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Abstract
Generative models, like large language models,
are becoming increasingly relevant in our daily
lives, yet a theoretical framework to assess their
generalization behavior and uncertainty does not
exist. Particularly, the problem of uncertainty es-
timation is commonly solved in an ad-hoc and
task-dependent manner. For example, natural lan-
guage approaches cannot be transferred to im-
age generation. In this paper, we introduce the
first bias-variance-covariance decomposition for
kernel scores. This decomposition represents a
theoretical framework from which we derive a
kernel-based variance and entropy for uncertainty
estimation. We propose unbiased and consistent
estimators for each quantity which only require
generated samples but not the underlying model
itself. Based on the wide applicability of kernels,
we demonstrate our framework via generalization
and uncertainty experiments for image, audio, and
language generation. Specifically, kernel entropy
for uncertainty estimation is more predictive of
performance on CoQA and TriviaQA question an-
swering datasets than existing baselines and can
also be applied to closed-source models.

1. Introduction
In recent years, generative models have revolutionized daily
lives well beyond the field of machine learning (Kasneci
et al., 2023; Meskó & Topol, 2023). These models have
found applications in diverse domains, including image cre-
ation (Ramesh et al., 2021), natural language generation
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Figure 1. Top: Illustration of predictive kernel entropy for a gener-
ative model. A kernel measures the pairwise similarities (red lines)
of outputs in a vector space. The predictive kernel entropy is then
the negative average kernel value. Bottom: The predictive kernel
entropy shows the best performance among uncertainty approaches
for single-model settings (c.f. Section 5.3).

(OpenAI, 2023), drug discovery (Paul et al., 2021), and
speech synthesis (Ning et al., 2019). While generative mod-
els have demonstrated remarkable capabilities in generating
data that closely resemble real-world samples, they often
fall short in providing the vital and often overlooked aspect
of uncertainty estimation (Wu & Shang, 2020). Uncertainty
estimation in machine learning is a critical component of
model performance assessment and deployment (Hekler
et al., 2023). It addresses the inherent limitations and chal-
lenges associated with machine learning based decisions.
For generative models, this may include their propensity
to generate improbable or nonsensical samples (“hallucina-
tions”). Even though uncertainty estimation methods for
natural language question answering tasks exist (Kuhn et al.,
2023), they are ad-hoc without theoretical grounding and
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are not transferable to other data generation tasks .

Predictive uncertainty is an informal concept, but it is im-
plied that it relates to the prediction error without requiring
access to target outcomes. A formal approach to this is the
bias-variance decomposition, a central concept in statistical
learning theory (Bishop & Nasrabadi, 2006; Hastie et al.,
2009; Murphy, 2022). It helps to understand the general-
ization behavior of models and naturally raises uncertainty
terms by isolating the target prediction into a bias term (Gru-
ber & Buettner, 2023).
Ueda & Nakano (1996) discovered the bias-variance-
covariance decomposition of the mean squared error, which
is the foundation of negative correlation learning (Liu &
Yao, 1999b;a; Brown, 2004) and for reducing correlations
in weight averaging (Rame et al., 2022). Though the bias-
variance decomposition has been generalized to distribu-
tions (Gruber & Buettner, 2023), the current theory does
not include a covariance term and relies on having access
to the predicted distribution. But, many generative models
only indirectly fit the training distribution by learning how
to generate samples. Others, such as large language mod-
els (LLMs), do explicitly fit the target distribution, but the
prevalence of closed source models means the predictive dis-
tribution is often not available to the practitioner (OpenAI,
2023). This makes it infeasible to apply the powerful frame-
work of the bias-variance decomposition in these cases.
Contrary, kernels allow to quantify differences between dis-
tributions only based on their samples without requiring
access to these distributions (Gretton et al., 2012a). They
are used in kernel scores to assess the goodness-of-fit for
predicted distributions (Gneiting & Raftery, 2007).
As contribution in this work, we...

• introduce the first extension of the bias-variance-
covariance decomposition beyond the mean squared
error to kernel scores in Section 3, and propose unbi-
ased and consistent estimators only requiring generated
samples in Section 4.

• examine the generalisation behavior of generative mod-
els for image and audio generation and investigate how
bias, variance and kernel entropy relate to the generali-
sation error in Section 5. This includes evidence that
mode collapse of underrepresented minority groups is
expressed purely in the bias.

• demonstrate how kernel entropy in combination with
text embeddings outperforms existing methods for esti-
mating the uncertainty of LLMs on common question
answering datasets (c.f. Figure 1 and Section 5.3).

2. Background
In this section, we give a brief introduction into kernel
scores, followed up by other bias-variance decompositions

and approaches for assessing the uncertainty in natural lan-
guage generation.

2.1. Kernel Scores

Kernel scores are a class of loss functions for distribution
predictions (Eaton, 1981; Eaton et al., 1996; Dawid, 2007).
For simplicity, we omit complex-valued kernels. We refer to
a symmetric kernel k : Y × Y → R defined on a set Y as
positive definite (p.d.) if

∑n
i=1

∑n
j=1 aik(xi, xj)aj > 0

for all x1, . . . , xn ∈ Y and a1, . . . , an ̸= 0 with n ∈
N. Positive semi-definite (p.s.d.) refers to the case when
only ’≥’ holds. Assume P is a set of distributions defined
on X such that for a kernel k the operator ⟨P | k |Q⟩ :=∫

Y

∫
Y k (x, y) dP (x) dQ (y) is finite for all P,Q ∈ P

(Eaton, 1981). It follows that ⟨. | k | .⟩ is a symmetric bilinear
form and induces the semi-norm ∥P∥k =

√
⟨P | k |P ⟩.

A kernel score Sk : P × Y → R based on a p.s.d. kernel
k : Y × Y → R is defined as (Steinwart & Ziegel, 2021)

Sk (P, y) = ∥P∥2k − 2 EŶ∼P

î
k
Ä
Ŷ , y
äó

. (1)

Note that Eaton (1981) and Dawid (2007) use a slightly less
general definition. If P only consists of Borel probabil-
ity measures, then the expected kernel score E [Sk (P, Y )]
based on a target Y ∼ Q ∈ P is minimized when
P = Q (Gneiting & Raftery, 2007). Following Dawid
(2007), we refer to −∥Q∥2k = E [Sk (Q,Y )] as the ker-
nel entropy function for any Q. The kernel score is
connected to the maximum mean discrepancy (MMD)
via MMD2

k (P,Q) = E [Sk (P, Y )] + ∥Q∥2k (Steinwart &
Ziegel, 2021). The MMD is used for non-parametric two-
sample testing (Gretton et al., 2012a) and generative image
modelling (Li et al., 2015; Bińkowski et al., 2018). Com-
pared to the MMD, kernel scores are applicable to a wider
range of scenarios, since one sample of the target distribu-
tion is sufficient for evaluation. For example, MMDs cannot
be computed for question-answering pairs when there is
only one answer for each question in the dataset. We offer a
more extensive discussion of related work in Appendix B.

2.2. Bias-Variance (-Covariance) Decompositions

Ueda & Nakano (1996) introduced the bias-variance-
covariance decomposition for the mean squared error. For
a real-valued ensemble prediction P̂ (n) = 1

n

∑n
i=1 P̂i with

identically distributed P̂1, . . . , P̂n and real-valued target Y
it is given by

E
[Ä
P̂ (n) − Y

ä2]︸ ︷︷ ︸
Expected Squared Error

= V (Y )︸ ︷︷ ︸
Noise

+(E
î
P̂
ó
− E [Y ])2︸ ︷︷ ︸
Bias

+
1

n
V
Ä
P̂
ä

︸ ︷︷ ︸
Variance

+
n− 1

n
Cov
Ä
P̂ , P̂ ′

ä
︸ ︷︷ ︸

Covariance

,

(2)
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with P̂ := P̂1 and P̂ ′ := P̂2. We use V and Cov to de-
note the textbook definitions of variance and covariance
for real-valued random variables (Capiński & Kopp, 2004).
Throughout this work, we imply that the pairwise covariance
of identically distributed variables is the same. Rame et al.
(2022) propose an approximate bias-variance-covariance
decomposition for hard-label classification but it only holds
in an infinitesimal locality around the prediction. To our
best knowledge, the mean squared error is the only case
so far with a non-approximated decomposition. Gruber &
Buettner (2023) introduce a bias-variance decomposition for
loss functions of general distributions. They demonstrated
that the variance term is a meaningful measure of the model
uncertainty similar to confidence scores in classification.
However, they require a loss-specific transformation of the
distributions into a dual vector space and a covariance term
is not given.

2.3. Uncertainty in Natural Language Generation

In the following, we give a brief overview of uncertainty
estimation in natural language generation.
A common approach is predictive entropy, which is the Shan-
non entropy−

∫
log p̂ (y | x) dp̂ (y | x) of the predicted dis-

tribution p̂ given an input x (Malinin & Gales, 2020). For a
generated token sequence s = (s1, . . . , sl) ∈ Nl of length
l ∈ N it is computed via

∑l
i=1 log p̂ (si | s1, . . . , si−1),

where p̂ is the predicted distribution of the generating lan-
guage model. Note that the predicted distribution is not
always available for closed-source models. The computa-
tion also scales linearly with the length of the generated text,
making it costly for larger text generations. Malinin & Gales
(2020) propose to use length-normalisation of the predictive
entropy since the Shannon entropy is systematically affected
by the sequence length. Kuhn et al. (2023) propose semantic
entropy to ease the computation of the predictive entropy
by finding clusters of semantically similar generations. An-
other approach is lexical similarity (Fomicheva et al., 2020),
which quantifies the average pairwise similarity between
generated answers according to a similarity measure, like
RougeL (Lin & Och, 2004; Kuhn et al., 2023). Kadavath
et al. (2022) propose the baseline p(True), which asks the
model itself if the generated answer is correct. Alterna-
tive approaches exist, which require an ensemble of models
(Lakshminarayanan et al., 2017; Malinin & Gales, 2020).
However, ensembles are practically less relevant due to the
high computational cost of training even a single model.

