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Abstract

We study the local and global solutions of the generalized derivative nonlinear Schrödinger equation 
i∂t u + �u = P(u, u, ∂xu, ∂xu), where each monomial in P is of degree 3 or higher, in low-regularity 
Sobolev spaces without using a gauge transformation. Instead, we use a solution decomposition technique 
introduced in [4] during the perturbative argument to deal with the loss on derivative in nonlinearity. It 
turns out that when each term in P contains only one derivative, the equation is locally well-posed in H

1
2 , 

otherwise we have a local well-posedness in H
3
2 . If each monomial in P is of degree 5 or higher, the 

solution can be extended globally. By restricting to equations to the form i∂t u + �u = ∂xP (u, u) with the 
quintic nonlinearity, we were able to obtain the global well-posedness in the critical Sobolev space.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the well-posedness of the Cauchy problem for the generalized deriva-
tive nonlinear Schrödinger equation (gDNLS) on R.
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{
i∂tu + �u = P(u,u, ∂xu, ∂xu)

u(x,0) = u0 ∈ Hs(R), s ≥ s0.
(1)

Here, u is a complex-valued function and P : C4 → C is a polynomial of the form

P(z) = P(z1, z2, z3, z4) =
∑

d≤|α|≤l

Cαzα, (2)

and l ≥ d ≥ 3. There are several results regarding the well-posedness of this equation. In [19], 
Kenig, Ponce and Vega proved that the equation (1) is locally well-posed for a small initial data 
in H

7
2 (R). There has been some interest in the special case where P = iλ|u|kux :{

i∂tu + �u = iλ|u|kux

u(x,0) = u0 ∈ Hs(R), s ≥ s0,

with k ∈ R. Hao ([13]) proved that this equation is locally well-posed in H
1
2 (R) for k ≥ 5, 

and Ambrose–Simpson ([1]) proved the result in H 1(R) for k ≥ 2. Recent studies show that 
these results can be improved. See Santos ([25]) for the local-wellposedness in H

1
2 when k ≥ 2

and Hayashi–Ozawa ([14]) for the local well-posedness in H 2 when k ≥ 1 and the global well-
posedness in H 1 when k ≥ 2.

Several studies showed that we have better results if P only consists of u and ∂xu due to 
the following heuristic: if u solves the linear Schrödinger equation, then the space–time Fourier 
transform of u is supported away from the parabola {(ξ, τ)|τ + ξ2 = 0}, leading to strong dis-
persive estimates. Grünrock ([12]) showed that for P = ∂x(u

d) or P = (∂xu)d where d ≥ 3, the 
equation (1) is locally well-posed for any s > 1

2 − 1
d−1 in the former case and s > 3

2 − 1
d−1

in the latter. Later, Hirayama ([16]) extended Grünrock’s results for P = ∂x(u
d) to the global 

well-posedness for s ≥ 1
2 − 1

d−1 .

There are also various results for higher dimension analogues of (1){
i∂tu + �u = P(u,u,∇u,∇u)

u(x,0) = u0(x), x ∈ Rn.
(3)

The most general results in Rn for n ≥ 2 are due to Kenig, Ponce and Vega in [19]. For a more 
specific case, we refer to [2] and [3] where Bejenaru obtained a local well-posedness result for 
n = 2 and P(z) is quadratic with low regularity initial data. For results in Besov spaces, see [30]
for the global well-posedness in Ḃsn

1,2(R
n) where n ≥ 2 and sn = n

2 − 1
d−1 which is the critical 

exponent.

For another type of derivative nonlinearities, we refer to Chihara ([10]) for nonlinearities of 
the form f (u, ∂u), where f : R2 ×R2n → R (identifying C with R2) is a smooth function such 
that f (u, v) = O(|u|2 + |v|2) or f (u, v) = O(|u|3 + |v|3) near (u, v) = 0. It turns out that the 
corresponding Cauchy problems are locally well-posed in H �n/2�+4 for any n ≥ 1.

Our first result is the local well-posedness of (1) in Sobolev spaces when the nonlinearity 
contains an arbitrary number of derivatives.
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Theorem 1.1. In the equation (1), let s be any number such that

(A) s ≥ 1
2 if each term in P(u, u, ∂xu, ∂xu) has only one derivative,

(B) s ≥ 3
2 if a term in P(u, u, ∂xu, ∂xu) has more than one derivative.

Then there exist a Banach space Xs and a constant C = C(s, d) with the following properties: 
For any u0 ∈ Hs(R) such that ‖u0‖Hs < C, the equation (1) has a unique solution:

u ∈ X := {u ∈ C0
t H s

x ([−1,1] ×R) ∩ Xs : ‖u‖Xs ≤ 2C}.

Furthermore, the map u0 �→ u is Lipschitz continuous from BC := {u0 ∈ Hs : ‖u0‖Hs ≤ C} to X.

Remark. The definition of Xs will be made precise in Section 4 below.

This shows that, without any restriction to the number of derivatives, we are able to improve 
Kenig et al.’s result ([19]) from H

7
2 to H

3
2 . By restricting to only one derivative per term in the 

nonlinearity, we can improve further to H
1
2 . Moreover, part (A) of Theorem 1.1 extends Hao and 

Santos’s local well-posedness result in H
1
2 to more general class of nonlinearities. It turns out 

that the global well-posedness results can be achieved if the nonlinearity is quintic or higher and 
the endpoint cases are excluded.

Theorem 1.2. Suppose that d ≥ 5 in (2). Let s be any number such that

(A) s > 1
2 if each term in P(u, u, ∂xu, ∂xu) has only one derivative,

(B) s > 3
2 if a term in P(u, u, ∂xu, ∂xu) has more than one derivative.

Then the equation (1) is globally well-posed in the following sense:

There exist a Banach space Xs and a constant C = C(s, d) with the following properties: For 
any u0 ∈ Hs(R) such that ‖u0‖Hs < C and any time interval I containing 0, the equation (1)
has a unique solution:

u ∈ X := {u ∈ C0
t H s

x (I ×R) ∩ Xs : ‖u‖Xs ≤ 2C}.

Furthermore, the map u0 �→ u is Lipschitz continuous from BC := {u0 ∈ Hs : ‖u0‖Hs ≤ C} to X.

Remark. The definition of Xs will be made precise in Section 7 below.

Notice that when each term in P(u, u, ∂xu, ∂xu) has only one derivative, (1) is invariance 

under the scaling u(x, t) �→ uλ(x, t) := λ
1

d−1 u(λx, λ2t). Thus, the critical space is Hs0 where 
s0 = 1

2 − 1
d−1 in the sense that ‖u‖Hs0 = ‖uλ‖Hs0 . If we follow the heuristic that a dispersive 

equation is expected to be locally well-posed in any subcritical Sobolev space Hs i.e. s > s0, 
then the result in part (A) of Theorem 1.2, which requires s > 1

2 , is not optimal in this sense. It 
turns out that the global well-posedness at critical Sobolev spaces can be achieved if we assume 
a specific type of the gDNLS equation



D. Pornnopparath / J. Differential Equations 265 (2018) 3792–3840 3795
{
i∂tu + �u = ∂xP (u,u)

u(x,0) = u0 ∈ Hs(R), s ≥ s0,
(4)

where P :C2 → C is a polynomial of the form

P(z) = P(z1, z2) =
∑

d≤|α|≤l

Cαzα, (5)

and l ≥ d ≥ 5.

The following theorem shows that for d ≥ 5 we have the global well-posedness at the scaling 
critical Sobolev space.

Theorem 1.3. Suppose that d ≥ 5 in (5). Let s0 = 1
2 − 1

d−1 . For any s ≥ s0, the equation (4) is 
globally well-posed in Hs(R) in the following sense:

There exist a Banach space Xs and a constant C = C(s, d) with the following properties: For 
any u0 ∈ Hs(R) such that ‖u0‖Hs < C and any time interval I containing 0, the equation (4)
has a unique solution:

u ∈ X := {u ∈ C0
t H s

x (I ×R) ∩ Xs : ‖u‖Xs ≤ 2C}.

Furthermore, the map u0 �→ u is Lipschitz continuous from BC := {u0 ∈ Hs : ‖u0‖Hs ≤ C} to X.

In the case of s = s0, the statement above holds true if we replace Hs by Ḣ s0 .

Remark. The definition of Xs will be made precise in Section 5 in the case of d ≥ 6 and Section 6
in the case of d = 5 below.

This extends Grünrock and Hirayama’s results to more general class of nonlinearities. The 
main ideas behind the proof of Theorem 1.1 and Theorem 1.3 consist of the Duhamel reformu-
lation of the problem, followed by the contraction argument, using the local smoothing estimate 
(11) and the maximal function estimate (12) to deal with the loss of derivative in nonlinearity. We 
also use a decomposition (35) of the nonlinear Duhamel term, first introduced in [4], to deal with 
the truncated time integration. We then finish with the usual perturbative analysis to obtain the 
well-posedness results. The proof for Theorem 1.3 in the case d = 5 is rather delicate and needs 
some modulation-frequency argument, motivated by Tao’s paper on the quartic generalized KdV 
equation ([29]), which is sensitive to the conjugates in the nonlinearity. Therefore, the proof of 
global well-posedness in this case will be treated separately in section 6.

One motivation of this paper came from the following specific case of (4), which has been 
intensively studied in the past: {

i∂tu + �u = i∂x(|u|2u)

u(x,0) = u0 ∈ Hs(R), s ≥ 1
2 .

(6)

We name this equation DNLS. It arises from studies of small-amplitude Alfv́en waves propagat-
ing parallel to a magnetic field [23] and large-amplitude magnetohydrodynamic waves in plasmas 
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[24]. There is also recent discovery of rogue waves as solutions for the Darboux transformation 
of the DNLS (see [33]). Although one expects the local well-posedness for s ≥ 0, Biagioni and 
Linares ([5]) have shown that (6) is ill-posed for s < 1

2 in the sense that the solution mapping 
u0 �→ u fails to be uniformly continuous. This means that our result from Theorem 1.3 when 
d = 3, which is a local well-posedness in H

1
2 , is sharp in this sense.

We mention here a few of many results regarding this equation. The global well-posedness in 
the energy space H 1(R) was proved by Hayashi and Ozawa in [15]. For data below the energy 
space, Takaoka has shown in [27] that DNLS is locally well-posed for s ≥ 1

2 using (7) with 
k = −1. In [11], Colliander, Keel, Staffilani, Takaoka and Tao used the “I-method” to show 
the global well-posedness of DNLS for s > 1

2 , assuming the smallness condition |u0|L2 <
√

2π . 
Later, Miao, Wu and Xu have proved the global well-posedness result for the endpoint case s = 1

2
using the third generation I-method and same smallness condition in [22]. Lastly, Wu ([31] and 
[32]) has shown that in the energy-critical case s = 1, the smallness threshold is improved to 
‖u0‖2

L < 2
√

π .
We are now shifting focus toward some qualitative aspects of the solutions. Kaup and Newell 

have shown that the equation is completely integrable, which implies infinitely many conser-
vation laws. Moreover, the inverse scattering method can be applied to obtain soliton solutions 
which are unstable in a sense that a small perturbation could cause the soliton to disperse (see
[17]). Recently, Liu, Perry and Sulem used this method to prove the global well-posedness result 
in H 2,2(R) (see [21]). A study following Wu’s above result ([9]) shows an existence of two kinds 
of solitons: bright solitons with mass 

√
2π , and lump soliton with mass 2

√
π . He showed in [31]

that there is no blow-up near the 
√

2π threshold. On the other hand, the study of Cher, Simpson 
and Sulem ([9]) has shown some numerical evidence of a blow-up profile that closely resembles 
the lump soliton.

The main difficulty in studying DNLS is the spatial derivative in nonlinearity. Due to this, all 
of well-posedness results for DNLS so far involve the Gauge transformation:

v(x, t) := u(x, t) exp

⎧⎨⎩ik

x∫
−∞

|u(y, t)|2 dy

⎫⎬⎭ (7)

where k ∈R. In [27], Takaoka used the transformation with k = −1 to turn (6) into{
i∂t v + �v = −iv2∂xv − 1

2 |v|4v
v(x,0) = v0 ∈ Hs(R), s ≥ 1

2 .
(8)

Note that the transformation replaces the term |u|2∂xu with v2∂vu which can be treated using 
the Fourier restriction norm method developed in [6]. In contrast to this type of proofs, we man-
aged to get the local well-posedness of (6) (as a part of Theorem 1.3) without using a gauge 
transformation. The advantage is that the idea can be easily generalized to get similar result for 
equation (4).

The paper is organized as follows. In the next subsection, we introduce some notations that 
are used in this paper. In section 2, we mention several linear and smoothing estimates and prove 
the maximal function estimate and bilinear estimate. In section 3, we introduce the solution space 
XN and nonlinear space YN for functions supported at frequency N and prove the main linear 
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and bilinear estimate for functions in these spaces using a solution decomposition technique from 
[4]. In section 4, we prove a multilinear estimate. Having all the ingredients that we need, we 
finish the proof of Theorem 1.1 in the same section. For Theorem 1.3, we divide the proof into 
different sections by the degree d of P(u, u). In section 5, we prove Theorem 1.3 in the case of 
d ≥ 6. Since the case d = 5 requires some frequency-modulation analysis, we will introduce the 
notion of Xs,b space along with several well-known estimates in section 6, and use these results 
to conclude the proof of Theorem 1.3 in the same section. Finally, we prove another multilinear 
estimate and use it to finish the proof of Theorem 1.2 in Section 7.

