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Abstract—This paper proposes a new process for calibrating a
magnetometer in indoor environments that is accurate, easily
deployable and time efficient. Our approach simultaneously
estimates the calibration of the magnetometer with the local
variations of the magnetic field modeled by a Gaussian Pro-
cess. To guarantee an accurate estimation of the magnetome-
ter calibration, a two-step optimization algorithm is proposed.
Experiments show that the proposed solution is as accurate as
outdoor calibration algorithms, and more precise than state-of-
the-art indoor calibration methods.

Index Terms—Magnetometer, calibration, non-linear optimiza-
tion.

I. INTRODUCTION

Traditionally, magnetometers are used in outdoor environ-
ments to determine the heading of a system. The high variabil-
ity of the indoor magnetic field was considered as chaotic, with
no predictable patterns, and therefore has not been exploited in
indoor localization algorithms until a few years ago. However,
recent work considers indoor magnetic perturbations as an
asset rather than a drawback as they are temporally stable
and spatially contrasted [1]. Thus many indoor localization
approaches exploiting magnetic field have been proposed in
the last 10 years ([2], [3]). Recently, [4] demonstrates that
using a magnetic map rather than a visual one in Visual-
Inertial Simultaneous Localization and Mapping (VISLAM)
algorithms give better results for long-term indoor localization.
In [3], a magnetic field-based SLAM algorithm building online
a magnetic map is proposed. It results in accurate localization
when the trajectory regularly passes by the same places.

However, magnetic field-based localization algorithms as-
sume that the magnetometer is perfectly calibrated beforehand.
Its calibration changes over time, so it must be recalibrated
regularly. The recalibration procedure must therefore be easy
to implement in order to facilitate the deployment of magnetic
field-based localization solutions. The most commonly used
method is to calibrate the magnetometer outdoors, as far away
as possible from any metal structures that disturb the Earth’s
magnetic field ([5], [6]). As these conditions are difficult
to obtain in dense urban areas, different indoor calibration
procedures have been proposed.

In [7], they propose to simultaneously estimate the cali-
bration of the magnetometer and the local variations of the
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magnetic field by nonlinear optimization. Even if this approach
seems promising, it presents some limitations. Firstly, the
magnetic field variations are modeled by splines, without
taking into account the physical properties of the magnetic
field. This results in poorly accurate calibration. Secondly,
their approach is not easily deployable since it uses a motion
capture system to estimate the poses of the magnetometer as
it is moved and rotated in all directions.

In this paper, we propose a solution to accurately calibrate
a magnetometer in an indoor environment that is easily de-
ployable and time efficient. To this end, we propose several
improvements to the approach described in [7]. Firstly, to
improve the accuracy of the calibration estimate, we take
advantage of the physical properties of the magnetic field by
modeling its variations through a Gaussian Process (GP) on
the scalar potential of the magnetic field. Then, to make our
calibration procedure easily deployable, the magnetometer is
mounted with cameras and an inertial sensor. The poses of
the magnetometer are estimated by a VISLAM algorithm.
Finally, to guarantee an accurate and efficient estimation of
the calibration, a two-step optimization algorithm is proposed.
In the first step, a coarse calibration is estimated assuming
that the magnetic field is locally constant. At this step, the
input data (i.e. the magnetic data with their associated poses)
are analyzed to determine if all the calibration parameters
are sufficiently well constrained. In the second step, the mag-
netometer calibration is refined by simultaneously estimating
the variations of the magnetic field through non linear opti-
mization. We demonstrate experimentally that the calibration
accuracy estimated by our approach is close to a calibration
performed outdoors and more accurate than the one from
[7]. We also evaluate the impact of the calibration on the
localisation accuracy of a magnetic field-based SLAM [3].

This paper is structured as follows. Section II presents a
review of the existing magnetometer calibration algorithms. A
brief presentation of the magnetometer model and magnetic
field modeling through GP is presented in Section III. Our
calibration algorithm is explained in Section IV and evaluated
in Section V. It is compared with the calibration algorithm
proposed in [7].

