© ® N O g A~ W N =

23

24
25
26
27
28
29
30
31
32
33

Improving Language Agents through BREW:
Bootstrapping expeRientially-learned Environmental
knoWledge

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Language Model (LLM)-based agents are increasingly applied to tasks re-
quiring structured reasoning, tool use, and environmental adaptation, such as data
manipulation, multistep planning, and computer-use automation. However, despite
their versatility, current training paradigms for model weight optimization methods,
like PPO and GRPO, remain relatively impractical with their high computational
overhead for rollout convergence. In addition, the resulting agent policies are diffi-
cult to interpret, adapt, or incrementally improve. To address this, we investigate
creating and refining structured memory of experiential learning of an agent from
its environment as an alternative route to agent optimization. We introduce BREW
(Bootstrapping expeRientially-learned Environmental knoWledge), a framework
for agent optimization for downstream tasks via KB construction and refinement.
In our formulation, we introduce an effective method for partitioning agent memory
for more efficient retrieval and refinement. BREW uses task graders and behavior
rubrics to learn insights while leveraging state-space search for ensuring robustness
from the noise and non-specificity in natural language. Empirical results on real
world, domain-grounded benchmarks — OSWorld and 72Bench — show BREW
achieves 10 — 20% improvement in task precision, 10 — 15% reduction in API/-
tool calls leading to faster execution time, all while maintaining computational
efficiency on par with base models. Unlike prior work where memory is treated as
static context, we establish the KB as a modular and controllable substrate for agent
optimization — an explicit lever for shaping behavior in a transparent, interpretable,
and extensible manner.

1 Introduction

Large Language Model (LLM) based agents are rapidly being deployed for structured reasoning,
tool use, and autonomous interaction in real-world environments [[16]. From computer-use and
spreadsheet automation to software engineering pipelines, these agents drive tasks such as multi-step
planning, data manipulation, and adaptive workflows [21} [13} 132, [2,[19]]. For example, a language
agent might help automate a multi-step workflow like collecting data from different sources, cleaning
or validating it, and then uploading it onto a dedicated server, all while adjusting its plan if the
format or structure of the data changes unexpectedly [31} 350125 13]]. Yet, despite these successes, top-
performing agents generally score underwhelmingly on challenging real-world benchmarks—well
behind human experts, who routinely exceed 70% success rates [34} 4, |27, [18]]. As an example,
consider the following scenario:

Submitted to Multi-Turn Interactions in Large Language Models Workshop @ NeurIPS 2025

34

35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
50
51

Trajectory Generation

Pack and
unpack archival
files

User Query:
"Can you enable the
'Do Not Track' feature
in Chrome to enhance
my online privacy?"

Compress and
Extract Files

Meta Concept List

mapping

semantic
deduplication

MCTS(d1(s;)) MCTS(dk(s:)

X @ Create Charts

Agent Trajectory: from Data Expand-and-

_ file_diff__ N AP {concept, insights} Gather MCTS
lemmatization files Compress and Extract Files: -
: To compress: v
M .) . Selectfiles or folder > Right-click v
Export as PDF > Compress... KB refinement v

agent response... Choose .zip or .tar.gz > Set output

Learned Insights + name > Confirm location

—file_diff__ Concept on trajectory

Itrajector'\es guided for

alignment and correctness Bootstrapping process
' \ A A
| Example Rubric: ! .l L J '. .l L I. "
| "How well does the agent handle 1 v
1 unexpected states or failures in the 1 u
1 environment? Does it adapt or 1
1 recover?" 1
Optimal
Reflector Agent Integrator Agent
N 4 rag gratorAg KB State
Human-Validated

Rubrics and Task-
specific Grader

Figure 1: BREW architecture overview using examples from the OSWorld dataset. Step 1 indicates
the trajectory generation process with agent alignment to human-validated rubrics and correctness
using task-specific grader. Steps 2—4 indicate the Reflector Agent, which learns key concepts and
corresponding insights from trajectories. Step 5 indicates the Integrator Agent, which integrates
knowledge from the Reflector Agent to bootstrap the KB. We introduce Expand-and-Gather MCTS
to further find the best KB configuration as the KB is iteratively refined through reward-guided
optimization.

A computer-use agent in an Ubuntu environment tasked with automating software installa-
tion across multiple sessions. In its first encounter, it struggles through a 47-step process:
opening the wrong package manager, executing redundant dependency checks, and making
23 API calls to complete what could be a 6-step workflow. When presented with a similar
installation task in the next session, the agent repeats the same inefficient exploration — as
if encountering the problem for the first time. A human user, by contrast, would likely have
a recollection from internalized memory of the optimal sequence after the first attempt,
recognizing the environmental patterns and tool combinations that lead to success.

