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ABSTRACT

Large Language Models (LLMs) have achieved significant advancements, how-
ever, the common learning paradigm treats LLMs as passive information reposito-
ries, neglecting their potential for active learning and alignment. Some approaches
train LLMs using their own generated synthetic data, exploring the possibility of
active alignment. However, there is still a huge gap between these one-time align-
ment methods and the continuous automatic alignment of humans. In this paper,
we introduce I-SHEEP, an Iterative Self-EnHancEmEnt Paradigm. This human-
like paradigm enables LLMs to continuously self-align from scratch with noth-
ing. Compared to the one-time alignment method Dromedary (Sun et al., 2023b),
which refers to the first iteration in this paper, I-SHEEP can significantly enhance
capacities on both Qwen and Llama models. I-SHEEP achieves a maximum rel-
ative improvement of 78.2% in the Alpaca Eval, 24.0% in the MT Bench, and an
absolute increase of 8.88% in the IFEval accuracy over subsequent iterations in
Qwen-1.5 72B model. Additionally, I-SHEEP surpasses the base model in vari-
ous standard benchmark generation tasks, achieving an average improvement of
24.77% in code generation tasks, 12.04% in TrivialQA, and 20.29% in SQuAD.
We also provide new insights based on the experiment results. Our codes, datasets,
and models are available at https://anonymous.4open.science/r/SHEEP/.

1 INTRODUCTION

Large Language Models (LLMs) have achieved significant success, yet they remain far from achiev-
ing the autonomous self-regulation and coherent self-understanding characteristic of human-like
Artificial General Intelligence (AGI). In the pretraining phase, LLMs learn and memorize com-
mon knowledge from vast amounts of raw text. During the Supervised Fine-Tuning (SFT) phase,
LLMs are trained with question-answer pairs to develop instruction-following capabilities. Both
phases currently treat LLMs as passive information repositories, neglecting their potential for active
learning and alignment. Furthermore, aligning a base model from scratch requires substantial high-
quality data across various tasks and scenarios. This data collection, annotation, and cleaning pro-
cess is labor-intensive, time-consuming, and must ensure diversity and representativeness. Humans
can automatically answer relevant questions after acquiring knowledge (Khader et al., 2016), and
there is no need for an explicit process like SFT to teach humans how to answer questions. There-
fore, exploring active, automatic, and continuous alignment from scratch, akin to human learning, is
a crucial step for LLMs toward achieving AGI.

There are several approaches developed to align base models in low-resource scenarios, aiming to
reduce or eliminate reliance on human supervision signals (Wang et al., 2022b; Sun et al., 2023b;a;
Xu et al., 2024b). For instance, Self Instruct and Dromedary (Wang et al., 2022b; Sun et al., 2023b)
actively improve themselves using self-generated data, while Magpie (Xu et al., 2024b) aligns the
base model by prompting more powerful models to generate instruction-output pair data. Although
these methods demonstrate some level of proactivity, there remains a significant gap between these
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Figure 1: Pipeline of I-SHEEP. The I-SHEEP framework takes the base model and small seed dataset
as input, aligns the base model iteratively from scratch independently, and finally obtains the self-
enhanced models and high-quality synthetic datasets. The I-SHEEP framework consists of four
main components: the self-synthesize process generates instruction-pair data, the self-assessment
assesses the quality of the resulting data, the filtering component filters out low-quality data based
on self-assessment, and the training component integrates the high-quality data into the base model.

one-time alignment processes and the continuous, automatic alignment for various environments
seen in human learning.

Educational research suggests that metacognitive self-assessment plays a vital role in continuous
alignment, helping students reflect on their knowledge and skills, manage cognitive resources, and
improve their performance (Yan et al., 2023). Inspired by this perspective, we explore a new human-
like paradigm for LLMs, I-SHEEP, designed to enable LLMs to proactively, automatically, and con-
tinuously align from scratch, even with minimal external signal. As shown in Figure ??, I-SHEEP
begins with seed data and leverages LLMs powerful understanding and generation capabilities to
create additional instruction-output pair data. We then perform self-assessment, allowing the model
to monitor and assess its learning process. By filtering out incorrect cognitions and retaining accurate
ones, LLMs can self-align by training themselves with these correct cognitions. Through iterative
repetition of this process, the model can continuously and autonomously align from scratch, relying
solely on its internal knowledge.

The main contributions can be summarized as follows: (1) We propose I-SHEEP, a human-like
learning paradigm for LLMs, enabling active, automatic, and continuous self-alignment from
scratch using only their internal knowledge. Based on the one-time alignment approach, I-SHEEP
explores the incorporation of metacognitive self-assessment to monitor and manage the learning
process as well as continuous self-alignment from scratch. (2) We integrate metacognitive self-
assessment into the alignment process, allowing the model to monitor and manage its learning
process. Experiments explore how varying levels of metacognitive abilities impact the efficiency
of the I-SHEEP framework. (3) We find that the self-enhancement potential is closely related
to the metacognitive self-assessment level and model size. We conducted experiments to explore
the performance of I-SHEEP on different model sizes and varying levels of metacognitive self-
assessment.

2 RELATED WORK

2.1 AUTOMATIC DATA SELECTION

Zhou et al.; Bai et al. emphasize that dataset quality outweighs quantity during the instruction
fine-tuning stage. As a result, some studies on instruction data selection have emerged, focusing
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on identifying high-quality subsets from candidate datasets(Li et al., 2023a; Du et al., 2023; Liu
et al., 2023; Li et al., 2024; Ge et al., 2024; Xia et al., 2024). These methods aim to improve the
model performance, accelerate the training process, and facilitate data-efficient alignment. Li et al.
introduce an Instruction-Following Difficulty (IFD) metric and use it to select the top 5% of data
for fine-tuning models. The filtering phase in the I-SHEEP framework does not rely on carefully
selected metrics, external models or human assistance. Additionally, our method is orthogonal to
these selection approaches.

2.2 SYNTHETIC DATA FOR IMPROVING MODEL

Generating synthetic data refers to using the powerful generative capabilities of LLMs to create
new data that simulates potential real-world scenarios, reducing the need for costly manual labeling.
Some methods use the model’s self-generated data to improve itself (Wang et al., 2022b; Sun et al.,
2023b;a; Yehudai et al., 2024). Other methods leverage powerful closed models to generate synthetic
data, enhancing the capabilities of open-source models (Taori et al., 2023; Chiang et al., 2023; Xu
et al., 2023a; Yu et al., 2023; Wei et al., 2023). In addition to generating complete instruction-
output pairs, some methods collect existing raw data and synthesize corresponding questions or
answers to create supervised data for improving the model (Huang et al., 2022; Li et al., 2023b;
Zheng et al., 2024b; Mitra et al., 2024; Wang et al., 2022a; Asai et al., 2023). Some methods begin
with instruction-output pairs, generating feedback or refining answers to improve data quality and
enhance the model’s reasoning capabilities.(Lu et al., 2023; Li & He, 2024; Gou et al., 2023). The
I-SHEEP framework evolves from the aforementioned static, one-time improvement paradigm to a
dynamic, continuous self-enhancement process.