3. A Bias-Variance-Covariance Decomposition
of Kernel Scores

In this section, we state our main theoretical contribution.
All proofs are presented in Appendix E. To highlight the
similarity to the mean squared error case, we introduce the

novel definitions for distributional variance and distribu-
tional covariance. The latter also implies a distributional
correlation, which we define later in Section 4. Note that
textbook variance and covariance are based on multiplica-
tion of two scalar components. Multiplication of two scalars
is a special case of an inner product based on k. Thus, we
interpret ⟨. | k | .⟩ as a generalization of this multiplication,
which directly implies the following.

Definition 3.1. Assume we have a p.s.d. kernel k and ran-
dom variables P and Q with outcomes in a distribution
space as defined above. We define the distributional vari-
ance generated by k of P as

Vark (P ) = E
[
∥P − E [P ]∥2k

]
(3)

and the distributional covariance generated by k between
P and Q as

Covk (P,Q) = E [⟨P − E [P ] | k |Q− E [Q]⟩] . (4)

If P is deterministic, i.e. is a random variable with only
one outcome, then Vark (P ) = 0. Further, we have
Covk (P, P ) = Vark (P ), and, if P and Q are independent,
then Covk (P,Q) = 0. Note that the terms kernel variance
and kernel covariance already exist in the literature and
should not be confused with our definitions (Gretton et al.,
2003).
We now have the necessary tools to state our main theoreti-
cal contribution in a concise manner.

Theorem 3.2. Let Sk be a kernel score based on a p.s.d.
kernel k and P̂ a predicted distribution for a target Y ∼ Q,
then

E
î
Sk

Ä
P̂, Y
äó

︸ ︷︷ ︸
Generalization Error

= −∥Q∥2k︸ ︷︷ ︸
Noise

+
∥∥∥EîP̂ ó−Q∥∥∥2

k︸ ︷︷ ︸
Bias

+Vark
Ä
P̂
ä

︸ ︷︷ ︸
Variance

. (5)

If we have an ensemble prediction P̂ (n) := 1
n

∑n
i=1 P̂i with

identically distributed members P̂1, . . . , P̂n, then

Vark
Ä
P̂ (n)
ä
=

1

n
Vark

Ä
P̂1

ä
+
n− 1

n
Covk

Ä
P̂1, P̂2

ä
. (6)

In the same sense, a bias-variance-covariance decomposition
of the expected MMD is implied since E[MMD2

k(P̂ , Q)] =
E[Sk(P̂ , Y )] + ∥Q∥2k. Theorem 3.2 allows bias-variance
and ensemble evaluations of increasingly more common
generative models since kernels can be used for almost all
data scenarios via vector embeddings (Liu et al., 2020).
For example, in Section 5, we evaluate diffusion models
for images, flow-based models for text-to-speech synthesis,
and transformers for natural language generation. It is also
possible to offer Theorem 3.2 in terms of an associated re-
producing kernel Hilbert space or if the ensemble members
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are not identically distributed (c.f. Appendix C).
To illustrate Theorem 3.2, we give as example the Brier
score used in classification, which also recovers the original
decomposition of Ueda & Nakano (1996).
Example 3.3. Let P = ∆l be the l-dimensional simplex
and define kδ (x, y) := 1x=y = 1 if x = y and 0 otherwise.
Then, for y ∈ {1, . . . , l} and P ∈ P , the negative kernel
entropy ∥P∥2kδ

=
∑l

i=1 P
2
i =: ∥P∥2 is the squared eu-

clidean norm and Skδ
(P, y) + 1 =

∑l
i=1 (Pi − 1i=y)

2
=:

BS (P, y) is the Brier score (Brier, 1950). Applying Theo-
rem 3.2 decomposes E

î
BS
Ä
P̂ , Y

äó
into

1− ∥Q∥2 +
∥∥∥E îP̂ ó−Q

∥∥∥2 + l∑
i=1

V
Ä
P̂i

ä
. (7)

The original decomposition in Equation (2) can be recovered
for binary classification since BS (P, y) = 2 (P1 − 11=y)

2

for l = 2.
In the last example, we omitted the covariance term for
simplicity. However, this term has also its practical utility
as demonstrated in the next example.
Example 3.4. Assume we train a generative model and
intend to improve the generalization performance via an
ensemble approach. Due to computational reasons, we de-
cide to use an ensemble of consecutive training epochs as
ensemble members P̂1, . . . , P̂n. We empirically perform
such an experiment in Section 5.1, which shows that the
assumptions of Theorem 3.2 hold approximately after ex-
cluding the first 20 epochs (c.f. Figure 3 and Equation
(17)). We receive as estimates Vark

Ä
P̂1

ä
≈ 0.0052 and

Covk
Ä
P̂1, P̂2

ä
≈ 0.0049. Thus,

Single Model Error︷ ︸︸ ︷
E
î
Sk

Ä
P̂1, Y

äó
−

Ensemble Error︷ ︸︸ ︷
E

[
Sk

(
1

n

∑
i=1

P̂i, Y

)]

=
n− 1

n

Ä
Vark

Ä
P̂1

ä
− Covk

Ä
P̂1, P̂2

ää
≈
Å
1− 1

n

ã
0.0003.

(8)

This example demonstrates how to predict the generaliza-
tion improvement of arbitrary ensemble sizes even when the
ensemble members are not independently distributed. This
is not possible without a variance-covariance decomposi-
tion.
In the following of this work, we use Theorem 3.2 to study
the generalization behavior of generative models and to find
ways to estimate the uncertainty of generated data. The pre-
sented evaluations and approaches are applicable to almost
any data generation task due to the flexibility of kernels and
data embeddings.

Predictive Kernel Entropy for Single Models. Histori-
cally, the bias-variance decomposition had a large impact on
the development of some of the most established machine
learning algorithms, like Random Forests (Breiman, 2001)
or Gradient Boosting (Friedman, 2002). However, ensemble
approaches are not similarly dominant for generative mod-
eling. Estimating Vark(P̂ ) requires an ensemble of models,
which is not always feasible. Instead, note the decomposi-
tion Vark(P̂ ) = E[∥P̂∥2k]− ∥E[P̂ ]∥2k and observe that the
distributional variance depends on the predictive kernel
entropy −∥P̂∥2k, which is estimated for single models. The
predictive kernel entropy also appears in the definition of
kernel scores in Equation (1). This suggests that it may have
a substantial influence on the generalization error. In Sec-
tion 5, we will discover that this influence is extremely high
(Pearson correlation of approx. 0.95), but the sign of the cor-
relation is task-specific. Further, by using text embeddings,
predictive kernel entropy is better than other baselines in
predicting the performance of LLMs (c.f. Section 5).

4. Unbiased and Consistent Estimators
If the prediction P̂ is available in closed-form, the quantities
in Theorem 3.2 can be computed according to conventional
approaches (Gruber & Buettner, 2023). However, this is
usually not the case for generative models in Deep Learning.
For example, Diffusion Models (Ho et al., 2020) or closed-
source LLMs (OpenAI, 2023) are also learning the training
distribution, but they are often limited to generating samples.
In this section, we introduce estimators of the distributional
variance and covariance for the case when only samples of
the distributions are available. This increases the practical
applicability of Theorem 3.2 by a wide margin and allows
investigating the most recent and largest generative models
without constraints. We assume a minimum of two sam-
ples from each distribution is given. All estimators in the
following require a two-stage sampling procedure (Särndal
et al., 2003): First, distributions are sampled in an outer
loop, which can be seen as clusters. In Section 5, this will
be an ensemble of generative models. Second, we sample
of each distribution multiple times in an inner loop, which
can be seen as within-cluster samples. This will be the data
generations of each model.
The procedure differs slightly between the variance and
covariance case. For simplicity, we also assume that all
within-cluster sample sizes are the same. All estimators can
be adjusted if that is not the case and will still be unbiased
and consistent. Again, all proofs are presented in Appendix
E.

4.1. Distributional Variance

Assume we have a random variable P with outcomes in
P based on an unknown distribution PP from which we
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can sample. First, we sample distributions P1, . . . , Pn
iid∼

PP . Then, we sample Xi1, . . . , Xim
iid∼ Pi for i =

1 . . . n. The estimator we are about to propose is di-
rectly derived from the conventional variance estimator
σ̂2 := 1

n−1

∑n
i=1

∥∥Pi − 1
n

∑n
s=1 Ps

∥∥2
k
. Note that it holds

σ̂2 = 1
n

∑n
i=1 ∥Pi∥2k−

1
n(n−1)

∑n
i=1

∑n
s=1
s̸=i
⟨Pi | k |Ps⟩, i.e.

the estimator is the average of same-index pairs minus the
average of the rest. Our extended estimator then uses as
plug-ins ∥Pi∥2k ≈

1
m(m−1)

∑m
j=1

∑m
t=1
t ̸=j

k (Xij , Xit) and

⟨Pi | k |Ps⟩ ≈ 1
m2

∑m
j=1

∑m
t=1

k (Xij , Xst). The com-
plete estimator of the distributional variance Vark (P ) is
defined by

V̂ar
(n,m)

k =
1

nm (m− 1)

n∑
i=1

m∑
j,t=1
t̸=j

k (Xij , Xit)

︸ ︷︷ ︸
Average similarity within clusters

− 1

n (n−1)m2

n∑
s,i=1
s̸=i

m∑
j,t=1

k (Xij , Xst)

︸ ︷︷ ︸
Average similarity between clusters

.

