout, often112

producing overlapping or paraphrased concepts. We address this via semantic clustering (Steps 3–4,113

Figure 1; Algorithm 1, line 3): contextual embeddings for each concept are generated using an LLM,114

clustered, and each insight is mapped to its cluster representative. Details appear in Algorithms ??115

and ?? in Appendix ??.116

Integrator Agent: IntegAgent incrementally builds and refines KB documents {d(si)} ∈ D(si)117

during environment interaction. Instead of a centralized memory, the KB is partitioned into local118

documents, each tied to a meta concept. This design enables (1) efficient, context-specific retrieval;119

(2) modular updates with minimal interference; and (3) natural alignment with task semantics, as120

deduplicated meta concepts capture meaningful behavioral abstractions. Unlike prior work assuming121

flat memory or dialogue histories, this structure is well-suited for long-horizon, procedural tasks122

where behaviors cluster around discrete skills.123

The KB is dynamically populated: concepts central to the dataset receive more updates, shaping124

memory around frequent behaviors. At each state, for meta concept k, IntegAgent updates its125

document dk via126

dk(si+1)← IntegAgent(k, insightsk, dk(si)). (2)
To reduce LLM variance and improve consistency, we use the Expand-and-Gather MCTS (EG-MCTS)127

method (Figure 2).128

Formally, the KB at state si is the union of all concept-localized documents:129

D(si) =
⋃
k∈K

{dk(si)}, (3)

where K is the set of all meta concepts and dk(si) is the document for concept k at state si.130

3.3 Expand-and-Gather MCTS for Optimal KB Search131

We start by creating a set of meta-concepts after deduplicating concepts extracted by ReflAgent132

using the first set of trajectory rollouts. We freeze this meta-concept set K, and use it to initialize a133

KB with an empty document per concept k ∈ K.134

We model the problem of finding the optimal KB D∗ as a search problem in the state space of all135

possible KBs D. To simplify this state search, we model KB D as a collection of concept level136

documents. This modeling allows us to break down the larger search space into a collection of137

simpler document level search problems for each concept k to find the optimal document d∗k. We then138

construct the optimal KB D∗ by combining all optimal documents d∗k for each concept k as follows:139

D∗ =
⋃
∀k

{d∗k} (4)

Notably, even though we are modeling document level search as independent optimization problems,140

each document in the KB is not independent of the others. For example, an agent can retrieve any141

4

Algorithm 1 BREW: Bootstrapping Experientially-learned Environmental Knowledge
Require: Training samplesQtrain, eval samplesQeval, rubrics, iterations M , candidates per expansion

h
Ensure: Optimized KB D∗

Initialization
1: D0 ← ∅
2: B ← GENERATEINSIGHTS(Qtrain,D0, rubrics)
3: K ← DEDUPLICATECONCEPTS(B) ▷ Initial concept set
4: for each k ∈ K do
5: d0k ← INTEGAGENT(k, Ik,∅)
6: Initialize treek with root node d0k
7: end for
8: Dcurrent ←

⋃
k∈K{d0k} ▷ Initial KB

EG-MCTS Optimization
9: for t = 1 to M do ▷ Parallel expansion across concepts

10: for each k ∈ K do
11: sk ← SELECTBESTNODE(treek) ▷ UCT selection
12: Dbest ←

⋃
k′∈K{dbest

k′ } ▷ Current best docs
13: EXPANDNODE(sk, k, h, Dcurrent, Dbest, treek)
14: end for ▷ Update current best documents
15: for each k ∈ K do
16: dbest

k ← best document in treek
17: end for
18: Dcurrent ←

⋃
k∈K{dbest

k }
19: end for
20: return Dcurrent

Time Complexity: O(|Qtrain| · TLLM +M · |K| · h · Tagent)

document in the KB during inference and this retrieval making it hard to assess the impact of changing142

a document in isolation. To solve this we propose Expand-and-Gather MCTS (EG-MCTS), which143

enables searching these disjoint state spaces concurrently using parallel MCTS explorations that are144

synced after each iteration. To achieve this we perform node expansions in the respective search145

spaces independently but condition reward calculation and insight generation on a running optimum146