This scenario illustrates a fundamental limitation of current language agents: despite their impressive
capabilities in reasoning and tool use, they lack the ability to accumulate and apply experiential
knowledge across task sessions. Each interaction begins from a blank slate, forcing agents to
repeatedly explore the same action spaces and rediscover the same solutions [9]]. Real-world tasks
like long horizon multi-stage automation demand more than just “reactive” [33]] tool loops. They
require persistent & interpretable learnings from past experiences - what works, what fails and why.

To close this gap, recent work has explored learning agent behavior using model weight optimiza-
tion [24]], where agents are trained to maximize success across a wide variety of tool-use
episodes. However, while conceptually sound, this suffers from practical limitations. First, it requires
expansive exploration over large rollout spaces to converge, especially in domains where tasks are
diverse, goals are sparsely defined, and intermediate feedback is noisy or delayed. Second, the
resulting policies are often opaque—difficult to interpret, revise, or debug—Ilimiting their real-world
deployability. Finally, these policies are tightly coupled to the task distributions they were trained on,
making it difficult to adapt or incrementally improve them when downstream requirements shift.

In contrast, others have explored learning of knowledge onto a memory module that remains attached
to an agent. These existing memory-augmented agents can be broadly classified into either ones which
(i) store only transient trajectory contexts that vanish between episodes like MemO [7, 29]], or (ii)

52
53
54

55
56
57
58
59

60
61
62
63

64
65
66
67

68
69
70
71

72

73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91

92

93
94
95
96
97
98
99
100

embed high-level notes directly in the prompt such as MetaReflection [10] and GEPA[1]]. While the
latter often do not retain actionable details for future simple tasks, neither of these approach supports
modular updates, fine-grained retrieval, or transparent inspection of what the agent “knows.” [28]].

Leveraging learnings from both camps, we introduce BREW (Bootstrapping experientially-learned
environmental knowledge), a framework that incrementally constructs and refines a knowledge base
(KB) a structured collection of concept-level documents in natural language, directly from an agent’s
past interactions. This KB then serves as a persistent memory for the agent to retrieve knowledge in
future executions to improve precision and efficiency outcomes. Our key contributions are—

* Novel experience-driven KB construction. We propose a technique for leveraging agent’s past
interaction trajectories to generate uniquely-partitioned concept-level KB documents. This process
is guided by rubrics and task-specific graders which ensures that memories are both semantically
aligned with task objectives and human-interpretable.

* State-space search for memory optimization. We formalize the selection and update of KB entries
as a state search problem and introduce an efficient reward-guided learning scheme, Expand-and-
Gather Monte Carlo Tree Search (EG-MCTS), that learns to prioritize the most impactful memories
for robust, multi-step reasoning.

* State-of-the-art results. On domain-grounded benchmarks including OSWorld and 72Bench,
BREW achieves significant gains of in the range of 10 — 20% towards task precision as well as
10 — 15% fewer steps leading to faster execution, while maintaining memory and compute costs
comparable to base LLMs.

2 Preliminary & Related Work

Agent Learning from Demonstrations Recent work has leveraged LLMs to isolate reusable
skills through interactive decomposition: one method distills sub-goals from expert trajectories into
hierarchical planning and execution policies [[11], and another synthesizes executable functional
abstractions for advanced mathematical reasoning via program induction [14]. These approaches
focus on structured skill extraction from LLM-guided interactions, yet remain reliant on static
decomposition or offline synthesis. In contrast, BREW dynamically constructs and refines an
experiential memory—Ilearning necessary semantic fragments via rollout-generated insights and
structured knowledge-base search (MCTS)—to support long-horizon, memory-augmented planning.

Agentic Memory The concept of providing agents with controllable memory has a rich history.
[L7]. Memory mechanisms are attracting more and more attention lately [20, 261 28| [7, 130} [12]. These
works focus towards storing relevant context in a structured format like graph or a tree so as to RAG
over it. Despite their effectiveness these methods perform well for most cases. However, when the
queries are ambiguous, requires multi-hop reasoning and long range comprehension these techniques
struggle to perform the tasks [[12]. In contrast to prior works BREW uses a state search to explore
possible memory states. This allows BREW to select the memory state where the reward during
exploration is highest making it more robust to ambiguous queries and long range comprehension.
We employ MCTS [8]] as a state search algorithm to explore the potential states of the memory by
expanding to new and potentially different states of memory based on same interactions. We discuss
the state search process more formally in Section

3 BREW: Architecture

This section describes our proposed Bootstrapping expeRientially-learned Environmental knoWledge
model, BREW, which constructs and iteratively refines a KB using trajectory insights guided
by human-validated general-purpose agent behavior metrics, task-specific evaluation, and latent
insight generation. We introduce a novel decomposition the problem of learning the optimal KB by
partitioning memory as local documents associated with semantic concepts, and formulate the KB
learning problem as a state space search by proposing Expand-and-Gather Monte Carlo Tree Search
(EG-MCTS). Figure [I] provides an architecture overview of BREW, and Algorithm [I] describes
pseudocode.

