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Abstract
Transition path sampling (TPS), which involves
finding probable paths connecting two points
on an energy landscape, remains a challenge
due to the complexity of real-world atomistic
systems. Current machine learning approaches
use expensive, task-specific, and data-free training
procedures, limiting their ability to benefit from re-
cent advances in atomistic machine learning, such
as high-quality datasets and large-scale pre-trained
models. In this work, we address TPS by inter-
preting candidate paths as trajectories sampled
from stochastic dynamics induced by the learned
score function of pre-trained generative models,
specifically denoising diffusion and flow matching.
Under these dynamics, finding high-likelihood
transition paths becomes equivalent to minimizing
the Onsager-Machlup (OM) action functional.
This enables us to repurpose pre-trained generative
models for TPS in a zero-shot manner, in contrast
with bespoke, task-specific TPS models trained
in previous work. We demonstrate our approach
on varied molecular systems, obtaining diverse,
physically realistic transition pathways and
generalizing beyond the pre-trained model’s
original training dataset. Our method can be easily
incorporated into new generative models, making
it practically relevant as models continue to scale
and improve with increased data availability.

1. Introduction
Efficiently sampling the configurational distribution of
high-dimensional molecular systems is a grand challenge in
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statistical mechanics and computational science (Tuckerman,
2023; Frenkel & Smit, 2023). A key area of interest is the
sampling of rare, transition events between two stable con-
figurations, such as in chemical reactions or protein folding
(Bolhuis et al., 2002; Dellago et al., 2002). This task, broadly
known as transition path sampling (TPS), is challenging due
to the presence of energy barriers, which create a substantial
difference in timescales between rare events and the fastest
dynamical motions of the system (e.g., bond vibrations). This
has inspired a rich line of literature on enhanced sampling
techniques (Torrie & Valleau, 1977; Swendsen & Wang,
1986; Laio & Parrinello, 2002b; Laio & Gervasio, 2008;
Tiwary & Parrinello, 2013; Valsson & Parrinello, 2014).
More recently, machine learning (ML) based methods have
gained popularity for accelerating TPS by learning a control
drift term to bias a system towards a desired target state
(Sipka et al., 2023; Holdijk et al., 2024; Du et al., 2024; Seong
et al., 2024). However, these approaches rely on highly spe-
cialized training procedures and fail to exploit the growing
quantity of atomistic simulation and structural data (Bank,
1971; Vander Meersche et al., 2024; Lewis et al., 2024),
and the increasing availability of high-quality atomistic
conformational generative models (Abramson et al., 2024;
Lewis et al., 2024; Jing et al., 2024a; Zheng et al., 2024).

Generative models can produce unbiased, independent
samples from atomistic conformational ensembles (Noé
et al., 2019; Zheng et al., 2024; Jing et al., 2024a) and
have shown the potential to generalize across chemical
space (Klein & Noé, 2024; Lewis et al., 2024). However,
they have not been directly used for TPS due to the use of
uncorrelated states during training. In this work, we propose
a conceptually simple post-training method to repurpose
generative models to perform TPS in a zero-shot manner.
Our core idea exploits the fact that generative models
based on denoising diffusion (Ho et al., 2020) and flow
matching (Lipman et al., 2022) induce a set of stochastic
Langevin dynamics on the data manifold, governed by their
learned score function. Drawing inspiration from statistical
mechanics, the probability of paths sampled from these
dynamics can be characterized by a quantity known as
the Onsager-Machlup (OM) action functional (Onsager &
Machlup, 1953). As a result, we can identify high-probability
paths between arbitrary points on the data manifold directly
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Figure 1. Proposed Onsager-Machlup Action Optimization Schematic. (Left) Atomistic generative models produce statistically
independent samples via integration along a learned vector field, from which a score estimate, sθ∗ ≈∇logpdata(x), can be extracted.
The score can be interpreted as a drift term in the stochastic dynamics induced by the generative model. (Right) This connection can be
leveraged to repurpose atomistic generative models to find high-probability transition paths between samples on the data manifold by
minimizing the OM action functional, Eq. (14). The OM action has three terms which prioritize (I) low distance between adjacent points
on the discretized path, (II) low-norm drifts, and (III) convexity of the underlying energy landscape. The variables are as follows: path
point i (x(i)), trajectory length (L), timestep (∆t), friction (ζ), diffusion (D), latent time (τ ). The underlying score sθ∗ remains frozen
throughout OM optimization. Although valid for any data distribution, in the special case of Boltzmann-distributed data, our approach
has the natural interpretation of transition path sampling on a potential energy surface with an atomistic force field.

from first principles by minimizing the OM action with
gradient-based optimizers. In the specific case where the data
are Boltzmann-distributed, the learned score approximates
the underlying atomistic force field (Arts et al., 2023), and
our approach has the direct, physical interpretation of TPS
on a potential energy surface at a finite temperature.

Our approach has a number of key advantages:

1. Scalability: We do not require any training procedure
specific to TPS, and instead exploit pre-trained gen-
erative models. This makes our approach scalable as
models and datasets continue to grow, and generalizable
to new systems without retraining.

2. Flexibility: We can incorporate physical parameters
such as the time horizon and temperature when
sampling paths without modifying the underlying
generative model.

3. Efficient Diversity: We leverage the stochasticity of
generative models to produce diverse candidate paths
more efficiently than traditional methods.

We validate our approach on systems of increasing complex-
ity. Starting with the 2D Müller-Brown potential (Section

5.1), we build intuition and show accurate estimation of
reaction rates and committor functions using our sampled
transition paths. On alanine dipeptide (Section 5.2),
our method recovers accurate free energy barriers and
outperforms metadynamics and shooting algorithms in
efficiency. For fast-folding proteins (Section 5.3), OM action
minimization with diffusion or flow-matching models yields
transition path ensembles closely aligned with reference
MD at a fraction of the cost of traditional MD. Finally, we
show that OM optimization with generative models trained
on tetrapeptide configurations enables zero-shot TPS on new
sequences (Section 5.4). Overall, our work demonstrates
the promise of repurposing pre-trained generative models
as a general-purpose approach for transition path sampling.

2. Related Work
Transition path sampling. Traditional approaches to TPS
like umbrella sampling (Torrie & Valleau, 1977) and metady-
namics (Laio & Parrinello, 2002a) employ biasing potentials
along representative collective variables (CV). However,
defining suitable CVs is challenging near transition states,
even with automated approaches (Sultan & Pande, 2018;

2



Action-Minimization Meets Generative Modeling: Efficient Transition Path Sampling with the Onsager-Machlup Functional

Šı́pka et al., 2023). Meanwhile, shooting techniques (Mullen
et al., 2015; Borrero & Dellago, 2016; Jung et al., 2017;
Bolhuis & Swenson, 2021), which use a Metropolis-Hastings
criterion to sample trajectories, suffer from slow sampling,
high rejection rates, and the need for expensive simulations.
While ML approaches, including reinforcement learning
(Das et al., 2021; Rose et al., 2021; Singh & Limmer, 2023;
Seong et al., 2024; Liang et al., 2023), differentiable simula-
tions (Sipka et al., 2023), and h-transform learning (Singh &
Limmer, 2023; Du et al., 2024), have been used to design CVs
or biasing potentials with promising results, they require ex-
pensive sampling procedures, must be retrained for each new
system of interest, and do not exploit atomistic simulation
data. Minimizing the OM action has been used for TPS in low-
dimensional systems (Faccioli et al., 2006; Vanden-Eijnden
& Heymann, 2008; Autieri et al., 2009; Fujisaki et al., 2010;
Lee et al., 2017), but has faced computational challenges,
such as a lack of integration with modern auto-differentiation
frameworks and the inability to perform gradient-based op-
timization for larger systems (a Beccara et al., 2012). To our
knowledge, our work is the first to propose a gradient-based
optimization of the complete OM action, and to connect it to
the stochastic dynamics induced by generative models. For
a more extensive review of TPS methods, see Appendix A.