KB state. Each iteration of EG-MCTS can be broken down two phases:147

Expand Phase: During this stage, for each search tree, we pick the best state s∗ and expand148

it concurrently. To perform this expansion the KB D(s∗) is constructed by including the current149

document dk(s∗) and the best (oracle) documents {d∗i }i ̸=t for all other positions. Thus, the KB at150

iteration t, 0 ≤ t ≤ E is defined as:151

Dt = dt ∪ d∗i:i ̸=t (5)
We use this KB D(si) to generate trajectory rollouts which are consumed by the ReflAgent to152

generate insights. We then use the IntegAgent to generate various updated variants of d∗k e.g.,153

dk(si), ..., dk(sj), where 0 ≤ i ≤ E and 0 ≤ j ≤ E. We then estimate a reward R for each of these154

newly generate states and update rewards of parent states using backpropagation.155

Gather Phase: During this stage, the current best states from each document’s MCTS tree are156

gathered together and distributed to every MCTS tree for reward calculation. This is important to157

1. Estimate rewards for each expanded state, and 2. Generate new insights for further node expansion.158

3.4 Reward-Guided Optimization159

This section describes BREW’s joint reward and loss optimization for learning an optimal KB.160

Reward Objective: Each document state is rewarded based on two complementary criteria: (i) how161

well the current document contributes to accurate downstream reasoning, and (ii) how retrievable162

it is in the context of a growing KB. Formally, the total reward at time step t is defined as:163

Rt = λcorr ·Rcorr
t + λret ·Rret

t (6)

5

𝐭𝐫𝐞𝐞𝐤

Search and Open Files
Purpose: Locate and open files
(documents, images, downloads) for
further work.

How-To:
- Launch File Manager (Nautilus) via
launcher, dock, or `Super + E`.
- Search: Press `Ctrl + F` or use the
search icon.
- Enter part or all of the filename
(wildcards like `*.pdf` work).
…

Search and Open Files

When to use: To find documents,
spreadsheets, images, or downloads for
editing, conversion, or attachment.

How to Perform
- Open File Manager (Nautilus) via
launcher or dock
- Press `Ctrl + F` or click the search
icon
- Enter part of the filename, full name,
or use wildcards (`*.pdf`, ̀ report*`)
…

𝒅𝒌(𝒔𝒊)

…

Search and Open Files

When to use: To find documents,
spreadsheets, images, or downloads for
editing, conversion, or attachment.

How to Perform
- Open File Manager (Nautilus) via
launcher or dock
- Press `Ctrl + F` or click the search
icon
- Enter part of the filename, full name,
or use wildcards (`*.pdf`, ̀ report*`)
…

𝒅𝒌(𝒔𝒊)

Node expansion at state 𝑠𝑖 for meta-concept 𝑘, 1 ≤ 𝑘 ≤ 𝐾.

Node
Expansion

𝒅𝒌(𝒔𝒋)

𝒅𝒌(𝒔𝒊+𝟏)

𝐭𝐫𝐞𝐞𝐤

Search and Open Files

Quick Reference Table:

+----------------------+-------------------------------+---------------------------+
| Task | Shortcut/Action | Tip |
+----------------------+-------------------------------+---------------------------+
Open File Manager	Launcher, Dock, Super + E	Pin to dock for speed
Search Files	Ctrl + F or Search icon	Use * as wildcard
Open File	Double-click or Right-click	"Open With" for choice
Fast Folder Access	Use sidebar in File Manager	Add favorites
+----------------------+-------------------------------+---------------------------+

𝐸 iterations of MCTS, such that 0 ≤ 𝑖 ≤ 𝐸, 0 ≤ 𝑗 ≤ 𝐸. State 𝑠𝑖 = 𝑐ℎ𝑖𝑙𝑑_𝑜𝑓(𝑠𝑝) and
𝑠𝑗 = 𝑐ℎ𝑖𝑙𝑑_𝑜𝑓 𝑠𝑝 for meta-concept 𝑘, 1 ≤ 𝑘 ≤ 𝐾.