101

102
103
104
105
106
107

108

109
110

111

112
113
114
115
116

117
118
119
120
121
122
123

124
125
126

127
128

129

130

131

132
133
134

135
136
137
138
139

140
141

3.1 Trajectory Generation

Given the training dataset, we generate full-length trajectories, hereby referred to as rollouts, for
each query using an LLM-powered agent conditioned on its associated KB. At initialization, the KB
is empty, and the LLM is used with a decoding temperature of O to ensure deterministic behavior.
Further details on training and test splits are in Experiments Section. Each rollout is evaluated using a
correctness grader, which assigns a binary label: success or failure and a qualitative rubric assessment
against a set of human-validated general-purpose agent behavior rubrics [6] (Step 1 in Figure IJ).

3.2 Reflector and Integrator Agents

Reflector Agent: ReflAgent takes as input a rollout with its rubric and correctness labels, and
outputs sentence-level insights with mapped concepts:

{concepts, insights} = Ref1Agent({rollout, eval}). (D
Examples of concept—insight pairs appear in Step 2 of Figure|I]

Concept Deduplication: Concept—insight pairs are annotated independently per rollout, often
producing overlapping or paraphrased concepts. We address this via semantic clustering (Steps 3—4,
Figure [T} Algorithm[T] line 3): contextual embeddings for each concept are generated using an LLM,
clustered, and each insight is mapped to its cluster representative. Details appear in Algorithms ??
and ?? in Appendix 2?.

Integrator Agent: IntegAgent incrementally builds and refines KB documents {d(s;)} € D(s;)
during environment interaction. Instead of a centralized memory, the KB is partitioned into local
documents, each tied to a meta concept. This design enables (1) efficient, context-specific retrieval;
(2) modular updates with minimal interference; and (3) natural alignment with task semantics, as
deduplicated meta concepts capture meaningful behavioral abstractions. Unlike prior work assuming
flat memory or dialogue histories, this structure is well-suited for long-horizon, procedural tasks
where behaviors cluster around discrete skills.

The KB is dynamically populated: concepts central to the dataset receive more updates, shaping
memory around frequent behaviors. At each state, for meta concept k, IntegAgent updates its
document d, via

di(siy1) < Integhgent(k, insights;, di(s;)). 2)
To reduce LLM variance and improve consistency, we use the Expand-and-Gather MCTS (EG-MCTS)
method (Figure [2)).

Formally, the KB at state s; is the union of all concept-localized documents:
D(si) = (J {de(s0)}, €)
kex

where K is the set of all meta concepts and dy(s;) is the document for concept k at state s;.

3.3 Expand-and-Gather MCTS for Optimal KB Search

We start by creating a set of meta-concepts after deduplicating concepts extracted by Ref1Agent
using the first set of trajectory rollouts. We freeze this meta-concept set K, and use it to initialize a
KB with an empty document per concept k& € .

We model the problem of finding the optimal KB D* as a search problem in the state space of all
possible KBs D. To simplify this state search, we model KB D as a collection of concept level
documents. This modeling allows us to break down the larger search space into a collection of
simpler document level search problems for each concept % to find the optimal document d};. We then
construct the optimal KB D* by combining all optimal documents dj, for each concept & as follows:

D" = J{di} “

Vk

Notably, even though we are modeling document level search as independent optimization problems,
each document in the KB is not independent of the others. For example, an agent can retrieve any

142
143
144
145
146
147

148
149
150
151

152
153
154
155

156
157
158

159

161

162
163

Algorithm 1 BREW: Bootstrapping Experientially-learned Environmental Knowledge
Require: Training samples Qy,in, eval samples Qey,, rubrics, iterations M, candidates per expansion

Ensure: Optimized KB D*
Initialization
D() — g
B < GENERATEINSIGHTS (Qyain, Do, rubrics)
K <~ DEDUPLICATECONCEPTS(B3) > Initial concept set
for each k € K do
d) + INTEGAGENT(k, I}, @)
Initialize treey, with root node dY)

end for
Deurrent — Urerc{dp} > Initial KB
EG-MCTS Optimization

9: fort =1to M do > Parallel expansion across concepts
10: for each k € K do
11: Sk < SELECTBESTNODE(treey,) > UCT selection
12: Drest + Uprexc {dis™ > Current best docs
13: EXPANDNODE(Sg, k, h, Deurrent> DPhests tree€)
14: end for > Update current best documents
15: for each k € K do
16: d* <— best document in treey,
17: end for
18: Deurrent < Uke]c{dzeﬁ}
19: end for
20: return Dyent