Atomistic generative models. Generative models can
produce unbiased, independent samples from the config-
urational ensemble of molecular systems, pioneered by
Boltzmann generators (Noé et al., 2019) and since further
developed for proteins (Arts et al., 2023; Zheng et al., 2024;
Jing et al., 2024a; Lewis et al., 2024; Schreiner et al., 2023),
small molecules (Huang et al., 2024; Schneuing et al., 2024;
Reidenbach & Krishnapriyan, 2024; Igashov et al., 2024),
and materials (Zeni et al., 2023; Zheng et al., 2024; Xie et al.,
2022). Generative models are typically trained to match
the distribution of atomistic configurations from large-scale
datasets, including structural databases (Bank, 1971) and
long-timescale MD simulations (Lindorff-Larsen et al., 2011;
Vander Meersche et al., 2024). Recent works adapt generative
models to produce more diverse samples (Corso et al., 2023),
perform rare event sampling (Falkner et al., 2023), perform
MD simulations using the connection between diffusion mod-
els and force fields (Arts et al., 2023), and learn generative
models directly over trajectories (Jing et al., 2024b).

Interpolations in generative models. Analagous to TPS,
interpolation has been used to evaluate the smoothness and
continuity of learned data manifolds and to generate realistic
transitions between data points using generative models.
While linear interpolation in model latent spaces is known
to capture some continuity (Kingma & Welling, 2013; Good-
fellow et al., 2014), geometric techniques such as geodesic
interpolation and optimal transport (Arjovsky et al., 2017; Ar-
vanitidis et al., 2018; Leśniak et al., 2018; Michelis & Becker,
2021; Struski et al., 2023; Psenka et al., 2024) better align

with the intrinsic manifold structure of the data. Our OM
optimization approach can be seen as a novel interpolation
mechanism which leverages the inductive bias of stochastic
dynamics to generate high-probability transition paths.

3. Theory
We now introduce the OM action as a way to compute
path probabilities under a particular stochastic differential
equation (SDE), and describe its application to score-based
generative modeling and transition path sampling.

3.1. Probability of paths under stochastic dynamics

We introduce the following constant variance SDE which
will underpin our proposed framework for TPS:

ẋ=
1

ζ
Φ(x)dt+

√
2DdWt, (1)

where Φ(x) :Rk→Rk is a drift function, Wt is a standard
Weiner process, andD,ζ>0 are scalar constants governing
diffusion noise levels and damping respectively. We
consider drifts which can be written as the gradient of
a scalar: Φ(x) = −∂ϕ(x)

∂x , where ϕ(x) : Rk → R. By
solving a Fokker-Planck equation for the time-varying state
distribution p(x,t), we can obtain the probability of a path
x(·) = {x(t)}1t=0 sampled from the SDE in Eq. (1) (see
Appendix C for complete details):

P (x(·))∝e(−S[x(·)]). (2)

To maximize this probability with respect to a path, we
can equivalently minimize the negative log probability S,
which is called the Onsager-Machlup action functional. This
is the stochastic analogue of the well-known principle of
least action from optics and quantum mechanics (Rojo et al.,
2018). Since we only consider discretized paths in this work,
we focus on the discretized form of the OM action:

Definition 3.1. For a discrete path X =
{x(0),...,x(L)} generated by the SDE in Eq. (1) with
drift Φ and timestep size ∆t, the discretized form of
the Onsager-Machlup action functional is given
by:

S[X]=
1

2D

(
A[X]+B[X]+C[X]

)
,

A[X]=
1

2∆t

L−1∑
i=0

∥∥∥x(i+1)−x(i)
∥∥∥2
2
,

B[X]=
∆t

2ζ2

L−1∑
i=1

∥∥∥Φ(x(i))
∥∥∥2
2
,

C[X]=
D∆t

ζ

L−1∑
i=1

∇·Φ(x(i)).

(3)
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The three summands of the OM action each have an intuitive
interpretation. TermA encourages smooth transitions along
the discretized path. Term B encourages paths remaining
in regions with low-norm drifts, which are equilibria or
saddle points of the underlying dynamics. Finally, term C
encourages paths to remain in regions with low divergence
of the drift, which can be interpreted as entropically favoring
regions of convexity in the landscape of ϕ, where dynamics
are more stable. The parameters ζ,∆t, and D control the
relative contribution of these three terms in a physically
intuitive manner. For instance, at larger values of ∆t, the
contribution of term A is diminished, consistent with the
intuition that larger “jumps” are more probable with larger
timesteps. In the limiting case of negligible diffusivity D
(analogous to temperature, see Appendix C), the divergence
term can be omitted, yielding the Truncated OM Action:

Definition 3.2. The truncated OM action of a
discretized path X is given by:

S[X]=
1

2D

(
A[X]+B[X]

)
. (4)

In this work, we use both the truncated and full OM actions
depending on the particular system considered.

3.2. Transition path sampling in molecular systems

The connection between the SDE in Eq. (1) and TPS
is straightforward. Formally, in TPS we consider d-
dimensional molecular systems withNp-many particles inter-
acting under a potential energy functionU(x) :RNp×d→R,
where x∈Ω is a configuration of the system, and Ω∈RNp×d

is the configuration space. The goal of TPS is to, for the given
system and temperature, find most likely paths

{
x(i)
}
0≤i≤L

over a time horizon Tp, where ∆t is the simulation timestep
andL=

Tp

∆t is the number of discretization points in the trajec-
tory. The trajectory traverses the two endpointsx(0)∈A⊂Ω,
x(L)∈B⊂Ω, whereA,B typically represent distinct minima
on the potential energy surfaceU(x). The underlying parti-
cle dynamics are governed by the SDE in Eq. (1), known in
this context as overdamped Langevin dynamics. The scalar
ϕ and gradient-based drift Φ terms have a clear physical in-
terpretation as the potential energy and forces, respectively:

ϕ(x) :=U(x), (5)
Φ(x) :=F(x)=−∇U(x). (6)

If the forces F(x) are known, the OM action (Eq. (3)) can
be used to compute the probability of paths connecting
endpoints x(0),x(L) under the governing dynamics.

3.3. Score-based generative modeling

We now describe the connection between the SDE in Eq. (1)
and generative models, namely denoising diffusion and flow

matching. Specifically, we show that these models induce
a set of stochastic dynamics whose drift is given by their
learned score function. This provides a powerful framework
to reason about high-probability transition paths.

3.3.1. STOCHASTIC DYNAMICS
UNDER DENOISING DIFFUSION MODELS.

Denoising diffusion probabilistic models (DDPM) (Ho et al.,
2020) are a class of score-based generative models that learn
how to de-noise corrupted samples. The DDPM objective
Eq. (25) is closely linked to the score-matching objective
(Vincent, 2011; Song & Ermon, 2019) for training a score
model sθ(x,τ) :Rk×R+→Rk parameterized by θ:

LSM(θ)=Eτ,x∼pτ

[
∥sθ(x,τ)−∇log(pτ (x))∥22

]
, (7)

where∇logpτ (x) is the score of the noised marginal distri-
bution pτ at time τ . This establishes the connection between
the score and the optimal noise model with parameters θ∗:
ϵθ∗(x,τ) ∝ −∇logpτ (x). See Appendix B.2 for detailed
statements and proofs. In order to use the OM action to
compute path probabilities with a DDPM, we must construct
a surrogate SDE in the form of Eq. (1), such that paths under
this SDE have high likelihood under the data distribution
used to train the model. While the denoising (i.e., sampling)
process of a DDPM (see Appendix B.1) may appear to be
a natural candidate, a closer inspection reveals that it is un-
suitable, as it optimizes for different likelihoods at different
points of the trajectory. A large portion of the denoising
trajectory thus has low likelihood under the data distribution.
Therefore, we need to consider an alternative approach.