2.3 ITERATIVE ENHANCEMENT FOR LLMS

There are several approaches to iterative enhancement that rely on the help of strong models or exter-
nal tools (Chen et al., 2024; 2023; Lu et al., 2023; Gao et al., 2023; Lee et al., 2024). IterAlign (Chen
et al., 2024) employs strong models like GPT-4 and Claude2 to detect and correct errors in responses
from base LLMs and give the corresponding constitution for improving the safety of LLMs. These
methods in iterative enhancement typically depend on strong models or external tools to guarantee
ongoing model optimization and avoid model collapse. In addition, some methods explore itera-
tive enhancement in the RLHF phase to continuously align the model with human preference (Yuan
et al., 2024; Liu et al., 2024; Pang et al., 2024; Xu et al., 2024a; 2023b; Wu et al., 2024; Wang et al.,
2024). These iterative RLHF methods start with the aligned model, while we focus on the base
model continuous self-alignment from scratch.

3 METHODOLOGY

3.1 SELF-DRIVEN DATA SYNTHESIS

Self Instruct (Wang et al., 2022b) leverages an off-the-shelf large language model (LLM) for the
generation of synthetic data. The approach starts with a small set of 175 prompts, known as the seed
task pool, leveraging the model’s powerful understanding and generative capabilities to generate
more prompts and responses. This section elaborates on the Self-Driven Data Synthesis process
from two perspectives: Instruction generation and response generation. For ease and consistency in
data creation, we utilize a standardized instruction format introduced by Alpaca (Taori et al., 2023),
enabling the direct generation of instructions along with their corresponding potential inputs.

Instruction generation. Having some prompts from the seed dataset Ds and the meta-prompt pmeta

from Alpaca (Taori et al., 2023). The process that model M generating new prompt set P through
In-Context Learning (ICL) can be modeled as:

pi = argmaxp(pi|{d}, pmeta; θ)

pi denotes a new prompt generated by model M , {d} represents a subset sampled from the seed
dataset Ds for in-context learning (ICL). The symbol θ stands for the parameter of model M .

Response generation. After obtaining the set of prompts P , we use the model M to generate
corresponding responsesR via a zero-shot approach.
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3.2 SELF-ASSESSMENT AND DATA FILTERING

To ensure that the data used for self-enhancement maintains a high-quality standard, a two-stage
process comprising self-assessment and data filtering is implemented.

Self-Assessment. We pair the generated prompt set P and response set R to form the instruction-
output pair data Draw. Given the capacity limitations of models, ensuring the quality of synthetic
pairs can be challenging, making it essential to assess the quality of the generated data. Manual
assessment is often impractical, therefore, we introduce an automated assessment method that relies
solely on the model. Specifically, the model autonomously evaluates each generated response for its
quality and adherence to the instructions. Each entry is scored based on predefined criteria, which
quantitatively reflect the compliance and quality of the response.

Data Filtering. After the self-assessment, the subsequent data filtering phase discards entries
that do not meet the specified quality threshold. This step guarantees that only entries of the high-
est quality are retained in the dataset, thereby enhancing the overall reliability and utility of the
generated data. Initially, we apply heuristic rule-based filtering to the generated data during data
generation, following the Self-Instruct (Wang et al., 2022b). Additionally, after data generation, we
filter the instruction-output pairs based on the assessment scores from the self-assessment phrase. A
threshold C is applied to filter Draw based on assessment scores, yielding a high-quality dataset D.

3.3 ITERATIVE CONTINUOUS MODEL ENHANCEMENTS

The Iterative Self-Enhancement algorithm aims
to incrementally enhance a language model by
generating and utilizing high-quality synthetic
datasets. As shown in Algorithm 1, starting with
an initial model M base and a small seed task set
Ds, the algorithm iterates over a specified num-
ber of steps T and a filtering threshold C. At each
iteration t, the algorithm performs several func-
tions: it generates a new set of prompts, Pt, us-
ing a prompt generation process that leverages the
current model M t and the seed data Ds. It then
produces corresponding responses, Rt, forming a
raw dataset, Dt

raw = {Pt,Rt}. This dataset un-
dergoes a self-assessment process to evaluate the
quality of responses, after which it is filtered using
the threshold C to retain only high-quality data,
resulting in Dt. The model M t is then trained on
Dt to align it closely with the refined data, en-
hancing its performance iteratively by supervised
fine-tuning (SFT) approach. This process contin-
ues until it concludes at step T , ultimately produc-
ing a stronger language model MT and a refined
synthetic dataset DT .

Algorithm 1: Iterative Self-Enhancement Al-
gorithm
Input: Initial seed task set Ds, Base model
M base

Hyper-parameter: Iteration steps T , Filter-
ing threshold C, Data size I
Output: Enhanced LLMs MT , High-quality
datasets DT

1: Initialize M0 ←M base

2: for t = 0 to T do
3: Pt ← generate prompts(Ds, pmeta,

M t)
4: Rt ← generate responses(Pt, M t)
5: Dt

raw ← {(Pt,Rt)}
6: St ← self assessment(Dt

raw, M t)
7: Dt ← filtering(Dt

raw, St, C)
8: M t+1 ← SFT(M base, Dt)
9: end for

10: return M t, Dt

4 EXPERIMENTS

4.1 EVALUATION

Chat Evaluation. We evaluate the instruction-following ability and response quality of aligned
models with three chat benchmarks, AlpacaEval(Dubois et al., 2023), MT-Bench(Zheng et al.,
2024a), and IFEval(Zhou et al., 2023), due to their comprehensiveness, fine granularity, and re-
producibility. Both AlpacaEval and MT-Bench rely on GPT as an evaluator. IFEval provides four
types of accuracy scores: prompt-level strict-accuracy, inst-level strict-accuracy, prompt-level loose-
accuracy, and inst-level loose-accuracy.