PR R

Time Complexity: O(|Qin| - Tiim + M - |K] - h - Thgent)

document in the KB during inference and this retrieval making it hard to assess the impact of changing
a document in isolation. To solve this we propose Expand-and-Gather MCTS (EG-MCTS), which
enables searching these disjoint state spaces concurrently using parallel MCTS explorations that are
synced after each iteration. To achieve this we perform node expansions in the respective search
spaces independently but condition reward calculation and insight generation on a running optimum
KB state. Each iteration of EG-MCTS can be broken down two phases:

Expand Phase: During this stage, for each search tree, we pick the best state s* and expand
it concurrently. To perform this expansion the KB D(s*) is constructed by including the current
document dj(s*) and the best (oracle) documents {d; };» for all other positions. Thus, the KB at
iteration ¢, 0 < ¢ < E'is defined as:

Dt - dt U d;kl#t (5)
We use this KB D(s;) to generate trajectory rollouts which are consumed by the Ref1Agent to
generate insights. We then use the IntegAgent to generate various updated variants of dj; e.g.,
di(8i), ..., dr(s;), where 0 < i < Fand 0 < j < E. We then estimate a reward R for each of these
newly generate states and update rewards of parent states using backpropagation.

Gather Phase: During this stage, the current best states from each document’s MCTS tree are
gathered together and distributed to every MCTS tree for reward calculation. This is important to
1. Estimate rewards for each expanded state, and 2. Generate new insights for further node expansion.

3.4 Reward-Guided Optimization

This section describes BREW’s joint reward and loss optimization for learning an optimal KB.

Reward Objective: Each document state is rewarded based on two complementary criteria: (i) how
well the current document contributes to accurate downstream reasoning, and (ii) how retrievable
it is in the context of a growing KB. Formally, the total reward at time step ¢ is defined as:

Rt =)\corr . Rgorr + /\rel . R;et (6)

164
165

166
167

168
169

170
171
172

173
174

175

176
177
178

179
180
181

182
183
184

di(si)
Search and Open Files

When to use: To find documents,

spreadsheets, images, or downloads for

editing, conversion, or attachment.

How to Perform
- Open File Manager (Nautilus) via
launcher or dock

-Press " Ctrl+ F* or click the search
icon

- Enter part of the filename, full name,
oruse wildcards (" %pdf*, *report*")

Expand Phase di(s)

Search and Open Files
Purpose: Locate and open files
(documents, images, downloads) for
further work.

How-To:
- Launch File Manager (Nautilus) via
launcher, dock, or *Super +E .

- Search: Press " Ctrl + F* or use the
searchicon.

- Enter part or all of the filename
(wildcards like * %pdf* work).

Iterations E

1 Reward Estimation:
RCOTT 4 Rt

Gather Phase

treey

E iterations of MCTS, suchthat 0 < i < E, 0 < j < E. State s; = child_of (s,) and
sj = child_of (s,) for meta-conceptk, 1 < k < K.
di(si) di(si+1)

Search and Open Files

When to use: To find documents,
spreadsheets, images, or downloads for
editing, conversion, or attachment.

#4# Search and Open Files
P Current best nodes from each

MCTS tree are expanded by
each MCTS node

4

Expand Phase

(pumd

Quick Reference Table:

How to Perform
- Open File Manager (Nautilus) via
tauncher or dock

-Press " Ctrl+ F* or click the search
icon

- Enter part of the filename, full name,
or use wildcards (" *pdf*, " report*")

Node expansion at state s; for meta-conceptk, 1 < k < K.

Figure 2: Illustration of BREW’s KB optimization process using Expand-and-Gather MCTS with
OSWorld examples. In the Expand Phase, for each document &, we sample the best node from
treer, using UCT and perfrom node expansion. Node rewards are estimated based on correctness
and retrievability. In the Gather Phase, the current best nodes from each tree are gathered per node,
and the objective function is optimized. The process is repeated during the next iteration of KB
refinement.

where R is the correctness reward, R is the retrieval reward, and Ao, At € [0, 1] are scalar
weights with Acorr + Aret = 1.

Correctness Reward: The correctness reward R;{°" evaluates the accuracy of the agent’s output
over a held-out query set @, when reasoning over the current KB D;. It is defined as:

1
al Z Evalyg (¢, agent & D) ™)
q€eQ

where Eval,q is a task-specific evaluation function (e.g., question-answering accuracy, entailment
correctness), and agent @ D, denotes the agent acting over the hybrid KB.