Expand Phase

Gather Phase

Iterations E

Reward Estimation:
𝑅𝑐𝑜𝑟𝑟 + 𝑅𝑟𝑒𝑡

Expand Phase

…

Current best nodes from each
MCTS tree are expanded by

each MCTS node

Figure 2: Illustration of BREW’s KB optimization process using Expand-and-Gather MCTS with
OSWorld examples. In the Expand Phase, for each document k, we sample the best node from
treek using UCT and perfrom node expansion. Node rewards are estimated based on correctness
and retrievability. In the Gather Phase, the current best nodes from each tree are gathered per node,
and the objective function is optimized. The process is repeated during the next iteration of KB
refinement.

where Rcorr
t is the correctness reward, Rret

t is the retrieval reward, and λcorr, λret ∈ [0, 1] are scalar164

weights with λcorr + λret = 1.165

Correctness Reward: The correctness reward Rcorr
t evaluates the accuracy of the agent’s output166

over a held-out query set Q, when reasoning over the current KB Dt. It is defined as:167

Rcorr(dt|Dt) =
1

|Q|
∑
q∈Q

Evaltask(q, agent⊕Dt) (7)

where Evaltask is a task-specific evaluation function (e.g., question-answering accuracy, entailment168

correctness), and agent⊕Dt denotes the agent acting over the hybrid KB.169

Retrieval Reward: The retrieval reward Rret
t measures how effectively the current document dt170

can be retrieved from the current KB Dt. For a held-out query set Q, it is computed using the mean171

reciprocal rank (MRR):172

Rret(dt|Dt) =
1

|Q|
∑
q∈Q

MRRq(dt,Dt) (8)

This encourages documents that are not only helpful in reasoning but also easily retrievable via the173

retrieval model over Dt.174

4 Experimental Setup175

Datasets We evaluate BREW on three diverse benchmarks testing different aspects of interactive176

agent capabilities: OSWORLD for computer-use automation [27], τ2-Bench for tool use [5], and177

SPREADSHEETBENCH for data manipulation [18].178

1. OSWorld: This benchmark tests multimodal agents on real-world computer tasks across 10179

applications. We use GTA1-7B, a state-of-the-art computer-use agents with BREW. Tasks are180

evaluated using 134 custom scripts that verify final application states.181

2. τ2-Bench: This benchmark evaluates conversational agents on multi-turn tool-use scenarios across182

Telecom, Retail, and Airline domains. We test o4-mini-based tool-calling agent, constructing183

BREW KBs for every domain.184

6

3. SpreadsheetBench: This benchmark evaluates agents on real-world spreadsheet manipulation,185

spanning both cell-level and sheet-level tasks. It contains 912 authentic user instructions paired186

with 2,729 test cases (3̃ per instruction), sourced from Excel forums and blogs. Spreadsheets187

include diverse formats with multi-table sheets (35.7%) and non-standard tables (42.7%). We test188

o4-mini using a Python tool-calling agent, and enhance it with by adding an embedding based189

Retrieval over the BREW KB generated over a small held-out train set of 30 samples.190

Baselines We compare BREW against two widely used experiential memory approaches, Cognee1191

and Agent-Mem [30], both of which serve as established baselines for AI memory evaluation. Cognee192

is an open-source AI memory engine that employs a graph-plus-vector memory architecture through193

an Extract–Connect–Learn pipeline, enabling agents to construct cross-document and cross-context194

connections entirely from previously available trajectories. In contrast, Agent-Mem provides a195

scalable memory layer for dynamically extracting and retrieving information from conversational data,196

with enhanced variants incorporating graph-based memory representations. While Cognee primarily197

emphasizes cross-document relational reasoning, Agent-Mem focuses on scalable personalization for198

conversational agents.199

Other Experimental Configs: For all experiments, we use GPT-4.1-2025-04-14 as the base200

LLM with expansion width e = 3, max depth k = 3, and balanced reward weights λcorr = λret = 0.5.201

During MCTS node selection, we use the UCT [15] for balancing exploration and exploitation Full202

experimental details are provided in the Appendix.203

5 Analysis & Discussion204

In this section, we present findings from our evaluation of BREW. For more details on qualitative205

insights and discussion you may refer to the supplementary material.206

Variations with State Search Strategy BREW performs a search across possible KB states using207