Iterative denoising and noising as a candidate SDE.
Another hypothesis for constructing an SDE is to leverage the
process of iterative one-step denoising and noising at a fixed
time marginal τ of the diffusion process. Intuitively, this bal-
ances the likelihood-maximizing drift of the denoising step
with the stochasticity of the noising step. Specifically, we
consider the following iterated denoise-noise updates, where
ϵθ(x,τ) is the trained denoising model from the DDPM:

x(i,mid)=
1√

1−βτ

(
x(i)− βτ√

1−ᾱτ
ϵθ(x

(i),τ)

)
+
√
βτz,

(8)

x(i+1)=
√
1−βτx(i,mid)+

√
βτz

′, (9)

where z,z′∼N (0,I), α,β denote the usual diffusion model
noise schedule variables, and ᾱτ =

∏τ
i=1αi. Combining the

two updates yields a single update equivalent in distribution,
writing sθ(x,τ)=−(1/

√
1−ᾱτ−1)ϵθ(x,τ), yields:

x(i+1)=x(i)+
βτ
√
1−ᾱτ−1√
1−ᾱτ

sθ(x
(i),τ)+

√
2βτ−β2

τz,

(10)
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where z ∼N (0,I). Taking the continuum limit of DDPM
sampling discretization steps to infinity, we get that βτ→0,
and noting that 2βτ−β2

τ ≈2βτ and ᾱτ→ ᾱτ−1 at this limit,
we see that Eq. (10) is an Euler-Maruyama discretization,
with timestep βτ , of the following SDE:

dx=sθ(x,τ)dt+
√
2dWt. (11)

Note that the above construction holds for any τ ∈{1,...,Td}
where Td is the maximum diffusion time. A similar
derivation can be found in Arts et al. (2023) for τ=0.

Eq. (11) is equivalent (up to constants) to Eq. (1):

ϕ(x)∝−logpτ (x), (12)
Φ(x)∝sθ(x,τ)≈∇logpτ (x). (13)

This means that, as introduced in Eq. (2) and Eq. (3), the
likelihood of discrete paths X =

(
x(t)

)
0≤t≤L

under the
constructed SDE Eq. (11)can be evaluated via the OM action
defined by the trained DDPM score sθ∗(x,τ):

S(X;θ∗)=
1

2D

(
L−1∑
i=0

1

2∆t

∥∥∥x(i+1)−x(i)
∥∥∥2
2

+
∆t

2ζ2

∥∥∥sθ∗(x(i),τ)
∥∥∥2
2
+
D∆t

ζ
∇·sθ∗(x(i),τ)

)
,

(14)

where ζ = 1, D = 1, and ∆t = βτ . Note that βτ can be
effectively tuned as a hyperparameter by changing the
sampling discretization fidelity. In our specific scenario of
TPS, we can set these parameters to physically interpretable
values, with ∆t, ζ, and D corresponding to the MD
simulation timestep, friction coefficient, and diffusion
coefficient, respectively (see Section 3.3.3).

3.3.2. EXTENSION TO FLOW MATCHING

We now link OM action-minimization with a broader class
of generative models beyond DDPM. Flow matching models
(Lipman et al., 2022) are a natural choice due to their
strong performance in generative modeling tasks across
modalities (Jing et al., 2024a; Polyak et al., 2024). Similarly
to DDPM, flow matching generates samples through a
repeated integration process over a learned vector field. For
affine flows considered in this work, the training objective
for the learned velocity field uθ(x,τ) takes the form,

LFM(θ)=Eτ,x∼pτ

[
∥uθ(x,τ)−uτ (x)∥22

]
, (15)

uτ (x)= E
x0∼p0,x1∼p1

[α̇τx1+σ̇τx0 |x=ατx1+στx0],

(16)

where p0 and p1 are the source and target distributions,
ατ , στ : [0, 1] → [0, 1] define a curve from x0 to x1:

α0 = σ1 = 0, α1 = σ0 = 1, and ατ ,−στ are both strictly
increasing functions.

While extracting the learned score sθ from DDPM is
straightforward via sθ(x,τ) =−(1/

√
1−ᾱτ−1)ϵθ(x,τ), it

is less clear how to do so for flow matching. However, we
note the following:

1. By Eq. (7), the targets for the denoising model ϵθ(x,τ)
in DDPM are equivalently the negative scores of the
noised distribution,−∇logpτ (x).

2. The targets ut(x) for the flow matching model uθ(x,τ)
can be converted to scores of the flow marginal
distribution∇logpτ (x) through the following formula
(see Appendix B.3 for the proof):

∇logpτ (x)=
ατ

σ̇τστατ−α̇τσ2
τ

(
α̇τ

ατ
x−uτ (x)

)
.

(17)

We can thus extract an approximate score sFMθ∗ (x,τ) from
a trained flow matching model uθ∗(x,τ) via,

sFMθ (x,τ)=
ατ

σ̇τστατ−α̇τσ2
τ

(
α̇τ

ατ
x−uθ∗(x,τ)

)
. (18)

By inserting sFMθ∗ (x, τ) into the denoise-noise process
defined in Eq. (11), we again obtain an SDE of the form of
Eq. (1). Hence, we can use the OM action to compute the
log-probabilities of paths between arbitrary datapoints.

3.3.3. PHYSICAL INTERPRETATION
FOR BOLTZMANN-DISTRIBUTED DATA

By assuming underlying dynamics of the form Eq. (11), our
framework combining generative models and the OM action
can be used to compute the log-probabilities of paths between
samples from any data distribution with a well-defined score.
However, in the special case where the data used to train
the generative model are Boltzmann distributed, i.e., p(x)∝
exp(−U(x)

kBT ), where kB is Boltzmann’s constant and T is
the temperature, the learned score sθ∗(x,τ =0) :RNp×d→
RNp×d is interpretable as a physical, atomistic force field:

sθ∗(x,τ=0)≈∇logp(x)∝−∇U(x)=F(x). (19)

The constructed dynamics in Eq. (11) at τ = 0 reduce to
overdamped Langevin dynamics governing particles on a po-
tential energy surface. Thus, we can directly set the constants
in the OM action (∆t, ζ, D, T ) to physical values used in
MD simulations for a given atomistic system. Under our OM
framework, finding high-probability paths between points on
a Boltzmann-distributed data manifold thus directly aligns
with the conventional notion of TPS for atomistic systems.
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4. Repurposing Atomistic
Generative Models via Action Minimization

We now introduce our OM optimization approach to
produce high probability transition paths between atomistic
structures using pre-trained generative models. Given a
pre-trained generative model with a fixed score function
sθ∗ , and two atomistic configurations, x(0),x(L) ∈RNp×d

where x(0)∈A,x(L)∈B, we aim to sample a transition path
X=

{
x(i)
}
i∈[0,L]

consisting of L discrete steps. Our core
inductive bias is to interpret candidate paths as realizations
of the denoise-noise SDE in Eq. (11), enabling tractable
computation and optimization of path log-likelihoods via
the OM action. Our approach proceeds in three primary
steps: 1) computing an initial guess path, 2) performing OM
optimization, and (in some cases) 3) decoding the optimized
path back to the configurational space Ω. Algorithm 1
summarizes the procedure without the decoding step.