OpenCompass Evaluation. We use the OpenCompass evaluation platform (Contributors, 2023),
a comprehensive one-stop platform for LLM evaluation. The evaluation includes standard bench-
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marks such as BoolQ Clark et al. (2019), PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019), ARC-c (Clark et al., 2018),
OpenBookQA-Fact (Mihaylov et al., 2018), CommonsenseQA (Contributors, 2023), and MMLU
(Hendrycks et al., 2020). It also includes code generation benchmarks such as HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021), word knowledge benchmark TriviaQA (Joshi et al.,
2017), and reading comprehension benchmark SQuAD2.0 (Rajpurkar et al., 2018). Full results on
these benchmarks are available in Appendix D.

4.2 MAIN SETTINGS

We conduct experiments on the Qwen-1.5 (Team, 2024) and Llama-3 (Dubey et al., 2024) models
to validate the effectiveness and generalization of I-SHEEP. Additionally, we explore the impact
of different model sizes on I-SHEEP by conducting experiments on Qwen-1.5 1.8B, 4B, 7B, 14B,
32B, and 72B models, providing a detailed analysis based on the experimental results. In each
iteration, the dataset for training is generated by the model from the last iteration. The case study
of the generated data and the overall quality analysis can be found in Appendix C and Appendix G,
respectively. We utilized LLaMA-Factory (Zheng et al., 2024c) for LoRA fine-tuning, with specific
parameters detailed in Appendix F. Under the configuration of using VLLM for inference (Kwon
et al., 2023), the maximum duration of each iteration is about 4 hours on NVIDIA A800-SXM4-
80GB×8, equivalent to one iteration time for Qwen-1.5 72B.

4.3 SELF-ASSESSMENT AND FILTER SETTINGS

During the self-assessment phase, we propose three variants, simple standard prompt, combined
standard prompt, and ICL prompt, to evaluate data quality. Detailed prompt contents can be found
in Appendix A.

In the filtering phase, there are six settings, simple standard prompt based filtering, combined stan-
dard prompt based filtering, ICL prompt filtering, PerPLexity (PPL) filtering, density filtering, and
the combination of density and PPL filtering. In addition to the first three filtering settings based
on scores obtained in the Self-Assessment phase, we also explore data filtering methods that do not
rely on external tools or models. For example, PPL filtering uses the PPL value computed by the
model itself to evaluate the quality of instruction-output pairs, thereby eliminating low-quality data.
We filter out data points with PPL greater than 50. Density filtering extracts vector representations
from the model’s final layer and performs K Nearest Neighbors (KNN) clustering, sampling from
each cluster to ensure dataset diversity. We set 3000 as the clustering number K. The combination
of density and PPL filtering setting first clusters the data and then selects samples with lower PPL
values from each cluster, ensuring the filtered dataset’s quality and diversity.

4.4 BASELINE

We use the base model, Self Instruct (Wang et al., 2022b), and Dromedary (Sun et al., 2023b)
as baselines to explore the continuous and automatic enhancement of the human-like framework, I-
SHEEP. Self Instruct is a one-time alignment approach where LLMs are trained directly on data they
generate, without a self-assessment phase. Similarly, Dromedary is a one-time alignment process
where the model generates responses following specific principles, which are then engraved into the
model. This approach is similar to the first iteration setting described in this paper.

4.5 ITERATIVE SETTINGS AND ABLATION SETTINGS

Iterative Settings. We investigate the impact of I-SHEEP on efficiency across different iterative
self-enhancement settings, including using data generated by the last iteration model to train the base
model, using data generated by the last iteration model to train the last iteration model, and using
data generated by all previous iterations to train the base model. Additionally, we directly generate
20K and 30K data points for comparative experiments to eliminate the influence of data size in the
iterative settings mentioned above. Notably, in the first iteration, all settings are identical, where the
base model generates 10k data, filters it, and uses it to fine-tune itself, akin to the Dromedary(Sun
et al., 2023b).
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Ablation Settings. We adjust high-dimensional variables such as the threshold C in the self-
assessment phase, data size I in the generation phase, and iteration steps T in the iterative training
phase to validate their impact on I-SHEEP. Furthermore, we conduct ablation experiments with
different levels of metacognitive self-assessment, including no self-assessment, assessing only re-
sponse quality, assessing only instruction-following degree, and assessing both response quality and
instruction-following degree.

5 RESULTS

5.1 MAIN RESULTS

Table 1: Main results: experimental performance of various model sizes across different iteration
steps. We stop the iteration when the performance improvement in subsequent iterations stagnates
or diminishes. The red settings represent the baseline for our experiments on Qwen-1.5 72B. The
Self Instruct (Wang et al., 2022b) setting involves training the model using generated data without
filtering. The iter1 setting indicates training the model using filtered data, which is selected based
on prompts, similar to the Dromedary approach (Sun et al., 2023b). Bold results indicate the best
performance for each model size at different iteration steps. P-S, I-S, P-L, and I-L denote prompt-
level strict accuracy, instance-level strict accuracy, prompt-level loose accuracy, and instance-level
loose accuracy, respectively.

Setting Chat Benchmark Standard Benchmark

Alpaca
Eval

MT
Bench

IFEval Code Knowledge Reading Comprehension

P-S I-S P-L I-L Human
Eval/Plus MBPP Trivia

QA
SQuAD

2.0

1.8B

base – – – – – – 6.71/6.10 16.40 31.18 30.02
iter1 1.51 3.76 15.53 25.30 17.74 28.06 11.59/9.15 16.80 19.38 13.16
iter2 1.54 3.53 16.27 27.10 19.22 31.41 15.24/12.20 17.40 16.88 14.57
iter3 2.30 3.16 13.68 24.46 15.34 27.22 14.02/10.98 17.80 12.49 13.91

4B

base – – – – – – 10.98/8.54 28.00 40.95 27.96
iter1 2.61 4.97 19.41 29.98 24.03 34.77 30.49/26.83 34.00 38.94 24.90
iter2 2.96 4.79 19.78 32.61 23.84 36.81 31.10/27.44 35.20 37.20 24.63
iter3 3.78 4.99 18.85 31.41 22.18 35.37 32.93/28.66 35.80 35.37 31.67

7B

base – – – – – – 10.98/8.54 36.60 51.00 33.14
iter1 5.19 5.08 28.47 39.93 31.05 43.41 45.73/39.63 41.20 45.81 26.36
iter2 5.37 5.13 30.13 40.89 33.09 43.88 47.56/42.68 41.00 42.83 28.36
iter3 5.22 4.97 29.21 40.29 30.68 43.05 45.12/40.24 40.60 40.53 33.76

14B

base – – – – – – 17.68/15.85 41.40 57.72 20.37
iter1 4.77 5.68 28.84 41.13 33.46 46.40 45.73/40.85 49.00 56.81 30.52
iter2 6.27 5.97 30.87 42.93 33.46 46.40 48.78/42.07 45.60 54.45 38.57
iter3 7.30 5.48 30.13 43.05 33.27 46.04 50.00/43.29 45.20 55.30 43.42