II. RELATED WORK

Magnetometer calibration is the estimation of its bias and
its scale-misalignment matrix. The most common methods for
magnetometer calibration require a constant magnetic field.
This condition is verified outdoors, far from any buildings or
metallic objects where the measured magnetic field is equal to



the Earth magnetic field. Therefore the magnetometer calibra-
tion has been extensively studied outdoor ([5], [6], [8], [9]).
Outdoor calibration algorithms generally require rotating the
magnetometer in as many directions as possible ([6], [8], [10],
[11]). The collected uncalibrated magnetic measures form an
ellipsoid with a center shifted from (0;0;0). Accurate values
for the scale-misalignment and the bias of the magnetometer
are estimated by fitting this ellipsoid to a sphere whose center
is (0;0;0).

On the other hand, indoor, the magnetometer calibration
is more challenging since the field is not known a priori
and is subject to numerous spatial fluctuations caused by the
ferromagnetic elements in the building structure, i.e. steel
pillars, metallic tubs. In [10], inertial sensors are used to
improve the robustness of magnetometer calibration when it
is mounted on a system distorting the magnetic field. This
approach may theoretically be applied indoor since it does
not require the norm and direction of the real field for
the calibration. However, in practice it requires a constant
magnetic field which is rarely the case indoors [2].

In [12], the calibration of the magnetometer is estimated at
the same time as its localization from a pre-existing magnetic
map. While this approach enables to avoid recalibration of
the magnetometer before using it for localization purposes, an
outdoor calibration of the magnetometer must be performed at
each magnetic map building. To overcome this limitation, the
authors propose a solution to build a magnetic map without
accurate calibration of the magnetometer. They assume that
at each position the calibrated magnetic measurements are
unique. This assumption is false for magnetic measurements
acquired at the same location with different orientations when
the magnetometer calibration is inaccurate.

Instead of using a pre-build magnetic map, in [7], the
magnetometer calibration is tightly coupled with the creation
of a magnetic map. Their main idea consists in a simulta-
neous estimation of the magnetometer calibration parameters
and a magnetic field model through non linear optimization
algorithm. They use splines for modeling the variation of the
magnetic field. It results in defective accurate calibration since
the physical properties of the magnetic field are not taken into
account. Furthermore, they use motion capture equipment to
estimate the poses of the magnetometor during the calibration
acqusition, making their solution not easily deployable.

III. MAGNETOMETER MODEL AND MAGNETIC
FIELD MODELING

In this section, we introduce the basic elements necessary
for our magnetometer calibration algorithm. First, the magne-
tometer model and its calibration parameters are presented.
Then, the modeling of the magnetic field variations by a
Gaussian process is briefly summarized.

A. Magnetometer model

The magnetometer measurements are corrupted by several
types of error: some are due to imperfections of the sensor
itself and others to the acquisition system it is mounted on.

The sensor itself suffers from a bias bS and of a scaling
factor AS on its measures, as well as a white noise ηηη .
The acquisition system also distorts the measured magnetic
field via its metallic and electronic components. Thus, the
calibration must be performed with the magnetometer already
integrated on the acquisition platform. In our case, the targeted
application is indoor localization by magneto-visual-inertial
SLAM: the cameras, the Inertial Measurement Unit (IMU)
and the magnetometer must all be mounted together during
the calibration of the magnetometer. The disturbances of the
magnetic field related to the acquisition system are modeled
as follows: the hard iron effects correspond to a constant addi-
tional magnetic field bHI , while the soft iron effects, described
by a scale matrix ASI , characterize the distortions of the field
which are orientation-dependent. Moreover the alignment of
the axis of the magnetometer is imperfect, causing another
bias on the measures balign.

Let’s note G the global reference frame, and B the body
frame associated to the magnetometer. As B changes over time,
it is indexed by its corresponding timestamp number, n. RBnG ∈
SO(3) is the rotation matrix of Bn from the frame G.

The magnetometer measure m̂Bn in the frame Bn verifies
therefore the following equation:

m̂Bn = AS(ASImBn +bHI +balign)+bS +ηηη

= AS(ASIRBnGmG +bHI +balign)+bS +ηηη

with ηηη ∼N (0,σ2
mI3)

(1)

with mBn , mG the real magnetic field expressed in the body
frame Bn, the global reference frame G respectively and σm
the amplitude of the Gaussian random white noise ηηη .