Notations. The following notations will be used for the rest of the paper. For 1 ≤ p, q ≤ ∞, 
we use ‖f ‖Lp to denote the Lp norm, and we define the mixed norm

‖f ‖L
p
x L

q
t
:= ∥∥‖f (x, t)‖L

q
t (I )

∥∥
L

p
x (R)

,

where I = [−1, 1] if d = 3, 4 and I = R if d ≥ 5. The norm ‖f ‖L
p
t L

q
x

is defined similarly. We 
define the Fourier transform and the inverse Fourier transform of f (x) by

f̂ (ξ) := 1√
2π

∫
R

e−ixξ f (x) dx,

f̌ (x) := 1√
2π

∫
R

eixξ f (ξ) dξ.

To simplify the proofs, we will always drop the constant 1√
2π

from these transforms. For s ∈ R, 

we denote by Ds = (−�)s/2 the Riesz potential of order −s. The Sobolev space Hs
x is defined 

by the norm

‖u‖Hs
x

:= ‖(1 + ξ2)
s
2 û(ξ)‖L2

ξ
.

The Banach space of bounded Hs
x -valued continuous functions is denoted by

C0
t H s

x (I × J ) :=
{
f ∈ C(I ;Hs

x (J )) : sup
t∈I

‖f (x, t)‖Hs
x (J ) < ∞

}
.

Let u ∈ L2
x . We define the Schrödinger propagator by

eit�u(x, t) :=
∫
R

eixξ−itξ2
û dξ.

The notation a � b and a ∼ b means a ≤ Cb and ca ≤ b ≤ CA, respectively, for some positive 
constants c and C, which depend on P(z) but not on the functions involved in these estimates.

We frequently split the frequency space into dyadic intervals, so whenever M and N is men-
tioned, we assume that M, N ∈ 2Z. Let ψ(ξ) be a smooth cutoff function supported in |ξ | ≤ 4

and equal 1 on |ξ | ≤ 2. We define ψN = ψ
(

ξ
N

)
− ψ

(
2ξ
N

)
. Denote by PN the Littlewood–Paley 

projection at frequency N , that is
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P̂Nf (ξ) = ψN(ξ)f̂ (ξ).

Define P≤N and P>N to be the projections of frequency less than and greater than N :

P̂≤Nf (ξ) = ψ≤Nf̂ (ξ) :=
∑

M≤N

ψM(ξ)f̂ (ξ),

P̂>Nf (ξ) = ψ>Nf̂ (ξ) :=
∑

M>N

ψM(ξ)f̂ (ξ).

We will sometimes shorten the notation by fN := PNf . For s ≥ 0, we can define the space Hs

and the homogeneous Sobolev space Ḣ s using the Littlewood–Paley projections

‖u‖Ḣ s :=
( ∑

Ni∈2Z

N2s
i ‖PNi

u‖2
L2

) 1
2

‖u‖Hs := ‖P≤1u‖L2 +
( ∑

Ni∈2N

N2s
i ‖PNi

u‖2
L2

) 1
2
.

2. Preliminary results

2.1. Bernstein type inequality

We begin with the Bernstein inequality for the Littlewood–Paley projections. Note that this 
is different from the standard result in literatures which is the same estimate but for the space 
L

q
t L

p
x .

Lemma 2.1. For any pair of 1 ≤ p, q ≤ ∞, we have

‖∂xPNf ‖L
p
x L

q
t
� N‖PNf ‖L

p
x L

q
t
. (9)

Proof. Let P̃N := PN/2 + PN + P2N be a Littlewood–Paley projection at a wider frequency 
interval with corresponding multiplier ψ̃N . We can rewrite the term on the left-hand side as

∂xP̃NPNf = (∂x

̂̃
ψN) ∗ PNf (x, t).

For each x, we have an inequality

‖∂xPNf ‖L
q
t
≤ |∂x

̂̃
ψN | ∗ ‖PNf (x, t)‖L

q
t
.

After taking the Lp
x norm and apply Young’s inequality, we have

‖∂xPNf ‖L
p
x L

q
t
≤ ‖∂x

̂̃
ψN‖L1

x
‖PNf ‖L

p
x L

q
t
� N‖PNf ‖L

p
x L

q
t
. �

This lemma helps us quantify derivatives of a function supported in a dyadic frequency inter-
val, which will come in handy in the proofs of multilinear estimates in sections 4–6.
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2.2. Stationary phase lemmas

We mention here stationary phase results from harmonic analysis, which will be used in the 
next subsection. See [26, pp. 331–334] for their proofs.

Lemma 2.2. Suppose that φ and ψ are smooth functions and ψ is compactly supported in (a, b). 
If φ′(ξ) �= 0 for all ξ ∈ [a, b], then∣∣∣∣∣∣

b∫
a

eiλφ(ξ)ψ(ξ) dξ

∣∣∣∣∣∣ ≤ C

|λ|k

for all k ≥ 0, where the constant C depends on φ, ψ and k.

Lemma 2.3. Suppose that ψ : R → R is smooth, φ is a real-valued C2-function in (a, b) and 
φ′′(ξ) � 1. Then, ∣∣∣∣∣∣

b∫
a

eiλφ(ξ)ψ(ξ) dξ

∣∣∣∣∣∣ � 1

|λ| 1
2

⎛⎝|ψ(b)| +
b∫

a

|ψ ′(ξ)| dξ

⎞⎠ .

2.3. Strichartz and local smoothing estimates

In our study, the nonlinear effect of the equation (1) with small initial data u0 plays a ma-
jor role in the perturbative analysis. As we mentioned in section 1, the main difficulty is a 
lost of derivative in the nonlinearity. In this regard, we will need the Strichartz estimate for the 
Schrödinger propagator and the smoothing estimate (11) which gives a 1

2 -order derivative gain 
of the linear solution in a suitable norm. We will also prove a maximal function type estimate 
(12) which will be used for the analysis of the nonlinear term.

Proposition 2.4. Let f ∈ L2. Then, we have the following estimates

‖eit�f ‖L
q
t L

p
x

� ‖f ‖L2
x
, (10)

where 
2

q
+ 1

p
= 1

2
and 2 ≤ p ≤ ∞, and

‖D 1
2 eit�f ‖L∞

x L2
t
� ‖f ‖L2

x
. (11)

Proof. The first inequality is the well-known Strichartz estimate. The proof can be found, for 
example, in [8] and [28]. The proof of (11) can be found in Theorem 4.1 of [18]. �

The following maximal function type estimate tells us that for the linear equation with time-
and-frequency localized initial data in Hs(R) where s ≥ 1

2 , the solution is well-controlled in 
L

γ
x L∞

t (R × I ), where I = [−1, 1] when γ = 2, 3 and I =R when γ ≥ 4.
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Proposition 2.5. Let u ∈ L2
x(R).

1. If γ = 2 or 3, assume that supp(|û|) ⊆ [N, 4N ] where N ∈ 2N or supp(|û|) ⊆ [0, 1], in which 
case we consider N = 1, then

‖χ[−1,1](t)eit�u(x)‖L
γ
x L∞

t
� N

1
γ ‖u‖L2

x
. (12a)

2. If γ ≥ 4, assume that supp(|û|) ⊆ [N, 4N ] where N ∈ 2Z, we have

‖eit�u(x)‖L
γ
x L∞

t
� N

γ−2
2γ ‖u‖L2

x
. (12b)

Remark. We see that the estimate (12a) is local in time while (12b) is global. By setting γ =
d − 1, this leads to the local and global results in Theorem 1.1 and Theorem 1.3.

Proof. We refer to Theorem 2.5 in [18] for a proof of the case γ = 4. Let s0 = s0(γ ) = 1
γ

for γ =
2, 3 and s0 = γ−2

2γ
for γ ≥ 5. We define an operator T : L2

x → L
γ
x L∞

t by T u = χ[−1,1](t)eit�u, 

yielding T ∗F = ∫ 1
−1 e−it�F dt . Using the T T ∗ argument, it follows that (12) is equivalent to 

either of the following estimates for F ∈ L2
xL

1
t (R ×R) with the same frequency support as u in 

the cases of γ = 2, 3.

∥∥∥∥∥∥
1∫

−1

e−it�F (x, t) dt

∥∥∥∥∥∥
L2

x

� Ns0‖F‖
L

γ
γ−1
x L1

t

(13)

∥∥∥∥∥∥χ[−1,1](t)
1∫

−1

ei(t−s)�F (x, s) ds

∥∥∥∥∥∥
L

γ
x L∞

t

� N2s0‖F‖
L

γ
γ−1
x L1

t

. (14)

For γ ≥ 5, we have the same estimates but with integrals on R. Thus, it suffices to prove (14). 
First, we assume that F ∈ S(R). Since F = P≤4NF , the inverse Fourier transform of ei(t−s)ξ2

F̂

is defined by

F−1
x

(
ei(t−s)ξ2

F̂ (ξ, s)
)

= c

∫
R

ei(t−s)ξ2+ixξ F̂ (ξ, s) dξ

=F−1
x

(
e−i(t−s)ξ2

ψ

(
ξ

4N

))
∗ F(x, s).

Since −1 ≤ t, s ≤ 1 implies −2 ≤ t − s ≤ 2, the term on the right of (14) can be replaced by

∫
F−1

x

(
χ[−2,2](t − s)e−i(t−s)ξ2

ψ

(
ξ

4N

))
∗ F(x, s) ds
R
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=F−1
x

(
χ[−2,2](t)e−itξ2

ψ

(
ξ

4N

))

 F (x, t)

= c1K1 
 F

where 
 denotes the space–time convolution and

K1(x, t) =
∫
R

e−itξ2+ixξχ[−2,2](t)ψ
(

ξ

4N

)
dξ. (15)

Similarly, for γ ≥ 5 we have ∫
R

ei(t−s)�F (x, s) ds = c2K2 
 F

where

K2(x, t) =
∫
R

e−itξ2+ixξψ

(
ξ

4N

)
dξ. (16)

To finish the proof, we need the following lemma.

Lemma 2.6. Let K1(x, t) and K2(x, t) be as in (15) and (16). Then, for i = 1, 2

‖Ki‖
L

γ
2
x L∞

t

� N2s0 . (17)

We continue the proof of Proposition 2.5. By applying Young’s inequality and Lemma 2.6, 
we obtain

‖Ki 
 F‖L
γ
x L∞

t
≤ ‖Ki‖

L

γ
2
x L∞

t

‖F‖
L

γ
γ−1
x L1

t

as desired. We then finish the proof by the usual density argument. �
Proof of Lemma 2.6. Let I = [−1, 1] when γ = 2, 3 and I = R when γ ≥ 4. We divide R × I

into three regions

�1 := {(x, t) ∈R× I | |x| ≤ 1

N
}

�2 := {(x, t) ∈R× I | |x| ≥ 64N |t | , |x| > 1

N
}

�3 := {(x, t) ∈R× I | |x| < 64N |t | , |x| > 1

N
},

and we will estimate Ki(x, t) in each region. For a fixed x ∈ R and 1 ≤ i ≤ 3, we define �x,i :=
{t ∈ I | (x, t) ∈ �i}. We consider the following two cases of values of γ .
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Case 1: γ = 2, 3. Note that in this case we always assume that N ≥ 1. By a change of variable 
η = ξ

4N
, we obtain

K1(x, t) = N

∫
R

χ[−2,2]e−i16tN2η2+i4xNηψ(η) dη

A simple estimate on �1 shows that∫
|x|≤ 1

N

|K1(x, t)| γ
2 dx � 1

N
· N γ

2

(∫
R

ψ(η) dη
) γ

2 ∼ N
γ−2

2 ≤ N. (18)

Next we consider the norm on �2. Note that the integrand in K1 vanishes if |η| ≥ 4. 
Factoring out −i16tN2η2 + i4xNη = −i4xN(η − 4tN

x
η2) := −ixNφ1(η) yields

|φ′
1(η)| = |1 − 8

tN

x
η| ≥ 1 − 32

∣∣∣∣ tNx
∣∣∣∣ ≥ 1 − 32 · 1

64
= 1

2
,

for any t ∈ �x,2. Therefore, φ1 has no critical point in this region. By Lemma 2.2, the 
integral in K1 is bounded by |Nx|−k for all k ≥ 0. In particular, by choosing k = 2, we 

obtain |K1(x, t)| � N(N |x|)−2 = N−1|x|−2. We finish by computing the L
γ
2
x L∞

t norm 
on �2: ∫

sup
t∈�x,2

|K1(x, t)| γ
2 dx � N(γ−1)− γ

2 = N
γ−2

2 ≤ N. (19)

Now we consider the norm on �3. Factoring out the exponential term −i16tN2η2 +
i4xNη = −i4tN2(4η2 − xη

Nt
) := i4tN2φ2(η) yields φ′′

2 (η) � 1, so we can apply 

Lemma 2.3 to K1.

|K1(x, t)| = N

∣∣∣∣∣∣
∫
R

e−itN2η2+ixNηψ(η) dη

∣∣∣∣∣∣
� N · 1

N |t | 1
2

<
64N

1
2

|x| 1
2

.

(20)

Now we compute the L
γ
2
x L∞

t norm of K1. Observe that the finite time restriction yields 
|x| � N |t | ≤ 2N on �3. Therefore,∫

sup
t∈�x,3

|K1(x, t)| γ
2 dx �

∫
|x|<64N |t |

N
γ
4 |x|− γ

4 dx � N
γ
4 − γ−4

4 = N. (21)
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Combining (18), (19) and (21), we have that

‖K1‖
L

γ
2
x L∞

t

� N
2
γ .