32B

base – – – – – – 22.56/21.34 47.40 65.88 29.56
iter1 8.27 5.56 33.46 45.32 37.52 50.12 58.54/51.83 44.20 60.81 41.34
iter2 8.26 5.68 36.04 47.60 39.56 51.92 56.71/50.61 41.80 59.43 42.15
iter3 9.30 5.69 36.41 47.96 38.82 51.56 56.71/51.83 42.20 59.73 44.04
iter4 8.64 5.62 33.83 46.88 38.45 51.56 56.10/50.61 40.60 58.95 47.07

72B

iter1 6.64 6.43 35.67 49.16 40.48 53.96 50.61/45.12 51.20 60.81 50.68
iter2 9.06 7.90 37.34 51.32 40.85 54.56 56.71/49.39 51.80 61.55 52.27
iter3 10.51 7.97 41.22 54.32 44.18 57.19 56.10/50.61 52.60 62.00 61.42
iter4 11.22 5.45 42.14 54.56 46.21 58.63 51.83/47.56 56.00 70.43 64.55
iter5 11.83 5.62 44.55 55.88 47.50 58.75 56.71/53.66 55.60 70.11 67.95
iter6 11.60 5.75 42.33 53.84 45.10 56.95 51.22/48.17 55.20 70.01 67.82

Base Model – – – – – – 21.34/20.12 50.20 58.07 47.66
Self Instruct 5.26 7.82 33.64 47.60 39.56 53.00 53.05/46.95 48.40 71.25 51.90

Table 1 shows the experimental performance of various model sizes across different iteration steps.
There are some new findings: (1) I-SHEEP exhibits efficacy across various model sizes, with
particularly notable improvements in 72B. I-SHEEP achieves a maximum relative improvement
of 78.2% in the Alpaca Eval, 24.0% in the MT Bench, and an absolute increase of 8.88% in the
IFEval prompt-level strict accuracy over subsequent iterations in Qwen-1.5 72B model. Addition-
ally, I-SHEEP surpasses the base model in various standard benchmark generation tasks, achieving
an average improvement of 24.77% in code generation tasks, 12.04% in Trivial QA, and 20.29% in
SQuAD. we find that the scores for the second round of dialogues drop significantly after the fourth
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iteration. This decline is likely due to our generated data consisting solely of single-round dialogues,
which do not improve and may even harm the scores for the second round of dialogues. More anal-
ysis can be found in the Appendix E. (2) The potential for improvement varies with different
model sizes. The 1.8B, 4B, 7B, and 14B models exhibit improvements over two iterations, 32B and
72B model can improve three and five iterations, respectively, according to the IFEval benchmark.

5.2 ITERATIVE SETTING RESULTS

Table 2: The performance of various iteration set-
tings at different iteration steps. One base and
One last means using data from the last iteration
to train the base and the last iteration model re-
spectively. Total base means using data from all
previous iterations to train the base model. Direct
represents using data generated by the base model
to train itself.

Setting Chat Benchmark
Alpaca

Eval
MT

Bench
IFEval

P-S I-S P-L I-L

iter1(Dromedary) 6.64 6.43 35.67 49.16 40.48 53.96

Direct 20k 7.18 7.87 39.37 50.72 43.25 54.56
30k 6.53 7.75 38.08 50.24 43.07 54.92

Total base iter2 7.25 7.94 39.00 50.72 45.47 56.47
iter3 7.51 7.94 37.52 48.32 41.59 52.76

One last iter2 7.76 7.76 38.45 50.48 41.96 54.92
iter3 8.45 7.82 38.63 51.80 42.70 56.12

One base iter2 9.06 7.90 37.34 51.32 40.85 54.56
iter3 10.51 7.97 41.22 54.32 44.18 57.19

Table 2 presents the chat benchmark perfor-
mance for the Qwen-1.5 72B model across var-
ious iteration settings. More benchmark results
are available in Appendix D. Our findings are
as follows: (1) Training the base model with
data from the last iteration model is effec-
tive for iterative self-enhancement. At the
third iteration in the One base Setting, train-
ing the base model with the last iteration data
achieves the highest performance on the chat
benchmark. The notable performance improve-
ment under this setting suggests that the model
has the potential for further enhancement (refer
to Table 1 72B results). Therefore, we chose
the One base setting for all subsequent experi-
ments. (2) The data size is not the main factor
influencing iterative improvement. Train-
ing the base model with the last iteration data at
the 3rd iteration outperforms training the base
model with a combination of all data from pre-
vious iterations.
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Figure 2: Ablation performance for the first three iterations across various thresholds and data sizes.
In subfigure 2a, the threshold -1 means that the generated data is not filtered by heuristic rules.
The threshold 0 represents that the I-SHEEP process does not use the self-assessment phase. Other
thresholds represent filtering low-quality data using the threshold, which refers to the score from the
self-assessment phase. In subfigure 2b, the values on the horizontal axis represent the amount of
data generated (in thousands).

5.3 ABLATION ANALYSIS

As shown in Figure 2a, as the threshold increases, the performance of I-SHEEP at the 3rd iteration
shows an upward trend. The threshold 8 is selected to ensure the possibility of further iterative
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improvement, given the significant performance increase in iteration 2 and iteration 3, and the good
performance at iteration 3 with a threshold of 8. Choosing a threshold of 8 is not necessarily the
optimal experimental setting, as thresholds of 6, 7, 8, and 9 are all possible.

Figure 2b shows a stable improvement in the first three iterations across different data sizes (10k,
20k, 30k, 40k, 50k), demonstrating the robustness of the I-SHEEP framework with respect to data
size. When the data size is 10k, the model performs well in the 3rd iteration, meanwhile, there are
significant improvements between the first iterations. Considering the above factors and resource
savings, we chose 10k as the final data size setting.

5.4 METACOGNITIVE SELF-ASSESSMENT ANALYSIS

5.4.1 SELF-ASSESSMENT ROBUSTNESS ANALYSIS

Table 3 shows the performance of various self-assessment degrees in the first three iterations. See
the Appendix D for more benchmark results. The following findings can be drawn from the table:
(1) Using explicit self-assessment prompt is better than using simple model internal states. On
all four IFEval accuracies, the highest values are obtained in the setting where the model is explicitly
prompted for self-assessment. (2) The I-SHEEP framework is robust to prompt. Although the
criteria differ between simple and combined standard prompt settings, their performance is quite
similar. Even without designing a prompt, using just a few examples for ICL can achieve comparable
results.