(9)

An illustration is given on the left in Figure 2. The estima-

tor is unbiased since E[V̂ar
(n,m)

k ] = Vark (P ). Its runtime
complexity is in O

(
m2n2

)
. Estimators with lower complex-

ity, like O (mn), exist but are not recommendable since they
have a worse performance and in most applications, gener-
ating the samples is far more costly than evaluating the esti-
mator. The variance of the estimator is in O

(
1
n

(
1 + 1

m

))
,

which proves V̂ar
(n,m)

k −→ Vark (P ) in probability with
growing n but not m. In words, the estimator is consistent
with increasing outer samples but not inner samples. This
may suggest to neglect creating inner samples and keep m
small, but our analysis in Appendix E.2 shows that there
exist sub-terms which converge equally fast in m as in n. In
combination with the finite sample simulation in Figure 2,
we recommend to use m ≥ n ≥ 10, if no prior information
is available.

4.2. Distributional Covariance and Correlation

For the covariance case, assume we have random variables
P and Q with outcomes in P based on an unknown joint
distribution PPQ from which we can sample. We require

samples Xi1, . . . , Xim
iid∼ Pi and Yi1, . . . , Yim

iid∼ Qi with
(P1, Q1) , . . . , (Pn, Qn)

iid∼ PPQ. Then, we propose the

unbiased and consistent covariance estimator

Ĉov
(n,m)

k (X,Y) =
1

nm2

n∑
i=1

m∑
j,t=1

k (Xij , Yit)

− 1

(n−1)nm2

n∑
i,s=1
s̸=i

m∑
j,t=1

k (Xij , Yst)
(10)

with X := (Xij)i=1...n,j=1...m and Y :=

(Yij)i=1...n,j=1...m. It has the same runtime com-
plexity and convergence rate as the variance estimator of
Equation (9) (c.f. Appendix E.3). While the distributional
covariance is directly implied by Theorem 3.2, it is difficult
to interpret since it is not bounded. Consequently, we
propose the distributional correlation estimator based on
Equation (10) given by

Ĉorr
(n,m)

k =
Ĉov

(n,m)

k (X,Y)√
Ĉov

(n,m)

k (X,X) Ĉov
(n,m)

k (Y,Y)

, (11)

which is in [−1, 1]. It is consistent since continuous transfor-
mations of consistent estimators are also consistent (Shao,
2003), i.e. for n→∞ in probability

Ĉorr
(n,m)

k −→ Corrk(P,Q) :=
Covk(P,Q)√

Vark(P )Vark(Q)
. (12)

We use the covariance estimator for the variance terms since
the variance estimator can be negative and the correlation
estimator is only asymptotically unbiased no matter the
choice. Note that Pearson correlation is recovered by using
the kernel kδ of Example 3.3.

In the next section, we show that distributional correlation,
as implied by Theorem 3.2, is a natural tool to gain new
insights into the fitting process of generative models. For ex-
ample, the correlations between epochs indicate how stable
the convergence during training is.

5. Applications
In this section, we apply the proposed statistical tools to
assess generative models across a variety of different data
generation tasks. Specifically, we put emphasis on instance-
level uncertainty estimation. A meaningful measure of un-
certainty is able to predict the loss for a given prediction.
We use the Pearson correlation coefficient to quantify how
well an uncertainty measure predicts a continuous loss, and
the area under receiver operator characteristic (AUROC) for
a binary loss. We first start in Section 5.1 with diffusion
models for image generation on the synthetic InfiMNIST
dataset for a detailed examination of their generalization
behavior. In Section 5.2, we evaluate an ensemble of Glow-
TTS models for text-to-speech synthesis on the SpeechLJ
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X13

X12

X11

X23

X22

X21

X

Figure 2. Left: Illustration of the estimator V̂ar
(n,m)

k in the sample space X for n = 2 outer samples and m = 3 inner samples. The
estimator computes the average similarity within clusters (solid red lines) minus the average similarity between clusters (dotted blue lines).
Shorter lines indicate higher similarity and larger kernel values. Right: Estimator standard deviation for various sample sizes. Even
though the estimator does not converge in theory with the inner sample size m, it may still be influenced significantly by it for small
sample sizes.

Figure 3. Left: The variance starts high and is reduced throughout training. From 20 epochs onwards, the variance stays stable for
all classes and no overfitting can be observed. Mid: The bias is reduced a lot quicker than the variance, reaching its minimum at 5
epochs, and converges after 10 epochs. Right: The distributional correlation between training epochs shows similar to the variance
that convergence happens around epoch 20. Remarkably, the ’square’ of very high correlations indicates that the model is stable in its
convergence and does not iterate through equally good solutions.

dataset. In all cases, kernel entropy shows strong perfor-
mance as uncertainty measure. Last, we use kernel entropy
to outperform other baselines in uncertainty estimation for
natural language generation in Section 5.3. There, we eval-
uate single OPT models of different sizes on the question
answering datasets CoQA and TriviaQA. The source code of
all experiments is openly available at https://github.
com/MLO-lab/BVCD_generative_models.

5.1. Image Generation

For image generation, we use conditional diffusion models
(Ho et al., 2020; Ho & Salimans, 2021) trained on MNIST-
like datasets. We use InfiMNIST to sample an infinite num-
ber of uniquely perturbed MNIST images (Loosli et al.,
2007). By simulating the data generation process we can
assess the ground truth generalization error of the diffusion

model. We sample n = 20 distinct training sets from In-
fiMNIST each of size 60.000 (similar as MNIST). We then
train a model on each training set. This is in correspon-
dance to how generalization error, bias, and variance are
evaluated for regression and classification tasks (Ueda &
Nakano, 1996; Gruber & Buettner, 2023). We use m = 20
generated images per class and per model for all estima-
tors. The predictive kernel entropy is only evaluated on
a single model to stay as closely as possible to practical
constraints. Our kernel choice is the commonly used RBF
kernel krbf (x, y) = exp(−γ ∥x− y∥22), where x and y are
flattened images and γ a normalization factor based on the
number of pixels (Schölkopf, 1997; Schölkopf & Smola,
2002; Liu et al., 2020). We first analyse the generalization
behavior and then assess different approaches for uncer-
tainty estimation. In Figure 3, we plot the distributional vari-
ance, bias, and distributional correlation throughout training
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Figure 4. Left: Dependence between squared MMD and distributional variance. The distributional variance correlates linearly with the
squared MMD. Right: Pearson correlation between squared MMD and distributional variance is very high (≈ 0.95) throughout training.
Approximation via deep ensembles does not deteriorate this relation. Consequently, distributional variance and kernel entropy represent
viable measure of uncertainty.
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Figure 5. MMD2, variance, and bias for class ’0’ throughout train-
ing with reduced training set of ’0’s. After 5 epochs, mode collapse
occurs, which is only expressed in the increased bias. This indi-
cates, that mode collapse is a contrary phenomenon to overfitting.

for every second epoch. As can be seen, the model con-
verges quicker for the bias than the variance (around epochs
10 and 20). Further, no overfitting occurs since both vari-
ance and bias stay small. The correlation matrix also shows
convergence around epoch 20, but, more interestingly, it
shows a square of high correlations in the lower right corner.
This is an indication that the diffusion model training is sta-
ble in its convergence and does not iterate through different
minima in the optimization landscape.
In Figure 4, we compare the relations between kernel score
and MMD2 to distributional variance and predictive kernel
entropy for each class. As can be seen, the predictive kernel
entropy correlates strongly linearly with the generalization
error (kernel score) but not so much with the generaliza-
tion discrepancy (MMD2), while the distributional variance
correlates strongly linearly with the MMD2 but not the ker-
nel score. This correlation can be observed throughout the
whole training and gives a very high Pearson correlation
coefficient of around 0.95. Importantly for practical settings,
the correlation between MMD2 and distributional variance

does not deteriorate when we use a deep ensemble trained
on a single dataset.
In summary, these results demonstrate that both distribu-
tional variance as well as predictive kernel entropy are viable
measure of uncertainty to predict the correctness of gener-
ated instances, either in terms of kernel score or MMD2.

We next set out to use our estimators for bias and variance
to elucidate the phenomenon of mode collapse. When gen-
erative models are used to learn the distribution of a given
training set, there are often groups of different sizes present.
In these cases, a common occurence is mode collapse to-
wards the majority groups, i.e. the model catastrophically
fails to model the minority groups. To simulate this sce-
nario in our setting, we repeat our evaluation but reduce the
frequency of images of digit ’0’ to ≈ 1% in each training
set. The bias-variance curves of digit ’0’ across training
(Figure 5) reveals the expected mode collapse, and, most
importantly, demonstrates that it is only expressed in terms
of the bias. The variance term is further reduced through-
out training as if no collapse occured. This suggests that
mode collapse may be seen as a contrary phenomenon to
overfitting. While in overfitting, the variance increases and
the bias reduces, this is vice versa for mode collapse for
prolonged training. In Appendix D, we conduct additional
evaluations and confirm that our findings are robust with
respect to common kernel choices.

5.2. Audio Generation

We next evaluate the fitting and generalization behavior of
the generative flow model Glow-TTS (Kim et al., 2020) on
the text-to-speech dataset LJSpeech (Ito & Johnson, 2017)
throughout training (Appendix D). We train a deep ensem-
ble via n = 10 different weight initializations on 90% of the
available data. We evaluate the models every 2000 training
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Figure 6. Left: Kernel score, predictive kernel entropy, and their Pearson correlation throughout training for Glow-TTS. The entropy
indicates that the model initially predicts too narrow distributions, which widen until convergence at around 10000 iterations. After
convergence, the correlation between predictive entropy and kernel score is very high. Mid: The variance of an Deep Ensemble is also
initially very small and converges at the same time as kernel score and entropy. Right: Comparing kernel score and kernel entropy as well
as variance for 100 test instances at 16000 training iterations. Again, the correlation shows strong linearity for kernel entropy.