Computing an initial guess path. The choice of initial
path connecting the endpoints x(0)∈A and x(L)∈B is cru-
cial in determining the quality of the subsequently optimized
path. Naı̈ve linear interpolations in configurational space
are likely unphysical, since plausible atomistic structures
typically lie on a highly non-convex, low-dimensional
manifold of Ω. Instead, we opt to linearly interpolate at a
latent level τinitial of our pre-trained generative model, which
is known to produce samples closer to the data manifold (Ho
et al., 2020). After interpolation, we can either (1) decode
the interpolated path back into configurational space and
subsequently optimize the OM action there, or (2) directly
optimize the OM action at the latent level τinitial. Both are
justified, since the proposed dynamics in Eq. (11) are valid
for any τ . See Appendix G for complete details.

Optimization of the OM action. Starting from the initial
guess, we find paths which have high probability (low action)
under the SDE in Eq. (11) induced by the generative model.
The optimization problem simply becomes,

X∗= argmin
X={x(i)}

i∈[0,L]

S[X;θ∗], (20)

where S[·; θ∗] is the generative model action in Eq. (14)
(computed with the frozen, pre-trained score sθ∗), and x(0)

and x(L) are kept fixed. We approximate this minimum via
gradient descent on the path until the action is converged.
Since S[·;θ∗] is a discretized integral, the entire trajectory
is optimized in parallel, which is amenable to multi-device
acceleration. In line with previous work (Arts et al., 2023),
we find that a small, nonzero value of τopt leads to better
alignment with the true forces, and thus treat it as a hyper-
parameter (see Appendix G). To accelerate computation of
the divergence term in the OM action, we use the Hutchinson
estimator (Hutchinson, 1989)(see Appendix G for details).

Algorithm 1 Onsager-Machlup Transition Path Optimization
with Generative Models

1: Input:
2: Optimization time τopt
3: Generative model with time-conditional score sθ∗(·,τopt)
4: Two atomistic configurations x(0) ∈ A ⊂ RNp×d,

x(L)∈B⊂RNp×d

5: Compute initial guess X =
{
x(0),...,x(L)

}
=

InitialGuess(x(0),x(L),τinitial) (Algorithm 2)
6: while not converged do
7: Compute the OM action, S[X;θ∗], with the learned

vector field sθ∗(·,τopt), using Eq. (14).
8: Update X ← optimizer(X,∇XS[X;θ∗]) (keeping

the endpoints x(0),x(L) fixed)
9: end while

Figure 2. OM optimization with a diffusion model on the
2D Müller-Brown potential. Individual points along the
OM-optimized paths are shown as dots. Increasing the diffusivity
D causes the path to cross at a higher barrier. An equivalent number
of I.I.D samples (red) fails to sample the transition region.

Decoding back to configurational space. If OM-
optimization was performed at a non-zero latent time τinitial,
we decode the final path, obtained afterK iterations of gradi-
ent descent, back to the configurational space. If optimization
was performed in configurational space (i.e., decoding was
already done in the first step), then this step is skipped.

5. Results
We now present the results of our OM optimization approach
for TPS with pre-trained generative models. In all cases
other than the Müller-Brown potential (Section 5.1), we
perform OM optimization in configuration space, so we skip
the final decoding step and use physical parameter values.
In Appendix F, we demonstrate a use case beyond generative
modeling, namely using a classical force field to generate
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(a) (b)Sampled Transition Paths Free Energy Pro�le

Figure 3. OM optimization and free energy barrier estimation
on alanine dipeptide using a pre-trained diffusion model. (a)
Sampled alanine dipeptide transition paths from OM optimization
with a pretrained diffusion model, overlaid on a Ramachandran plot
of sample density at 600K. (b) Free energy barrier for a selected
path, estimated via umbrella sampling, is approximately 6 kcal/mol,
in line with our metadynamics calculations (I).

Table 1. Benchmarking the speed of OM optimization against
traditional enhanced sampling baselines on alanine dipeptide.
We report the number of force field evaluations required per 1,000
step transition path (for OM optimization we instead report the
number of score function evaluations). OM optimization requires
significantly fewer evaluations and thus lower computational cost
per path than the traditional approaches.

Method CVs # FF Evals / Path (↓) Runtime / Path (↓)

MCMC (Two-Way Shooting) No ≥ 1B ≥ 100 hours
Metadynamics Yes 1M 10 hours
OM Opt. (Diffusion Model) (ours) No 10K 50 min

all-atom transition paths for Chignolin and Trp-Cage.

5.1. 2D Müller-Brown potential
We first demonstrate our method on the 2D Müller-Brown
(MB) potential (Müller & Brown, 1979), a canonical test
system for TPS with a global minimum and two local
minima, separated by saddle points.

Problem setup. Using a denoising diffusion model
pretrained on samples from the underlying potential energy
surface, we generate transitions between the two deepest
energy minima using OM optimization. We generate
the initial guess path via linear interpolation at τinitial = 8
(the maximum diffusion model time is Td = 1,000). We
perform 200 steps of OM optimization directly at τinitial=8
using τopt =8, and finally decode the path back to the data
distribution via the denoising process.

Results. As shown in Fig. 2, OM optimization with the
truncated action yields a transition path (shown in blue)
between the energy minima which passes through the lowest
energy barrier. Due to the stochastic decoding process, the
samples around the transition path exhibit natural diversity.
Increasing the diffusion coefficient D = kBT

γM results in
qualitatively different transition paths (shown in orange
and yellow). Samples are more concentrated in the three

energy minima, and the path crosses a higher energy barrier,
consistent with the larger scale of thermal fluctuations at
increased temperatures. Meanwhile, 2500 i.i.d. samples
(shown in red) from the diffusion model sample only the
three energy minima, and fail to sample the transition region.
This provides a proof-of-concept that our OM optimization
procedure can be used to repurpose generative models to
sample transition paths without specialized training. See
Appendix H for additional results and analysis on the MB
potential, including with a flow matching model.

Committor and Transition Rate Estimation. Committor
functions and rates are fundamental quantities in the study
of transition events (Vanden-Eijnden et al., 2006). The
committor function q(x) is defined as the probability that
a trajectory initiated at x(0) = x reaches the target state B
before the starting stateA. Transition paths obtained via OM
optimization can be used as an enhanced sampling method
to accurately compute the committor function, and subse-
quently the transition rates, on the Müller-Brown potential
(see Appendix H for complete details). Specifically, we
initiate MD simulations from points along the OM-optimized
paths shown in Fig. 2 to collect a dataset of samples Dtrain.
We then train a committor function qθ(x) by solving a
functional optimization problem given by the Backward
Kolmogorov Equation (BKE) over the sampled points, and
finally compute an estimate of the reaction rate using the
trained model via the relation (Vanden-Eijnden et al., 2006):

kθ=
kBT

γ
⟨|∇xqθ(x)|2⟩Ω≈ Êx∼Dtrain |∇xqθ(x)|2, (21)

where ⟨·⟩Ω denotes an ensemble average over the configura-
tional space Ω and Ê denotes an empirical mean . Using this
procedure, we obtain a transition rate estimate of 1.3×10−5,
compared with the true rate of 5.4×10−5. It is often challeng-
ing to compute the reaction rate even within the correct order
of magnitude (Rotskoff et al., 2022; Hasyim et al., 2022), sug-
gesting the promise of our OM optimization method to enable
accurate rate estimation on more challenging systems.

5.2. Alanine dipeptide

Alanine dipeptide is a classic benchmark system for TPS,
with 22 atoms and CVs described by the dihedral anglesϕ,ψ.