RCOI‘T(dt |Dt) —

Retrieval Reward: The retrieval reward R} measures how effectively the current document d,
can be retrieved from the current KB D;. For a held-out query set Q, it is computed using the mean
reciprocal rank (MRR):

1
Rret(dt|Dt) _

=15 Z MRR,(d;, D;) (8)

qeQ

This encourages documents that are not only helpful in reasoning but also easily retrievable via the
retrieval model over D;.

4 Experimental Setup

Datasets We evaluate BREW on three diverse benchmarks testing different aspects of interactive
agent capabilities: OSWORLD for computer-use automation [27], 72-Bench for tool use [5], and
SPREADSHEETBENCH for data manipulation [[18]].

1. OSWorld: This benchmark tests multimodal agents on real-world computer tasks across 10
applications. We use GTAI-7B, a state-of-the-art computer-use agents with BREW. Tasks are
evaluated using 134 custom scripts that verify final application states.

2. 72-Bench: This benchmark evaluates conversational agents on multi-turn tool-use scenarios across
Telecom, Retail, and Airline domains. We test o4-mini-based tool-calling agent, constructing
BREW KBs for every domain.

185
186
187
188
189
190

191
192

194
195
196
197
198
199

201
202
203

204

205
206

207
208

209
210
211
212
213

214
215
216

217
218
219
220
221
222

223

224
225
226
227
228
229

231

3. SpreadsheetBench: This benchmark evaluates agents on real-world spreadsheet manipulation,
spanning both cell-level and sheet-level tasks. It contains 912 authentic user instructions paired
with 2,729 test cases (3 per instruction), sourced from Excel forums and blogs. Spreadsheets
include diverse formats with multi-table sheets (35.7%) and non-standard tables (42.7%). We test
o4-mini using a Python tool-calling agent, and enhance it with by adding an embedding based
Retrieval over the BREW KB generated over a small held-out train set of 30 samples.

Baselines We compare BREW against two widely used experiential memory approaches, Cogneeﬂ
and Agent-Mem [30]], both of which serve as established baselines for Al memory evaluation. Cognee
is an open-source Al memory engine that employs a graph-plus-vector memory architecture through
an Extract—Connect-Learn pipeline, enabling agents to construct cross-document and cross-context
connections entirely from previously available trajectories. In contrast, Agent-Mem provides a
scalable memory layer for dynamically extracting and retrieving information from conversational data,
with enhanced variants incorporating graph-based memory representations. While Cognee primarily
emphasizes cross-document relational reasoning, Agent-Mem focuses on scalable personalization for
conversational agents.

Other Experimental Configs: For all experiments, we use GPT-4.1-2025-04-14 as the base
LLM with expansion width e = 3, max depth k£ = 3, and balanced reward weights Acorr = Aret = 0.5.
During MCTS node selection, we use the UCT [[15]] for balancing exploration and exploitation Full
experimental details are provided in the Appendix.

5 Analysis & Discussion

In this section, we present findings from our evaluation of BREW. For more details on qualitative
insights and discussion you may refer to the supplementary material.

Variations with State Search Strategy BREW performs a search across possible KB states using
MCTS. We compare different state search strategies to determine the relative trade-offs:

1. Iterative Refinement: In this strategy we generate one version of each document to generate an
initial KB, followed by a round of evals. We then use the aggregator agent to refine the documents
over the newly learned insights. We repeat this step multiple times up to a maximum number of
refinements. Note that in contrast to MCTS, in this strategy we do not perform node expansions
and rather explore a path in the search tree.

2. Greedy Search: In this strategy we greedily pick the best state during each node expansion and
only explore the sub-tree within it. This is in contrast to MCTS where, we explore different states
using the UCT algorithm that balances exploration and exploitation.

Table [T] presents how MCTS achieves consistent performance gains across all benchmarks. These
represent 1-5% improvements over alternative search strategies across tasks. Iterative refinement’s
poor performance reveals core limitations in the integrator agent feedback incorporation- which can
be attributed to inherent stochasticity in LLMs. This makes state exploration especially important for
textual optimization tasks like ours. We present a detailed analysis on how varying MCTS parameters
result in different final states in appendix.

5.1 Trends across Sub-Tasks

BREW learns recipes from sub-trajectories in OSWorld. Figure 3| shows that BREW(BREW)
improves success rates in 5 out of 10 OSWorld categories, achieving absolute gains of 4-16%
while maintaining performance parity in the remaining categories (Chrome, Gimp, LibreOffice
Calc, LibreOffice Impress, OS). The largest improvements appear in text-processing applications
(LibreOffice Writer: 14% — 24%, Thunderbird: 38% — 54%) and multimedia tools (VLC:
20% — 27%), with moderate gains in multi-application and development environments. Even in
settings with limited improvements in task correctness, BREWconsistently reduces execution length
by 14-23 steps, highlighting more efficient planning.