MCTS. We compare different state search strategies to determine the relative trade-offs:208

1. Iterative Refinement: In this strategy we generate one version of each document to generate an209

initial KB, followed by a round of evals. We then use the aggregator agent to refine the documents210

over the newly learned insights. We repeat this step multiple times up to a maximum number of211

refinements. Note that in contrast to MCTS, in this strategy we do not perform node expansions212

and rather explore a path in the search tree.213

2. Greedy Search: In this strategy we greedily pick the best state during each node expansion and214

only explore the sub-tree within it. This is in contrast to MCTS where, we explore different states215

using the UCT algorithm that balances exploration and exploitation.216

Table 1 presents how MCTS achieves consistent performance gains across all benchmarks. These217

represent 1-5% improvements over alternative search strategies across tasks. Iterative refinement’s218

poor performance reveals core limitations in the integrator agent feedback incorporation- which can219

be attributed to inherent stochasticity in LLMs. This makes state exploration especially important for220

textual optimization tasks like ours. We present a detailed analysis on how varying MCTS parameters221

result in different final states in appendix.222

5.1 Trends across Sub-Tasks223

BREW learns recipes from sub-trajectories in OSWorld. Figure 3 shows that BREW(BREW)224

improves success rates in 5 out of 10 OSWorld categories, achieving absolute gains of 4–16%225

while maintaining performance parity in the remaining categories (Chrome, Gimp, LibreOffice226

Calc, LibreOffice Impress, OS). The largest improvements appear in text-processing applications227

(LibreOffice Writer: 14% → 24%, Thunderbird: 38% → 54%) and multimedia tools (VLC:228

20% → 27%), with moderate gains in multi-application and development environments. Even in229

settings with limited improvements in task correctness, BREWconsistently reduces execution length230

by 14–23 steps, highlighting more efficient planning.231

1github.com/topoteretes/cognee

7

https://github.com/topoteretes/cognee

Method OSWorld τ2 Bench SpreadsheetBench
GTA1-7B o4-mini o4-mini

Baseline 44.20 56.63 44.30
Cognee 46.70 57.71 42.10
Agent-Mem 43.83 52.69 42.00
BREW-Iterative 46.13 57.34 42.98
BREW-Greedy 45.55 59.14 45.94
BREW-MCTS 47.56 59.14 46.80

Table 1: Comparison of models under different evaluation setups, including Baseline model and
BREW augmented model. We report task success rate for OSWorld, ratio of independent tasks that
succeeded for τ2 Bench, and the 1st test case pass rate for SpreadsheetBench.

Ch
ro

me
Gim

p

lib
re

off
ice

_ca
lc

lib
re

off
ice

_im
pr

es
s os

vs
co

de

mult
i_a

pp vlc

lib
re

off
ice

_w
rit

er

th
un

de
rb

ird

Category

0

20

40

60

80

100

Su
cc

es
s

Ra
te

 (
%

)

48
42 44 44

68 67

43

20
14

38

48
42 44 44

68 71

49

27 24

54

 Improvement

OSWorld: Success Rate Comparison and Efficiency Gains

Baseline Success Rate
BREW Success Rate
Step Reduction

0

5

10

15

20

25

Av
er

ag
e

St
ep

 R
ed

uc
ti

on
(S

uc
ce

ss
fu

l C
as

es
)

16
18

16

20 20

17

23

14

23

Figure 3: The bar plot represents the category-wise success rate over various tasks in the OSWorld
dataset over the GTA1-agent, whereas the line plot demonstrates the reduction in the number of steps
for the successful cases. Note that even in scenarios where the KB doesn’t help increase the success
rate, it significantly reduces the number of steps needed to succeed.