Table 3: Experimental results using different filtering methods that rely solely on the model. PPL
filtering involves removing data points with high PPL values. Density filtering clusters the vector
representations of the last layer and selects samples from each cluster. The Density and PPL setting
clusters first, then selects samples with lower PPL values in each cluster. Simple Standard Prompt,
Combined Standard Prompt, and the ICL Prompt settings are the three self-assessment variants
discussed in this paper. Please refer to the appendix for detailed prompt content. Bold results
indicate the best results, and blue results indicate the second-best results in each column.

Setting Chat Benchmark
IFEval

P-level
S-accuracy

I-level
S-accuracy

P-level
L-accuracy

I-level
L-accuracy

Density
iter1 34.20 46.76 39.56 51.80
iter2 37.34 49.76 41.22 53.72
iter3 37.52 49.52 39.56 51.56

PPL
iter1 36.60 49.16 41.77 54.08
iter2 36.04 46.64 39.92 50.84
iter3 33.27 45.92 36.41 49.52

Density
and PPL

iter1 37.52 49.64 42.51 54.68
iter2 40.48 52.16 44.73 56.24
iter3 38.82 50.48 41.96 53.60

Simple
Standard
Prompt

iter1 35.30 48.20 42.33 54.68
iter2 36.23 49.28 40.67 53.60
iter3 42.14 54.08 45.10 56.83

Combined
Standard
Prompt

iter1 35.67 49.16 40.48 53.96
iter2 37.34 51.32 40.85 54.56
iter3 41.22 54.32 44.18 57.19

ICL
Prompt

iter1 38.82 49.40 43.99 55.04
iter2 37.34 50.84 43.25 56.47
iter3 41.22 53.72 43.99 36.12

5.4.2 SELF-ASSESSMENT LEVEL ANALYSIS.

As shown in Table 4, we explore the efficiency of I-SHEEP across various self-assessment levels.
Our findings include the following key points: (1) The higher the level of self-assessment, the
greater the improvement in the efficiency and potential of the I-SHEEP framework. Assessing
both quality and instruction-following degree achieves the best performance at 3rd iteration, com-
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Table 4: Experimental results across various self-assessment levels. The no prompt setting means
no metacognitive self-assessment. The quality setting assesses only the output quality. The fol-
lowing setting measures instruction adherence, and the both setting assesses both response quality
and the degree of instruction adherence simultaneously. Bold results indicate the best results, and
blue results indicate the second-best results in each column.

Setting IFEval

P-level
S-accuracy

I-level
S-accuracy

P-level
L-accuracy

I-level
L-accuracy

no prompt iter1 35.67 47.60 41.04 52.88
no prompt iter2 36.97 48.80 40.30 51.80
no prompt iter3 37.52 48.92 39.37 50.72

quality iter1 37.34 48.20 42.51 52.64
quality iter2 36.04 49.04 40.67 53.00
quality iter3 37.71 51.44 41.96 54.92

following iter1 35.49 47.72 38.82 51.68
following iter2 40.48 52.76 43.62 56.35
following iter3 39.93 51.68 43.25 55.52

both iter1 35.30 48.20 42.33 54.68
both iter2 36.23 49.28 40.67 53.60
both iter3 41.14 54.08 45.10 56.83

pared to the other settings. (2) Evaluating the degree of instruction adherence of data pairs is
better than only evaluating the quality of output. Compared to the quality experimental group,
the following experimental group achieved an overall victory at 2nd iteration on the IFEval bench-
mark.

5.5 GENERALIZATION OF I-SHEEP

Table 5: Performance in the first three iterations
of llama3. ↑Green values are the improvements
over the first iteration.

Setting IFEval

P-level
S-accuracy

I-level
S-accuracy

P-level
L-accuracy

I-level
L-accuracy

llama3 iter1 9.43 19.06 10.35 21.70
llama3 iter2 9.61 ↑0.18 21.34 ↑2.28 11.28 ↑0.93 23.74 ↑2.04
llama3 iter3 12.38 ↑2.95 20.98 ↑1.92 14.42 ↑4.07 23.86 ↑2.16

we conduct experiments on the llama 3 70B
model to verify that the I-SHEEP framework
is also effective for other models. Table 5
shows that llama 3 is also stably and itera-
tively enhanced through the I-SHEEP frame-
work. Moreover, the significant improvement
between the 2nd iteration and the 3rd iteration
indicates that llama3 has the potential for fur-
ther enhancement.

6 CONCLUSION

In this paper, we emphasize and formally introduce a challenging task, continuous self-alignment
with nothing, which aims to explore how to achieve and to what extent self-alignment can be real-
ized. We present I-SHEEP, a framework that enables continuous iterative improvement of models
without relying on external data, tools, or models. I-SHEEP leverages the inherent generation and
comprehension capabilities of models, it uses the self-driven data synthesis process for data gener-
ation and the self-assessment process for assessing data quality. Based on these assessment scores,
high-quality data is filtered and used to train the model itself. Our experiments demonstrate that
models can continuously and iteratively improve using I-SHEEP, with varying potential for improve-
ment depending on the model size and the level of metacognitive self-assessment. Additionally, we
conducted extensive ablation studies to verify the impact of filtering thresholds, filtering methods,
and data size on the performance of I-SHEEP.
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A SELF-ASSESSMENT PROMPT CONTENT

In this section, we provide a detailed overview of the different prompts used during the self-
assessment phase. The simple standard prompt setting involves setting the simple evaluation stan-
dard for poor and good responses to assess the instruction-output pair data. The combined standard
prompt setting indicates that we combine several evaluation standards to assess data quality. The
ICL prompt setting demonstrates that even without meticulously designed standards, using just a
few examples can achieve similar results.

ICL Prompt Setting

Example 1
Instruction1: Select the oldest person from the list. George Washington, Confucius, Michael
Jordan, Michelangelo
Output data1: Confucious
Score1: 6
Explanation1: The response is correct, but the response does not provide further explanation

Example 2
Instruction2: Read this sentence and come up with an appropriate response. That’s really pretty.
Output data2: Matterhorn is the highest mountain in the world.
Score2:1
Explanation2: The response is neither correct nor adheres to the instruction.

Example 3
Instruction3: Generate a slogan for the given product. Product: Athletic shoes
Output data3: Sole to soul: Power your active lifestyle with our athletic shoes.
Score3: 10
Explanation3: The response is correct, organized, and instruction-following.