Equation 1 can be simplified as:

m̂Bn = ARBnGmG +bm +ηηη

with ηηη ∼N (0,σ2
mI3)

(2)

where A is a scale-misalignment matrix and bm is the mag-
netometer bias. σ2

m is estimated by a motionless acquisition
of the acquisition system [13]. The magnetometer model may
also include a random walk noise but, according to the Allan
variance of the sensor, it is negligible for acquisitions of a few
hours. In the long term it corresponds to a progressive shift of
the bias bm and therefore can be omitted from the equations
([13], [4]).

The proposed calibration algorithm described in Section IV
estimates A and bm, the magnetometer intrinsics. The diagonal
coefficients of A correspond to the scale and its non-diagonal
coefficients to misalignment. A is a symmetric matrix, with
6 DoF. As all the parameters in an indoor environment are
observable up to an unknown scale factor, one of the scale
parameters must be fixed: its value is obtained once and for
all with a unique outdoor calibration. Therefore there is a total
of 8 unknown calibration parameters.

B. Magnetic field modeling
Our magnetometer calibration algorithm is based on the

simultaneous estimation of the magnetic field variation. We



use Gaussian Process regression on the scalar potential of
the magnetic field ([14]) to take into account its physical
properties.

The magnetic field is a vector field that associates at each
point pi in space a magnetic value B(pi), with B : R3→ R3.
Applying Maxwell’s equations, under the assumption that the
free current is negligible, B can be estimated through a unique
GP regression, as it is the gradient of a scalar potential ϕ:

B =−∇ϕ. (3)

Let p a set of positions where the magnetic field is measured
and x a set of D positions where the magnetic field has to be
predicted. Let E[B(x)] = [E[B(x1)]

>, ...,E[B(xD)]
>]> be the

vector contatening all the predictions of the magnetic field by
the GP. From [14], the conditional mean of the magnetic field
B for all positions in x, are given by:

E[B(x)]≈ ∇Φ∗Ωvec(m), (4)

with Ω = ([∇Φ]>∇Φ+σ
2
mΛ
−1)−1[∇Φ]>.

(5)

For simplification Φ∗ = Φ(x), Φ = Φ(p). Φ(p) is a matrix
of size (N + 3)× 3M, concatenating all the values of the N
eigenfunctions chosen to describe the field at the p positions
(with M the number of positions). Φ(x) is the matrix of size
(N +3)×3D concatening the values of the eigenfunctions at
the x positions (see [14] for the explicit expression of Φ(p),
Φ(x) and of Λ). vec(m) is a vectorization of all the magnetic
measures at p ordered by their index.

IV. ESTIMATION OF THE MAGNETOMETER
CALIBRATION PARAMETERS

Our magnetometer calibration algorithm is described in this
section. After a brief overview presented in section IV-A, the
two steps of our calibration process are detailed in section
IV-B and IV-C.

A. Overview of the proposed magnetometer calibration algo-
rithm

Our calibration algorithm is a two-step process taking as
input magnetic data with their associated poses. They are
obtained from VISLAM algorithm by mounting the magne-
tometer together with an IMU sensor and cameras. VISLAM
algorithms are the actual state of-the-art methods for indoor
localization and they do not rely on costly instrumentation
of the environment. The key-frames VISLAM algorithm de-
scribed in [15] is used in our experiments. To guarantee an
accurate pose for each magnetic data, IMU data integration
between the key frames poses is performed.

The first step of our calibration process estimates a coarse
calibration under the assumption that the magnetic field is
locally constant while determining whether the collected data
are sufficiently varied in terms of poses to constrain the
calibration. This calibration step is based on the fact that

two magnetic field measurements acquired at the same lo-
cation must physically measure the same field. Due to the
magnetometer orientation and errors in calibration this is not
the case in practice. We demonstrate in Section IV-B that
the calibration errors are observable from pairs of magnetic
measurements acquired at the same location with different
orientations and then expressed in the global reference frame.
In practice, these pairs are made up of data acquired close to
each other (of the order of a few centimeters), the magnetic
field being assumed to be very locally constant. The acqusition
of magnetic measurements is stoped when a sufficient number
of pairs guaranteeing an accurate calibration is reached as
described in Section IV-B3.