Figure 7. Area-Under-Curve of answer accuracy based on thresholds for different uncertainty measures. The kernel entropy outperforms
other baselines in predicting the correctness of generated answers across a wide range of differently sized models.

iterations by generating m = 10 speech waveforms for each
of 100 test instances. The evaluation includes the kernel
score, kernel entropy and the distributional variance. Note
that ensemble members are only required to compute the
distributional variance – we compute kernel entropy for a
single model, as before. Here, we use the Laplacian ker-
nel klap (x, y) = exp(−γ ∥x− y∥1) (Schölkopf & Smola,
2002), where x and y are waveforms represented by vec-
tors and γ a normalization constant based on the waveform
length. The results are depicted in Figure 6. Our analyses
reveal that similar as for image generation, overfitting does
not occur for prolonged training and the Pearson correla-
tion between kernel entropy and kernel score is very high
after convergence. But, the entropy is initially very small
and increases until convergence. This indicates that a suc-
cessful training requires to widen the predicted distribution.
Consequently, the correlation between kernel entropy and

kernel score is negative, since badly fitted instances have
a more narrow predicted distribution. We also conducted
the evaluations with the RBF kernel, which gives similar
but slightly more erratic curves than the Laplacian kernel
(Appendix D).

5.3. Natural Language Generation

An instance-level uncertainty measure is supposed to pre-
dict the correctness of an individual prediction and should
therefore be highly correlated to the loss. In all experiments
so far, we observed a very high correlation between kernel
entropy and kernel score. This indicates that kernel entropy
is an excellent measure of uncertainty. In the following, we
examine kernel entropy to predict the correctness of LLMs
on question answering datasets. Here, the setup differs from
the previous experiments by two aspects.
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First, we follow Kuhn et al. (2023) and do not use a kernel
score but a binarized version of the RougeL similarity as
loss. For two sequences s, t, it is defined as RougeL (s, t) =

2
length(s)+length(t) LCS (s, t), where LCS is the length of
the longest common sequence between its two inputs (Lin &
Och, 2004). Kuhn et al. (2023) propose to use the binary loss
L (answer, target) = 1RougeL(answer,target)>0.3. Specif-
ically, they claim that this particular loss matches human-
based evaluation 89% of the time for CoQA and 96% of the
time for TriviaQA. This turns predicting the loss value into
a binary classification problem. Consequently, the AUROC
is more meaningful than Pearson correlation for evaluating
the performance of uncertainty measures (Kadavath et al.,
2022).
Second, we do not directly use the generated answers as
inputs for a kernel but, instead, their vector embeddings. A
well-trained vector embedder maps text into a semantically
meaningful vector space in which a kernel then measures
similarities (Camacho-Collados & Pilehvar, 2018).
The investigated uncertainty baselines are predictive entropy,
normalised (predictive) entropy, p(True), semantic entropy,
and lexical similarity (Kuhn et al., 2023). We consider uncer-
tainty estimation for question answering predictions of the
datasets CoQA (Reddy et al., 2019) with 7983 test instances
and TriviaQA (Joshi et al., 2017) with 17943 test instances.
We use OPT models (Zhang et al., 2022) of all available
sizes except the 30 billion parameter version, which is com-
putationally prohibitive. For our kernel entropy, we use the
RBF kernel and text embeddings computed via a pretrained
e5-small-v2 (Wang et al., 2022). The results are depicted
in Figure 7. As can be seen, kernel entropy is the most
robust approach and outperforms other baselines for uncer-
tainty estimation in almost all cases. We can achieve further
improvements in our approach when we use alternative em-
bedders (c.f. Appendix D). The cosine similarity, which is
used in natural language processing (Steinbach et al., 2000),
and other kernels show similar results as the RBF kernel in
Appendix D.
Our approach of combining an embedding model with a
p.s.d. kernel outperforms all other uncertainty baselines.
However, a good embedding model might not always be
accessible for every language setup. In Appendix D, we
additionally evaluate kernel entropy based on a sequence
kernel, which does not require an embedding model. While
the performance is worse compared to using an embedder,
the sequence kernel is still competitive and clearly outper-
forms lexical similarity.

6. Limitations
Our work builds upon large bodies of literature, and, con-
sequently, shares their limitations. We give an overview of
these in the following.
Our bias-variance decomposition assumes that the MMD

and kernel score are meaningful measures of generalization
performance. The choice of kernel can be inspired by the
large body of work on support vector machines (Schölkopf
& Smola, 2002) and MMD-based hypothesis tests (Gret-
ton et al., 2012a). Further, we share similar limitations as
other bias-variance decompositions in the literature (Ueda &
Nakano, 1996; Gruber & Buettner, 2023). Specifically, the
intractability of simulating the exact training distribution is
often limiting the bias-variance estimates in practice. Deep
ensembles can give reasonable approximations, which we
use for the audio experiments.
Our language experiments are adopted from past literature
on uncertainty estimation (Malinin & Gales, 2020; Kada-
vath et al., 2022; Kuhn et al., 2023). Since this branch of
research is mostly empirical, it is not possible to give guar-
antees of how each uncertainty baseline performs for new
settings. This limitation also holds for kernel entropy, and
is underlined by its strong but negative correlations with the
error for the audio experiments. Recent theoretical work
in the classification setting explored the link between un-
certainty and accuracy via the class-aggregated calibration
error (CACE) (Jiang et al., 2021; Kirsch & Gal, 2022). How-
ever, this relationship still needs to be generalized because
CACE is not defined for non-classification models.
Last, our estimators require i.i.d. samples to converge
strongly with sample size (Capiński & Kopp, 2004). This
usually holds for samples from an individual model (i.e.
when we estimate kernel entropy, kernel score, or MMD).
However, it may not hold when estimating the variance,
covariance, or bias of the model.

7. Conclusion
In this work we introduced the first bias-variance-covariance
decomposition beyond the mean squared error for kernel
scores. We proposed estimators for the variance and co-
variance terms which only require samples of the predictive
distributions. This allows to evaluate all terms in the com-
position for arbitrary generative models and even in the
closed-source setting. We studied empirically the fitting
behavior of common models for image and audio genera-
tions, and demonstrated that kernel entropy and variance
are viable measures of uncertainty. Finally, we showed that
kernel entropy outperforms other baselines for predicting
the correctness of LLMs in question answering tasks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning theoretically and empirically. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here. How-
ever, we emphasise that uncertainty estimation may improve
safety and trustworthiness of generative models but without
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A. Overview
In the following, we offer an extended discussion of kernel scores and MMD literature in Appendix B, further theoretical
results in Appendix C, more experimental details and additional experiments in Appendix D, and we provide all missing
proofs in Appendix E.

B. Related Work on Kernel Scores and Maximum Mean Discrepancy
The kernel score and the MMD2 only differ by a target dependent constant (Steinwart & Ziegel, 2021). Consequently, the
gradient of the kernel score and the MMD2 are equal, and, thus, optimizing kernel score or MMD2 gives similar results.
Importantly, Bińkowski et al. (2018) demonstrated that a specific setup of the MMD2, referred to as kernel inception distance
(KID), is a better metric for image generation than the commonly used Fréchet inception distance (FID) (Heusel et al.,
2017). This directly motivates the use of the MMD2 (and thereby the kernel score) as loss/metric to evaluate generative
models. The MMD2 can be intuitively explained via the kernel trick (Schölkopf, 2002): A kernel can be decomposed into
an inner product, which turns the MMD2 into the squared euclidean distance within this inner product space (referred to as
reproducing kernel Hilbert space, c.f. Equation (15)). The specific form of the inner product space depends on the chosen
kernel. Originally, Gretton et al. (2012a) introduced the MMD for non-parametric hypothesis tests. Li et al. (2015) and
Dziugaite et al. (2015) simultaneously demonstrated that the MMD can be used to train state-of-the-art (w.r.t. 2015) image
generators. These models are usually referred to as moment matching networks and successive improvements have been
proposed (Ren et al., 2016; Li et al., 2017; Ren et al., 2021). Even though contemporary state-of-the-art image generation
training optimizes a different loss, the MMD is still relevant for image generation model selection via the KID (Karras et al.,
2020; Choi et al., 2022; Tseng et al., 2023).

C. Extended Theoretical Results
In this section, we provide more minor theoretical results, which are very close to our main contribution in Theorem 3.2.

C.1. Decomposition in Reproducing Kernel Hilbert Spaces

The literature on MMD expanded to a significant size in the last decade (Gretton et al., 2012a;b; Chwialkowski et al., 2016;
Liu et al., 2020; Kübler et al., 2020; Shekhar et al., 2022; Schrab et al., 2022; 2023). The MMD is usually used in the context
of a reproducing kernel Hilbert spaces (RKHS) (Schölkopf & Smola, 2002). In the following, we express Theorem 3.2
according to a RKHS H to offer an alternative perspective on our result. Assume the kernel k : Y × Y → R is associated
with an RKHS H with inner product ⟨., .⟩H and norm ∥.∥H such that k (x, y) = ⟨k (x, .) , k (y, .)⟩H . The norm based on
k in the distribution space relates to the RKHS norm via ∥Q∥k = ∥µQ∥H with mean embedding µQ := E [k (Y, .)] ∈H

for a Y ∼ Q ∈P . Consequently, given a prediction P̂ we have

E
î
Sk

Ä
P̂ , Y

äó
︸ ︷︷ ︸
Generalization Error

= −∥µQ∥2H︸ ︷︷ ︸
Noise

+
∥∥E [µP̂

]
− µQ

∥∥2
H︸ ︷︷ ︸

Bias

+E
î∥∥µP̂ − E

[
µP̂

]∥∥2
H

ó
︸ ︷︷ ︸

Variance

. (13)

The covariance decomposition can be expressed similarly since ⟨P | k |Q⟩ = ⟨µP , µQ⟩H . Note that the bias and variance
terms in Theorem 3.2 and Equation (13) are equal. As a further note, we can also express the kernel score and the MMD for
P,Q ∈P and y ∈ Y in terms of the RKHS since it holds

Sk (P, y) = ∥µP ∥2H − 2 ⟨µP , k (y, .)⟩H (14)

and

MMD2
k (P,Q) = ∥µP − µQ∥2H (15)

(c.f. (Steinwart & Ziegel, 2021) for a more detailed discussion).