ICL Prompt
Instruction: {Instruction1} Response: {Output data1}. Assess the above
instruction-response pair: <{Score1}>||<{Explanation1}>\n Instruction:
{Instruction2} Response: {Output data2}. Assess the above instruction-response pair:
<{Score2}>||<{Explanation2}>\n Instruction: {Instruction3} Response:
{Output data3}. Assess the above instruction-response pair:
<{Score3}>||<{Explanation3}>\n Instruction: {Instruction} Response:
{Output data}. Assess the instruction-response pair: ”

Prompt Setting 1 (Simple Standard)

Prompt for Assessing Quality:
Here are the instruction and the response. Instruction: {instruction} Response: {output data}.\n
Please rate the response above on a scale from 1 for poor response (The response is incorrect.) to 10
for good response (correct) based on its quality, using the format '<score>||<explanation>'. As a
strict scoring expert, your score is:

Prompt for Assessing Instruction-Following:
Here are the instruction and the response. Instruction: {instruction} Response: {output data}.\n
Please rate the response from 1 (The response does not comply with the instruction.) to 10 (The
response adheres to the instruction.) based on its adherence to instructions, using the format
'<score>||<explanation>'. As a strict scoring expert, your score is:
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Prompt Setting 2 (Combined Standard)

Prompt for Assessing Quality:
Here are the instruction and the response. Instruction: {instruction} Response: {output data}.\n
Please rate the response above on a scale from 1 for poor response (The response is incorrect, lengthy,
unclear, redundant in format and content.) to 10 for good response (correct, succinct, clear and
nonredundant) based on its quality, using the format '<score>||<explanation>'. As a strict scoring
expert, your score is:

Prompt for Assessing Instruction-Following:
Here are the instruction and the response. Instruction: {instruction} Response: {output data}.\n
Please rate the response from 1 (The response continues to generate the instruction content. the
response does not meet the format required by the instruction. the instruction is unclear and
ambiguous.) to 10 (The response directly answers the instruction instead of continuing the instruction,
adheres to the format required by the instruction, and the instruction is clear and unambiguous.) based
on its adherence to instructions, using the format '<score>||<explanation>'. As a strict scoring
expert, your score is:

B LORA HYPERPARAMETERS AND LLAMA FACTORY TEMPLATE

We present the hyperparameters used for LoRA training and the templates used for SFT in the
LLama-Factory framework as follows:

Llama-Factory Register Template

_register_template(
name="llama3_like",
format_user=StringFormatter(

slots=[
"<|start_header_id|>user<|end_header_id|>\n\n
{{content}}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>\n\n"

]
),
stop_words=["<|eot_id|>"],
# replace_eos=True,
# force_system=True,

)

_register_template(
name="qwen_like",
format_user=StringFormatter(slots=["<|im_start|>user\n
{{content}}<|im_end|>\n
<|im_start|>assistant\n"]),
format_system=StringFormatter(
slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
default_system="You are a helpful assistant.",
# efficient_eos=True,
stop_words=["<|im_end|>", "<|endoftext|>"],
# replace_eos=True,

)
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Lora Hyper Parameters

deepspeed --num_gpus 8 ../../src/train_bash.py \
--deepspeed ../deepspeed/ds_z3_config.json \
--stage sft \
--do_train \
--dataset_dir ../../data \
--template qwen_like \
--finetuning_type lora \
--lora_target all \
--lora_rank 8 \
--lora_alpha 16 \
--lora_dropout 0.05 \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 8 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 2.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--bf16

C CASE STUDY

Poor quality and not instruction-following
"instruction": "Imagine you’re talking to a doctor. You can
ask them to show you a radiograph of your knees. Tell them,
’Show me my knees!’",
"input": "",
"output": "Next, say ’Show me my elbows.’ It’s difficult to
see your own elbows in radiographs.\nBack to the main lesson
page.",
"quality score": 1,
"following score": 1

"instruction": "Please fill in the blank with a good
response.",
"input": " is better than .",
"output": "One",
"quality score": 2,
"following score": 1

Good quality but not instruction-following
"instruction": "What are the main strengths and weaknesses of
this technology?",
"input": "Technology: Self-driving cars",
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"output": "I believe that self-driving cars can help to
prevent some of the human error that leads to accidents and
fatalities on the road. However, self-driving cars can also
be used for other purposes such as transporting goods or
even transportation of people. Self-driving cars also have
the potential to reduce traffic congestion and environmental
pollution.\n\nSome of the main strengths of self-driving cars
are that they can save a lot of time by eliminating the need
for a person to drive. It will allow people to spend more
time doing other things, such as working or reading. In
addition, it will allow people to go to places where there is
not enough parking space, which will reduce traffic on roads
and make it easier to travel.\n\nHowever, self-driving cars
have a number of weaknesses as well. The technology behind
self-driving cars is still in its infancy and many questions
remain about how it will work in practice. For example,
the systems are not perfect, which means that accidents
can happen. In addition, there are many ethical and legal
questions that need to be answered before self-driving cars
can be used in public.\n\nSelf-driving cars are not perfect,
and there are still many questions that need to be answered
about how they will work in practice. However, self-driving
cars have the potential to reduce traffic congestion and
environmental pollution and could even make our roads safer.",
"quality score": 10,
"following score": 2

"instruction": "Create a new formula for generating a unique
ID.",
"input": "",
"output": "import uuid\n\n def generate unique id():\n
unique id = uuid.uuid4()\n return str(unique id)",
"quality score": 8,
"following score": 5

Poor quality but instruction-following
"instruction": "Put parentheses around the following
expression so that it evaluates to 15.",
"input": "5 + 3 * 2",
"output": "(15.5 + 3) * 2",
"quality score": 2,
"following score": 9

"instruction": "Remove the spaces from this text.",
"input": "Here is a text with spaces.",
"output": "Here is a text with spaces.\n\nHereisa
textwithspaces.",
"quality score": 1,
"following score": 10

"instruction": "You will be given a task to generate a
creative response to the given prompt. A creative response
is something that is interesting and novel.",
"input": "A group of friends want to have a fun night in.",
"output": "They could play board games or watch a movie.",
"quality score": 4,
"following score": 8

Good quality and instruction-following
"instruction": "Explain the following joke.",
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"input": "Why do programmers prefer dark mode? Because light
attracts bugs.",
"output": "The joke is a play on words. ’Bugs’ is a term
used in programming to refer to errors or problems in the
code, but it is also a term for insects. So, the punchline is
a pun that means that programmers prefer dark mode because it
does not attract actual insects, which could be a distraction
while working.",
"quality score": 10,
"following score": 10

"instruction": "Explain the grammar knowledge for the given
sentence.",
"input": "An ancient vase stands on a brown table.",
"output": "Task: Explain the grammar knowledge for the
given sentence.\n\nSentence: An ancient vase stands on
a brown table.\n\nGuidelines:\n- Identify the subject,
verb, and object.\n- Identify the nouns, adjectives, and
prepositions.\n- Provide an explanation for the sentence
structure.\n\nExplanation:\nThe subject of the sentence is ’an
ancient vase.’ The verb is ’stands,’ and the object is ’on
a brown table.’\n\n- Nouns: ’vase,’ ’table’\n- Adjectives:
’ancient,’ ’brown’\n- Prepositions: ’on’\n\nThe sentence
follows the basic subject-verb-object structure, where the
subject (an ancient vase) performs the action (stands) on the
object (a brown table). The adjectives ’ancient’ and ’brown’
provide additional information about the nouns they modify,
while the preposition ’on’ shows the relationship between the
vase and the table.",
"quality score": 10,
"following score": 10

Table 6: Examples from the generated instruction-output pair data. These samples are categorized
into four groups based on self-assessment scores: poor quality and not instruction-following, good
quality but not instruction-following, poor quality but instruction-following, and good quality and
instruction-following.