Problem setup. We start with a denoising diffusion
model pre-trained on samples from the alanine dipeptide
potential energy surface. Using this model, we perform
OM optimization to find transition paths between the two
standard minima defined in the CV space.
Results. We successfully sample two likely transition
paths between the metastable basins (Fig. 3a). In Table 1, we
benchmark the computational efficiency of OM optimization
against traditional enhanced sampling techniques, namely
metadynamics (Laio & Gervasio, 2008) and MCMC-based
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Figure 4. OM optimization with diffusion and flow matching models trained on coarse-grained, fast-folding proteins. (a) Reference
free energy surfaces of fast-folding proteins, alongside transition paths produced by OM optimization (yellow) overlaid against the
landscape of the empirically computed committor function q(x). The transition state ensemble (black) is the set {x :0.45≤q(x)≤0.55}.
(b) Samples from the predicted transition state ensemble of BBA. (c) Runtime of OM optimization and varying lengths of unbiased MD
simulation of BBA. MD simulation is performed with the diffusion model score as an approximate force field, as in Arts et al. (2023).
(d) MSM results averaged across 5 fast-folding proteins. Comparisons are with respect to reference, unbiased MD simulation of varying
lengths. Plotted are the Jensen-Shannon Divergence (a measure of distributional dissimilarity) between the sampled and reference path
MSM state distributions, fraction of sampled paths which are valid (i.e., have non-zero probability under the reference MSM), and average
transition negative log likelihood under the reference MSM (indicating the realism of the paths).

two-way shooting (Bolhuis & Swenson, 2021), and find that
OM optimization is considerably more efficient. As shown
in Fig. 3b, we can also use the transition paths resulting from
OM optimization as a natural CV for umbrella sampling
(Torrie & Valleau, 1977), from which we can accurately and
efficiently estimate free energy profiles along the transition
path. See Appendix I for complete details on model training,
OM optimization, and free energy calculations.

5.3. Fast-folding coarse-grained proteins

We next consider proteins exhibiting fast dynamical
transitions, for which millisecond-scale, reference MD
simulations were performed in Lindorff-Larsen et al. (2011).

Problem setup. We adopt a coarse-graining (CG) scheme
which represents each amino acid with the position of its
Cα atom. We utilize the pre-trained diffusion models from
Arts et al. (2023), and we train our own flow matching
models. Separate models are trained for each protein. To
facilitate analysis and interpretation of results, we divide the
conformational space into discrete states and make use of
Markov State Models (MSMs) (Prinz et al., 2011; Noé et al.,
2013) to obtain state transition probabilities. Similar to Jing
et al. (2024b), we evaluate the quality of transition paths by
discretizing them over the MSM states and computing the
following metrics (see Appendix J for complete details):

1. Transition negative log likelihood. The negative
log likelihood of MSM state transitions under the
reference MSM, averaged over all paths with non-zero
probability.

2. Fraction of valid paths. The fraction of paths with
non-zero probability under the reference MSM.

3. Jensen-Shannon divergence. The JSD (distributional
dissimilarity) between the distribution of states visited
by the generated paths and those sampled from the
reference MSM.

We compute these metrics for our generated transition paths,
as well as for 1−100µs subsets of the reference MD simula-
tions 1. To compare wall-clock time for generating transition
paths, since reference simulations were performed at all-atom
resolution and their speeds are unavailable, we follow Arts
et al. (2023) and run coarse-grained MD using the generative
model’s learned score function as an approximate force field.
Results. As shown in Fig. 4a, OM optimization yields
diverse transition paths which intuitively pass through high
density regions of the free energy landscape, projected
onto the two slowest Time Independent Component (TIC)

1We did not consider enhanced sampling baselines for the
fast-folding proteins due to their reliance on an energy function,
which is generally not available for our level of coarse-graining.
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Figure 5. OM optimization on unseen tetrapeptide sequences.
OM optimization with a flow matching model yields transition
paths which compare strongly with variable-length MD simulations,
indicating the generalization potential of our approach. Plotted
are the Jensen Shannon Divergence (a measure of distributional
dissimilarity) between state distributions visited by the reference
and generated paths, the fraction of valid (non-zero probability)
paths under the reference MSM, and the negative log likelihood of
state transitions under the reference MSM (indicating path realism).

(Noé et al., 2013) axes. We can also vary the physical
parameters of the OM action (e.g., the time horizon Tp) to
obtain paths traversing different regions of phase space (see
Appendix J). For the BBA protein, the paths robustly sample
the transition state ensemble, empirically defined by the
level set {x :0.45≤q(x)≤0.55} of the committor function
(Fig. 4b). Sampling transition paths of the BBA protein
with OM optimization requires considerably less wall-clock
time than using the diffusion model’s learned score as a
coarse-grained force field and performing unbiased MD
simulations (Fig. 4c). Across all proteins and both classes
of generative model (diffusion and flow matching), OM
optimization yields a higher percentage of valid paths and
lower transition negative log likelihood under the reference
MSM, compared with unbiased, reference MD simulations
of any of the considered lengths up to 100 µs (Fig. 4d). The
JSD is also lower than any MD simulation length up to
50 µs, indicating that the sampled paths traverse a similar
distribution of MSM states as the reference simulations. See
Appendix J for comparisons to transition trajectories found
in the reference, unbiased MD simulations.

Robustness to sparse data in transition regions. To
simulate the scenario in which transition states are not
well-represented in the training data, we retrain diffusion
models on datasets from which 99% of configurations with
committor probability between 0.1 and 0.9 are removed.
OM optimization is still able to sample plausible transition

paths using this data-starved model (see Appendix J for
more details), suggesting that our approach can be useful
even if the underlying data distribution is not an exhaustively
sampled Boltzmann distribution.

5.4. Generalization to new tetrapeptides

As a final evaluation, we consider all-atom tetrapeptide sys-
tems, which exhibit interesting dynamics and pose the chal-
lenge of generalization to held-out amino acid sequences.

Problem setup. We train a flow matching generative
model on approximately 3,000 tetrapeptides simulated
in Jing et al. (2024b), and apply our OM optimization
procedure to generate an ensemble of 16 transition paths for
each of 100 tetrapeptides not seen during training. We use
the same MSM-based metrics as in Section 5.3 to evaluate
the quality of generated transition paths.

Results. As shown in Fig. 5, OM optimization achieves
MSM metrics which are competitive with MD simulations
of 50-100 ns, which are considerably more computationally
expensive to generate. This suggests the promise of OM
optimization to generate transition paths on atomistic
systems not explicitly seen during training. See Appendix
K for further details and path visualizations.

6. Conclusion
We have presented a method to repurpose atomistic genera-
tive models for transition path sampling by finding paths over
the data manifold which minimize the Onsager-Machlup
action under the model’s learned score function. Our ap-
proach, which requires no TPS-specific training procedure,
aligns well with the growing trend of leveraging large-scale,
well-tested, general-purpose generative models—a direction
already standard in the language and vision communities.

Limitations. Our approach does not provably sample
the full posterior distribution over paths, as in traditional
shooting methods and recent ML approaches (Du et al.,
2024). However, we sample diverse paths by exploiting the
stochastic generative model encoding and decoding process.
Initiating traditional MD or umbrella sampling simulations
is another way to explore the potential energy surface around
the OM-optimized paths (see Appendix I).

Future work. Incorporating OM optimization into larger
generative models trained on more diverse data (Lewis et al.,
2024; Jing et al., 2024a) is a natural area for future develop-
ment. Given the success of large-scale, co-evolutionary mod-
eling of proteins (Jumper et al., 2021), it would be interesting
to investigate the extent to which pre-training generative
models on large structural databases enables TPS on unseen
systems. More broadly, OM action-minimization could be
a powerful framework to generate interpolation paths in a va-
riety of data modalities, including images, videos, and audio.
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Lewis, S., Hempel, T., Jiménez Luna, J., Gastegger, M., Xie,
Y., Foong, A. Y., Garcı́a Satorras, V., Abdin, O., Veeling,
B. S., Zaporozhets, I., et al. Scalable emulation of protein
equilibrium ensembles with generative deep learning.
bioRxiv, pp. 2024–12, 2024.

Liang, S., Singh, A. N., Zhu, Y., Limmer, D. T., and Yang,
C. Probing reaction channels via reinforcement learning.
Machine Learning: Science and Technology, 4(4):045003,
2023.