Case 2: γ ≥ 5. Since the estimates in (18) and (19) do not require any time restriction, we get 
the same results for K2. ∫

�1∪�2

|K2|
γ
2 dx � N

γ−2
2 . (22)

On �3, we have the same estimate as in (20) for K2. From the fact that |x| > 1
N

in this 
region, we have∫

sup
t∈�x,3

|K2(x, t)| γ
2 dx �

∫
|x|> 1

N

N
γ
4 |x|− γ

4 dx � N
γ
4 + γ−4

4 = N
γ−2

2 . (23)

Note that we did not use the finite time restriction in this case. Combining (22) and (23), 
we have that

‖K2‖
L

γ
2
x L∞

t

� N
γ−2
γ . �

To estimate a product of functions as seen in the nonlinearity of DNLS, one usually employs 
the bilinear estimate which splits the product into estimating individual functions (see [7] where 
Bourgain proved the estimate in two dimensions).

Theorem 2.7 (Bilinear Strichartz estimate). For any u, v ∈ L2
x , we have

‖Pλ(e
it�ueit�v)‖L2

x,t
� λ− 1

2 ‖u‖L2‖v‖L2 . (24)

In addition, if û and v̂ have disjoint supports and α := inf|supp(û) − supp(v̂)| is strictly positive, 
then we have

‖eit�ueit�v‖L2
x,t

� α− 1
2 ‖u‖L2‖v‖L2 . (25)

Proof. We follow the proof in [20, Theorem 2.9]. By duality, this is equivalent to showing that 
for any F ∈ C∞

c ,

∣∣∣ ∫ F(ξ − η, ξ2 − η2)ψ>λ(ξ − η)û(ξ) ¯̂v(η) dξdη

∣∣∣ � λ− 1
2 ‖F‖L2

ξ,τ
‖û‖L2

ξ
‖v̂‖L2

ξ
.

For each fixed α and β , let (ξαβ, ηαβ) be a solution to α = ξ2 − η2 and β = ξ − η. We see that 
the change of variables (ξ, η) �→ (α, β) gives the Jacobian J = 2(η − ξ). This together with 
Cauchy–Schwarz yields
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∣∣∣ ∫ F(ξ − η, ξ2 − η2)ψ>λ(ξ − η)û(ξ) ¯̂v(η) dξdη

∣∣∣
=

∣∣∣ ∫ F(α,β)ψ>λ(β)û(ξαβ) ¯̂v(ηαβ)
1

J
dαdβ

∣∣∣
≤ ‖F‖L2

ξ,τ

(∫
|ψ>λ(β)|2|û(ξαβ)|2|v̂(ηαβ)|2 1

J 2 dαdβ
) 1

2

= ‖F‖L2
ξ,τ

(∫
|ψ>λ(ξ − η)|2|û(ξ)|2|v̂(η)|2 1

J
dξdη

) 1
2

� λ− 1
2 ‖F‖L2

ξ,τ
‖û‖L2

ξ
‖v̂‖L2

ξ
.

This concludes the proof of (24). The proof for (25) is essentially the same, but ξ − η is replaced 
by ξ + η, ξ2 − η2 is replaced by ξ2 + η2 and there is no ψ>λ. The conclusion follows from the 
observation that

1

|J | = 1

2|η − ξ | � 1

α
. �

We will need a variant of this estimate adapted to the Xs space (51) for our trilinear estimate 
(65). The details will be explained in the next section.

3. The main linear estimate

In this section, we consider a nonlinear Schrödinger equation

iut + �u = F

u(x,0) = u0.
(26)

Let I = [−1, 1] if d = 3, 4 and I =R if d ≥ 5. A solution u(x, t) ∈R × I can be represented by 
the Duhamel formula

u(x, t) = eit�u0 − i

t∫
0

ei(t−s)�F (s) ds. (27)

In the proof of Theorem 1.1 and Theorem 1.3, the spaces that we use are based on the following 
norms which take a function u supported at dyadic frequency interval ∼ N .

‖u‖YN
= inf{N− 1

2 ‖u1‖L1
xL2

t
+ ‖u2‖L1

t L
2
x

| u1 + u2 = u}
‖u‖XN

= ‖u‖L∞
t L2

x
+ N−s0‖u‖

Ld−1
x L∞

t
+ N

1
2 ‖u‖L∞

x L2
t

+ N− 1
2 ‖(i∂t + �)u‖YN

,

(28)

where L∞
t L2

x = L∞
t L2

x(I × R) and Lp
x L

q
t = L

p
x L

q
t (R × I ). These norms satisfy the following 

linear estimate, which makes them suitable for the contraction argument.
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Theorem 3.1. Let u be a solution to equation (26). Then,

‖PNu‖XN
� ‖u0‖L2

x
+ ‖PNF‖YN

. (29)

This immediately follows from the Duhamel formula and the following three propositions.

Proposition 3.2. For any u0 ∈ L2
x(R), we have

‖eit�PNu0‖XN
� ‖u0‖L2

x
. (30)

Proof. This follows from the Strichartz estimate (10), the smoothing estimate (11) and (12a) if 
d = 3, 4 or (12b) if d ≥ 5. �
Proposition 3.3. For any function F(x, t) such that PNF ∈ L1

xL
2
t , we have

∥∥∥∥∥∥
t∫

0

ei(t−s)�PNF(s) ds

∥∥∥∥∥∥
XN

� ‖PNF‖YN
. (31)

Proof. It follows from Minkowski inequality and (30) that

∥∥∥∥∥∥
t∫

0

ei(t−s)�PNF(s) ds

∥∥∥∥∥∥
XN

≤
∫
R

‖ei(t−s)�PNF(s)‖XN
ds

�
∫
R

‖PNF(s)‖L2
x

ds

= ‖PNF‖L1
t L

2
x
.

Therefore, it suffices to prove that

∥∥∥∥∥∥
t∫

0

ei(t−s)�PNF(s) ds

∥∥∥∥∥∥
XN

� N− 1
2 ‖PNF‖L1

xL2
t
. (32)

Let K0 be the fundamental solution of Schrödinger equation i.e.

K0(x, t) =F−1(e−itξ2
) = 1√

4πit
eix2/4t .

Thus,
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t∫
0

ei(t−s)�PNF(x, s) ds =
t∫

0

∫
R

PN [K0(x − y, t − s)F (y, s)] dyds

=
∫
R

t∫
0

PN [K0(x − y, t − s)F (y, s)] dsdy

:=
∫
R

wy dy.

(33)

In order to proceed, we will make use of the following lemma.

Lemma 3.4. For any N ∈ 2Z, the function wy defined in (33) satisfies the following estimate:

‖wy‖XN
� N− 1

2 ‖F(y)‖L2
t
. (34)

Continuing the proof of Proposition 3.3, we see that the estimate (32) follows immediately 
from (34). �
Proof of Lemma 3.4. By translation invariance, it suffices to assume that y = 0. Denote F0(t) :=
F(0, t). To proceed, we use the following decomposition which was first introduced in [4] to deal 
with Schrödinger maps.

w0(x, t) = −eit�Lv0(x) − (P<N/250 1x>0)e
it�v0(x) + h(x, t), (35)

where L : L2
x(R) → L2

x(R) is an operator and

‖Lv0‖L2
x
+ ‖v0‖L2

x
+ N−1(‖�h‖L2

x,t
+ ‖ht‖L2

x,t
) � N− 1

2 ‖F0‖L2
t
. (36)

To prove the claim, first we rewrite the definition of w0 as

w0(x, t) =
∫
R

χ[0,∞)(t − s)PN [K0(x, t − s)]F0(s) ds

− eit�

0∫
−∞

PN [K0(x,−s)]F0(s) ds

= (χ[0,∞)PNK0) ∗t F0 − eit�

0∫
−∞

PNK0(x,−s)F0(s) ds,

(37)

where ∗t is the time convolution. The space–time Fourier transform of the first term is equal to

ψN(ξ)

−τ − ξ2 − i0
F̂0(τ ), (38)
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where F̂0 is the time Fourier transform of F0. We define

v̂0(ξ) := ψN(ξ)F̂0(−ξ2). (39)

We see that v0 is supported at frequency ∼ N . By changing variables we obtain the following 
estimate,

‖v0‖L2
x
� N− 1

2 ‖F0‖L2
t
. (40)

We apply the spatial Fourier transform to the second term

0∫
−∞

P̂NK0(x,−s)F0(s) ds = ψN(ξ)

0∫
−∞

eisξ2
F0(s) ds

= ψN(ξ)Ft (χ(0,∞]F0)(−ξ2)

:= L̂v0(ξ).

(41)

We see that Lv0 is supported at frequency ∼ N . It follows from a change of variables that

‖Lv0‖L2
x
� N− 1

2 ‖F0‖L2
t
.

Applying the Fourier transform to eit�v0,

F(eit�v0) = ψN(ξ)F̂0(−ξ2)Ft (e
−itξ2

) = ψN(ξ)F̂0(−ξ2)δτ+ξ2 .

Assume that ξ > 0 and consider the distribution δτ+ξ2 . For any φ ∈ S(R × R), by a change of 
variables

∞∫
0

φ(ξ,−ξ2) dξ =
0∫

−∞

1

2
√−τ

φ(
√−τ , τ ) dτ.

Thus, 1ξ>0δτ+ξ2 = 1τ<0
1

2
√−τ

δξ−√−τ . Therefore, the following computation holds.

F
{
(P<N/2501x>0)e

it�v0
}
(ξ, τ )

= (ψN(ξ)F̂0(−ξ2)δτ+ξ2) ∗ ψ<N/250(ξ)

ξ + i0

=
(

ψN(ξ)

2
√−τ

F̂0(−ξ2)δξ−√−τ

)
∗ ψ<N/250(ξ)

ξ + i0

= ψN(
√−τ)F̂0(τ )

2
√−τ

ψ<N/250(ξ − √−τ)

ξ − √−τ + i0

= ψN(
√−τ)ψ<N/250(ξ − √−τ)F̂0(τ )

ξ + √−τ

2
√−τ

1

ξ2 + τ + i0
.
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With this and (38), the space–time Fourier transform of the remainder term is given by

ĥ(ξ, τ ) =
(

ψN(ξ) − ψN(
√−τ)ψ<N/250(ξ − √−τ)

ξ + √−τ

2
√−τ

)
F̂0(τ )

−ξ2 − τ − i0

:= A(ξ, τ )F̂0(τ ). (42)

The term in the bracket is bounded, supported in {0 < ξ ∼ N} and vanishes when ξ = √−τ , 
canceling out the singularity. Since the same result holds for ξ < 0, this implies that

‖�h‖L2
x,t

+ ‖∂th‖L2
x,t

∼ ‖(ξ2 + |τ |)ĥ‖L2
ξ,τ

� N
1
2 ‖F̂0(τ )‖L2

τ
. (43)

The estimate (36) then follows from (40) and (43).

Remark. It is important to note that v0, Lv0 and h are supported at frequency ∼ N , since we 
will need this fact in any proof that employ the decomposition (35).

We are now ready to prove (34). By Bernstein’s inequality and direct L2 integration on 
A(ξ, τ),

‖h‖
Ld−1

x L∞
t

≤ ‖Ft h‖
Ld−1

x L1
τ
� ‖Ft h‖

L1
τ Ld−1

x

� N
d−3

2(d−1) ‖Ft h‖L1
τ L2

x

= N
d−3

2(d−1) ‖ĥ‖L1
τ L2

ξ

≤ N
d−3

2(d−1) ‖A(ξ, τ )‖L2
τ,ξ

‖F̂0(τ )‖L2
τ
,

where A(ξ, τ) is defined as in (42) when ξ > 0. We split the integral in ‖A(ξ, τ)‖2
L2

τ,ξ

as

‖A(ξ, τ )‖2
L2

τ,ξ

=
∫

|ξ−√−τ |< N

2100

|A(ξ, τ )|2 dξdτ

+
∫

|ξ−√−τ |≥ N

2100

|A(ξ, τ )|2 dξdτ

:= A1 + A2.

Note that ψN(ξ) = ψN(
√−τ) + (ξ − √−τ)O( 1

N
) as ξ → √−τ . If |ξ − √−τ | < N

2100 , then 
ψ<N/250(ξ − √−τ) = 1 and it follows that

ψN(ξ) − ψN(
√−τ)ψ<N/250(ξ − √−τ)

ξ + √−τ

2
√−τ

= ψN(
√−τ)(

√−τ − ξ)

2
√−τ

+ (ξ − √−τ)O
( 1

N

)
.
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Since A(ξ, τ) is supported in the region ξ ∼ N , we have that

A1 �
∫

τ∼−N2

∫
ξ∼N

1

−2τ(ξ + √−τ)2
+ 1

N2(ξ + √−τ)2
dξdτ � 1

N
.