D MORE BENCHMARK RESULTS EVALUATED BY OPENCOMPASS

In this section, we present more benchmark results evaluated using the Opencompass platform. For
aligned models, we use the prompts from SFT training to ensure consistency between training and
inference. The prompts used are as follows:

Llama3:
<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>\n\n

Qwen:
<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n
<|im_start|>user\n{prompt}<|im_end|>\n
<|im_start|>assistant\n
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Table 7: Additional benchmark results for the one base iterative setting in Table 2

dataset version mode Qwen
base model

1st
iteration

2nd
one base

3rd
one base

Standard Benchmarks
BoolQ 314797 ppl 89.45 89.24 89.30 89.54
piqa 0cfff2 ppl 83.35 83.24 83.24 83.08
siqa e8d8c5 ppl 77.89 78.35 78.40 78.51
GPQA diamond 152005 gen 25.25 27.78 26.77 27.78
hellaswag a6e128 ppl 83.45 83.39 83.46 83.46
winogrande 55a66e ppl 75.30 75.14 74.82 74.66
ARC-e 2ef631 ppl 96.12 96.12 96.30 96.12
ARC-c 2ef631 ppl 91.86 92.20 91.53 90.85
openbookqa fact 6aac9e ppl 94.40 94.80 95.00 95.60
commonsense qa e51e32 ppl 77.23 77.56 77.97 77.89
mmlu - ppl 77.02 76.85 76.95 77.03

Code Generation
openai humaneval 812847 gen 21.34 50.61 56.71 56.10
mbpp d1bbee gen 50.20 51.20 51.80 52.60

World Knowledge
nq 632c4e gen 19.11 26.54 27.31 28.14
triviaqa f9d2af gen 58.07 60.81 61.55 62.00

Reading Comprehension
squad2.0 817436 gen 47.66 50.68 52.27 61.42

Table 8: Additional benchmark results for the one last iterative setting in Table 2

dataset version mode Qwen
base model

1st
iteration

2nd
one last

3rd
one last

Standard Benchmarks
BoolQ 314797 ppl 89.45 89.24 89.30 89.20
piqa 0cfff2 ppl 83.35 83.24 83.13 82.92
siqa e8d8c5 ppl 77.89 78.35 78.25 78.56
GPQA diamond 152005 gen 25.25 27.78 27.27 28.28
hellaswag a6e128 ppl 83.45 83.39 83.39 83.37
winogrande 55a66e ppl 75.30 75.14 75.37 75.14
ARC-e 2ef631 ppl 96.12 96.12 96.30 96.30
ARC-c 2ef631 ppl 91.86 92.20 92.20 91.86
openbookqa fact 6aac9e ppl 94.40 94.80 95.00 95.60
commonsense qa e51e32 ppl 77.23 77.56 78.05 77.89
mmlu - ppl 77.02 76.85 76.86 76.95

Code Generation
openai humaneval 812847 gen 21.34 50.61 56.71 56.10
mbpp d1bbee gen 50.20 51.20 51.80 52.60

World Knowledge
nq 632c4e gen 19.11 26.54 27.31 28.14
triviaqa f9d2af gen 58.07 60.81 61.55 62.00

Reading Comprehension
squad2.0 817436 gen 47.66 50.68 52.27 61.42
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Table 9: Additional benchmark results for the total base iterative setting in Table 2

dataset version mode Qwen
base model

1st
iteration

2nd
total base

3rd
total base

Standard Benchmarks
BoolQ 314797 ppl 89.45 89.24 89.17 89.27
piqa 0cfff2 ppl 83.35 83.24 83.19 83.19
siqa e8d8c5 ppl 77.89 78.35 78.20 78.25
GPQA diamond 152005 gen 25.25 27.78 27.27 26.26
hellaswag a6e128 ppl 83.45 83.39 83.43 83.47
winogrande 55a66e ppl 75.30 75.14 75.14 75.22
ARC-e 2ef631 ppl 96.12 96.12 96.30 96.30
ARC-c 2ef631 ppl 91.86 92.20 91.86 91.86
openbookqa fact 6aac9e ppl 94.40 94.80 95.20 95.00
commonsense qa e51e32 ppl 77.23 77.56 77.81 77.81
mmlu - ppl 77.02 76.85 76.90 76.92

Code Generation
openai humaneval 812847 gen 21.34 50.61 56.71 56.10
mbpp d1bbee gen 50.20 51.20 51.80 52.60

World Knowledge
nq 632c4e gen 19.11 26.54 27.31 28.14
triviaqa f9d2af gen 58.07 60.81 61.55 62.00

Reading Comprehension
squad2.0 817436 gen 47.66 50.68 52.27 61.42

Table 10: Additional benchmark results for the direct setting in Table 2

dataset version mode Qwen
base model

1st
iteration

direct
20K

direct
30K

Standard Benchmarks
BoolQ 314797 ppl 89.45 89.24 89.20 89.54
piqa 0cfff2 ppl 83.35 83.24 83.35 83.24
siqa e8d8c5 ppl 77.89 78.35 77.79 78.15
GPQA diamond 152005 gen 25.25 27.78 26.77 25.76
hellaswag a6e128 ppl 83.45 83.39 83.43 83.44
winogrande 55a66e ppl 75.30 75.14 75.37 75.14
ARC-e 2ef631 ppl 96.12 96.12 96.47 96.30
ARC-c 2ef631 ppl 91.86 92.20 90.85 91.53
openbookqa fact 6aac9e ppl 94.40 94.80 95.00 94.80
commonsense qa e51e32 ppl 77.23 77.56 77.72 77.40
mmlu - ppl 77.02 76.85 76.96 76.97