C.2. Covariance decomposition without Identical Distribution Assumption

Let k be a p.s.d. kernel and P̂ a predicted distribution for a target Y ∼ Q similar as in Theorem 3.2.
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Algorithm 1 Estimating predictive kernel entropy

Required: Generated outputs a1, . . . , an for a given input, p.s.d. kernel k, (optional) embedder ϕ
if ϕ is given then

for i = 1 to n do
ai ← ϕ (ai)

end for
end if
Return: − 1

n(n−1)

∑n
i=1

∑n
j ̸=i k (ai, aj)

If we have an ensemble prediction P̂ (n) := 1
n

∑n
i=1 P̂i with members P̂1, . . . , P̂n, then

Vark
Ä
P̂ (n)
ä
=

1

n2

n∑
i=1

Vark
Ä
P̂i

ä
+

1

n2

n∑
i=1

n∑
j=1
j ̸=i

Covk
Ä
P̂i, P̂j

ä
. (16)

This results is part of the proof in Equation (20) of Theorem 3.2.

D. Extended Experiments
In this section, we give more details on the experiments and show further results.

D.1. Experimental Details

We give some additional details on the experimental setup. First, we formalize computing the kernel entropy in Algorithm 1.
Second, we describe in more detail the image, audio, and natural language generation experiments.

D.1.1. IMAGE GENERATION

We use the following procedure for the simulation in Figure 2. First, we sample 32 distinct training sets from InfiMNIST of
size 60.000. Then, we train a conditional diffusion model on each training set for 20 epochs. We adopt implementation and
hyperparameters from open source PyTorch code of a conditional diffusion model trained on normal MNIST (Paszke et al.,
2019). This includes an initial learning rate of 1e-4, a batch size of 256, 400 diffusion steps, and a feature dimension of 128.
We then generate 100 images of class ’0’ of each model after training. Finally, to get the approximate standard deviation of
each tick and each line in Figure 2, we estimate the distributional variance 1000 times on randomly drawn samples without
replacement of all generated images. The normalization constant in the RBF kernel is set to γ = 1

728 since each image has
728 pixels. We also repeated the whole procedure for other classes with similar results.

The results in Figure 3 and 4 are produced in a similar manner. Only difference here is that we train on only 20 training
sets for 40 epochs and generate only 20 images per class. We chose these numbers based on the insights gained by the
previous simulation experiment. The correlation matrix is the average of all class-wise correlation matrices. The values of
the corresponding average covariance matrix of epochs 20 to 40 is given by (all values rounded)

(Covk (Pi, Pj))i,j=20...40 ≈ 103 ·



5.1 4.9 4.9 4.9 4.9 4.9 4.8 4.9 4.9 4.8 4.9
4.9 5.1 4.9 4.8 4.9 4.9 4.9 4.9 4.9 4.9 4.9
4.9 4.9 5.1 4.8 4.9 4.9 4.8 4.9 4.9 4.8 4.9
4.9 4.8 4.8 5.1 4.9 4.8 4.9 4.9 4.9 4.9 4.9
4.9 4.9 4.9 4.9 5.2 4.9 4.9 4.9 4.9 4.9 4.9
4.9 4.9 4.9 4.8 4.9 5.2 4.9 4.9 4.9 4.9 5.0
4.8 4.9 4.8 4.9 4.9 4.9 5.1 4.9 4.9 4.9 4.9
4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.1 4.9 4.9 4.9
4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.1 4.9 5.0
4.8 4.9 4.8 4.9 4.9 4.9 4.9 4.9 4.9 5.2 5.0
4.9 4.9 4.9 4.9 4.9 5.0 4.9 4.9 5.0 5.0 5.2


. (17)
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Figure 8. Left: Kernel score throughout training. The kernel score cannot be compared meaningfully between classes since each optimum
depends on a constant specific to each target class. Mid: MMD2 throughout training. Here, it is easier to compare the errors since the
MMD2 is zero for the optimal prediction. Right: The predictive kernel entropy of each class fluctuates throughout training but stays
constant upon convergence.

Figure 9. Generalization curves of the digit, which we reduce in frequency during training of DDPMs on InfiMNIST. The reduced digit
has only approx. 60 training instances while the other digits have approx. 6000 each. Left: We reduce and evaluate exclusively digit ’2’.
Right: We reduce and evaluate exclusively digit ’3’. We cannot observe a mode collapse as with digit ’0’ in Figure 5. The bias is still
elevated compared to normal digit frequencies (c.f. Figure 3).

This covariance matrix confirms that Vark (Pi) and Covk (Pi, Pj) are approximately equal for all i, j ∈ {20, . . . , 40} with
i ̸= j. We made use of this assumption in Example 3.4.
All training was done on Nvidia RTX5000 GPUs.

D.1.2. AUDIO GENERATION

For the audio experiments, we use an implementation of Glow-TTS given in the TTS library (Eren & The Coqui TTS Team,
2021). The LJSpeech dataset consists of 13.100 instances of text-speech pairs. Each speech is of a single woman reading out
loud the corresponding text. We use a random 90% of the data for training and a batch size of 32. On this single training set,
we train 12 randomly initialized models for 100 epochs with an initial learning rate of 1e-2. The evaluation happens every
2.000 gradient descent iterations for each model. For a single model in a single evaluation step, we generate 10 waveforms
(speeches) for each of 100 test instances. The normalization constant in the Laplacian and RBF kernel is set to γ = 1

λiter,inst
,

where λiter,inst is the longest generated waveform in each evaluation step iter and each test instance inst. The generated
audio instances are of various length, so we pad them with zeros to match their length.
Further, all training was done on Nvidia RTX5000 GPUs. But, noteworthy to this experiment, storing the model iterations
and generated waveforms required up to 400 GB of hard disk storage.

D.1.3. NATURAL LANGUAGE GENERATION

For the natural language experiments, we adopted the experimental setup of Kuhn et al. (2023). We used their provided code
implementations including the hyperparameters. This includes a temperature of T = 0.5 for generating the answers used for
uncertainty estimation. Similarly, we use 10 answer generations for each prompt for TriviaQA and 20 answer generations
for CoQA. All natural language models are pretrained and downloaded from HuggingFace (Wolf et al., 2020). We used a
single Nvidia A6000 GPU for the natural language experiments.
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D.2. Additional Results

In the following, we give some additional results for image, audio, and language generation.

D.2.1. IMAGE GENERATION

We start with the image experiments. In Figure 8, we show the corresponding generalization error (kernel score), MMD2,
and predictive kernel entropy values throughout training of the same setup as in Figure 3. As can be seen, MMD2 is more
interpretative for comparing different classes. But, the MMD can also not be evaluated in a lot of practical cases including
the audio and natural language settings in this work. Further, the kernel entropy does not show a trend throughout training
contrary to the audio setting seen in Figure 6. To test the robustness of our findings with respect to the kernel choice, we repeat

all evaluations with the Laplacian kernel with γ = 1
282 in Figure 10, and the polynomial kernel kpol (x, y) =

Ä
⟨x,y⟩+1

282

ä3
in

Figure 11. We also repeat the mode collapse evaluation of Figure 5 with these kernels in Figure 12. As can be seen, all
reported findings still hold with only minor differences. This suggests that the choice of kernel is fairly robust towards
spotting major trends during model training.

Further, we perform similar experiments with the RBF kernel as in Figure 5, where we observed a mode collapse. In
Figure 9, we repeat the evaluation but use digit ’2’ and digit ’3’ instead of digit ’0’. As can be seen via our bias-variance
decomposition, mode collapse does not occur, but the bias term is still larger than in Figure 3.

To confirm that our evaluations also give meaningful results for larger setups, we train the DCGAN architecture (Radford
et al., 2015) for image generation on the CelebA dataset (Liu et al., 2015), which consists of colored 64x64 images. We train
an ensemble of 12 models to approximate the bias-variance decomposition. For each evaluation step, we sample 20 images
per model, and we use the Laplacian kernel. We evaluate the MMD2 of the individual models and of the ensemble of all
models, and, as can be seen in Figure 13, the variance indicates the regions in which the ensemble outperforms the individual
models in error. This is predicted by Theorem 3.2 since the ensemble size reduces the variance term in the generalisation
error.

This underlines that our decomposition is a useful tool to investigate and analyze the fitting behaviour of generative models.

D.2.2. AUDIO GENERATION

We repeat the evaluations of the audio generations in Section 5.2, where we used the Laplacian kernel, with the RBF
kernel. It is known that the RBF kernel does not scale well to higher dimensions (Bińkowski et al., 2018). We represent the
generated audio instances via vectors of various lengths, often exceeding 100,000 dimensions (c.f. Figure 14).

Consequently, we expect the RBF kernel to behave more erratic than the Laplacian kernel in the main paper. The results are
shown in Figure 15.

D.2.3. NATURAL LANGUAGE GENERATION

Next, we continue with the natural language experiments.
In Figure 17, we confirm that the correlation between the predictive kernel entropy and the RougeL (which is supposed to be
maximized) has the same sign as in the image experiments in Figure 4.