The second step of our calibration process refines the
calibration obtained in the first step by lifting the assumption
that the magnetic field is locally constant. For this purpose,
the magnetic field variations modelled by a Gaussian process
(Section III-B) are simultaneously estimated with the magne-
tometer calibration by a non-linear optimisation algorithm. We
demonstrate in Section IV-C that this optimization problem can
be reformulated to depend only on the calibration parameters.

An overview of the proposed calibration algorithm is pre-
sented on Figure 1.

Coarse 
calibration

VISLAM

Calibration 
refinement

Frames

IMU data

Magnetic data

Initial 
calibration Final  calibrationMagnetic 

field 
assumed 
locally 

constant

Stopping criterion

Calibration 
refined by 

simultaneously 
optimizing the 
magnetic field

Data 
acquisition

{R
n
,p

n
}

Fig. 1. Overview of our magnetometer calibration process.

B. First step of our calibration process : coarse calibration
To evaluate the magnetometer intrinsics, we propose to

compare pairs of magnetic measurements. collected at close
positions in space and with different orientations of the sensor.
These pairs are formed from a k-nearest neighbor algorithm
by selecting the candidate with the highest rotation among the
k candidates.

The proposed algorithm for the coarse estimation of the
magnetometer calibration alternates the estimation of the bias
(the scale misalignment matrix is fixed) and the estimation
of the scale misalignment matrix (the bias is fixed) until
convergence. The initial value of A = I3.

1) Estimation of the bias: Let a pair of magnetic mea-
surements (m̂B1 ,m̂B2) acquired at almost the same location.
RB1B2 ∈ SO(3) is the rotation matrix obtained from the ori-
entations of the magnetometer RB1G et RB2G. mB1 and mB2
are the real values of the magnetic field that would have been
measured by an ideal sensor. The relation between these two
values under the assumption that the magnetic field is locally
constant is given by:

mG1 = mG2 ⇒mB1 = RB1B2mB2 (6)



Using Equation 2, this equality becomes:

A−1(m̂B1 −bm−ηηη1) = RB1B2A−1(m̂B2 −bm−ηηη2) (7)

Since η1 and η2 have similar distributions and RB1B2A−1

is close to a rotation matrix, the two noise components of
Equation 7 may be considered to be equal. Equation 7 is then
simplified as follows:

A−1(RB1B2 − I3)bm = RB1B2A−1m̂B2 −A−1m̂B1 . (8)

By concatening equations for all the collected pairs of
magnetic data and by assuming A to be known, the bias of
the magnetometer is obtained by resolving a linear sytem.

One may observe that if the two magnetic measures are
acquired with opposite directions, the left side of the equation
8 is equal to −2A−1bm, while if the rotation is small, it is
close to 0. For the latter case, the assumption that the noise
can be neglected is not verified.

A ponderation weight is thus applied to the equation 8:

it is of the form exp(
(θ

opt
b −θRB1B2

)2

Θ2 ). θRB1B2
is the absolute

value of the rotation angle, between 0 and π: θRB1B2
=

arccos
(
(tr(RB1B2 )−1)

2

)
with tr(RB1B2) the trace of the matrix.

Θ is a parameter that sets the degree of influence regarding to
angle difference.

2) Estimation of the scale-misalignment matrix: The es-
timation of the scale-misalignement matrix can be divided
in two parts: the estimation of its scale component (i.e. its
diagonal) first and the misalignment coefficients. A is usually
close to the identity matrix: the scale coefficients are close to
1 and the misalignment should be close to 0 for a correctly
manufactured sensor. The three diagonal parameters will be
represented by 1 + s1, 1 + s2 and 1+ s3 and the alignment
ones by t1, t2 and t3 such as:

A =

1+ s1 t1 t2
t1 1+ s2 t3
t2 t3 1+ s3

 (9)

with s1, s2, s3, t1, t2, t3� 1. In the following, s3 is fixed as
mentioned in subsection III-A.