On the other hand, under the assumptions that, ξ ∼ N and |ξ −√−τ | ≥ N
2100 , we have |ξ2 + τ | =

|(ξ +√−τ)(ξ −√−τ)| � N2

2100 . Thus, by a change of variables (ξ, τ) �→ (ξ, η) where η := τ +ξ2, 
we have

A2 ≤
0∫

−∞

∫
|ξ−√−τ |≥ N

2100

ψN(ξ)

(ξ2 + τ)2 + ψN(
√−τ)ψ<N/250(ξ − √−τ)

−4τ(ξ + √−τ)2
dξdτ

�
∫

ξ∼N

∫
|η|� N2

2100

1

η2 dηdξ +
∫

τ∼−N2

∫
ξ∼N

1

−4τ(ξ + √−τ)2
dξdτ

�
∫

ξ∼N

1

N2 dξ + 1

N

� 1

N
,

and a similar result holds when ξ < 0. From this, we can conclude that

‖h‖
Ld−1

x L∞
t

� N
d−3

2(d−1) ‖A(ξ, τ )‖L2
τ,ξ

‖F̂0(τ )‖L2
τ
� N

d−3
2(d−1)

− 1
2 ‖F(0)‖L2

t
. (44)

Similarly, we have the following,

‖h‖L∞
x,t

� ‖F(0)‖L2
t
. (45)

In particular, for d = 3 and N ≥ 1, we have that

N− 1
2 ‖h‖L2

xL∞
t

≤ ‖h‖L2
xL∞

t
� N− 1

2 ‖F(0)‖L2
t
. (46)

Similarly, by Sobolev’s embedding,

N
1
2 ‖h‖L∞

x L2
t
� N

1
2 ‖h‖L2

t L
∞
x

� N−1‖�h‖L2
x,t

� N− 1
2 ‖F(0)‖L2

t
, (47)

where we used (36) in the last step. Lastly, it follows from (44) that

‖h‖L∞
t L2

x
≤ ‖h‖L2

xL∞
t

� N− 1
2 ‖F(0)‖L2

t
. (48)

Putting together (44), (47) and (48), we are done with estimating h. Similar estimate for the term 
1x>0e

it�v0 follows easily from Strichartz-type estimates (10), (11) and (12). �
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In the proof of Theorem 1.1 in the next section, we will incorporate the low frequency pro-
jection P≤1u into the spaces Xs and Y s , which are restricted to the time interval T = [−1, 1], in 
order to obtain the local well-posedness. Therefore, we need an estimate analogous to (29) for 
functions supported at low frequencies, which can be obtained from the two following proposi-
tions:

Proposition 3.5. Let T = [−1, 1]. For any function u0 ∈ L2(R), we have

‖P≤1e
it�u0‖X1(R×T ) � ‖P≤1u0‖L2

x
. (49)

Proof. In view of Strichartz’s estimate (10) with p = 2 and q = ∞ and (12a), it suffices to prove 
that

‖P≤1e
it�u0‖L∞

x L2
t (R×T ) � ‖P≤1u0‖L2

x
.

Using the fact that P̂≤1u0(ξ, t) is compactly supported in ξ and Plancherel theorem, we have

‖P≤1e
it�u0‖L∞

x L2
t (R×T ) ≤ ‖P≤1e

it�u0‖L2
t L

∞
x (T ×R) ≤ ‖ψ(ξ)û0‖L2

t L
1
ξ (T ×R)

≤ ‖ψ(ξ)û0‖L∞
t L2

ξ (T ×R) = ‖P≤1u0‖L2
x
. �

Proposition 3.6. Let T = [−1, 1]. For any function F(x, t) such that P≤1F ∈ Y1, we have

∥∥∥ t∫
0

ei(t−s)�P≤1F(x, s) ds

∥∥∥
X1(R×T )

� ‖P≤1F‖Y1(R×T ). (50)

Proof. As in the proof of Proposition 3.3, it follows from Minkowski inequality that∥∥∥∥∥∥
t∫

0

ei(t−s)�P≤1F(s) ds

∥∥∥∥∥∥
X1(R×T )

� ‖P≤1F‖L1
t L

2
x(T ×R).

Thus, it suffices to prove that∥∥∥∥∥∥
t∫

0

ei(t−s)�P≤1F(s) ds

∥∥∥∥∥∥
X1(R×T )

� ‖P≤1F‖L1
xL2

t (R×T ).

Note that for t ∈ [0, 1], we can rewrite

t∫
0

ei(t−s)�P≤1F(x, s) ds =
∫
R

χ[0,1)(t − s)χ[0,1)(s)e
i(t−s)�P≤1F(x, s) ds

:= K(x, t) 
 χ[0,1)(t)P≤1F(x, t)
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where 
 is the space–time convolution and

K(x, t) =
∫
R

e−itξ2+ixξχ[0,1)(t)ψ

(
ξ

N

)
dξ,

which obeys the estimate (17) with N = 1. Hence, by Young’s inequality∥∥∥χ[0,1](t)
[
K(x, t) 
 χ[0,1)(t)P≤1F(x, t)

] ∥∥∥
L2

xL∞
t

� ‖χ[0,1](t)P≤1F‖L2
xL1

t
.

We use the finite time restriction and apply Bernstein’s and Minkowski’s inequality.

‖χ[0,1](t)P≤1F‖L2
xL1

t
� ‖χ[0,1](t)P≤1F‖L2

x,t

� ‖χ[−1,1](t)P≤1F‖L2
t L

1
x

≤ ‖χ[−1,1](t)P≤1F‖L1
xL2

t
.

Since similar proof applies for the time interval [−1, 0], we obtain

∥∥∥ t∫
0

ei(t−s)�P≤1F(s) ds

∥∥∥
L2

xL∞
t (R×T )

� ‖P≤1F‖L1
xL2

t (R×T ).

This estimate has the following two consequences. Firstly, from Minkowski’s inequality, we have

∥∥∥ t∫
0

ei(t−s)�P≤1F(s) ds

∥∥∥
L∞

t L2
x(T ×R)

≤
∥∥∥ t∫

0

ei(t−s)�P≤1F(s) ds

∥∥∥
L2

xL∞
t (R×T )

� ‖P≤1F‖L1
xL2

t (R×T ).

Secondly, it follows from Minkowski’s inequality, Bernstein’s inequality and the finite time re-
striction that

∥∥∥ t∫
0

ei(t−s)�P≤1F(s) ds

∥∥∥
L∞

x L2
t (R×T )

≤
∥∥∥ t∫

0

ei(t−s)�P≤1F(s) ds

∥∥∥
L2

t L
∞
x (T ×R)

�
∥∥∥ t∫

0

ei(t−s)�P≤1F(s) ds

∥∥∥
L2

x,t (R×T )

�
∥∥∥ t∫

0

ei(t−s)�P≤1F(s) ds

∥∥∥
L2

xL∞
t (R×T )

� ‖P≤1F‖L1
xL2

t (R×T ).

This concludes the proof of (50). �
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The essential part of the contraction argument is a multilinear estimate: an estimate of the 
form ‖∂xu1

∏d
i=2 ui‖Y s �

∏d
i=1 ‖ui‖Xs . One of the main tools that we will use to prove this is 

the following Bilinear Strichartz estimate for the Xs space.

Theorem 3.7. Let N � M and suppose that u and v are supported at frequency N and M , 
respectively. Then, we have

‖uv‖L2
x,t

� N− 1
2 ‖u‖XN

‖v‖XM
. (51)

Proof. Let F1(x, t) = (i∂t + �)u(x, t) and F2(x, t) = (i∂t + �)v(x, t). We will prove that

‖uv‖L2
x,t

� N− 1
2

(
‖u(0)‖L2

x
+ ‖F1‖L1

t L
2
x

)(
‖v(0)‖L2

x
+ ‖F2‖L1

t L
2
x

)
(52)

‖uv‖L2
x,t

� N− 1
2

(
‖u(0)‖L2

x
+ N− 1

2 ‖F1‖L1
xL2

t

)(
‖v(0)‖L2

x
+ M− 1

2 ‖F2‖L1
xL2

t

)
(53)

‖uv‖L2
x,t

� N− 1
2

(
‖u(0)‖L2

x
+ N− 1

2 ‖F1‖L1
xL2

t

)(
‖v(0)‖L2

x
+ ‖F2‖L1

t L
2
x

)
(54)

‖uv‖L2
x,t

� N− 1
2

(
‖u(0)‖L2

x
+ ‖F1‖L1

t L
2
x

)(
‖v(0)‖L2

x
+ M− 1

2 ‖F2‖L1
xL2

t

)
. (55)

To achieve (52), we consider the expansion of uv̄ after using the Duhamel formula on u and v.

u(x, t) = eit�u(0) − i

t∫
0

ei(t−s)�F1(s) ds

v(x, t) = eit�v(0) − i

t∫
0

ei(t−s)�F2(s) ds.

It follows from the bilinear estimate for free solutions (25) that

‖eit�u(0)eit�v(0)‖L2
x,t

� N− 1
2 ‖u(0)‖L2

x
‖v(0)‖L2

x
.

By the Minkowski inequality, we have that

‖
t∫

0

ei(t−s)�F1(s)e
it�v(0) ds‖L2

x,t
� N− 1

2

∫
R

‖F1(s)‖L2
x
‖v(0)‖L2

x
ds

= N− 1
2 ‖F1‖L1

t L
2
x
‖v(0)‖L2

x
.

Similarly,

‖
t∫

0

eit�u(0)ei(t−s)�F2(s) ds‖L2
x,t

� N− 1
2 ‖u(0)‖L2

x
‖F2‖L1

t L
2
x
.
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With the same proof, we can estimate the last term in the product.

‖
t∫

0

t∫
0

ei(t−s)�F1(s)e
i(t−s)�F2(s̃) dsds̃‖L2

x,t

� N− 1
2 ‖F1‖L1

t L
2
x
‖F2‖L1

t L
2
x
,

and (52) follows.
To prove (53), we recall (35) which allows us to decompose u and v as follows

u(x, t) = eit�u(0) −
∫
R

eit�Luy + (PN/250 1x>0)e
it�uy − h1,y(x, t) dy (56)

v(x, t) = eit�v(0) −
∫
R

eit�Lvy′ + (PM/250 1x>0)e
it�vy′ − h2,y′(x, t) dy′, (57)

where L : L2
x → L2

x is a bounded operator and uy, Luy and h1,y are defined similarly to (42), (41)
and (42), respectively. From the remark following (43), we see that these functions are supported 
at frequency ∼ N . Similar vy′, Lvy′ , h2,y′ Moreover, we have

‖Luy‖L2
x
+ ‖uy‖L2

x
+ 1

N
(‖�hy‖L2

x,t
+ ‖∂thy‖L2

x,t
) � 1

N
1
2

‖F1(y, t)‖L2
t
. (58)

Similar conclusions hold for vy′, Lvy′ and h2,y′ at frequency ∼ M with corresponding nonlin-
earity F2(y

′, t). Consider each term in the product uv. Let ψN/250 be the function defined by 
PN/250f := ψN/250 ∗ f . Observe that for any G ∈ L2, we have that

‖(PN/250 1x>0)e
it�uyG(x)‖L2

x,t

= ‖(ψN/250 ∗ 1x>0)e
it�uyG(x)‖L2

x,t

≤
∫

‖1x−z>0e
it�uy(x)G(x)‖L2

x,t
|ψN/250(z)| dz

≤
∫

‖eit�uy(x)G(x)‖L2
x,t

|ψN/250(z)| dz

� ‖eit�uyG‖L2
x,t

.

With this, we can take care of all the terms involving PN/2501x>0 in the expansion of uv. For any 
A, B ∈ L2, we have

‖(PN/2501x>0)e
it�uye

it�B‖L2
x,t

� ‖eit�uye
it�B‖L2

x,t

‖(PN/2501x>0)e
it�uyh2,y′ ‖L2

x,t
� ‖eit�uyh2,y′ ‖L2

x,t
.
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Similarly,

‖eit�A(PN/2501x>0)e
it�vy′ ‖L2

x,t
� ‖eit�Aeit�vy′ ‖L2

x,t

‖h1,y(PN/2501x>0)e
it�vy′ ‖L2

x,t
� ‖h1,ye

it�vy′ ‖L2
x,t

,

and lastly, ∥∥∥[(PN/2501x>0)e
it�uy

][
(PN/250 1x>0)e

it�vy′
]∥∥∥

L2
x,t

�
∥∥∥eit�uy

[
(PN/250 1x>0)e

it�vy′
]∥∥∥

L2
x,t

� ‖eit�uye
it�vy′ ‖L2

x,t
.

Therefore, we only have to worry about the terms of the forms eit�Aeit�B , eit�Ah2,y′ , 
h1,ye

it�B and h1,yh2,y′ . Note that any choice of A, that is not u(0), is an integral with respect 
to y. The same holds for B . By the bilinear Strichartz estimate (25), one obtains

‖eit�Aeit�B‖L2
x,t

� N− 1
2 ‖A‖L2

x
‖B‖L2

x
. (59)

We get the desired bound by observing that either we have ‖A‖L2
x

= ‖u(0)‖L2
x

or ‖A‖L2
x

�∫
R

‖uy‖L2
x

dy � N− 1
2 ‖F1‖L1

xL2
t

from (58). It remains to estimate the terms that involve h1,y and 
h2,y . By Hölder and Bernstein inequalities, (11) and (46), we have that

‖eit�Ah2,y′ ‖L2
x,t

� ‖eit�A‖L∞
x L2

t
‖h2,y′ ‖L2

xL∞
t

� N− 1
2 M− 1

2 ‖A‖L2
x
‖F2(y

′)‖L2
t
.

(60)

By taking 
∫
R

· dy′ when A = u(0) and 
∫
R

∫
R

· dydy′ when A = Luy or A = uy on both sides 
of the inequality and applying (36), we get the desired bound. On the other hand, we get the 
estimate for ‖h1,ye

it�B‖L2
x,t

by observing that from (36), we have ‖�h1,y‖L2
x,t

� N− 3
2 ‖F1‖L2

t
. 

Hence,

‖h1,ye
it�B‖L2

x,t
� ‖h1,y‖L2

x,t
‖eit�B‖L∞

x,t

� N− 3
2 M

1
2 ‖F1‖L2

x
‖B‖L∞

t L2
x

≤ N− 1
2 M− 1

2 ‖F1‖L2
x
‖B‖L∞

t L2
x
.

(61)

Lastly, we use (46) and (47) to estimate the remaining term

‖h1,yh2,y′ ‖L2
x,t

≤ ‖h1,y‖L∞
x L2

t
‖h2,y′ ‖L2

xL∞
t

� N−1M− 1
2 ‖F1(y)‖L2

t
‖F2(y

′)‖L2
t
.