This pattern suggests that BREW’s architectural enhancements are particularly effective for tasks232

requiring complex sequential reasoning and inter-application coordination, while preserving baseline233

robustness in domains constrained by intrinsic task complexity.234

A qualitative analysis of the knowledge bases (KBs) constructed by BREWfurther supports this235

finding. We observe that BREWcaptures and represents sub-trajectory characteristics in natural236

language, including application shortcuts, standard operating procedures, and strategies for localizing237

UI elements. Since many UI tasks share common sub-trajectories, this representation facilitates238

knowledge transfer across tasks within the same application. Moreover, BREWsubstantially reduces239

reliance on granular UI interactions: while the baseline GTA1 model executes approximately 19,000240

clicks and 17,821 keyboard actions, BREWsignificantly decreases this interaction complexity.241

BREW learns aggressive resolution strategies for τ2−Bench To evaluate robustness of BREW,242

we analyzed the distribution of failure modes across the τ2–retail dataset, focusing on four key error243

categories: Wrong Argument, Wrong Info, Wrong Decision, and Partially Resolve. Figure 4 presents244

a comparative chart for the baseline, BREW, Cognee and Agent-Mem[30].245

8

Overall, BREW demonstrated consistent improvements across most error types compared to the246

baseline and competing approaches. Specifically, BREW showed a notable reduction in “Wrong247

Argument” and “Wrong Decision” errors, indicating that it was better at capturing logical depen-248

dencies in retail dialogues and making accurate decisions.249

Interestingly, Partially Resolve errors were slightly higher for BREW than for Cognee, likely because250

BREW attempted more aggressive resolution strategies that occasionally failed to fully satisfy user251

queries. Cognee appears to capture richer factual details given its relatively lower Wrong Info errors,252

whereas Agent-Mem excels in tracking conversation state and decision accuracy, as reflected in its253

reduced Wrong Decision failures.254

Improvements in Task Efficiency We observe that overall, BREWenables agents to come to a255

correct response quicker.256

OSworld. Figure 3 demonstrates that BREW enables GTA1 to complete tasks more efficiently.257

Compared to the baseline GTA1 model’s average of ∼75 steps, the BREW-augmented model258

completes tasks 14% faster with an average of∼64 steps. Analyzing performance by outcome reveals259

that while step counts remain unchanged for failed cases, successful completions show a substantial260

39% (rel.) reduction in execution steps, indicating improved planning efficiency for achievable tasks.261

Wrong argument

Wrong info

Wrong decision

Partially resolve

Baseline
BREW

Cognee
AgentMem

Figure 4: Distribution of errors in τ2 Bench Retail

τ2Bench. Similarly, BREW reduces average262

conversation turns from 29.47 to 28.43 (-3.5%),263

while maintaining consistent step reductions264

across categories. Step reductions average 1.7265

steps for Retail and Telecom, but 3.1 steps for266

Airline, indicating greater efficiency gains in267

complex domains. Qualitative analysis sec-268

onds these numbers showing how knowledge269

base integration enables more direct task com-270

pletion paths and improved planning quality,271

though multi-turn interactions remain necessary272

for complex sub-tasks.273

SpreadsheetBench. While we observe a slight274

increase in the number of turns across the entire275

benchmark suite (4.5→ 5.4) in the case of the276

baseline versus BREW, an interesting pattern277

emerges in more than 82% of the cases the base-278

line and the BREW appended agent performs279

similarly with similar turn consumption. BREW leads to an improvement in 12% of the cases where280

the KB is able to address gaps in the baseline technique to enable the agent to go exploring further281

leading to positive outcomes with an average of 1 step increase in the interactions.282

6 Conclusions283

In this work, we explored an alternative approach to agent optimization by focusing on experiential284

knowledge retention rather than direct model fine-tuning. We introduced BREW, a framework that285

aims to construct and refine a structured, interpretable knowledge base from past agent interactions.286

By decomposing agent memory into concept-level documents and applying a state-search optimiza-287

tion strategy, BREW provides a modular and transparent substrate for memory formation. Our288

evaluations across OSWorld and τ2Bench benchmarks suggest that such structured memory can289

support measurable improvements in task success and efficiency, while maintaining manageable290

computational costs. Although the observed gains are promising, we recognize that BREW’s effec-291

tiveness is influenced by the quality and coverage of its training data. Future work could explore292

more adaptive and domain-general memory refinement techniques, as well as tighter integrations with293

ongoing agent planning. Ultimately, we hope this study encourages further investigation into more294

interpretable, memory-driven approaches to language agent development—especially in real-world295

environments where long-term consistency and adaptability are essential.296

9

References297

[1] Lakshya A. Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,298

Arnav Singhvi, Herumb Shandilya, Michael J. Ryan, Meng Jiang, Christopher Potts, Koushik299