We can write A = I3 + bScD + bTcS with S =

s1
s2
s3

 and

T =

t1
t2
t3

. The operator b·cD and b·cS are given by:

b·cD : R3→ R3×3 and b·cS : R3→ R3×3.

b·cD : R3→ R3×3⌊a
b
c

⌋
D

=

a 0 0
0 b 0
0 0 c

 (10)

and
b·cS : R3→ R3×3⌊a

b
c

⌋
S

=

0 a b
a 0 c
b c 0

. (11)

To estimate the parameters of the matrix A a process
alternating the estimation of S and T is used. Thus, assuming
that the bias and the misalignment coefficients are known
and applying Taylor formula for A on Equation 7, the scale
parameters S are estimated from:

(Γ−bScD)(m̂B1 −bm)

= RB1B2(Γ−bScD)(m̂B2 −bm)+o(‖ S ‖)+o(‖ T ‖).
(12)

where I3−bTcS is written Γ.
Since bScDK = bKcDS for any vector K of size 3 and o(‖

S ‖) and o(‖ T ‖) are negligible, Equation 12 is simplified as
follows:

bRB1B2(m̂B2 −bm)− (m̂B1 −bm)cDS
= RB1B2Γ(m̂B2 −bm)−Γ(m̂B1 −bm)

(13)

As for the bias, S can be estimated by resolving a linear
system obtained by concatening Equation 13 for all the col-
lected pairs of magnetic data. The rotation angle between two
magnetic measurements that optimally constraints the scale
estimation is θ

opt
s = π

2 . In fact for this angle value (assuming
that the bias and the misalignement are perfectly known) the
ratio between the norm of the two magnetic measurements is
approximatively equal to the ratio of the scales. As for the bias

estimation Equation 13 is weighted by exp(
(θ

opt
s −θRB1B2

)2

Θ2 ).
Following the same procedure as for the scale parameters,

the misalignement coefficients T are obtained by :

bRB1B2(m̂B2 −bm)− (m̂B1 −bm)cST
' RB1B2ϒ(m̂B2 −bm)−ϒ(m̂B1 −bm)

(14)

As the misalignment corresponds to the angle between
the real sensor frame and the frame Bi, it is similar to a
supplementary bias that varies depending on the measured
magnetic field. Its observability is thus maximal when θ

opt
t =

π . As for the bias estimation Equation 14 is weighted by

exp(
(θ

opt
t −θRB1B2

)2

Θ2 ).
3) Stopping criterion on data acquisition: To ensure ac-

curate estimation of the calibration parameters, there must
be sufficient pairs of magnetic measurements for which the
associated rotation RB1B2 forms an angle close to the optimal
observability angle of the bias and the scale-misalignment
matrix.

The criterion we propose to stop the acquisition of magnetic
data for the magnetometer calibration is thus based on the
number of equations with high observability of the calibration
parameters. A pair of magnetic measurements satisfy this
criteria if:

abs(θRB1B2
−θ

opt
j )< δ

max
j (15)

with δ max
j a threshold. j is equal to b, s or t (for the bias,

the scale and the misalignment).



C. Second step of our calibration process: calibration refine-
ment through non linear optimization

The second step of our calibration process refine the coarse
calibration obtained during the first step by simultaneously
estimating the magnetic field. We use Gaussian Process mod-
elization of the magnetic field describe in Section III-B.

The cost function to miminize is defined by the errors be-
tween the collected magnetic measurements and the prediction
vector E[B(p)]:

c =‖ E[B(p)]− vec
(

RGM(A−1(m̂n−bm))
)
‖2 . (16)

This equation can be reformulated like this :

c =‖ (∇ΦΩ− I3D)vec(RGM(A−1(m̂n−bm))) ‖2 . (17)

∇Φ = ∇Φ∗ since the predicted measurements are done at
the location of the collected data. ∇ΦΩ− I3D is constant and
can be precalculated once for all. This equation depends only
of the calibration parameters s1,s2, t1, t2, t3,bm. s3 is fixed to
the value that was obtained outdoor, since indoors, the scale
matrix is observable up to an unknown scale factor. Equation
17 is optimized by the Levenberg-Marquadt algorithm.

V. EXPERIMENTS

In this section, the proposed calibration process is evalu-
ated. After a brief description of the acquisition system, our
approach is compared with state of the art magnetometer
calibration methods. In addition to the classical comparison
of calibration matrices with a ground truth, we also evaluate
the accuracy of a magnetic field-based SLAM algorithm
depending on the magnetometer calibration quality.