We also evaluate different embedders. For this, we compare different ones, which have been pretrained on a variety of
different training sets and with different embedding dimensions available on HuggingFace. These are e5-small-v2 (384
dimensions; used in the main paper) (Wang et al., 2022), gte-large (1024 dimensions) (Li et al., 2023), all-mpnet-base-v2
(768 dimensions) (Song et al., 2020), as well as all-MiniLM-l6-v2 and all-MiniLM-L12-v2 (both 384 dimensions) (Wang
et al., 2020). The models all-mpnet-base-v2, all-MiniLM-l6-v2, and all-MiniLM-L12-v2 included the training set of
TriviaQA in their training data, while e5-small-v2 and gte-large did not. Consequently, these three models are an unfair
comparison for TriviaQA to other baselines not using its training set. In Figure 18, we compare the ability of each embedder
in combination with the RBF kernel to predict the answer accuracy for the same settings as in Figure 7 in the main paper. As
we can see for CoQA, all embedders provide approximately similar performance. This indicates that kernel entropy is a
robust approach as long as the embedder is meaningful. The results for TriviaQA are similar, but all-MiniLM-L6-v2 and
all-MiniLM-L12-v2 perform comparably better. We hypothesis that this is due to them being trained on the training set of
TriviaQA. This suggests that we can achieve even better uncertainty estimates by using a task specific training set.
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Figure 10. Evaluations in Figures 3, 4, and 8 repeated with Laplacian kernel. The reported findings based on the RBF kernel also hold for
the Laplacian kernel and only minor differences can be spotted.
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Figure 11. Evaluations in Figures 3, 4, and 8 repeated with polynomial kernel. The reported findings based on the RBF kernel also hold
for the polynomial kernel and only minor differences can be spotted. One such difference is that the distributional variance shows a strong
negative correlation with the kernel score, which cannot be seen for the other kernels.
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Figure 12. Evaluation of Figure 5 repeated with other kernels. The mode collapse result is observable independent of kernel choice.
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(a) Generated images at Epoch 20 (each
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(b) Evaluations throughout training.

Figure 13. We train an ensemble of 12 DCGAN models on the CelebA dataset and evaluate the MMD2, bias, and variance. The bias and
variance are approximated via the ensemble and do not necessarily reflect the ground truth bias and variance. The variance curve indicates
the section of improvement in error by using an ensemble instead of a single model as suggested by Theorem 3.2.

Figure 14. Average WAV length of generated audio instances by Glow-TTS. Initially, the model generates only very short instances, which
explains the low initial kernel entropy.

Figure 15. Audio generation results for kernel score, kernel entropy, and negative Pearson correlation between them with the RBF kernel.
The trends are similar as in Figure 6 but more erratic and the absolute correlation is slightly less.
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Figure 16. Area-Under-Curve (AUROC) of answer accuracy based on thresholds for best-performing uncertainty measures (embedding-
based kernel entropy, semantic entropy) and model-free closed-source uncertainty measures (cs kernel entropy, lexical similarity). Even
when no embedding model is available, the kernel entropy is a very strong baseline in predicting the correctness of generated answers
across a wide range of differently sized models. In our evaluations, cs kernel entropy strongly outperforms lexical similarity.

Table 1. AUROC between answer correctness and uncertainty estimates based on CS kernel entropy (ours) and lexical similarity. These are
the only uncertainty measures in our experiments which do not require a pretrained semantic model and are applicable to any closed-source
LLM.

DATASET MODEL CS KERNEL ENT. LEX. SIM.

TRIVIAQA

OPT-125M 0.520 0.582
OPT-350M 0.602 0.577
OPT-1.3B 0.657 0.656
OPT-2.7B 0.653 0.648
OPT-6.7B 0.702 0.668
OPT-13B 0.692 0.644

COQA

OPT-125M 0.593 0.535
OPT-350M 0.623 0.591
OPT-1.3B 0.678 0.629
OPT-2.7B 0.700 0.618
OPT-6.7B 0.710 0.638
OPT-13B 0.700 0.641

We also compare the impact of different kernel choices in Figure 19. The differences are marginal for cosine similarity,
and RBF and polynomial kernel. Contrary, the Laplacian kernel performs often worse. The lack of a difference between
RBF or polynomial kernel and cosine similarity is surprising considering that e5-small-v2 has been trained using the cosine
similarity (Wang et al., 2022). Our results suggests that the embedder has substantially more influence than the kernel, and
that resources should be spent on optimizing the former and not the latter.

Further, we compare different number of generated answers to estimate the kernel entropy in the case of Opt-13b on CoQA
in Figure 20. As can be seen, more samples are continuously better. Consequently, we expect to get even better results in
Figure 7 for larger numbers of generations.

Last, we also evaluate kernel entropy with a sequence kernel, which does not require an embedding model. This makes kernel
entropy as an uncertainty estimate applicable to scenarios, where no embedding model exists. We choose the contiguous
subsequence (cs) kernel defined by

kCS (x, y) =
kt (x, y)√

kt (x, x)
√

kt (y, y)
(18)

for a hyperparameter t ∈ N with

kt
(
x(1:l), y(1:l′)

)
=

l−t+1∑
i=1

l′−t+1∑
j=1

1x(i:i+t−1)=y(j:j+t−1)
(19)

where x(i:i+t−1) = (xi, xi+1, . . . , xi+t−1)
⊺ and 1x=y = 1 if x = y else 0 (Baum et al., 2023). The kernel kt is p.s.d. (c.f.
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Figure 17. Kernel density estimation of kernel entropy and RougeL between answer and target for opt-1.3b model on CoQA. A large
RougeL corresponds to a high accuracy and a low error. Consequently, low kernel entropy indicates a high likelihood of answer
correctness.

Figure 18. Comparing uncertainty estimates of kernel entropy for different embedders and RBF kernel. In both cases, the differences
are not substantial. But, all-MiniLM-L6-v2 and all-MiniLM-L12-v2 perform comparably better on TriviaQA, likely due to them being
trained on the TriviaQA training set.
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Figure 19. Comparing uncertainty estimates of kernel entropy for cosine similarity and RBF, polynomial, and Laplacian kernel. Even
though the embedder e5-small-v2 is trained via cosine similarity, the performance differences are marginal.

Király & Oberhauser (2019)) and counts the number of contiguous subsequences of length t, which appear in x and y. The
p.s.d. kernel kCS is the normalised version bounded between 0 and 1. Since our evaluations do not include a validation
set, we pick t = 2 based on (Baum et al., 2023). In general, better AUROC performance may be achieved by optimizing
kernel hyperparameters via a validation set. In Figure 16 and Table 1 we compare the AUROC performance of the cs kernel
with other uncertainty estimates from the main paper. As can be seen, the cs kernel entropy is a competitive baseline and
strongly outperforms lexical similarity. We specifically highlight the comparison with the lexical similarity, since it is the
only other approach within our evaluations which is applicable to any setting with generated sequences. This includes the
closed-source setting and settings, where the model has no understanding of natural language (the baseline p(True) requires
Q&A queries, which strongly depend on the capabilities of the underlying model).
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Figure 20. Number of generated answers to estimate kernel entropy compared to the AUROC for Opt-13b on CoQA. More generations
monotonically improve kernel entropy as an uncertainty estimate.

E. Missing Proofs
In this section, we give all missing proofs for Theorem 3.2 and for the statements in Section 4. We first start with the
proof for the bias-variance-covariance decomposition in Section E.1. Then in Section E.2, we solve the expectation and
the variance of the distributional variance estimator proposed in Equation (9). Last, we do the same for the distributional
covariance estimator of Equation (10) in Section E.3.

E.1. Bias-Variance-Covariance Decomposition

In Theorem 3.2, the covariance decomposition is introduced after stating the more simpler bias-variance decomposition.
Here, we prove both in one go. Assume we have target Y ∼ Q ∈P and ensemble prediction P̂ (n) := 1

n

∑n
i=1 P̂i of n ∈ N

identically distributed predictions P̂1, . . . , P̂n with outcomes in P . Further, assume that all expectations in the following
are finite. We will use P̂ := P̂1 and P̂ ′ := P̂2. Then, the decomposition can be constructed via
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(20)

(i) Y and P̂ (n) independently distributed
(ii) P̂1, . . . , P̂n identically distributed

E.2. Distributional Variance Estimator

In general, the notation of Eaton (1981) allows us to write for random variables P and Q with outcomes in a distribution
space, and for independent X ∼ P and Y ∼ Q that

E [k (X,Y ) | P,Q] =

∫
k (x, y) dP ⊗Q (x, y) =

∫ ∫
k (x, y) dP (x) dQ (y) = ⟨P | k |Q⟩ , (21)

where we used Tonelli’s Theorem to split the integral.
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Assume the variables are defined as in Section 4. As a reminder: P, P1, . . . , Pn i.i.d. and Xi1, . . . , Xim ∼ Pi i.i.d. for
a given i = 1, . . . , n. Note we have for j ̸= t that Xij and Xit are independent given Pi for all i = 1, . . . , n. From this
follows

E [k (Xij , Xit)] = E [E [k (Xij , Xit) | Pi]]

iid
= E [E [k (Xi1, Xi2) | Pi]]

iid
= E [⟨Pi | k |Pi⟩]
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= E [⟨P | k |P ⟩]

(22)

as well as for i ̸= s

E [k (Xij , Xst)] = E [E [k (Xij , Xst) | Pi, Ps]]
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= E [E [k (Xi1, Xs1) | Pi, Ps]]
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= ⟨E [P ] | k |E [P ]⟩ .

(23)

E.2.1. EXPECTATION OF THE ESTIMATOR

Using these equations gives
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(24)

E.2.2. VARIANCE OF THE ESTIMATOR

Note that for a U-statistic Ûn = 1
n(n−1)

∑n
i=1

∑n
j=1
j ̸=i

h (Xi, Xj) based on i.i.d. samples X1, . . . , Xn and symmetric function

h, the estimator variance is given by
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(Shao, 2003).
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We will use the law of total variance (TV) several times to create independence between the summands, since for dependent
random variables X and Y with scalars a, b we have V (aX + bY ) = a2V (X) + b2V (Y ) + 2abCov (X,Y ) (Shao, 2003).