Sen, Alexandros G. Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, and Omar Khattab.300

Gepa: Reflective prompt evolution can outperform reinforcement learning. arXiv preprint301

arXiv:2507.19457, July 2025.302

[2] Anthropic. Introducing computer use, a new Claude 3.5 Sonnet, and Claude 3.5 Haiku, Octo-303

ber 2024. URL https://www.anthropic.com/news/3-5-models-and-computer-use.304

Accessed: 2025.305

[3] Yasharth Bajpai, Bhavya Chopra, Param Biyani, Cagri Aslan, Dustin Coleman, Sumit Gulwani,306

Chris Parnin, Arjun Radhakrishna, and Gustavo Soares. Let’s fix this together: Conversational307

debugging with github copilot. In 2024 IEEE Symposium on Visual Languages and Human-308

Centric Computing (VL/HCC), pages 1–12, 2024. doi: 10.1109/VL/HCC60511.2024.00011.309

[4] Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench:310

Evaluating conversational agents in a dual-control environment, 2025. URL https://arxiv.311

org/abs/2506.07982.312

[5] Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench:313

Evaluating conversational agents in a dual-control environment, 2025. URL https://arxiv.314

org/abs/2506.07982.315

[6] Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani.316

Rubicon: Rubric-based evaluation of domain-specific human ai conversations. In Proceedings317

of the 1st ACM International Conference on AI-Powered Software, AIware 2024, page 161–169,318

New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706851. doi:319

10.1145/3664646.3664778. URL https://doi.org/10.1145/3664646.3664778.320

[7] Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0:321

Building production-ready ai agents with scalable long-term memory. arXiv preprint322

arXiv:2504.19413, 2025.323

[8] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In324

Proceedings of the 5th International Conference on Computers and Games (CG 2006), pages325

72–83. Springer, 2006. doi: 10.1007/978-3-540-75538-8_7.326

[9] Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-327

manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for328

long-horizon tasks. The Forty-Second International Conference on Machine Learning, 2025.329

[10] Priyanshu Gupta, Shashank Kirtania, Ananya Singha, Sumit Gulwani, Arjun Radhakrishna,330

Gustavo Soares, and Sherry Shi. MetaReflection: Learning instructions for language agents331

using past reflections. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors,332

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,333

pages 8369–8385, Miami, Florida, USA, November 2024. Association for Computational334

Linguistics. doi: 10.18653/v1/2024.emnlp-main.477. URL https://aclanthology.org/335

2024.emnlp-main.477/.336

[11] Maryam Hashemzadeh, Elias Stengel-Eskin, Sarath Chandar, and Marc-Alexandre Cote. Sub-337

goal distillation: A method to improve small language agents, 2024. URL https://arxiv.338

org/abs/2405.02749.339

[12] Yuanzhe Hu, Yu Wang, and Julian McAuley. Evaluating memory in llm agents via incremental340

multi-turn interactions, 2025. URL https://arxiv.org/abs/2507.05257.341

[13] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and342

Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?343

In The Twelfth International Conference on Learning Representations, 2024. URL https:344

//openreview.net/forum?id=VTF8yNQM66.345

10

https://www.anthropic.com/news/3-5-models-and-computer-use
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://doi.org/10.1145/3664646.3664778
https://aclanthology.org/2024.emnlp-main.477/
https://aclanthology.org/2024.emnlp-main.477/
https://aclanthology.org/2024.emnlp-main.477/
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2507.05257
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

[14] Zaid Khan, Elias Stengel-Eskin, Archiki Prasad, Jaemin Cho, and Mohit Bansal. Executable346

functional abstractions: Inferring generative programs for advanced math problems. 2025.347

[15] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes348

Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006,349

pages 282–293, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-46056-350

5.351

[16] Xinzhe Li. A review of prominent paradigms for llm-based agents: Tool use, planning (including352

rag), and feedback learning. In Proceedings of the 31st International Conference on Compu-353

tational Linguistics (COLING), pages 9760–9779, Abu Dhabi, UAE, 2025. Association for354