!github.com/topoteretes/cognee

https://github.com/topoteretes/cognee

232

234

235

237
238
239
240
241

242
243
244
245

Method OSWorld 72 Bench SpreadsheetBench

GTA1-7B 0o4-mini o4-mini
Baseline 44.20 56.63 44 .30
Cognee 46.70 57.71 42.10
Agent-Mem 43.83 52.69 42.00
BREW-Iterative 46.13 57.34 42.98
BREW-Greedy 45.55 59.14 45.94
BREW-MCTS 47.56 59.14 46.80

Table 1: Comparison of models under different evaluation setups, including Baseline model and
BREW augmented model. We report task success rate for OSWorld, ratio of independent tasks that
succeeded for 72 Bench, and the 1st test case pass rate for SpreadsheetBench.

OSWorld: Success Rate Comparison and Efficiency Gains

100 Imm Baseline Success Rate ! « Improvement
[BREW Success Rate 23 23 25
=@=Step Reduction
80 20
60 15

44 44 44 44

40

o
o
Average Step Reduction
(Successful Cases)

Success Rate (%)

20

w

0 0
@ ¢ o @ o <
& &S (0"6 o & K® ¥ ’é“b
$ o [Q Cad &7 & &
(9 \) \((‘ S 0\ e/ &
& & . & >
O 27 & N
<< & o k>
4 9 g
g 4
®
Category

Figure 3: The bar plot represents the category-wise success rate over various tasks in the OSWorld
dataset over the GTA1-agent, whereas the line plot demonstrates the reduction in the number of steps
for the successful cases. Note that even in scenarios where the KB doesn’t help increase the success
rate, it significantly reduces the number of steps needed to succeed.

This pattern suggests that BREW’s architectural enhancements are particularly effective for tasks
requiring complex sequential reasoning and inter-application coordination, while preserving baseline
robustness in domains constrained by intrinsic task complexity.

A qualitative analysis of the knowledge bases (KBs) constructed by BREWfurther supports this
finding. We observe that BREWcaptures and represents sub-trajectory characteristics in natural
language, including application shortcuts, standard operating procedures, and strategies for localizing
UI elements. Since many UI tasks share common sub-trajectories, this representation facilitates
knowledge transfer across tasks within the same application. Moreover, BREWsubstantially reduces
reliance on granular Ul interactions: while the baseline GTA1 model executes approximately 19,000
clicks and 17,821 keyboard actions, BREWsignificantly decreases this interaction complexity.

BREW learns aggressive resolution strategies for 72— Bench To evaluate robustness of BREW,
we analyzed the distribution of failure modes across the 72—retail dataset, focusing on four key error
categories: Wrong Argument, Wrong Info, Wrong Decision, and Partially Resolve. Figure[d] presents
a comparative chart for the baseline, BREW, Cognee and Agent-Mem(30]].

246
247
248
249

250
251
252
253
254

274
275
276
277
278
279
280
281
282

283

284
285
286
287
288
289

291
292
293
294
295
296

Overall, BREW demonstrated consistent improvements across most error types compared to the
baseline and competing approaches. Specifically, BREW showed a notable reduction in “Wrong
Argument” and “Wrong Decision” errors, indicating that it was better at capturing logical depen-
dencies in retail dialogues and making accurate decisions.

Interestingly, Partially Resolve errors were slightly higher for BREW than for Cognee, likely because
BREW attempted more aggressive resolution strategies that occasionally failed to fully satisfy user
queries. Cognee appears to capture richer factual details given its relatively lower Wrong Info errors,
whereas Agent-Mem excels in tracking conversation state and decision accuracy, as reflected in its
reduced Wrong Decision failures.

Improvements in Task Efficiency We observe that overall, BREWenables agents to come to a
correct response quicker.

OSworld. Figure [3] demonstrates that BREW enables GTA1 to complete tasks more efficiently.
Compared to the baseline GTA1 model’s average of ~75 steps, the BREW-augmented model
completes tasks 14% faster with an average of ~64 steps. Analyzing performance by outcome reveals
that while step counts remain unchanged for failed cases, successful completions show a substantial
39% (rel.) reduction in execution steps, indicating improved planning efficiency for achievable tasks.
72Bench. Similarly, BREW reduces average

—e— Baseline Cognee

conversation turns from 29.47 to 28.43 (-3.5%), —— BREW AgentMem
while maintaining consistent step reductions
across categories. Step reductions average 1.7 Wrong info

steps for Retail and Telecom, but 3.1 steps for

Airline, indicating greater efficiency gains in

complex domains. Qualitative analysis sec-

onds these numbers showing how knowledge

base integration enables more direct task com- y,ong aecision Wrong argument
pletion paths and improved planning quality,

though multi-turn interactions remain necessary

for complex sub-tasks.