From this also follows that
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We will analyse each term successively and then combine the results further down in (35).
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(i) with ζ1 = E [V (E [k (X11, X12) | X12, P1] | P1)] and ζ2 = E [V (k (X11, X12) | P1)] based on (25).
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Due to the length of the expression, we first solve (I) and then (II).
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(i) with ζ3 = V (E [⟨P1 | k |P2⟩ | P1]) and ζ4 = V (⟨P1 | k |P2⟩) based on (25).

For the next term note that 1
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Consequently, we have
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Due to the length of the expressions, we again first look at (IIa) and then (IIb).
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(i) follows from symmetry of k and assumption of identical distributions.

Further, we have Cov (k (Xij , Xst) , k (Xic, Xbd) | Pi, Ps, Pb) = 0 whenever c ̸= j (since s ̸= b and independence
assumption), giving
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The only term left is
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nm2 (m− 1)
Cov (k (X11, X12) , k (X11, X21)) +

2m (m− 1) (m− 2)

nm2 (m− 1)
Cov (k (X11, X12) , k (X13, X21))

=
4

nm
Cov (k (X11, X12) , k (X11, X21))︸ ︷︷ ︸

ζ7:=

+
2 (m− 2)

nm
Cov (k (X11, X12) , k (X13, X21))︸ ︷︷ ︸

ζ8:=

.

(34)

(i) when i ̸= o ̸= s, then Cov (k (Xij , Xit) , k (Xop, Xsr)) = 0.
(ii) symmetry of k and iid property result in Cov (k (Xij , Xit) , k (Xip, Xsr)) = Cov (k (Xij , Xit) , k (Xsp, Xir)) as long
as i ̸= s
(iii) iid and symmetry of k.

It follows from inserting (27), (29), (33), and (34), into (26) that
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V
Å
V̂ar

(n,m)

k

ã
=

1

n
V (⟨P | k |P ⟩) + 4 (n− 2)

n (n− 1)
ζ3 −

4 (m− 2)

nm
ζ8︸ ︷︷ ︸

O( 1
n )

+
2

n (n− 1)
ζ4︸ ︷︷ ︸

O( 1
n2 )

+
4 (m− 2)

nm (m− 1)
ζ1 −

8

nm
ζ7 +

2 (n− 2)

n (n− 1)m
ζ9︸ ︷︷ ︸

O( 1
nm )

+
2

nm (m− 1)
ζ2︸ ︷︷ ︸

O( 1
nm2 )

+
2 (m− 1)

n (n− 1)m2
ζ5︸ ︷︷ ︸

O( 1
n2m

)

+
1

n (n− 1)m2
ζ6︸ ︷︷ ︸

O( 1
n2m2 )

.

(35)

In summary, our estimator is in O
(
1
n

(
1 + 1

m

))
and consequently consistent w.r.t. n but not m. However, in Equation (35)

appear several terms linearly, or even quadratically, shrinking with m. Consequently, it depends on the given setting how
important m is, which is also demonstrated in Figure 2 on the right. There, we used our estimator with the RBF kernel for
InfiMNIST generations as described in Appendix D.1.1.

E.2.3. ILLUSTRATIONS OF THE ESTIMATOR

The estimator can also be visualized in different ways as the following. We can interpret it as an operator on clusters in
Figure 2. Alternatively, we can also understand it in the context of Gram-like block matrices like: For i, s ∈ {1, . . . , n}
define the quadratic matrices Kis =

(
kisjt

)
j,t=1...m

∈ Rm×m with entries kisjt = k (Xij , Xst). Then we have the colored
block matrix à

K11 · · · · · · Kn1

...
. . . Kis

...
... Ksi

. . .
...

K1n · · · · · · Knn

í
=



k1111 · · · · · · k111m
...

. . . k11jt
...

... k11tj
. . .

...
k11m1

· · · · · · k11mm

k1211 · · ·
...

. . .
...

. . .
k12m1 · · ·

k2111 · · · · · · k211m
...

. . . . . .
...

k2211 · · ·
...

. . .


. (36)

The proposed distributional variance estimator is then the average of all cyan entries without the red ones (blocks on diagonal
without diagonal entries) minus the average of all black entries (off-diagonal blocks).

E.3. Distributional Covariance Estimator

Figure 21 shows an illustration of the distributional covariance estimator for two distribution (=cluster) samples of joint
(P,Q) and two per-distribution samples.

Note that we have under the given i.i.d. assumptions that

E [k (Xij , Yit)] = E [E [k (Xij , Yit) | Pi, Qi]]

iid
= E [E [k (Xi1, Yi1) | Pi, Qi]]

iid
= E [⟨Pi | k |Qi⟩]
iid
= E [⟨P | k |Q⟩]

(37)

as well as for i ̸= s
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X11

X12 X21
X22

Y11

Y12
Y21

Y22

X

Figure 21. Illustration of the estimator Ĉov
(n,m)

k in the sample space X for n = 2 outer samples and m = 2 inner samples. The
estimator computes the average similarity within clusters (solid orange lines) minus the average similarity between clusters (dotted blue
lines). Shorter lines indicate higher similarity and larger kernel values.

E [k (Xij , Yst)] = E [E [k (Xij , Yst) | Pi, Qs]]

iid
= E [E [k (Xi1, Ys1) | Pi, Qs]]

iid
= E [⟨Pi | k |Qs⟩]
iid
= ⟨E [P ] | k |E [Q]⟩ .

(38)

E.3.1. EXPECTATION OF THE ESTIMATOR

Now, we can prove that the covariance estimator is unbiased, i.e.

E
ï
Ĉov

(n,m)

k (X,Y)

ò
= E

 1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

Ö
k (Xij , Yit)−

1

n− 1

n∑
s=1
s̸=i

k (Xij , Yst)

è
=

1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

Ö
E [k (Xij , Yit)]−

1

n− 1

n∑
s=1
s̸=i

E [k (Xij , Yst)]

è
Eq. (37) & (38)

=
1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

Ö
E [⟨P | k |Q⟩]− 1

n− 1

n∑
s=1
s̸=i

⟨E [P ] | k |E [Q]⟩

è
= E [⟨P | k |Q⟩]− ⟨E [P ] | k |E [Q]⟩
= E [⟨P − E [P ] | k |Q− E [Q]⟩]
= Covk (P,Q) .

(39)

E.3.2. VARIANCE OF THE ESTIMATOR

Similar to the variance case, we also analyse its convergence rate:
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V
Å
Ĉov

(n,m)

k (X,Y)

ã
= V

Ö
1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

Ö
k (Xij , Yit)−

1

n− 1

n∑
s=1
s̸=i

k (Xij , Yst)

èè
= V

Ñ
1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

k (Xij , Yit)

é
+ V

Ö
1

n (n− 1)m2

n∑
i=1

m∑
j=1

m∑
t=1

n∑
s=1
s ̸=i

k (Xij , Yst)

è
− 2Cov

Ö
1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

k (Xij , Yit) ,
1

n (n− 1)m2

n∑
i=1

m∑
j=1

m∑
t=1

n∑
s=1
s̸=i

k (Xij , Yst)

è (40)

V

Ñ
1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

k (Xij , Yit)

é
TV
= V

Ñ
E

 1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

k (Xij , Yit) | P1 . . . Pn, Q1 . . . Qn

é
+ E

V
Ñ

1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

k (Xij , Yit) | P1 . . . Pn, Q1 . . . Qn

é
iid
= V

Ñ
1

nm2

n∑
i=1

m∑
j=1

m∑
t=1

E [k (Xij , Yit) | Pi, Qi]

é
+ E

 1

n2

n∑
i=1

V

Ñ
1

m2

m∑
j=1

m∑
t=1

k (Xij , Yit) | Pi, Qi

é
iid
= V

(
1

n

n∑
i=1

E [k (Xi1, Yi1) | Pi, Qi]

)
+

1

n
E

V
Ñ

1

m2

m∑
j=1

m∑
t=1

k (X1j , Y1t) | P1, Q1

é
iid
=

1

n
V [⟨P | k |Q⟩] + 1

n
E

V
Ñ

1

m2

m∑
j=1

m∑
t=1

k (X1j , Y1t) | P1, Q1

é
iid
=

1

n
V (⟨P | k |Q⟩)︸ ︷︷ ︸

η1:=

+
1

nm2
E [V (k (X11, Y11) | P1, Q1)]︸ ︷︷ ︸

η2:=

(41)

and for the second term we have
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V

Ö
1

n (n− 1)m2

n∑
i=1

m∑
j=1

m∑
t=1

n∑
s=1
s̸=i

k (Xij , Yst)

è
TV
= V

Ö
E

 1

n (n− 1)m2

n∑
i=1

m∑
j=1

n∑
s=1
s̸=i

m∑
t=1

k (Xij , Yst) | P1 . . . Pn, Q1 . . . Qn


è

︸ ︷︷ ︸
(III):=

+ E

V
Ö

1

n (n− 1)m2

n∑
i=1

m∑
j=1

n∑
s=1
s̸=i

m∑
t=1

k (Xij , Yst) | P1 . . . Pn, Q1 . . . Qn

è
︸ ︷︷ ︸

(IV):=

.