A. Experimental setup

Our acquisition platform is composed of a helmet with
4 FLIR Blackfly S cameras and an SBG-Ellipse-N sensor that
contains an IMU and a magnetometer (whose axes are aligned
with those of the IMU). All the sensors are rigidly mounted
and their data are synchronized. The 4 cameras and the IMU
are calibrated using the software Kalibr [16]. The cameras are
disposed in two pairs: one stereo pair in front and another one
in the rear of the helmet.

B. Evaluation of the proposed magnetometer calibration al-
gorithm

To evaluate the proposed magnetometer calibration on a
representative dataset, we use 4 different sequences. For
the Sequences 1 and 2, the magnetometer is rotated in all
directions, in an area as small as possible (i.e. with as little
translational movements as possible). For these two sequences,
the magnetic field variations are small. For the Sequences 3
and 4, the helmet is rotated in a wider area, of size 5 m × 5 m
× 5 m. The duration of all these sequences is limited to 30 s, to
demonstrate that the magnetometer calibration can be achieved
online in a reasonable time during an initialization phase of
a magnetic field-based SLAM algorithm. The quality of the

Fig. 2. Collected magnetic data on Sequence 2.

estimated bias and scale-misalignemet matrices are evaluated

by errb =‖ b−bext ‖ and errA =

[
∑

3
i=1 ∑

3
j=1(AA−1

ext − I3)
2
i, j

] 1
2

where Aext et bext are the ground truth calibration matrices
obtained from an outdoor calibration [5] performed just before
each sequences.

According to [10], the local magnetic field for small vol-
umes can be considered to be constant. In our experiments,
this approximation is only true for the first sequence on
which an ellipsoid fitting calibration algorithm with a scal-
ing constraint perfomed relatively well (errA = 0.795µT and
errA = 2.733.10−2). However, this assumption is not verified
for all others Sequences. As illustrated in Figure 2, the
collected magnetic data of Sequence 2 form approximately
a half-ellipsoid, but many outliers are present which results a
poor calibration estimate. The bias estimated on this sequence
with [5] is aberrant (errA > 100µT).

Therefore we only compare the proposed calibration method
with our implementation of the state of the art indoor calibra-
tion method [7] that is robust to magnetic field variations.
For the latter, we used 27 control points for the spline model
on the four sequences, as the explored areas are all relatively
small. For our method, 27 eigenfunctions are used for the
GP model. The hyperparameters associated to the ponderation
coefficients during the coarse calibration step are set to Θ = 1
radian, δ max

b = δ max
t = π

2 and δ max
s = π

4 .
Table I presents the comparison of our magnetometer cal-

ibration process with the state of the art indoor calibration
algorithm [7] on the four sequences described above. Our
method reaches better precisions: on the four sequences, the
bias estimation improvement is of 46% on average and of 36%
for the scale-misalignment matrix. In particular for Sequence
3, the bias estimation of [7] lacks of precision, with an error
of 3.657µT. With the proposed approach, the error of the
estimated bias is below 1µT.

C. Influence of magnetometer calibration errors on magnetic
field-based SLAM

In this section we evaluate the impact of the magnetometer
calibration on the accuracy of a magnetic field-based SLAM
algorithm [3]. For this purpose, different runs are performed
on the same sequences with a magnetic calibration obtained



Sequence 1 Sequence 2 Sequence 3 Sequence 4
[7] errb 0.674 1.040 3.657 0.945

errA 6.819.10−2 4.363.10−2 3.689.10−2 6.669.10−2

Our method errb 0.384 0.673 0.862 0.647
Section IV errA 1.041.10−2 2.050.10−2 6.090.10−2 9.095.10−2

TABLE I
COMPARISON OF THE CALIBRATION ACCURACY OBTAINED WITH DIFFERENT METHODS.

by our approach, the one of [7] and an outdoor calibration.
The SLAM algorithm of [3] uses visual inertial odometry and
maps the magnetic field online with a Gaussian Process. The
magnetic data are fused with the visual inertial odometry via
a particle filter to reduce the drift when the trajectory passes
through a location already mapped. The two sequences used
for evaluation are composed of two parts. During the first
thirty seconds the acquisition system is moved and rotated in
all directions. The localization is achieved by visual-inertial
odometry and the magnetometer calibrated with one of the
method described above (except for the outdoor calibration).
Then a trajectory is performed by walking in several corridors
in both directions. The SLAM algorithm [3] is used for
localization, mapping the magnetic field online. For the run
with the calibration performed outdoor, the modeling of the
magnetic field also begins after the first 30 seconds so that
the comparison of the estimated trajectories is fair. Figure
3 represents the SLAM trajectories obtain with the different
magnetometer calibrations for one of the two sequences.