SpreadsheetBench. While we observe a slight

increase in the number of turns across the entire Partially resolve

benchmark suite (4.5 — 5.4) in the case of the

baseline versus BREW, an interesting pattern

emerges in more than 82% of the cases the base- Figure 4: Distribution of errors in 72 Bench Retail
line and the BREW appended agent performs

similarly with similar turn consumption. BREW leads to an improvement in 12% of the cases where
the KB is able to address gaps in the baseline technique to enable the agent to go exploring further
leading to positive outcomes with an average of 1 step increase in the interactions.

6 Conclusions

In this work, we explored an alternative approach to agent optimization by focusing on experiential
knowledge retention rather than direct model fine-tuning. We introduced BREW, a framework that
aims to construct and refine a structured, interpretable knowledge base from past agent interactions.
By decomposing agent memory into concept-level documents and applying a state-search optimiza-
tion strategy, BREW provides a modular and transparent substrate for memory formation. Our
evaluations across OSWorld and 72Bench benchmarks suggest that such structured memory can
support measurable improvements in task success and efficiency, while maintaining manageable
computational costs. Although the observed gains are promising, we recognize that BREW’s effec-
tiveness is influenced by the quality and coverage of its training data. Future work could explore
more adaptive and domain-general memory refinement techniques, as well as tighter integrations with
ongoing agent planning. Ultimately, we hope this study encourages further investigation into more
interpretable, memory-driven approaches to language agent development—especially in real-world
environments where long-term consistency and adaptability are essential.

297

298

300
301
302

303
304
305

306
307
308
309

310
311
312

313
314
315

316
317
318
319
320

321
322
323

324

334

337
338
339

340
341

342
343
344
345

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Lakshya A. Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J. Ryan, Meng Jiang, Christopher Potts, Koushik
Sen, Alexandros G. Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, and Omar Khattab.
Gepa: Reflective prompt evolution can outperform reinforcement learning. arXiv preprint
arXiv:2507.19457, July 2025.

Anthropic. Introducing computer use, a new Claude 3.5 Sonnet, and Claude 3.5 Haiku, Octo-
ber 2024. URL https://www.anthropic.com/news/3-5-models-and-computer-use.
Accessed: 2025.

Yasharth Bajpai, Bhavya Chopra, Param Biyani, Cagri Aslan, Dustin Coleman, Sumit Gulwani,
Chris Parnin, Arjun Radhakrishna, and Gustavo Soares. Let’s fix this together: Conversational
debugging with github copilot. In 2024 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1-12, 2024. doi: 10.1109/VL/HCC60511.2024.00011.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. 72-bench:
Evaluating conversational agents in a dual-control environment, 2025. URL https://arxiv,
org/abs/2506.07982,

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. 72-bench:
Evaluating conversational agents in a dual-control environment, 2025. URL https://arxiv|
org/abs/2506.07982.

Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani.
Rubicon: Rubric-based evaluation of domain-specific human ai conversations. In Proceedings
of the 1st ACM International Conference on Al-Powered Software, Alware 2024, page 161-169,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706851. doi:
10.1145/3664646.3664778. URL https://doi.org/10.1145/3664646.3664778!

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. MemO:
Building production-ready ai agents with scalable long-term memory. arXiv preprint
arXiv:2504.19413, 2025.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
Proceedings of the 5th International Conference on Computers and Games (CG 2006), pages
72-83. Springer, 2006. doi: 10.1007/978-3-540-75538-8_7.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents for
long-horizon tasks. The Forty-Second International Conference on Machine Learning, 2025.

Priyanshu Gupta, Shashank Kirtania, Ananya Singha, Sumit Gulwani, Arjun Radhakrishna,
Gustavo Soares, and Sherry Shi. MetaReflection: Learning instructions for language agents
using past reflections. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors,
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pages 8369-8385, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-main.477. URL https://aclanthology.org/
2024 .emnlp-main.477/.