Lindorff-Larsen, K., Piana, S., Dror, R. O., and Shaw, D. E.
How fast-folding proteins fold. Science, 334(6055):
517–520, 2011.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. arXiv
preprint arXiv:2210.02747, 2022.

Lipman, Y., Havasi, M., Holderrieth, P., Shaul, N., Le, M.,
Karrer, B., Chen, R. T., Lopez-Paz, D., Ben-Hamu, H.,
and Gat, I. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Machlup, S. and Onsager, L. Fluctuations and irreversible
process. ii. systems with kinetic energy. Phys. Rev., 91:
1512–1515, Sep 1953. doi: 10.1103/PhysRev.91.1512.

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom,
L., Hauser, K. E., and Simmerling, C. ff14sb: Improv-
ing the accuracy of protein side chain and backbone

parameters from ff99sb. Journal of Chemical The-
ory and Computation, 11(8):3696–3713, 2015. doi:
10.1021/acs.jctc.5b00255.

Mauri, R. Non-Equilibrium Thermodynamics in Multiphase
Flows. Soft and Biological Matter. Springer Netherlands,
2012. ISBN 9789400754614. URL https://books.
google.cz/books?id=sD4G1azPEqcC.

Michelis, M. Y. and Becker, Q. On linear interpolation in
the latent space of deep generative models. arXiv preprint
arXiv:2105.03663, 2021.

Mullen, R. G., Shea, J.-E., and Peters, B. Easy transition
path sampling methods: Flexible-length aimless shooting
and permutation shooting. Journal of chemical theory and
computation, 11(6):2421–2428, 2015.

Müller, K. and Brown, L. D. Location of saddle points and
minimum energy paths by a constrained simplex optimiza-
tion procedure. Theoretica chimica acta, 53:75–93, 1979.
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A. Extended Related Work: Transition Path Sampling
A rich landscape of tools has been developed for TPS, for which we refer to existing surveys for a more exhaustive description
(Bolhuis et al., 2002; Dellago et al., 2002; Vanden-Eijnden et al., 2010). Traditional shooting methods perturb the initial or
intermediate states of a known trajectory to generate new trajectories via a Metropolis-Hasting criterion (Mullen et al., 2015;
Borrero & Dellago, 2016; Jung et al., 2017; Bolhuis & Swenson, 2021). These often suffer from high rejection rates, correlated
samples, and the need for expensive molecular dynamics (MD) simulations during sampling. Another class of methods is
based on adding an adjustable biasing potential to enhance the sampling of slow events, which includes umbrella sampling
(Torrie & Valleau, 1977), metadynamics (Laio & Parrinello, 2002a), and more advanced techniques such as eABF (Darve
& Pohorille, 2001). These approaches require a carefully constructed, low-dimensional mapping of the problem via collective
variables (CVs), which can be challenging, particularly when the characterization of the system around the transition state is
uncertain. Attempts were made to design CVs with ML methods (Sultan & Pande, 2018; Rogal et al., 2019; Chen & Ferguson,
2018; Sun et al., 2022; Šı́pka et al., 2023), yet they remain a challenge for many-atom systems. ML approaches have also
been used to learn the biasing potential directly, including approaches based on stochastic optimal control (Holdijk et al., 2024;
Yan et al., 2022), differentiable simulation (Sipka et al., 2023), reinforcement learning (Das et al., 2021; Rose et al., 2021;
Singh & Limmer, 2023; Seong et al., 2024; Liang et al., 2023), and h-transform learning (Singh & Limmer, 2023; Du et al.,
2024). In all of these approaches, unlimited access to the underlying potential energy and force field are assumed, but samples
from the underlying data distribution are not available. As a result, the methods must be retrained from scratch for every
new system of interest. Additionally, expensive, simulation-based training procedures are often employed, limited scalability
to larger systems. Interpolation-based methods, such as the Nudged Elastic Band (NEB) method (Henkelman et al., 2000) and
the spring method (Dellago et al., 1998), introduce springs between images to construct transition paths (spring method) or
to directly locate saddle points (NEB). However, a significant challenge for both approaches lies in generating an initial guess,
which is inherently unknown a priori. Among interpolation-like approaches, the Onsager-Machlup (OM) action has also
been explored for TPS. Due to the limited availability of automatic differentiation techniques at the time, Laplacian operators
were consistently avoided. This restriction limited its application to very low-dimensional problems (Vanden-Eijnden &
Heymann, 2008; Fujisaki et al., 2010), or led to the development of Laplace-free action formulations (Lee et al., 2017).

B. Proofs for Score-Related Generative Model Objectives
For the sake of readability, we replicate proofs showing that both the training objectives for DDPM and flow matching models
are equivalent to training against the score of a noised version of the data distribution (or in the case of flow matching, an
invertible polynomial transformation of this score). See Vincent (2011) and Lipman et al. (2024) for example proofs for
DDPM and flow matching respectively.

B.1. A note on the DDPM reverse process

The sampling process for a DDPM can be written as the terminal condition x(0) of the following process:

x(Td)∼N (0,I), (22)

x(i−1)=
1√

1−βτ

(
x(i)+

βτ√
1−ᾱτ

sθ(x
(i),i)

)
+
√
βτz. (23)

While this process is definable as an Euler-Maruyama discretization of an SDE, it is not well suited for optimization over
trajectories over the data distribution, since the vector field sθ(x

(i),i) is changing throughout the trajectory, and iterates near
the noise i=Td will not necessarily follow dynamics determined by the data distribution.

B.2. DDPM and score matching

Below is a proof for the equivalence of standard DDPM training to score matching.
Theorem B.1 (DDPM-Score Matching Equivalence). Let pdata(x0) be the data distribution, and let xτ be the noised variable
defined through the forward process:

xτ =
√
ᾱτx0+

√
1−ᾱτ ϵ, τ∼Unif({1,...,Td}), x0∼pdata, ϵ∼N (0,I), (24)

where ᾱτ ∈(0,1). Let pτ (xτ )=
∫
pdata(x0)N (xτ ;

√
ᾱτx0,(1−ᾱτ )I)dx0 be the marginal distribution of xτ . Then the DDPM

objective, defined as the following:
LDDPM(θ)

def
=Eτ,x0,ϵ

[
∥ϵ−ϵθ(xτ ,τ)∥22

]
, (25)
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satisfies the following equality:

LDDPM(θ)=Eτ,xτ

[
(1−ᾱτ )∥∇xτ logpτ (xτ )−sθ(xτ ,τ)∥

2
2

]
+C, (26)

where sθ(xτ ,τ)
def
=−ϵθ(xτ ,τ)/

√
1−ᾱτ , andC is a constant independent of θ.