Sequence number Sequence
1

Sequence
2

(5 min 44,
309 m)

(5 min 43,
251 m)

Visual-inertial odometry
ATE 0.905 m 0.326 m
Leveling err. 0.758◦ 0.234◦

Azimuth err. 0.862◦ 1.494◦

Magnetic field-based ATE 0.667 m 0.342 m
SLAM [3] Leveling err. 0.740◦ 0.220◦

calibration [7] Azimuth err. 0.747◦ 2.166◦

Magnetic field-based ATE 0.371 m 0.181 m
SLAM [3] Leveling err. 0.103◦ 0.085◦
our calibration Azimuth err. 0.363◦ 1.499◦

Magnetic field-based ATE 0.352 m 0.182 m
SLAM [3] Leveling err. 0.068◦ 0.091◦

outdoor calibration [5] Azimuth err. 0.449◦ 1.421◦
Magnetic field-based ATE 0.640 m 0.708 m
SLAM [3] Leveling err. 0.644◦ 0.323◦

outdated outdoor calibra-
tion (5 months ago)

Azimuth err. 1.116◦ 5.210◦

TABLE II
ATE, LEVELING AND AZIMUTH ERRORS OF MAGNETIC FIELD-BASED SLAM
ALGORITHM, FOR DIFFERENT MAGNETIC CALIBRATIONS. THE RESULTS OF

VISUAL-INERTIAL ODOMETRY ARE ALSO INDICATED.

The different executions are compared in terms of posi-
tion and rotational errors. The Absolute Translation Error
(ATE) is defined as e =

√
1
n ∑

n
j=1 ||t

j
GI− t̂ j

GI ||2 with n the total
number of data. The rotational errors are composed of two
components: eazimuth =

√
1
n ∑

n
j=1 |(R

j
GI	 R̂ j

GI)z|2 and eleveling =√
1
n ∑

n
j=1 ||(R

j
GI	 R̂ j

GI)xy||2, with 	 : SO(3)× SO(3) → R3,
R1 	 R2 = logSO(3)(R1R>2 ). tGI and RGI correspond to the

ground truth positions and rotations and t̂GI and R̂GI are the
ones estimated by the magnetic field-based SLAM algorithm.
The ground truth are obtained by the VISLAM algorithm
[15] with loop closure and global bundle adjustment as post
processing.

Table II presents the localization errors for the different
runs. The localization accuracy of the magnetic-field based
SLAM is better on all the sequences when a proper calibration
is used compared to visual-inertial odometry. The ATE error
on average, when our calibration or an outdoor calibration
is used, is improved of 52%. The leveling error on average,
compared to visual-inertial odometry (VIO), is lower by 77%
when our magnetometer calibration is used.

However, with a poorer magnetometer calibration, such
as the one obtain with [7] or an outdated one, the gain in
localization accuracy compared to a VIO algorithm is weaker
and may sometimes be deteriorated. For example, for the sec-
ond sequence, the ATE increases of 117% when an outdated
calibration is used. This demonstrates that the calibration must
be reestimated regularly. Therefore it is important to have an
easily deployable solution for recalibration.

The processing time of our calibration method, for 30 s
of magnetic data acquisition at 50 Hz is about 600 ms. Our
method is thus well suited to calibrate online a magnetometer
for magnetic field-based SLAM algorithm.

VI. CONCLUSION

In this paper, we present an algorithm for magnetometer
calibration in indoor environments. It is based on the joint
estimation of calibration matrices and a Gaussian process
model by a two-step optimization algorithm.

Experimental results have shown that our solution provides
an accurate and efficient calibration of the magnetometer. It
enables online magnetometer calibration during an initializa-
tion phase of magnetic field-based SLAM algorithms. We
also demonstrate in this paper the impact of magnetometer
calibration errors on the localization accuracy of magnetic
field-based SLAM algorithms.
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