(42)

Due to the length of the expression, we first solve (III) and then (IV).
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(III)
iid
= V

Ö
1

n (n− 1)m2

n∑
i=1

m∑
j=1

n∑
s=1
s̸=i

m∑
t=1

E [k (Xij , Yst) | Pi, Qs]

è
iid
= V

Ö
1

n (n− 1)m2

n∑
i=1

m∑
j=1

n∑
s=1
s̸=i

m∑
t=1

E [k (Xi1, Ys1) | Pi, Qs]

è
= V

Ö
1

n (n− 1)

n∑
i=1

n∑
s=1
s̸=i

⟨Pi | k |Qs⟩

è
= E


Ö

1

n (n− 1)

n∑
i=1

n∑
s=1
s̸=i

⟨Pi | k |Qs⟩

è2−
Ö

E

 1

n (n− 1)

n∑
i=1

n∑
s=1
s̸=i

⟨Pi | k |Qs⟩


è2

iid
=

1

n2 (n− 1)
2

n∑
i=1

n∑
s=1
s̸=i

n∑
j=1

n∑
t=1
t̸=j

E [⟨Pi | k |Qs⟩ ⟨Pj | k |Qt⟩]− ⟨E [P ] | k |E [Q]⟩2

=
1

n2 (n− 1)
2

n∑
i=1

n∑
s=1
s̸=i

E
î
⟨Pi | k |Qs⟩2

ó
+

1

n2 (n− 1)
2

n∑
i=1

n∑
s=1
s̸=i

n∑
t=1
t ̸=j
t̸=s

E [⟨Pi | k |Qs⟩ ⟨Pi | k |Qt⟩]

+
1

n2 (n− 1)
2

n∑
i=1

n∑
s=1
s ̸=i

n∑
j=1
j ̸=i
j ̸=s

E [⟨Pi | k |Qs⟩ ⟨Pj | k |Qs⟩]

+
1

n2 (n− 1)
2

n∑
i=1

n∑
s=1
s ̸=i

n∑
j=1
j ̸=i
j ̸=s

n∑
t=1
t ̸=i
t̸=s
t ̸=j

E [⟨Pi | k |Qs⟩ ⟨Pj | k |Qt⟩]− ⟨E [P ] | k |E [Q]⟩2

iid
=

1

n (n− 1)
E
î
⟨P1 | k |Q2⟩2

ó
+

n− 2

n (n− 1)
E [⟨P1 | k |Q2⟩ ⟨P1 | k |Q3⟩]

+
n− 2

n (n− 1)
E [⟨P2 | k |Q1⟩ ⟨P3 | k |Q1⟩] +

(n− 2) (n− 3)

n (n− 1)
⟨E [P ] | k |E [Q]⟩2 − ⟨E [P ] | k |E [Q]⟩2

=
1

n (n− 1)
E
î
⟨P1 | k |Q2⟩2

ó
+

n− 2

n (n− 1)
E [⟨P1 | k |Q2⟩ ⟨P1 | k |Q3⟩]

+
n− 2

n (n− 1)
E [⟨P2 | k |Q1⟩ ⟨P3 | k |Q1⟩] +

(n− 2) (n− 3)− n (n− 1)

n (n− 1)
⟨E [P ] | k |E [Q]⟩2

=
1

n (n− 1)
E
î
⟨P1 | k |Q2⟩2

ó
+

n− 2

n (n− 1)
E [⟨P1 | k |Q2⟩ ⟨P1 | k |Q3⟩]

+
n− 2

n (n− 1)
E [⟨P2 | k |Q1⟩ ⟨P3 | k |Q1⟩] +

(n− 2) (n− 3)− n (n− 1)

n (n− 1)
⟨E [P ] | k |E [Q]⟩2

=
1

n (n− 1)
E
î
⟨P1 | k |Q2⟩2

ó
+

n− 2

n (n− 1)
E [⟨P1 | k |Q2⟩ ⟨P1 | k |Q3⟩]

+
n− 2

n (n− 1)
E [⟨P2 | k |Q1⟩ ⟨P3 | k |Q1⟩]−

4n− 6

n (n− 1)
⟨E [P ] | k |E [Q]⟩2

(i)
=

1

n (n− 1)
η3 +

n− 2

n (n− 1)
η4

(43)

37



Bias-Variance-Covariance Decomposition of Kernel Scores

(i) with η3 := E
î
⟨P1 | k |Q2⟩2

ó
− 2 ⟨E [P ] | k |E [Q]⟩2 and η4 := E [⟨P1 | k |Q2⟩ ⟨P1 | k |Q3⟩] +

E [⟨P2 | k |Q1⟩ ⟨P3 | k |Q1⟩]− 4 ⟨E [P ] | k |E [Q]⟩2.

Due to analogous reasons as in the distributional variance case, we have

(IV) = E

 1

n2 (n− 1)
2

n∑
i=1

n∑
s=1
s ̸=i

V

Ñ
1

m2

m∑
j=1

m∑
t=1

k (Xij , Yst) | Pi, Qs

é
︸ ︷︷ ︸

(IVa):=

+ E

 1

n2 (n− 1)
2

n∑
i=1

n∑
s=1
s̸=i

n∑
b=1
b ̸=i
b ̸=s

Cov

Ñ
1

m2

m∑
j=1

m∑
t=1

k (Xij , Yst) ,
1

m2

m∑
c=1

m∑
d=1

k (Xic, Ybd) | Pi, Qb, Qs

é
︸ ︷︷ ︸

(IVb):=

+ E

 1

n2 (n− 1)
2

n∑
i=1

n∑
s=1
s̸=i

n∑
a=1
a ̸=s
a ̸=i

Cov

Ñ
1

m2

m∑
j=1

m∑
t=1

k (Xij , Yst) ,
1

m2

m∑
c=1

m∑
d=1

k (Xac, Ysd) | Pi, Pa, Qs

é
︸ ︷︷ ︸

(IVc):=

.

(44)

Due to the length of the expressions, we again first look at (IVa), then (IVb), and then (IVc).

In the following equation, we use almost the identical steps as in Equation (32):
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(IVa) = E

 1
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m∑
t=1

k (X1j , Y2t) ,
1

m2

m∑
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=
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E [Cov (k (X1j , Y2t) , k (X1i, Y2t) | P1, Q2)]

+
1

n (n− 1)m4

m∑
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=
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η5:=

+
m− 1
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n (n− 1)m2
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η7:=

.

(45)

Next, we have analogous to Equation (33)

39



Bias-Variance-Covariance Decomposition of Kernel Scores

(IVb) = E
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and in an almost identical manner
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The only term left is
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Cov (k (Xij , Yit) , k (Xsp, Yir))

iid
=

1

nm3

m∑
j=1

m∑
t=1
t̸=j

m∑
p=1

Cov (k (X1j , Y1t) , k (X1p, Y21)) +
1

nm3

m∑
j=1

m∑
t=1
t̸=j

m∑
r=1

Cov (k (X1j , Y1t) , k (X21, Y1r))

=
1

nm3

m∑
j=1

m∑
t=1
t̸=j

Cov (k (X1j , Y1t) , k (X1j , Y21)) +
1

nm3

m∑
j=1

m∑
t=1
t̸=j

Cov (k (X1j , Y1t) , k (X1t, Y21))

+
1

nm3

m∑
j=1

m∑
t=1
t̸=j

m∑
p=1
p ̸=j
p ̸=t

Cov (k (X1j , Y1t) , k (X1p, Y21)) +
1

nm3

m∑
j=1

m∑
t=1
t ̸=j

Cov (k (X1j , Y1t) , k (X21, Y1j))

+
1

nm3

m∑
j=1

m∑
t=1
t̸=j

Cov (k (X1j , Y1t) , k (X21, Y1t)) +
1

nm3

m∑
j=1

m∑
t=1
t ̸=j

m∑
p=1
p ̸=j
p ̸=t

Cov (k (X1j , Y1t) , k (X21, Y1p))

iid
=

1

nm3

m∑
j=1

m∑
t=1
t̸=j

Cov (k (X11, Y12) , k (X11, Y21)) +
1

nm3

m∑
j=1

m∑
t=1
t̸=j

Cov (k (X11, Y12) , k (X12, Y21))

+
1

nm3

m∑
j=1

m∑
t=1
t̸=j

m∑
p=1
p ̸=j
p ̸=t

Cov (k (X11, Y12) , k (X13, Y21)) +
1

nm3

m∑
j=1

m∑
t=1
t̸=j

Cov (k (X11, Y12) , k (X21, Y11))

+
1

nm3

m∑
j=1

m∑
t=1
t̸=j

Cov (k (X11, Y12) , k (X21, Y12)) +
1

nm3

m∑
j=1

m∑
t=1
t̸=j

m∑
p=1
p ̸=j
p ̸=t

Cov (k (X11, Y12) , k (X21, Y13))

=
m− 1

nm2
(Cov (k (X11, Y12) , k (X11, Y21)) + Cov (k (X11, Y12) , k (X21, Y11)))︸ ︷︷ ︸

η11:=

+
m− 1

nm2
(Cov (k (X11, Y12) , k (X21, Y12)) + Cov (k (X11, Y12) , k (X12, Y21)))︸ ︷︷ ︸

η12:=

+
(m− 1) (m− 2)

nm2
(Cov (k (X11, Y12) , k (X13, Y21)) + Cov (k (X11, Y12) , k (X21, Y13)))︸ ︷︷ ︸

η13:=

.

(48)

By combining all previous equations, we get
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V
Å
Ĉov

(n,m)

k (X,Y)

ã
=

1

n
η1 +

n− 2

n (n− 1)
η4 +

−2 (m− 1) (m− 2)

nm2
η13︸ ︷︷ ︸

O( 1
n )

+
1

n (n− 1)
η3︸ ︷︷ ︸

O( 1
n2 )

+
−2 (m− 1)

nm2
(η11 + η12) +

n− 2

n (n− 1)m
(η9 + η10)︸ ︷︷ ︸

O( 1
nm )

+
1

nm2
η2︸ ︷︷ ︸

O( 1
nm2 )

+
m− 1

n (n− 1)m2
(η6 + η7)︸ ︷︷ ︸

O( 1
n2m

)

+
1

n (n− 1)m2
η5︸ ︷︷ ︸

O( 1
n2m2 )

.

(49)
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