Code Generation
openai humaneval 812847 gen 21.34 50.61 56.71 56.10
mbpp d1bbee gen 50.20 51.20 51.80 52.60

World Knowledge
nq 632c4e gen 19.11 26.54 27.31 28.14
triviaqa f9d2af gen 58.07 60.81 61.55 62.00

Reading Comprehension
squad2.0 817436 gen 47.66 50.68 52.27 61.42
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Setting Chat Benchmark Standard Benchmark

IFEval Code World
Knowledge

Reading
Comprehension

P-S I-S P-L I-L Human
Eval/Plus MBPP Trivia

QA
SQuAD

2.0

Density
iter1 34.20 46.76 39.56 51.80 53.66/46.34 50.60 70.95 53.50
iter2 37.34 49.76 41.22 53.72 51.83/44.51 53.40 70.78 60.58
iter3 37.52 49.52 39.56 51.56 54.88/47.56 55.20 69.97 59.54

PPL
iter1 36.60 49.16 41.77 54.08 52.44/46.95 50.00 71.34 50.40
iter2 36.04 46.64 39.92 50.84 56.71/50.00 52.20 70.27 48.11
iter3 33.27 45.92 36.41 49.52 55.49/50.61 53.20 70.37 41.82

Density
and PPL

iter1 37.52 49.64 42.51 54.68 52.44/46.95 50.60 71.29 57.08
iter2 40.48 52.16 44.73 56.24 55.49/48.17 54.40 70.87 62.06
iter3 38.82 50.48 41.96 53.60 58.54/53.05 55.40 70.40 63.51

Simple
Standard Prompt

iter1 35.30 48.20 42.33 54.68 53.66/46.34 51.20 71.39 51.51
iter2 36.23 49.28 40.67 53.60 56.71/50.00 55.60 71.17 57.64
iter3 42.14 54.08 45.10 56.83 59.76/53.05 57.60 70.40 63.47

Combined
Standard Prompt

iter1 35.67 49.16 40.48 53.96 50.61/45.12 51.20 60.81 50.68
iter2 37.34 51.32 40.85 54.56 56.71/49.39 51.80 61.55 52.27
iter3 41.22 54.32 44.18 57.19 56.10/50.61 52.60 62.00 61.42

ICL
Prompt

iter1 38.82 49.40 43.99 55.04 54.27/47.56 53.40 71.45 58.62
iter2 37.34 50.84 43.25 56.47 59.76/53.05 54.60 71.49 57.91
iter3 41.22 53.72 43.99 36.12 59.15/52.44 55.40 69.88 58.91

Table 11: More results using different filtering methods that rely solely on the model. PPL filtering
involves removing data points with high PPL values for output and instruction-output pairs. Density
filtering clusters the vector representations of the last layer and selects samples from each cluster.
The Density and PPL setting clusters first, then selects samples with lower PPL values in each
cluster. Simple Standard Prompt, Combined Standard Prompt, and the ICL Prompt settings are
the three self-assessment variants discussed in this paper. Please refer to the appendix for detailed
prompt content.

E MT-BENCH

Table 12: The scores for the first and second turn of dialogue across different MT-Bench categories.
There is a significant decrease in the second turn scores after the third iteration.

aver-
age code extra-

ction
huma-
nities math reason role

play stem write

iter1 1st turn 7.76 5.50 6.35 9.65 5.85 7.60 7.55 9.55 10.00
2nd turn 5.11 2.30 4.80 7.70 3.60 5.30 7.90 4.30 5.00

iter2 1st turn 8.23 7.10 7.90 9.60 6.10 7.40 8.30 9.90 9.55
2nd turn 7.57 5.05 8.30 9.70 4.90 8.00 9.00 7.80 7.80

iter3 1st turn 8.34 6.50 7.80 9.65 7.00 7.20 8.80 10.00 9.80
2nd turn 7.60 5.80 7.60 9.40 5.00 7.50 9.30 8.50 7.70

iter4 1st turn 7.43 5.00 7.70 9.70 4.95 5.80 7.10 9.40 9.75
2nd turn 3.48 2.40 2.40 5.40 2.30 2.40 5.80 4.50 2.60

iter5 1st turn 7.49 5.30 7.70 9.50 4.90 5.60 7.80 9.40 9.70
2nd turn 3.76 3.60 2.50 5.20 1.50 3.60 4.80 4.40 4.50

iter6 1st turn 7.74 5.10 7.00 9.45 7.80 5.60 7.80 9.50 9.70
2nd turn 3.73 3.00 2.50 7.10 2.20 3.60 5.30 3.11 3.00
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F LORA HYPERPARAMETERS AND LLAMA FACTORY TEMPLATE

We present the hyperparameters used for LoRA training and the templates used for SFT in the
LLama-Factory framework as follows:

Lora Hyper Parameters

deepspeed --num_gpus 8 ../../src/train_bash.py \
--dataset_dir ../../data \
--template qwen_like \
--finetuning_type lora \
--lora_target all \
--lora_rank 8 \
--lora_alpha 16 \
--lora_dropout 0.05 \
--cutoff_len 1024 \
--preprocessing_num_workers 8 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--learning_rate 5e-5 \
--num_train_epochs 2.0 \
--max_samples 3000 \
--val_size 0.1 \
--bf16

Llama-Factory Register Template

_register_template(
name="llama3_like",
format_user=StringFormatter(

slots=[
"<|start_header_id|>user<|end_header_id|>\n\n
{{content}}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>\n\n"

]
),
stop_words=["<|eot_id|>"],
# replace_eos=True,
# force_system=True,

)

_register_template(
name="qwen_like",
format_user=StringFormatter(slots=["<|im_start|>user\n
{{content}}<|im_end|>\n
<|im_start|>assistant\n"]),
format_system=StringFormatter(
slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
default_system="You are a helpful assistant.",
# efficient_eos=True,
stop_words=["<|im_end|>", "<|endoftext|>"],
# replace_eos=True,

)
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G DATA QUALITY ANALYSIS ACROSS DIFFERENT ITERATIONS
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Figure 3: The proportion of high-quality data to the total generated data across different iterations.
High-quality data refers to the data with scores greater than 8, which are used for training. The blue,
yellow, and green curves represent the consideration of output quality only, instruction adherence
only, and both output quality and instruction adherence, respectively.

Figure 4: The generated data projects onto the first two dimensions of the OpenHermes-2.5 using
principal component analysis (PCA). Black points represent OpenHermes data, while red points rep-
resent self-generated data across various iterations in the I-SHEEP framework. The data generated
through the I-SHEEP framework aligns with the distribution of high-quality instruction-output pairs
like those in OpenHermes.
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