Proof. We begin with the DDPM training objective:

LDDPM(θ)=Eτ,x0,ϵ

[
∥ϵ−ϵθ(xτ ,τ)∥22

]
. (27)

The core of the desired result is Tweedie’s formula, which relates Gaussian-based denoising to the score of the noised
distribution. For any random variable z generated as z= µ+ση where µ is an arbitrary random vector, η∼N (0,I), and
σ>0, Tweedie’s formula gives the following posterior expectation:

E[µ|z]=z+σ2∇zlogp(z), (28)

where p(z) =
∫
N (z;µ,σ2I)p(µ)dµ is the full marginal distribution of z. In the forward process, xτ is generated via

xτ =
√
ᾱτx0+

√
1−ᾱτ ϵ, which corresponds to:

µ=
√
ᾱτx0, σ=

√
1−ᾱτ , z=xτ , η=ϵ. (29)

Here, µ is a random variable (dependent on x0), not a fixed parameter. Applying Tweedie’s formula to the marginal distribution
pτ (xτ ), we obtain:

E
[√
ᾱτx0

∣∣xτ ]=xτ+(1−ᾱτ )∇xτ
logpτ (xτ ). (30)

Dividing through by
√
ᾱτ gets the posterior of the original sample x0:

E[x0|xτ ]=
xτ√
ᾱτ

+
1−ᾱτ√
ᾱτ
∇xτ

logpτ (xτ ). (31)

From the forward process definition, we rewrite in terms of ϵ:

ϵ=
xτ−
√
ᾱτx0√

1−ᾱτ
, (32)

and take conditional expectations given xτ to get the following:

E[ϵ|xτ ]=
xτ−
√
ᾱτE[x0|xτ ]√
1−ᾱτ

, (33)

=
xτ−
√
ᾱτ

(
xτ√
ᾱτ

+ 1−ᾱτ√
ᾱτ
∇xτ

logpτ (xτ )
)

√
1−ᾱτ

, (34)

=
xτ−xτ−(1−ᾱτ )∇xτ

logpτ (xτ )√
1−ᾱτ

, (35)

=−
√
1−ᾱτ∇xτ

logpτ (xτ ). (36)

Using the law of total expectation, we can expand the DDPM loss conditioned on xτ ,τ :

LDDPM(θ)=Eτ,xτ

[
Eϵ

[
∥ϵ−ϵθ(xτ ,τ)∥22 |xτ ,τ

]]
. (37)

For any random vector ξ, E[∥ξ − c∥2] is minimized when c = E[ξ]. We can then make the following bias-variance
decomposition:

Eϵ

[
∥ϵ−ϵθ(xτ ,τ)∥22 |xτ ,τ

]
=∥E[ϵ |xτ ,τ ]−ϵθ(xτ ,τ)∥22+E

[
∥ϵ−E[ϵ |xτ ,τ ]∥22 |xτ ,τ

]
. (38)

Since the variance term is independent of θ, substituting E[ϵ |xτ ,τ ] and factoring out−
√
1−ᾱτ leads to:

LDDPM(θ)=Eτ,xτ

[
(1−ᾱτ )

∥∥∥∥∇xτ
logpτ (xτ )−

(
−ϵθ(xτ ,τ)√

1−ᾱτ

)∥∥∥∥2
2

]
+C. (39)

By defining sθ(xτ ,τ) :=−ϵθ(xτ ,τ)/
√
1−ᾱτ , we obtain the score matching objective.
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B.3. Flow matching and score matching

We now provide proof for the flow matching setting, showing that the training objective is also similar to a score matching
objective, with a simple transformation between the flow matching targets and the scores.
Theorem B.2 (Flow Matching – Score Matching Conversion). Let pdata(x0) be the data distribution, and let xτ be the noised
variable defined through the interpolation process:

xτ =ατx1+στx0, τ∼Unif([0,1]), x1∼pdata, x0∼N (0,I), (40)

where ατ ,στ : [0,1]→ [0,1] are strictly increasing and decreasing functions respectively that satisfy α0=σ1=0, α1=σ0=1.
Let pτ (xτ )=

∫
pdata(x0)N (xτ ;ατx1,σ

2
τI)dx0 be the marginal distribution of xτ . Then the flow matching objective, defined

as the following:
LFM(θ)

def
=Eτ,x0,x1

[
∥uθ(xτ ,τ)−vτ (x0,x1)∥22

]
, (41)

where vτ (x0,x1)= α̇τx1+σ̇τx0 the instance-wise curve velocity. The flow matching objective then satisfies the following
equalities:

1. We can equivalently train against targets of the unconditional velocities uτ (x) =
Ex0∼p0,x1∼p1

[α̇tx1+σ̇tx0 |x=αtx1+σtx0]:

LFM(θ)=Eτ,x0,x1

[
∥uθ(xτ ,τ)−uτ (xτ )∥22

]
+C, (42)

whereC is some constant independent of θ, and

2. The equality∇xlogpτ (x)=
α̇τ

ατ
x− σ̇τστατ−α̇τσ

2
τ

ατ
uτ (x) holds, allowing us to write the flow matching objective in terms

of the score:

LFM(θ)=Eτ,x0,x1

[
∥uθ(xτ ,τ)−

(
α̇τ

ατ
xτ−

σ̇τστατ−α̇τσ
2
τ

ατ
∇xτ logpτ (xτ )

)
∥22
]
+C. (43)

Proof. For part 1, we can expand the flow matching loss integrand by telescoping with respect to uτ (xτ ):

∥uθ(xτ ,τ)−vτ (x0,x1)∥2=∥uθ(xτ ,τ)−uτ (xτ )+uτ (xτ )−vτ (x0,x1)∥2, (44)

=∥uθ(xτ ,τ)−uτ (xτ )∥2+2⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−vτ (x0,x1)⟩+∥uτ (xτ )−vτ (x0,x1)∥2.
(45)

Since Eτ,x0,x1
∥uτ (xτ )−vτ (x0,x1)∥2 is constant with respect to θ, it suffices to show the following:

Eτ,x0,x1⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−vτ (x0,x1)⟩=0. (46)

Note that by definition we have the following relation between u and v:

E
x0,x1

[vτ (x0,x1) |xτ ,τ ]= E
x0,x1

[α̇τx1+σ̇τx0 |xτ ,τ ]=uτ (xτ ). (47)

We can then write the following by expanding the expectation using the tower rule:

Eτ,x0,x1⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−vτ (x0,x1)⟩=Exτ ,τ

[
E

x0,x1

[⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−vτ (x0,x1)⟩ |xτ ,τ ]
]
, (48)

= E
xτ ,τ

[⟨uθ(xτ ,τ)−uτ (xτ ),uτ (xτ )−Ex0,x1
[vτ (x0,x1) |xτ ,τ ]⟩], (49)

= E
xτ ,τ

[⟨uθ(xτ ,τ)−uτ (xτ ),0⟩], (50)

=0. (51)

This concludes part 1. Note that the interpolations xτ =ατx1+στx0 also follow proper form for Tweedie’s formula, allowing
us to write the following:

E[ατx1|xτ ,τ ]=xτ+σ2
τ∇xlogpτ (xτ ), (52)

E[x1|xτ ,τ ]=
1

ατ
xτ+

σ2
τ

ατ
∇xlogpτ (xτ ). (53)
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Noting that x0= xτ−ατx1

στ
, we can write uτ as the following:

uτ (x)= E
x0,x1

[α̇tx1+σ̇tx0 |xτ =xτ ], (54)

= α̇t E
x0,x1

[x1 |xτ =x,τ ]+σ̇t E
x0,x1

[x0 |xτ =x,τ ], (55)

=
σ̇τ
στ
x+

(
α̇τ−

ατ σ̇τ
στ

)
E

x0,x1

[x1 |xτ =x,τ ], (56)

=
σ̇τ
στ
x+

(
α̇τ−

ατ σ̇τ
στ

)(
1

ατ
x+

σ2
τ

ατ
∇xlogpτ (x)

)
, (57)

=
α̇τ

ατ
x− σ̇τστατ−α̇τσ

2
τ

ατ
∇xlogpτ (x). (58)

This proves the desired relation between uτ and∇logpτ , and plugging into part 1 achieves the desired flow matching loss
equality.

C. Derivation of the Onsager-Machlup action
C.1. Overdamped Langevin dynamics

We start the description of our system by formulating the well-known Hamilton equations. The variables we are solving
are xi(t) :R+→Rd and the corresponding momenta pi(t) :R+→Rd with a constant vector mi representing the mass of
every particle i in the system. Hamiltonian equations are formulated as follows

ẋi(t)=
pi(t)

mi
,

ṗi(t)=−
∂U(x(t))

∂xi
.