Computational Linguistics. URL https://aclanthology.org/2025.coling-main.652.355

[17] Michael L. Littman. An optimization-based categorization of reinforcement learning environ-356

ments. 1993. URL https://api.semanticscholar.org/CorpusID:17988064.357

[18] Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang, Sijia Luo,358

Xi Wang, and Jie Tang. Spreadsheetbench: Towards challenging real world spreadsheet359

manipulation. Advances in Neural Information Processing Systems, 37:94871–94908, 2024.360

[19] OpenAI. Introducing Operator, January 2025. URL https://openai.com/index/361

introducing-operator/. Accessed: 2025.362

[20] Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and363

Joseph E. Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL https:364

//arxiv.org/abs/2310.08560.365

[21] Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,366

Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with367

native agents. arXiv preprint arXiv:2501.12326, 2025.368

[22] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and369

Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,370

2024. URL https://arxiv.org/abs/2305.18290.371

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal372

policy optimization algorithms. In Proceedings of the 34th International Conference on Machine373

Learning (ICML 2017), 2017. URL https://arxiv.org/abs/1707.06347.374

[24] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,375

Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of376

mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/377

2402.03300.378

[25] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.379

Reflexion: Language agents with verbal reinforcement learning. In Proceedings of the380

37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans,381

LA, USA, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/382

hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.383

[26] Yu Wang, Chi Han, Tongtong Wu, Xiaoxin He, Wangchunshu Zhou, Nafis Sadeq, Xiusi Chen,384

Zexue He, Wei Wang, Gholamreza Haffari, Heng Ji, and Julian McAuley. Towards lifespan385

cognitive systems, 2025. URL https://arxiv.org/abs/2409.13265.386

[27] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,387

Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan388

Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking389

multimodal agents for open-ended tasks in real computer environments. In A. Globerson,390

L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in391

Neural Information Processing Systems, volume 37, pages 52040–52094. Curran Associates,392

Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/393

5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.394

pdf.395

11

https://aclanthology.org/2025.coling-main.652
https://api.semanticscholar.org/CorpusID:17988064
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://arxiv.org/abs/2409.13265
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf

[28] Ran Xu, Yuchen Zhuang, Yue Yu, Haoyu Wang, Wenqi Shi, and Carl Yang. Rag in the wild: On396

the (in)effectiveness of llms with mixture-of-knowledge retrieval augmentation. arXiv preprint397

arXiv:2507.20059, 2025.398

[29] Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem:399

Agentic memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.400

[30] Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem:401

Agentic memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110.402

[31] Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and403

additional opinions. arXiv preprint arXiv:2306.02224, 2023. doi: 10.48550/arXiv.2306.02224.404

URL https://doi.org/10.48550/arXiv.2306.02224.405

[32] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik406

Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software407

engineering. Advances in Neural Information Processing Systems, 37:50528–50652, 2024.408

[33] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan409

Cao. React: Synergizing reasoning and acting in language models. In Proceedings of the410

11th International Conference on Learning Representations (ICLR 2023), 2023. URL https:411

//openreview.net/forum?id=WE_vluYUL-X.412

[34] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A bench-413

mark for tool-agent-user interaction in real-world domains. In NeurIPS (Workshops), 2024.414

State-of-the-art agents (e.g. GPT-4o) succeed on <50415

[35] Yuyan Zhou, Liang Song, Bingning Wang, and Weipeng Chen. Metagpt: Merging large416

language models using model exclusive task arithmetic. In Proceedings of the 2024 Conference417

on Empirical Methods in Natural Language Processing (EMNLP), pages 1711–1724, Miami,418

Florida, USA, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.419

emnlp-main.102.420

12

https://arxiv.org/abs/2502.12110
https://doi.org/10.48550/arXiv.2306.02224
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

	Introduction
	Preliminary & Related Work
	BREW: Architecture
	Trajectory Generation
	Reflector and Integrator Agents
	Expand-and-Gather MCTS for Optimal KB Search
	Reward-Guided Optimization

	Experimental Setup
	Analysis & Discussion
	Trends across Sub-Tasks

	Conclusions