(62)
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Taking 
∫
R

∫
R

· dydy′, we obtain (53). We are now left to proving (54) and (55). The proof is a mix 
of the ideas we used to prove (52) and (53). For (54), we write u using the decomposition (56)
and v using the Duhamel formula. On the product expansion of ‖uv‖L2

x,t
, we apply the triangle 

inequality and Minkowski inequality. We then apply the bilinear estimate (25) to any term of 
the form ‖eit�Aeit�B‖L2

x,t
to get the desired bound. This leaves us with the terms of the form 

‖eit�Ah2,y′ ‖L2
x,t

, on which we can apply (60). In the same manner, we can prove (55) using the 
Duhamel formula for u and the decomposition (57) for v. We finish the proof by observing that 
the terms of the form ‖h1,ye

it�B‖L2
x,t

can be bounded using (61). �
4. Proof of Theorem 1.1

Let s be the exponent which satisfies the condition in Theorem 1.1. To obtain the local well-
posedness, we redefine the spaces Xs and Y s from (28) in a way that the projections on the 
low frequencies are combined together. Since we assume a finite time restriction, so any spaces 
mentioned below are defined on the product space R × [−1, 1].

‖u‖ZN
= ‖u‖L∞

t L2
x∩L4

t L
∞
x ∩L6

x,t
+ N− 1

2 ‖u‖L2
xL∞

t
+ N

1
2 ‖u‖L∞

x L2
t

‖u‖YN
= inf{N− 1

2 ‖u1‖L1
xL2

t
+ ‖u2‖L1

t L
2
x

| u1 + u2 = u}
‖u‖XN

= ‖u‖ZN
+ ‖(i∂t + �)u‖YN

‖u‖Xs = ‖P≤1u‖X1 +
( ∑

N∈2N

N2s‖PNu‖2
XN

) 1
2

‖u‖Y s = ‖P≤1u‖Y1 +
( ∑

N∈2N

N2s‖PNu‖2
YN

) 1
2
.

(63)

The previous section prepares us all the estimates we need in order to obtain the linear estimate 
for the Xs and Y s spaces; It follows from (29), (49) and (50) that for any s ≥ 1

2 ,

‖u‖Xs � ‖u0‖Hs + ‖F‖Y s . (64)

We are now ready to prove the multilinear estimate.

Theorem 4.1. Let d ≥ 3. For any u1, u2, . . . , ud ∈ Xs where s ≥ 1
2 , we have the following esti-

mate.

∥∥∥(∂xu1)

d∏
i=2

ui

∥∥∥
Y s

�
d∏

i=1

‖ui‖Xs . (65)

Proof. It suffices to prove that

∥∥∥(∂xu1)

d∏
i=2

ui

∥∥∥
Y s

� ‖u1‖Xs

d∏
i=2

‖ui‖
X

1
2
, (66)



3816 D. Pornnopparath / J. Differential Equations 265 (2018) 3792–3840
which implies (65) since Xs ⊂ X
1
2 due to the absence of low frequency projections. In view 

of (49) and (50), we can treat P≤1 as P1, so it suffices to estimate the summation over high 
frequencies:

∑
N,N1,...,Nd

Ns
∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
Y s

, (67)

where N ≥ 1 and Ni ≥ 1 for all i in the summation. We can assume that N1 ≥ N2 ≥ . . . ≥ Nd

and N � N1. This is because u1 is the only term in (67) that has a derivative, and so any 
other frequency distribution would lead to a better estimate. We define cN1,1 = Ns

1‖PN1u1‖XN1

and cNi,i = N
1
2
i ‖PNi

ui‖XNi
for 2 ≤ i ≤ d . Thus, we see that ‖cN1,1‖l2(N1)

= ‖u1‖Xs and 
‖cNi,i‖l2(Ni)

= ‖ui‖
X

1
2

for 2 ≤ i ≤ d . In order to obtain the l2 summation of cNi,i , we will 
repeatedly be using the following application of the Cauchy–Schwarz inequality:

∑
Nj ,...,Nd

1

Na
j

d∏
i=j

cNi,i ≤
∑

Nj ,...,Nd

d∏
i=j

1

N
a
d

i

cNi,i ≤
d∏

i=j

∑
Ni≥1

1

N
a
d

i

cNi,i

�
d∏

i=j

‖ui‖
X

1
2
,

(68)

for any a > 0. To prove (66), we split the summation over three different kinds of frequency 
interactions.

∑
N,N1,...,Nd

Ns
∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
Y s

=
(∑

I

+
∑
II

+
∑
III

)
Ns

∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
Y s

.

Each of the summations contains certain ranges of N, N1, . . . , Nd described by the following 
cases:

I). N1 � N2 and N ∼ N1.
By Hölder inequality, (12) with γ = 2 and (68),

∑
N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
L1

xL2
t

�
∑
Ni

‖PN1∂xu1PN2u2‖L2
x,t

‖PN3u3‖L2
xL∞

t

d∏
i=4

‖PNi
ui‖L∞

x,t

�
∑
N

1
s− 1

2
1
2

d∏
i=1

cNi,i
i N1 N2
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� 1

Ns− 1
2

∑
Ni

1

N
1
2

2

d∏
i=1

cNi,i

� 1

Ns− 1
2

∑
N1∼N

cN1,1

d∏
i=2

‖ui‖
X

1
2
.

Therefore,

∑
I

Ns− 1
2

∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
L1

xL2
t

�
∑

N1∼N

cN1,1

d∏
i=2

‖ui‖
X

1
2
.

Taking the l2 summation with respect to N ≥ 1, we obtain (66).
II). N1 ∼ N2 � N3 ≥ . . . ≥ Nd and N � N1.

In this case, we use the bilinear estimate for the product PN1∂xu1PN3u3 and put PN2u2 in 
the Strichartz space L4

t L
∞
x :

∑
N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
L1

t L
2
x

�
∑

N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
L

4
3
t L2

x

�
∑
Ni

‖PN1∂xu1PN3u3‖L2
t,x

‖PN2u2‖L4
t L

∞
x

d∏
i=4

‖PNi
ui‖L∞

t,x

�
∑
Ni

1

N
s− 1

2
1 N

1
2

2 N
1
2

3

d∏
i=1

cNi,i

�
( ∑

N1∼N2

1

Ns
1
cN1,1cN2,2

)( ∑
N3,...,Nd

1

N
1
2

3

d∏
i=3

cNi,i

)

�
( ∑

N1�N

1

Ns
1
cN1,1

) 1
2

d∏
i=2

‖ui‖
Ẋ

1
2
,

where we used (68) in the second to last step. Therefore,

∑
II

N2s‖PN(PN1∂xu1

d∏
i=2

PNi
ui)‖2

L1
t L

2
x
� ‖u1‖2

Xs

d∏
i=2

‖ui‖2

X
1
2
.

III). N1 ∼ N2 ∼ N3 ≥ . . . ≥ Nd and N � N1.
We divide the proof into two cases depending on the degree d .
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A). d = 3.
Even though we cannot use the bilinear estimate in this case, the fact that N1 ∼ N2 ∼
N3 allows us to cancel the derivative loss in PN1∂xu1 by the 1

2 regularity from PN2u2
and PN3u3 via the Hölder inequality:

∑
N1∼N2∼N3

∥∥∥PN [(PN1∂xu1)PN2u2PN3u3]
∥∥∥

L1
t L

2
x

�
∑

N1∼N2∼N3

∥∥∥PN [(PN1∂xu1)PN2u2PN3u3]
∥∥∥

L2
t,x

�
∑

N1∼N2∼N3

‖PN1∂xu1‖L6
t,x

‖PN2u2‖L6
t,x

‖PN3u3‖L6
t,x

�
∑

N1∼N2∼N3

N1−s
1

N
1
2

2 N
1
2

3

cN1,1cN2,2cN3,3

�
( ∑

N1�N

1

Ns
1
cN1,1

) 1
2 ‖u2‖

X
1
2
‖u3‖

X
1
2
,

where the last step follows from the Cauchy–Schwarz inequality on cN1,1cN2,2cN3,3.
B). d ≥ 4.

We again take advantage of the finite time restriction and put PNi
ui for 1 ≤ i ≤ 4 in 

suitable Strichartz spaces, namely L∞
t L2

x and L4
t L

∞
x .

∑
N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
L1

t L
2
x

�
∑

N1,...,Nd

∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥
L

4
3
t L2

x

�
∑
Ni

‖PN1∂xu1‖L∞
t L2

x

4∏
i=2

‖PNi
ui‖L4

t L
∞
x

d∏
i=5

‖PNi
ui‖L∞

t,x

�
∑
Ni

N1−s
1

N
1
2

2 N
1
2

3 N
1
2

4

d∏
i=1

cNi,i

�
( ∑

N1,N2,N3

1

Ns
1
cN1,1cN2,2cN3,3

)( ∑
N4...,Nd

1

N
1
2

4

d∏
i=4

cNi,i

)

�
( ∑

N1�N

1

Ns
1
cN1,1

) 1
2

d∏
i=2

‖ui‖
X

1
2
.
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In either case, it follows that

∑
III

N2s
∥∥∥PN(PN1∂xu1

d∏
i=2

PNi
ui)

∥∥∥2

L1
t L

2
x

� ‖u1‖2
Xs

d∏
i=2

‖ui‖2

X
1
2
,

and this concludes the proof. �
In view of this theorem, if every term in P(u, ū, ∂xu, ∂xū) has only one derivative, then we 

expect to close the contraction argument in a subspace of X
1
2 . On the other hand, if we replace 

uj by ∂xuj for some j ≥ 2, then it follows from (9) that ‖∂xui‖Xs � ‖ui‖Xs+1 for any s > 0, and 
so (66) yields

∥∥∥(∂xu1)(∂xuj )

d∏
i=2
i �=j

ui

∥∥∥
Y

3
2

� ‖u1‖
X

3
2
‖∂xuj‖

X
1
2

d∏
i=2
i �=j

‖ui‖
X

1
2

� ‖u1‖
X

3
2

d∏
i=2

‖ui‖
X

3
2
,

and for any s ≥ 3
2 , we have

∥∥∥(∂xu1)(∂xuj )

d∏
i=2
i �=j

ui

∥∥∥
Y s

� ‖u1‖Xs

d∏
i=2

‖ui‖Xs .

Consequently, in the case that a term in P(u, ū, ∂xu, ∂xū) has more than one derivative, we can 
employ the contraction argument in X

3
2 .

Proof of Theorem 1.1. We define F(u) := P(u, ū, ∂xu, ∂xū). Let u and v be functions in Xs . 
We use the main linear estimate (64) and simple algebra to obtain

∥∥∥ t∫
0

ei(t−s)∂2
x [F(u(x, s)) − F(v(x, s))] ds

∥∥∥
Xs

≤ c1 ‖F(u) − F(v)‖Y s

≤ c1c2(‖u‖d−1
Xs + ‖v‖d−1

Xs )‖u − v‖Xs ,

(69)

where we used the multilinear estimate (65) in the last step.

Let C := min
{
(8c1c2)

− 1
d−1 , (4c2)

− 1
d−1

}
where c1 and c2 are constants in (69). Define a Ba-

nach space as stated in the theorem:

X = {u ∈ C0Hs([−1,1] ×R) ∩ Xs : ‖u‖Xs ≤ 2C}.
t x
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Let u0 ∈ X such that ‖u0‖Hs ≤ C. Then, for u ∈ X, we define an operator

Lu := eit�u0 − i

t∫
0

ei(t−s)�F (u(x, s)) ds.

Again, by the main linear estimate, we have

‖Lu‖Xs ≤ ‖u0‖Hs + ‖F‖Y s

≤ ‖u0‖Hs + c2‖u‖d
Xs

≤ 3C

2
< 2C.

Thus, L maps X to X. Moreover, from (69),

‖Lu − Lv‖Xs ≤ c1c2(‖u‖d−1
Xs + ‖v‖d−1

Xs )‖u − v‖Xs ≤ 1

4
‖u − v‖Xs .

Thus, L is a contraction and the local well-posedness in X immediately follows. �
5. Proof of Theorem 1.3 when d ≥ 6

In the previous sections, we used the time restriction to avoid dealing with low frequencies 
at ξ ≤ 1. However, such argument cannot be used to obtain the global well-posedness for the 
gDNLS with nonlinearity of order d ≥ 5. Therefore, the function spaces that we use will take 
these low frequencies into account. Let s0(d) = 1

2 − 1
d−1 = d−3

2(d−1)
for d ≥ 5. The spaces Xs and 

Y s in (28) are replaced by those defined by the quasi-norms Ẋs and Ẏ s which in turn are defined 
by the norms XN and YN ,

‖u‖XN
= ‖u‖L∞

t L2
x
+ N− 1

4 ‖u‖L4
xL∞

t
+ N

1
2 ‖u‖L∞

x L2
t

+ N− 1
2 ‖(i∂t + �)u‖L1

xL2
t

‖u‖Ẋs =
( ∑

N∈2Z

N2s‖PNu‖2
XN

) 1
2

‖u‖Xs = ‖u‖Ẋ0 + ‖u‖Ẋs

‖u‖YN
= N− 1

2 ‖u‖L1
xL2

t

‖u‖Ẏ s =
( ∑

N∈2Z

N2s‖PNu‖2
YN

) 1
2

‖u‖Y s = ‖u‖Ẏ 0 + ‖u‖Ẏ s .

(70)

Thus we have embeddings Xs ↪→ Hs and Xs ↪→ Xs0 ↪→ Ẋs0 for any s ≥ s0. In view of (29), we 
obtain the linear estimate
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‖u‖Xs � ‖u0‖Hs + ‖F‖Y s . (71)

With these choices of spaces, we can establish the multilinear estimate for d ≥ 6. The proof for 
the case d = 5 is significantly more involved and requires some frequency-modulation analysis, 
so we will postpone it to the next section.

Theorem 5.1. Let d ≥ 6. We have the following estimates.