Maryam Hashemzadeh, Elias Stengel-Eskin, Sarath Chandar, and Marc-Alexandre Cote. Sub-
goal distillation: A method to improve small language agents, 2024. URL https://arxiv!
org/abs/2405.02749,

Yuanzhe Hu, Yu Wang, and Julian McAuley. Evaluating memory in llm agents via incremental
multi-turn interactions, 2025. URL https://arxiv.org/abs/2507.05257,

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=VTF8yNQM66,

10

https://www.anthropic.com/news/3-5-models-and-computer-use
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://doi.org/10.1145/3664646.3664778
https://aclanthology.org/2024.emnlp-main.477/
https://aclanthology.org/2024.emnlp-main.477/
https://aclanthology.org/2024.emnlp-main.477/
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2405.02749
https://arxiv.org/abs/2507.05257
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

346
347

348
349
350

352
353
354
355

356

358
359
360

361
362

363
364
365

366
367
368

369
370
371

372
373
374

375
376
377
378

379
380
381
382
383

384
385
386

387
388
389
390
391
392
393
394
395

[14] Zaid Khan, Elias Stengel-Eskin, Archiki Prasad, Jaemin Cho, and Mohit Bansal. Executable
functional abstractions: Inferring generative programs for advanced math problems. 2025.

[15] Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Johannes
Fiirnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006,
pages 282-293, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-46056-
5.

[16] Xinzhe Li. A review of prominent paradigms for llm-based agents: Tool use, planning (including
rag), and feedback learning. In Proceedings of the 31st International Conference on Compu-
tational Linguistics (COLING), pages 9760-9779, Abu Dhabi, UAE, 2025. Association for
Computational Linguistics. URL https://aclanthology.org/2025.coling-main.652.

[17] Michael L. Littman. An optimization-based categorization of reinforcement learning environ-
ments. 1993. URL https://api.semanticscholar.org/CorpusID:17988064.

[18] Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang, Sijia Luo,
Xi Wang, and Jie Tang. Spreadsheetbench: Towards challenging real world spreadsheet
manipulation. Advances in Neural Information Processing Systems, 37:94871-94908, 2024.

[19] OpenAl. Introducing Operator, January 2025. URL https://openai.com/index/
introducing-operator/. Accessed: 2025.

[20] Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL https:
//arxiv.org/abs/2310.08560,

[21] Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with
native agents. arXiv preprint arXiv:2501.12326, 2025.

[22] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. In Proceedings of the 34th International Conference on Machine
Learning (ICML 2017),2017. URL https://arxiv.org/abs/1707.06347,

[24] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

[25] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. In Proceedings of the
37th Conference on Neural Information Processing Systems (NeurlPS 2023), New Orleans,
LA, USA, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

[26] Yu Wang, Chi Han, Tongtong Wu, Xiaoxin He, Wangchunshu Zhou, Nafis Sadeq, Xiusi Chen,
Zexue He, Wei Wang, Gholamreza Haffari, Heng Ji, and Julian McAuley. Towards lifespan
cognitive systems, 2025. URL https://arxiv.org/abs/2409.13265.

[27] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking
multimodal agents for open-ended tasks in real computer environments. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems, volume 37, pages 52040-52094. Curran Associates,
Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
5d413e48£84dc61244b6beb50f1cd8f5-Paper-Datasets_and_Benchmarks_Track.
pdf.

11

https://aclanthology.org/2025.coling-main.652
https://api.semanticscholar.org/CorpusID:17988064
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://arxiv.org/abs/2409.13265
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5d413e48f84dc61244b6be550f1cd8f5-Paper-Datasets_and_Benchmarks_Track.pdf

396
397
398

399
400

401
402

403
404
405

406
407
408

409
410
411
412

413
414
415

416
417
418
419
420

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ran Xu, Yuchen Zhuang, Yue Yu, Haoyu Wang, Wengqi Shi, and Carl Yang. Rag in the wild: On
the (in)effectiveness of llms with mixture-of-knowledge retrieval augmentation. arXiv preprint
arXiv:2507.20059, 2025.

Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem:

Agentic memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem:

Agentic memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023. doi: 10.48550/arXiv.2306.02224.
URL https://doi.org/10.48550/arXiv.2306.02224.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. Advances in Neural Information Processing Systems, 37:50528-50652, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In Proceedings of the
1 1th International Conference on Learning Representations (ICLR 2023),2023. URL https:
//openreview.net/forum?id=WE_v1luYUL-X.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A bench-
mark for tool-agent-user interaction in real-world domains. In NeurIPS (Workshops), 2024.
State-of-the-art agents (e.g. GPT-40) succeed on <50

Yuyan Zhou, Liang Song, Bingning Wang, and Weipeng Chen. Metagpt: Merging large
language models using model exclusive task arithmetic. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 1711-1724, Miami,
Florida, USA, 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.102.

12

https://arxiv.org/abs/2502.12110
https://doi.org/10.48550/arXiv.2306.02224
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

	Introduction
	Preliminary & Related Work
	BREW: Architecture
	Trajectory Generation
	Reflector and Integrator Agents
	Expand-and-Gather MCTS for Optimal KB Search
	Reward-Guided Optimization

	Experimental Setup
	Analysis & Discussion
	Trends across Sub-Tasks

	Conclusions