1). For any u1, u2, . . . , ud ∈ Xs0 ,

∥∥∥∂x

d∏
i=1

ui

∥∥∥
Ẏ s0

�
d∏

i=1

‖ui‖Ẋs0 . (72)

2). Let s ≥ s0. For any u1, u2, . . . , ud ∈ Xs ,

∥∥∥∂x

d∏
i=1

ui

∥∥∥
Y s

�
d∏

i=1

‖ui‖Xs . (73)

Proof. Our goal is to obtain the estimate

∑
N

N2s+1‖PN

d∏
i=1

ui‖2
L1

xL2
t
�

d∑
j=1

‖uj‖2
Ẋs

∏
i �=j

‖ui‖2
Ẋs0

, (74)

which implies (72) by choosing s = s0. We get (73) by combining two different versions of this 
estimate with a fixed s ≥ s0 and with s = 0. We will focus on each term on the left-hand side 
of (73)

N2s−1
∥∥∥PN∂x

d∏
i=1

ui

∥∥∥2

L1
xL2

t

= N2s−1
∥∥∥PN∂x

∑
N1,...,Nd

d∏
i=1

PNi
ui

∥∥∥2

L1
xL2

t

� N2s+1
∑

N1,...,Nd

∥∥∥PN

d∏
i=1

PNi
ui

∥∥∥2

L1
xL2

t

,

and study different kinds of frequency interactions. As before, we assume that N1 ≥ N2 ≥ . . . ≥
Nd . We define cN1,1 = Ns

1‖PNi
u1‖XN1

and cNi,i = N
s0
i ‖PNi

ui‖XNi
for 2 ≤ i ≤ d . We will use 

the following two estimates for a product of terms with higher and lower frequencies.

1. For N � N1 ∼ N2 ∼ . . . ∼ Nj−1 where j ≥ 3, it follows from the Cauchy–Schwarz inequal-
ity that

∑
Ni

j−1∏
i=1

cNi,i �
( ∑

N1�N

c2
N1,1

) 1
2

j−1∏
i=2

‖ui‖Ẋs0 . (75)
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2. For Nj ≥ Nj+1 ≥ . . . ≥ Nd and any α > 0, Young’s inequality and trivial estimate cNi,i ≤
‖ui‖Ẋs0 imply

∑
Nj ≥...≥Nd

(
Nd

Nj

)α d∏
i=j

cNi,i ≤
d−1∏

i=j+1

‖ui‖Ẋs0

∑
Nj ≥...≥Nd

(
Nd

Nj

)α

cNj ,j cNd,d

�α

d∏
i=j

‖ui‖Ẋs0 .

(76)

These estimates will be used in each case after appropriate uses of Hölder inequality, Bernstein 
inequality and bilinear estimate (51).

By Hölder and Bernstein inequalities,

∥∥∥PN

d∏
i=1

ui

∥∥∥
L1

xL2
t

�
∑
Ni

‖PN1u1‖L∞
x L2

t

5∏
i=2

‖PNi
ui‖L4

xL∞
t

d∏
i=6

‖PNi
ui‖L∞

x,t

�
∑
Ni

‖PN1u1‖L∞
x L2

t

5∏
i=2

‖PNi
ui‖L4

xL∞
t

d∏
i=6

N
1
2
i ‖PNi

ui‖L∞
t L2

x

�
∑
Ni

1

N
s+ 1

2
1

5∏
i=2

1

N
s0− 1

4
i

d∏
i=6

N
1
2 −s0

i

d∏
i=1

cNi,i .

Since s0 = 1
2 − 1

d−1 , the sums of the exponents in 
∏5

i=2 N
s0− 1

4
i and 

∏d
i=6 N

1
2 −s0

i are equal. With 
the assumption that N2 ≥ N3 ≥ . . . ≥ Nd , the right-hand side is bounded by

∑
Ni

1

N
s+ 1

2
1

(
Nd

N2

) 1
4(d−1)

d∏
i=1

cNi,i . (77)

To estimate this term, we consider the following two frequency interactions.

1. N ∼ N1 � N2 ≥ . . . ≥ Nd .
Using (76) on cN2,2cN3,3 . . . cNd,d , we can bound (77) by

∑
N1∼N

1

N
s+ 1

2
1

cN1,1

5∏
i=2

‖ui‖Ẋs0 ,

for each fixed N . We have that
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∑
N

( ∑
N1∼N

N2s+1

N
s+ 1

2
1

cN1,1

)2 5∏
i=2

‖ui‖2
Ẋs0

∼
∑
N1

c2
N1,1

5∏
i=2

‖ui‖2
Ẋs0

= ‖u1‖2
Ẋs

5∏
i=2

‖ui‖2
Ẋs0

,

which implies (74) as desired.
2. N � N1 ∼ N2 ≥ . . . ≥ Nd .

Using (75) on cN1,1cN2,2 and (76) on cN3,3cN4,4 . . . cNd ,d , we can bound (77) by

( ∑
N1�N

1

N2s+1
1

c2
N1,1

) 1
2

5∏
i=2

‖ui‖Ẋs0 .

Therefore, by switching the order of summations,

∑
N

∑
N1�N

N2s+1

N2s+1
1

c2
N1,1

5∏
i=2

‖ui‖2
Ẋs0

�
∑
N1

c2
N1,1

5∏
i=2

‖ui‖2
Ẋs0

,

which again implies (74). This concludes the proof for d ≥ 6. �
Using the linear estimate (71) and the multilinear estimates (72) and (73), the proof for The-

orem 1.3 follows in the same manner as in Theorem 1.1. Note that we did not use any finite time 
restriction in any parts of the proof.

6. Proof of Theorem 1.3 when d = 5

The difficulty in this case arises from the fact that there is no room left to put the lowest 
frequency term in L∞

x,t . Thus, we will take this case with extra care by adding the Ẋ0,b,q spaces. 
For each N ∈ 2Z, let AN be a set defined by

AM := {(ξ, τ ) : M ≤ |τ + ξ2| ≤ 2M}. (78)

Recall that ũ(ξ, τ) is the space–time Fourier transform of u(x, t). The Ẋ0,b,q space is the closure 
of the test functions under the following norm:

‖u‖Ẋ0,b,q :=
( ∑

M∈2Z

(Nb‖ũ‖L2
ξ,τ (AM))

q
) 1

q
.

Previously, the nonlinear space Ẏ s is based on the space ZN defined by the following norm on 
each frequency N .

‖u‖Z := N− 1
2 ‖u‖ 1 2 .
N LxLt
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We modify this by adding the Ẋ0,− 1
2 ,1 space.

YN := ZN + Ẋ0,− 1
2 ,1.

The solution space is defined by

‖u‖XN
= ‖u(0)‖L2

x
+ ‖(i∂t + �)u‖YN

‖u‖Ẋs =
( ∑

N∈2Z

N2s‖PNu‖2
XN

) 1
2

‖u‖Xs = ‖u‖Ẋ0 + ‖u‖Ẋs , (79)

and the nonlinear space is defined by

‖u‖Ẏ s =
( ∑

N∈2Z

N2s‖PNu‖2
YN

) 1
2

‖u‖Y s = ‖u‖Ẏ 0 + ‖u‖Ẏ s .

(80)

The following proposition shows that any estimates of free solutions that we proved in Section 2
can be extended to functions in XN using the Schrödinger equation version of Lemma 4.1 from 
Tao ([29]).

Proposition 6.1 ([29]). Let S be any space–time Banach space that satisfies the following in-
equality,

‖g(t)F (x, t)‖S ≤ ‖g‖L∞
t

‖F(x, t)‖S, (81)

for any F ∈ S and g ∈ L∞
t (R). Let T : L2(R) × . . . × L2(R) → S be a spatial multilinear 

operator satisfying

‖T (eit�u1,0, . . . , e
it�uk,0)‖S �

k∏
i=1

‖ui,0‖L2
x

for any u1,0, . . . , uk,0 ∈ L2
x(R). Then the following estimate

‖T (u1, . . . , uk)‖S �
k∏

i=1

(‖ui(0)‖L2
x
+ ‖(i∂t + �)ui‖

Ẋ
0,− 1

2 ,1) (82)

holds true for any u1, . . . , uk ∈ Ẋ0,− 1
2 ,1 provided that ui is supported at frequency ∼ Ni for 

1 ≤ i ≤ k.

With this proposition, we can obtain several Strichartz-type estimates for XN that will be 
useful later on.



D. Pornnopparath / J. Differential Equations 265 (2018) 3792–3840 3825
Corollary 6.2. For any u ∈ XN , we have the following estimates:

‖u‖L∞
t L2

x∩L6
t,x

� ‖u‖XN
(83)

‖u‖L∞
x L2

t
� N− 1

2 ‖u‖XN
(84)

‖u‖L4
xL∞

t
� N

1
4 ‖u‖XN

. (85)

Proof. We apply Proposition 6.1 to linear estimates (10), (11) and (12), and bilinear estimates 
(24) and (25). �

We also have the bilinear estimate adapted to the space XN .

Proposition 6.3. Let N, M and λ be dyadic numbers such that M ≤ N and λ � N . For any 
functions u and v supported at frequency ∼ N and ∼ M , respectively, we have

‖P>λ(uv̄)‖L2
t,x

� λ− 1
2 ‖u‖XN

‖v‖XM
. (86)

In addition, if û and v̂ have disjoint supports and α = inf|supp(û) − supp(v̂)|, then we have

‖uv‖L2
t,x

� α− 1
2 ‖u‖XN

‖v‖XM
. (87)

Proof. As before, the bilinear estimate for homogeneous solutions (24) and (25) is the keys to 
proving these estimates. It suffices to prove (86), since (87) will follow in a similar manner. 
Denote F1 := (i∂t +�)u and F2 := (i∂t +�)v. Using Proposition 6.1 with T (u1, u2) = u1u2 to 
extend the bilinear estimate (24), we obtain

‖P>λ(uv̄)‖L2
t,x

� λ− 1
2 (‖u(0)‖L2

x
+ ‖F1‖

Ẋ
0,− 1

2 ,1)(‖v(0)‖L2
x
+ ‖F2‖

Ẋ
0,− 1

2 ,1).

Therefore, it suffices to prove that for any u ∈ XN and v ∈ XM ,

‖P>λ(uv̄)‖L2
t,x

� λ− 1
2 (‖u(0)‖L2

x
+ ‖F1‖ZN

)(‖v(0)‖L2
x
+ ‖F2‖ZM

), (88)

‖P>λ(uv̄)‖L2
t,x

� λ− 1
2 (‖u(0)‖L2

x
+ ‖F1‖ZN

)(‖v(0)‖L2
x
+ ‖F2‖

Ẋ
0,− 1

2 ,1), (89)

‖P>λ(uv̄)‖L2
t,x

� λ− 1
2 (‖u(0)‖L2

x
+ ‖F1‖

Ẋ
0,− 1

2 ,1)(‖v(0)‖L2
x
+ ‖F2‖ZN

). (90)

We use the decomposition from (35) for u. However, in this case, the frequency localization at 
N

250 is replaced by λ

250 :

u(x, t) = eit�u(0) −
∫
R

eit�Luy + (Pλ/250 1x>0)e
it�uy − hy(x, t) dy,

where L : L2
x → L2

x is a bounded operator and uy, Luy and hy are defined similarly to (39), 
(41) and (42), respectively. From the remark following (43), we see that these functions are 
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supported at frequency ∼ N . Moreover, the following estimate still holds even with the frequency 
replacement.

‖Luy‖L2
x
+ ‖uy‖L2

x
+ 1

N
(‖�hy‖L2

x,t
+ ‖∂thy‖L2

x,t
) � 1

N
1
2

‖F1(y, t)‖L2
t
. (91)

We consider all the possible terms in P>λ(uv̄). First, we consider all the terms that involve 
Pλ/250 1x>0. For any G ∈ L2

x , we have that

P>λ

[
(Pλ/250 1x>0)e

it�uyG
]

= P>λ

[
(Pλ/250 1x>0)P�λ(e

it�uyG)
]

+ P>λ

[
(Pλ/250 1x>0)P�λ(e

it�uyG)
]

= P>λ

[
(Pλ/250 1x>0)P�λ(e

it�uyG)
]
.

Let ψN/250 be the function defined by PN/250f := ψN/250 ∗ f . Consequently,∥∥∥P>λ

[
(Pλ/250 1x>0)e

it�uyG
]∥∥∥

L2
x,t

=
∥∥∥P>λ

[
(Pλ/250 1x>0)P�λ(e

it�uyG)
]∥∥∥

L2
x,t

�
∥∥∥(Pλ/250 1x>0)P�λ(e

it�uyG)

∥∥∥
L2

x,t

=
∥∥∥(ψλ/250 ∗ 1x>0)P�λ(e

it�uyG)

∥∥∥
L2

x,t

≤
∫ ∥∥∥1x−z>0P�λ

[
eit�uy(x)G(x)

]∥∥∥
L2

x,t

|ψN/250(z)| dz

� ‖P�λ(e
it�uyG)‖L2

x,t
.

In other words, to estimate such terms, we can take out the Pλ/2501x>0 factor just like what we 
did in the proof of Theorem 3.7. Following the same line of proof as for (53) but using a different 
bilinear estimate (24) instead of (25), we obtain (88). To prove (89) and (90), we will show that 
for any v0 ∈ L2

x supported at frequency ∼ M ,

‖P>λ(ueit�v0)‖L2
x,t

� λ− 1
2 (‖u(0)‖L2

x
+ ‖F1‖ZN

)‖v0‖L2
x
, (92)

which, in view of Proposition 6.1 with T (v) = P>λ(uv̄), leads to (89). From (24) and (91), we 
obtain

‖P>λ(e
it�u(0)eit�v0)‖L2

x,t
� λ− 1

2 ‖u(0)‖L2
x
‖v0‖L2

x
,

‖P>λ(e
it�Luyeit�v0)‖L2

x,t
� λ− 1

2 ‖Luy‖L2
x
‖v0‖L2

x

� (λN)−
1
2 ‖F1(y, t)‖ 2‖v0‖L2 ,
Lt x
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‖P�λ(e
it�uyeit�v0)‖L2

x,t
� λ− 1

2 ‖uy‖L2
x
‖v0‖L2

x

� (λN)−
1
2 ‖F1(y, t)‖L2

t
‖v0‖L2

x
.

We use the last inequality to estimate the term in P>λ(ueit�v0) that involves Pλ/2501x>0.

∥∥∥P>λ

[
(Pλ/250 1x>0)e

it�uyeit�v0

]∥∥∥
L2

x,t

� ‖P�λ(e
it�uyeit�v0)‖L2

x,t

� (λN)−
1
2 ‖F1(y, t)‖L2

t
‖v0‖L2

x
.

For the remaining term, we use the Hölder inequality, (91) and the fact that λ � N .

‖P>λ(hyeit�v0)‖L2
x,t

� ‖hy‖L2
x,t

‖eit�v0‖L∞
x,t

� M
1
2

N
3
2

‖F1(y, t)‖L2
t
‖v0‖L2

x

� (λN)−
1
2 ‖F1(y, t)‖L2

t
‖v0‖L2

x
.

(93)

Recalling that ‖(i∂t + �)u‖ZN
= N− 1

2 ‖(i∂t + �)u‖L1
xL2

t
, these estimates yield (92) via the 

Minkowski inequality. The proof for (90) is similar, except at (93) where we have the follow-
ing modification:

‖P>λ(e
it�u0hy′)‖L2

x,t
� ‖eit�u0‖L∞

x L2
t
‖hy′ ‖L2

xL∞
t

� (NM)−
1
2 ‖u0‖L2

x
‖F2(y

′, t)‖L2
t

� (λM)−
1
2 ‖u0‖L2

x
‖F2(y

′, t)‖L2
t
.

For the second to last inequality, we used the smoothing estimate (11) and (44) with d = 3. This 
concludes the proof of (86). �

We will also use the following estimate which was taken from Tao ([29]) and modified to be 
suitable to our spaces.

Proposition 6.4. Suppose that u is supported at frequency ∼ N . Then we have

‖u‖
Ẋ

0, 1
2 ,∞ � ‖u‖XN

. (94)

Proof. Consider the Duhamel’s formula of u.

u(x, t) = eit�u0 − i

t∫
ei(t−s)�F1(s) ds − i

t∫
ei(t−s)�F2(s) ds, (95)
0 0
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where F1 ∈ ZN and F2 ∈ Ẋ0,− 1
2 ,1. For i = 1, 2, we split the term

t∫
0

ei(t−s)�Fi(s) ds =
t∫

−∞
ei(t−s)�Fi(s) ds − eit�

0∫
−∞

e−is�Fi(s) ds.

Since the Ẋ0, 1
2 ,∞ seminorm vanishes on any free solution, it suffices to estimate the first term. 

For F1, we recall the computation (33) from the proof of Lemma 3.4 that the first term is equal 
to ∫

wy dy where w̃y = ψN(ξ)

−τ − ξ2 − i0
F̂1(y, τ ).

With a direct integration, we see that

‖χAM
w̃‖L2

x,τ
∼ 1

N
1
2

(∫ ∫
ξ∼N

|ξ |
(τ + ξ2)2 χAM

[F̂1(y, τ )]2 dξdτ
) 1

2

� 1

N
1
2 M

1
2

‖F1(y, t)‖L2
t
.

From the definition of Ẋ0, 1
2 ,∞, it follows that

∥∥∥ t∫
−∞

ei(t−s)�F1(s) ds

∥∥∥
Ẋ

0, 1
2 ,∞ � ‖F1‖ZN

.

On the other hand, we consider the space–time Fourier transform

F
∫

χ(0,∞)(t − s)ei(t−s)�F2(s) ds = F̃2,M(ξ, τ )

−τ − ξ2 − i0
.

It follows from the Plancherel’s theorem that

∥∥∥ t∫
−∞

ei(t−s)�F2(s) ds

∥∥∥
Ẋ

0, 1
2 ,∞ � ‖F2‖

Ẋ
0,− 1

2 ,1 ,

and the conclusion immediately follows. �
We are ready to prove the multilinear estimate. Note that the position of complex conjugates 

will be significant in the analysis below.

Theorem 6.5. For 1 ≤ i ≤ 5, let ui represent u or ū. Then we have the following estimates.
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1). For any u ∈ X
1
4 ,

∥∥∥∂x

5∏
i=1

ui

∥∥∥
Ẏ

1
4

� ‖u‖5

Ẋ
1
4
. (96)

2). Let s ≥ 1
4 . For any u ∈ Xs ,

∥∥∥∂x

5∏
i=1

ui

∥∥∥
Y s

� ‖u‖5
Xs . (97)

Proof. As before, our goal is to obtain the estimate

∑
N

N2s+2
∥∥∥PN

5∏
i=1

ui

∥∥∥2

YN

� ‖u‖2
Ẋs ‖u‖8

Ẋ
1
4
. (98)

First, we split each term in the left-hand side as the sum of all possible frequency interactions:

N2s+2
∥∥∥PN∂x

5∏
i=1

ui

∥∥∥2

YN

� N2s+2
∑

N1,...,N5

∥∥∥PN

5∏
i=1

PNi
ui

∥∥∥2

YN

.

Assume that N1 ≥ N2 ≥ . . . ≥ N5. Define cN1,1 = Ns
1‖PN1u‖XN1

and cNi,i = N
1
4
i ‖PNi

u‖XNi

for 2 ≤ i ≤ 5. We make a slight abuse of notation by using 
∑

Ni
for the summation over all 

possible N1, N2, . . . , N5 when the restrictions on these numbers are clear. We also will be using 
the Cauchy–Schwarz inequality (75) and Young’s inequality (76).

We split the left-hand side of (98) over four different kinds of frequency interactions:

∑
N,N1,...,N5

Ns
∥∥∥PN(PN1∂xu1

5∏
i=2

PNi
ui)

∥∥∥
YN

=
(∑

I

+
∑
II

+
∑
III

+
∑
IV

)
Ns

∥∥∥PN(PN1∂xu1

5∏
i=2

PNi
ui)

∥∥∥
YN

.

Each of the summations contains certain ranges of N, N1, . . . , N5 described by the following 
cases:

I). N � N1 ∼ N2 ∼ N3 ∼ N4 ∼ N5.
By Hölder and Cauchy–Schwarz inequalities, we have

∥∥∥PN

5∏
ui

∥∥∥
L1

xL2
t

�
∑

‖PN1u1‖L∞
x L2

t

5∏
‖PNi

ui‖L4
xL∞

t

i=1 Ni i=2
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=
∑
Ni

1

N
s+ 1

2
1

5∏
i=1

cNi,i

�
( ∑

N1�N

1

N2s+1
1

c2
N1,1

) 1
2 ‖u‖4

Ẋ
1
4
.

Summing over N ∈ 2Z, we see that

∑
I

N2s+1
∥∥∥PN

5∏
i=1

ui

∥∥∥2

L1
xL2

t

�
∑
N1

∑
N�N1

(
N

N1

)2s+1

c2
N1,1‖u‖8

Ẋ
1
4

� ‖u‖2
Ẋs ‖u‖8

Ẋ
1
4
.

II). N ∼ N1 � N2 ≥ N3 ≥ N4 ≥ N5.
By the bilinear estimate (86) or (87) on PN1u1PN2u2 (depending on the complex conju-
gates) and Bernstein inequality on PN5u5, we have that for each fixed N ,

∥∥∥PN

5∏
i=1

ui

∥∥∥
L1

xL2
t

�
∑
Ni

‖PN1u1PN2u2‖L2
x,t

4∏
i=3

‖PNi
ui‖L4

xL∞
t

‖PN5u5‖L∞
x,t

�
∑
Ni

N
1
2

5

N
1
2

1

‖PN1u1‖XN1
‖PN2u2‖XN2

4∏
i=3

‖PNi
ui‖L4

xL∞
t

‖PN5u5‖L∞
t L2

x

=
∑
Ni

1

N
s+ 1

2
1

(
N5

N2

) 1
4

5∏
i=1

cNi,i .

By Young’s inequality (76), this term is bounded by

�
∑

N1∼N

1

N
s+ 1

2
1

cN1,1‖u‖4

Ẋ
1
4
.

Therefore,

∑
II

N2s+1
∥∥∥PN

5∏
i=1

ui

∥∥∥2

L1
xL2

t

�
∑
N

( ∑
N1∼N

(
N

N1

)s+ 1
2

cN1,1

)2‖u‖8

Ẋ
1
4

�
(∑

N1

∑
N∼N1

c2
N1,1

)
‖u‖8

Ẋ
1
4

∼ ‖u‖2
Ẋs ‖u‖8

Ẋ
1
4
.
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III). N � N1 ∼ N2 ∼ Nj−1 � Nj ≥ N5 where j = 3 or j = 4.
This is similar to case II), but instead we use the bilinear estimate on PN1u1PNj

uj .

∥∥∥PN

5∏
i=1

ui

∥∥∥
L1

xL2
t

�
∑
Ni

‖PN1u1PNj
uj‖L2

x,t

∏
2≤i≤4
i �=j

‖PNi
ui‖L4

xL∞
t

‖PN5u5‖L∞
x,t

�
∑
Ni

N
1
2

5

N
1
2

1

‖PN1u1‖XN1
‖PNj

uj‖XN2

∏
2≤i≤4
i �=j

‖PNi
ui‖L4

xL∞
t

‖PN5u5‖L∞
t L2

x

�
∑
Ni

1

N
s+ 1

2
1

(
N5

Nj

) 1
4

5∏
i=1

cNi,i .

Applying the Cauchy–Schwarz inequality (75) on 
∏j−1

i=1 cNi,i and Young’s inequality (76)

on 
∏5

i=j cNi,i , we see that

∑
Ni

1

N
s+ 1

2
1

(
N5

Nj

) 1
4

5∏
i=1

cNi,i �
( ∑

N1�N

1

N2s+1
1

c2
N1,1

) 1
2 ‖u‖8

Ẋ
1
4
.

Therefore,

∑
III

N2s+1
∥∥∥PN

5∏
i=1

ui

∥∥∥2

L1
xL2

t

�
(∑

N

∑
N1�N

(
N

N1

)2s+1

c2
N1,1

)
‖u‖8

Ẋ
1
4

∼ ‖u‖2
Ẋs ‖u‖8

Ẋ
1
4
.

IV). N � N1 ∼ N2 ∼ N3 ∼ N4 � N5.
In this case, we will take the number of complex conjugates in u1u2u3u4 into consideration. 
Note that the positions of conjugates does not matter here.
1). u1 = u3 = u and u2 = u4 = ū. We divide into further subcases by comparing the sizes 

between N and N5.
1.1). N ∼ N5.

In this case, we first use Hölder inequality and then apply the bilinear estimate 
(87) on ‖PN1u1PN5u5‖L2

x,t

∥∥∥PN

5∏
i=1

ui

∥∥∥
L1

xL2
t

�
∑

‖PN1u1PN5u5‖L2
x,t

3∏
‖PNi

ui‖L4
xL∞

t
‖PN4u4‖L∞

x,t
Ni i=2
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�
∑
Ni

N
1
2

4

N
1
2

1

‖PN1u1‖XN1
‖PN5u5‖XN5

3∏
i=2

‖PNi
ui‖L4

xL∞
t

‖PN4u4‖L∞
t L2

x

�
∑
Ni

N
1
4

4

N
s+ 1

2
1 N

1
4

5

5∏
i=1

cNi,i

∼
∑
Ni

1

N
s+ 1

4
1 N

1
4

5∏
i=1

cNi,i

�
( ∑

N1�N

1

N
2s+ 1

2
1 N

1
2

c2
N1,1

) 1
2 ‖u‖4

Ẋ
1
4
,

where we used Cauchy–Schwarz, the fact that N4 ∼ N1, N ∼ N5 and the trivial 
inequality cN5,5 ≤ ‖u‖

Ẋ
1
4

in the last step. Consequently,

∑
IV

N∼N5

N2s+1
∥∥∥PN

5∏
i=1

ui

∥∥∥2

L1
xL2

t

�
(∑

N

∑
N1�N

(
N

N1

)2s+ 1
2

c2
N1,1

)
‖u‖8

Ẋ
1
4

∼ ‖u‖2
Ẋs ‖u‖8

Ẋ
1
4
.

1.2). N � N5.
We split 

∏5
i=1 PNi

ui into four terms using low and high frequency projections.

PN1u1PN2u2 = P�N(PN1u1PN2u2) + P�N(PN1u1PN2u2),

PN3u3PN4u4 = P�N(PN3u3PN4u4) + P�N(PN3u3PN4u4).

Since N � N5, so 
∏4

i=1 PNi
ui must be at frequency � N . Thus, we can assume 

that each of the resulting terms after the splits contains at least one high frequency 
projection. Thus, it suffices to estimate the term:

P�N(PN1u1PN2u2)

5∏
i=3

PNi
ui .

We start by applying the bilinear estimate (86) on P�N(PN1u1PN2u2),

‖P�N(PN1u1PN2u2)‖L2
x,t

� 1

N
1
2

‖PN1u‖XN1
‖PN2u‖XN2

. (99)

Then, by applying the estimate (75) on cN1,1cN3,3cN4,4 and (76) on cN2,2cN5,5, 
we obtain
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∥∥∥PN

5∏
i=1

ui

∥∥∥
L1

xL2
t

�
∑
Ni

‖P�N(PN1u1PN2u2)‖L2
x,t

4∏
i=3

‖PNi
ui‖L4

xL∞
t

‖PN5u5‖L∞
x,t

�
∑
Ni

N
1
2

5

N
1
2

‖PN1u‖XN1
‖PN2u‖XN2

4∏
i=3

‖PNi
ui‖L4

xL∞
t

‖PN5u5‖L∞
t L2

x

�
∑
NiN

1

N
1
2 Ns

1

(
N5

N2

) 1
4

5∏
i=1

cNi,i

∼
∑
NiN

1

N
1
2 Ns

1

(
N5

N3

) 1
4

5∏
i=1

cNi,i

�
( ∑

N1�N

1

NN2s
1

c2
N1,1

) 1
2 ‖u‖4

Ẋ
1
4
, (100)

where we used Cauchy–Schwarz on 
∑

Ni

1

N
1
2 Ns

1

cN1,1cN2,2 and Young’s inequality 

on 
∑

Ni

(
N5
N3

) 1
4
cN3,3cN4,4cN5,5. Therefore,

∑
IV

N�N5

N2s+1
∥∥∥PN

5∏
i=1

ui

∥∥∥2

L1
xL2

t

�
(∑

N

∑
N1�N

(
N

N1

)2s

c2
N1,1

)
‖u‖8

Ẋ
1
4

∼ ‖u‖2
Ẋs ‖u‖8

Ẋ
1
4
.

1.3). N � N5.
This is similar to case 1.2), but we split 

∏5
i=1 PNi

ui at N5 instead of N .

PN1u1PN2u2 = P�N5(PN1u1PN2u2) + P�N5
(PN1u1PN2u2),

PN3u3PN4u4 = P�N5(PN3u3PN4u4) + P�N5
(PN3u3PN4u4).

Since the output is supported at frequency N � N5, we can see that 
∏4

i=1 PNi
ui

must be supported at frequency ∼ N5. Thus, we can assume that each term in the 
product expansion contains at least one high frequency projection. To estimate 
the product, we can use (99) and (100) that we just obtained and replace N− 1

2

by N
− 1

2
5 .

∥∥∥PN

5∏
i=1

ui

∥∥∥
L1

xL2
t

�
∑
N

1

N
1
2 Ns

(
N5

N3

) 1
4

5∏
i=1

cNi,i
i 5 1
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�
∑
Ni

1

N
1
2 Ns

1

(
N5

N3

) 1
4

5∏
i=1

cNi,i

�
( ∑

N1�N

1

NN2s
1

c2
N1,1

) 1
2 ‖u‖4

Ẋ
1
4
,

which leads to the same result as in the previous case.
2). u1 = u2 = u3 = u, u4 and u5 can be either u or ū.

This is the hardest case and requires some frequency-modulation analysis. Suppose that 
for some 1 ≤ j ≤ 5 the space–time Fourier transform of PNj

u is supported in the set

{(ξ, τ ) : |τ + N2
1 | > 1

32
N2

1 }, (101a)

or that of PNj
ū (for 4 ≤ j ≤ 5) is supported in the set

{(ξ, τ ) : |τ − N2
1 | > 1

32
N2

1 }. (101b)

Then, (94) yields

‖PNj
uj‖L2

x,t
� N−1

1 ‖PNj
uj‖

Ẋ
0, 1

2 ,∞ � N−1
1 ‖PNj

uj‖XNj
.

Without loss of generality, assume that j = 1. Then by Hölder and Bernstein inequali-
ties,

∥∥∥PN

5∏
i=1

PNi
ui

∥∥∥
L1

xL2
t

� ‖PN1u1‖L2
x,t

3∏
i=2

‖PNi
ui‖L4

xL∞
t

5∏
i=4

‖PNi
ui‖L∞

x,t

� 1

N
s+ 1

2
1

(
N4N5

N2
1

) 1
4 5∏

i=1

cNi,i

∼ 1

N
s+ 1

2
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i .

On the other hand, if the space–time Fourier transform of PN5u5 is supported in the set 
(101a) in the case u5 = u or (101b) in the case u5 = ū, then we have

∥∥∥PN

5∏
i=1

PNi
ui

∥∥∥
L1

xL2
t

�
2∏

i=1

‖PNi
ui‖L4

xL∞
t

‖PN3u3PN4u4PN5u5‖L2
x,t

�
2∏

‖PNi
ui‖L4

xL∞
t

4∏
‖PNi

ui‖L∞
t L4

x
‖PN5u5‖L2

t L
∞
x

i=1 i=3
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� N
1
2

5

4∏
i=1

‖PNi
ui‖L4

xL∞
t

‖PN5u5‖L2
x,t

�
N

1
4

5

N
s+ 3

4
1

5∏
i=1

cNi,i

∼ 1

N
s+ 1

2
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i .

We then get the desired result by observing that

1

N
s+ 1

2
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i �
( ∑

N1�N

1

N2s+1
1

c2
N1,1

) 1
2 ‖u‖4

Ẋ
1
4
.

Thus, we can assume that the space–time Fourier transform of PNj
u is supported in the 

set

{ξ, τ : |τ + N2
1 | ≤ 1

32
N2

1 }, (102a)

and that of PNk
ū is supported in

{ξ, τ : |τ − N2
1 | ≤ 1

32
N2

1 }. (102b)

Here, we introduce Riesz transforms P+ and P− defined by

P̂+f (ξ) = 1ξ≥0f̂ , P̂−f (ξ) = 1ξ<0f̂ .

Then, denoting P+PNi
:= P +

Ni
and P−PNi

:= P −
Ni

, for 1 ≤ i ≤ 4, we decompose PNi
ui

into

PNi
ui = P +

Ni
ui + P −

Ni
ui,

and consider all the terms that we get from 
∏5

i=1 PNi
ui . For any term that contains 

P +
Nj

uP −
Nk

u, P +
Nj

uP +
Nk

ū or P −
Nj

uP −
Nk

ū, where 1 ≤ j < k ≤ 4, we can apply the bilinear 
estimates (86) and (87), then proceed with the Hölder’s and Bernstein inequality on 
L1

xL
2
t as in the previous cases. For example, if j = 1 and k = 2, then we have

∥∥∥PN(P +
N1

u1P
−
N2

u2

5∏
i=3

PNi
ui)

∥∥∥
L1

xL2
t

�
N

1
2

5
1
2

2∏
i=1

‖PNi
u‖XNi

4∏
i=3

‖PNi
ui‖L4

xL∞
t

‖PN5u5‖L∞
t L2

x

N1
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� 1

N
s+ 1

2
1

(
N5

N2

) 1
4

5∏
i=1

cNi,i

∼ 1

N
s+ 1

2
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i .

Therefore, it suffices to consider the following four terms.

i. (
∏3

i=1 P +
Ni

u)P +
N4

uPN5u5

ii. (
∏3

i=1 P −
Ni

u)P −
N4

uPN5u5

iii. (
∏3

i=1 P +
Ni

u)P −
N4

ūPN5u5

iv. (
∏3

i=1 P −
Ni

u)P +
N4

ūPN5u5.

In either case, simple algebra shows that the space–time Fourier transform of the prod-
uct is supported at least � N2

1 away from the parabola τ = −ξ2. The worst case is (iii) 
with u5 = u where the output’s modulation is

(3N1 − N1 ± N5)
2 − 4N2

1 + N2
1 ∼ N2

1 .

Thus, we can put these products in the Ẋ0,− 1
2 ,1 space and get a good bound. For exam-

ple, focusing on (iii), we use Hölder inequality, Bernstein inequality and the bounded-
ness of Riesz transforms.

∥∥∥PN [(
3∏

i=1

P +
Ni

u)P −
N4

ūPN5u5]
∥∥∥

Ẋ
0,− 1

2 ,1

� 1

N1

∥∥∥( 3∏
i=1

P +
Ni

u)P −
N4

ūPN5u5

∥∥∥
L2

t,x

� (N4N5)
1
2

N1

3∏
i=1

‖PNi
u‖L6

t,x

5∏
i=4

‖PNi
u‖L∞

t L2
x

� 1

Ns+1
1

(
N5

N1

) 1
4

5∏
i=1

cNi,i

∼ 1

Ns+1
1

(
N5

N3

) 1
4

5∏
i=1

cNi,i

�
( ∑

N1�N

1

N2s+2
1

c2
N1,1

) 1
2 ‖u‖4

Ẋ
1
4
.

Hence, by summing over N and Ni ’s, we have
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∑
IV

N2s+2
∥∥∥PN [(

3∏
i=1

P +
Ni

u)P −
N4

ūPN5u5]
∥∥∥2

Ẋ
0,− 1

2 ,1

�
∑
N1

∑
N�N1

(
N

N1

)2s+2

c2
N1,1‖u‖8

Ẋ
1
4

� ‖u‖2
Ẋs ‖u‖8

Ẋs0
,

as desired.
3). u1 = u2 = u3 = ū, u4 and u5 can be either u or ū.

The proof is the same as in the previous case. Note that we get a better result in the sense 
that the space–time Fourier support of 

∏5
i=1 PNi

ui when Fx,tui is supported in (102a)
for all ui = u and (102b) for all ui = ū is � N2

1 away from the parabola τ = −ξ2

without relying on the Riesz transforms. This concludes the proof of the multilinear 
estimate. �

7. Proof of Theorem 1.2

The proof is similar to what we did in Section 5 with the same function spaces:

‖u‖XN
= ‖u‖L∞

t L2
x
+ N− 1

4 ‖u‖L4
xL∞

t
+ N

1
2 ‖u‖L∞

x L2
t

+ N− 1
2 ‖(i∂t + �)u‖L1

xL2
t

‖u‖Ẋs =
( ∑

N∈2Z

N2s‖PNu‖2
XN

) 1
2

‖u‖Xs = ‖u‖Ẋ0 + ‖u‖Ẋs

‖u‖YN
= N− 1

2 ‖u‖L1
xL2

t

‖u‖Ẏ s =
( ∑

N∈2Z

N2s‖PNu‖2
YN

) 1
2

‖u‖Y s = ‖u‖Ẏ 0 + ‖u‖Ẏ s .

(103)

Now we state a multilinear estimate. The proof is shortened as it is similar to that of Theorem 5.1
for the most part.

Theorem 7.1. Suppose that d ≥ 5. Let s, r > 1
2 and ui ∈ Xs for 1 ≤ i ≤ d . Then we have the 

following estimate:

∥∥∥(∂xu1)

d∏
i=2

ui

∥∥∥
Y r

� ‖u1‖Xr

d∏
i=2

‖ui‖Xs . (104)

Proof. Again, we study the frequency interactions with N being the output frequency and 
N1 ≥ N2 ≥ . . . ≥ Nd being the input frequencies. For s > 1 , we define cN ,1 = ‖PN u1‖X
2 1 1 N1
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and cNi,i = ‖PNi
ui‖XNi

for 2 ≤ i ≤ d . We consider the usual High × Low → High and 
High × High → Low interactions:

1. N ∼ N1 � N2 ≥ . . . ≥ Nd .
With some abuse of notations, we define 

∏d−1
i=5 Ai = 1 if d = 5. By Hölder inequality, 

Young’s inequality and the continuous embedding of function spaces Xs ↪→ Xs′
↪→ Ẋs′

for any s′ > s > 1
2 ,

Nr− 1
2

∥∥∥PN [(PN1∂xu1)
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ui]

∥∥∥
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4
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4
i cNi,i

d−1∏
i=5

N
1
2
i cNi ,i

�
∑

N1∼N

( N

N1

)r− 1
2
cN1,1‖u2‖

Ẋ
1
2

4∏
i=3

‖ui‖
Ẋ

1
4

d−1∏
i=5

‖ui‖
Ẋ

1
2
‖ud‖Ẋ0

�
∑

N1∼N

( N

N1

)r− 1
2
cN1,1

d∏
i=2

‖ui‖Xs .

Take the l2 summation and (104) follows.
2. N � N1 ∼ N2 ≥ . . . ≥ Nd .

This is similar to the previous case, but we apply Cauchy–Schwarz to 
∑

i cN1,1cN2,2 after 
applying Hölder inequality.

Nr− 1
2

∥∥∥PN [(PN1∂xu1)

d∏
i=2

PNi
ui]

∥∥∥
L1

xL2
t

�
∑
Ni

( N

N1

)r− 1
2
(Nd

N3

) 1
4
cN1,1(N

1
4

2 cN2,2)(N
1
2

3 cN3,3)(N
1
4

4 cN4,4)cNd,d

d−1∏
i=5

(N
1
2
i cNi ,i)

�
( ∑

N1�N

( N

N1

)2r−1
c2
N1,1

) 1
2 ‖u2‖

Ẋ
1
4
‖u3‖

Ẋ
1
2
‖u4‖

Ẋ
1
4

d−1∏
i=5

‖ui‖
Ẋ

1
2
‖ud‖Ẋ0

�
( ∑

N1�N

( N

N1

)2r−1‖PN1u1‖2
XN1

) 1
2

d∏
i=2

‖ui‖Xs .

Take the l2 summation to obtain (104). �



D. Pornnopparath / J. Differential Equations 265 (2018) 3792–3840 3839
The proof of Theorem 1.2 part (A) now follows the same contraction argument as before. To 
prove part (B) of the theorem, we replace uj by ∂xuj for some j ≥ 2, and it follows from (9) that 
‖∂xui‖Xs � ‖ui‖Xs+1 for any s > 1

2 . Hence, (104) implies that for any s > 3
2 ,

∥∥∥(∂xu1)(∂xuj )

d∏
i=2
i �=j

ui

∥∥∥
Y s

� ‖u1‖Xs ‖∂xuj‖Xs−1

d∏
i=2
i �=j

‖ui‖Xs−1

�
d∏

i=1

‖ui‖Xs .

Consequently, in the case that a term in P(u, ū, ∂xu, ∂xū) has more than one derivative, we can 
employ the contraction argument in Xs .
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