(59)

While these equations maintain energy and contain no representation of temperature, a modified SDE, with the term W(t)
representing a Wiener process and a damping constant γ

ẋi(t)=
pi(t)

mi
,

ṗi(t)=−
∂U(x(t))

∂xi
−γpi(t)

mi
+
√
2γkBTW(t),

(60)

or equivalently in one second order equation:

miẍi(t)=−
∂U(x(t))

∂xi
−γmiẋi+

√
2miγkBTW(t), (61)

can now represent a system that experiences thermal fluctuation. Although the original Hamiltonian system is trapped in
an energy well forever, the one guided by Langevin dynamics may overcome barriers between wells in finite time.

A question then arises. Of all the possible paths of fixed physical parameters and time that connect two minima, which is the
most probable? How do we calculate probabilities and penalize high energy regions or paths that are making too large steps?
The answer is provided by Onsager and Machlup in their works (Onsager & Machlup, 1953; Machlup & Onsager, 1953).
The second reference handles the full equation Eq. (60), while the first is a reduction to a so-called overdamped state where
the term ẍ(t) can be neglected. After introduction of two auxiliary vector quantities ζi=miγ andDi=

kbT
ζi

we get the form

ẋi=−
1

ζi

∂U(x(t))

∂xi
+
√
2DiW(t). (62)

or equally just with F(x(t))=−∂U(x(t))
∂xi

ẋi=
1

ζi
F(x(t))+

√
2DiW(t). (63)
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Further, we will follow a more general setting of the Langevin equation consistent with Eq. (1). To recall:

ẋ=
1

ζ
Φ(x)dt+

√
2DdW, (64)

and

ϕ(x) :=U(x) (65)
Φ(x) :=F(x)=−∇U(x) (66)

C.2. Most probable path under Langevin dynamics

Considering a single particle (for more particle systems see e.g. (Kappler & Adhikari, 2020)), since Eq. (1) is a stochastic
differential equation, we can also write a partial differential equation for the probability density of the particle guided by
these equations. In this case it is a well-known Fokker-Planck equation (note ∂

∂x of a vector will be understood as a divergence
operator to save space)

∂P

∂t
=−

∂
(

Φ
ζ P
)

∂x
+
∂

∂x

(
D
∂P

∂x

)
. (67)

As we will consider only potential forces in this work, let us denote Φ(x)=−∂ϕ(x)
∂x . Now we will split the derivation into

two parts.

1. Φ=0:

Let us consider the solution in the following form:

P (x,t |x0)=(4πDt)
− 3

2 e
−(x−x0)2

4Dt . (68)

Then for the sequence of points in space and time (x1,t1),(x2,t2),...(xN ,tN ) we can write the following probability:

P (x1,t1 |x2,t2 | ··· |xN ,tN )=

N∏
j=1

P (xj ,tj−tj−1 |x0). (69)

Let us denote tj−tj−1= ϵ as we pass through a continuum limit in time. The probability can be rewritten by plugging in
a solution Eq. (68) into

N∏
j=1

P (xj ,tj−tj−1 |x0)=(4πDϵ)
− 3

2Nexp

− 1

4Dϵ

N∑
j=1

(xj−xj−1)
2

. (70)

To make sure we can pass into the limit let us rewrite

ϵ−
3
2 =e−

3
2 lnϵ. (71)

We now focus on the argument of the exp function. We can modify it to the form

1

4D

N∑
j=1

(
xj−xj−1

ϵ

)2

ϵ. (72)

By passing into the limitN→∞ and realizing that epsilon can be rewritten by its definition to ϵ= t
N , we get the following

integral form:
1

4D

∫ t

0

(ẋ)
2
dt. (73)

Note however, using the identity ab=eblna, the first part of the product goes to infinity:

lim
N→∞

(
4πD

t

N

)− 3
2N

=∞, (74)
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evaluation of this limit directly would be too hasty. One must consider the probability derived in the broader context of
integration across the path. In that case, the constant will serve to normalize the probability. The fact that it does not depend on
x also means that the probability of the path does not, relative to other paths, depend on this prefactor, and only the exponential
part is important. To find out more about precise mathematical justifications, we refer the reader to (Gel’fand & Yaglom,
1960). We shall denote the constant before exponential as C from now on because, as it is not dependent on x, it will not
influence our calculations. The final probability of a path is then given as follows:

P (x,t)=Cexp

(
− 1

4D

∫ t

0

(ẋ(s))2ds

)
. (75)

To maximize the likelihood of the path we clearly need to minimize the action

S0(x(t))=
1

4D

∫ t

0

(ẋ(s))2ds. (76)

Intuitively, the most probable path under no drift is the one that does not move from it’s origin. The longer the trajectory,
the less probable it is.

2. Φ ̸=0:

We will recall the assumption Φ=−∇ϕ(x) and shall use a transformation

P (x,t |x0)=G(x,t,|x0)exp

(
1

2Dζ

∫ x(t)

x(0)

Φ(s)ds

)
, (77)

where from the properties of a potential function we can evaluate the integral to

−ϕ(x)def
=

1

2Dζ

∫ x(t)

x(0)

Φ(s)ds=
1

2Dζ

∫ x(t)

x(0)

Φ(s)ds=
1

2Dζ
(−ϕ(x)+ϕ(x0)). (78)

So for clarity:

P (x,t)=G(x,t)e−ϕ(x), (79)

G(x,t)=P (x,t)eϕ(x), (80)

∇ϕ(x)= 1

2Dζ
∇ϕ(x). (81)

We then plug this transformed function into Eq. (67). We will now derive the equation thatG(x,t) has to fulfill. Let us evaluate
left-hand side of the Eq. (67)

∂P (x,t)

∂t
=
∂G(x,t)

∂t
e−ϕ(x). (82)

For the right-hand side lets evaluate first the term:

∂
(
− 1

ζ
∂ϕ(x)
∂x P (x,t)

)
∂x

=−P (x,t)1
ζ

∂2ϕ(x)

∂x2
− 1

ζ

∂P (x,t)

∂x

∂ϕ(x)

∂x
,

=−2DP (x,t)∂
2ϕ

∂x2
−2D∂P (x,t)

∂x

∂ϕ

∂x
,

=−2DGe−ϕ(x) ∂
2ϕ

∂x2
−2D∂G

∂x
e−ϕ(x) ∂ϕ

∂x
+2DP

(
∂ϕ

∂x

)2

.

(83)

While the other term can be written as follows:

∂P (x,t)

∂x
=
∂G(x,t)

∂x
e−ϕ−G(x,t)e−ϕ ∂ϕ

∂x
,

=
∂G(x,t)

∂x
e−ϕ−P (x,t)∂ϕ

∂x
.

(84)
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The second derivative then with function arguments omitted for brevity, yet remaining the same

D
∂2P

∂x2
=D

∂2G

∂x2
e−ϕ−D∂G

∂x
e−ϕ ∂ϕ

∂x
−D∂P

∂x

∂ϕ

∂x
−DP ∂

2ϕ

∂x2
,

=D
∂2G

∂x2
e−ϕ−2D∂G

∂x
e−ϕ ∂ϕ

∂x
+DP

(
∂ϕ

∂x

)2

−DGe−ϕ ∂
2ϕ

∂x2
.

(85)

After subtracting the terms on the right-hand side, we get the following:

∂G

∂t
e−ϕ=D

∂2G

∂x2
e−ϕ−DGe−ϕ

(
∂ϕ

∂x

)2

+DGe−ϕ ∂
2ϕ

∂x2
. (86)

Or written nicely after exponential cancels and we return to ϕ(x) from ϕ

∂G(x,t)

∂t
=D

∂2G(x,t)

∂x2
−G(x,t)

(
1

4D

(
1

ζ

∂ϕ(x)

∂x

)2

− 1

2ζ

∂2ϕ(x)

∂x2

)
. (87)

This is a well studied diffusion-reaction equation

∂u(x,t)

∂t
=D

∂2u(x,t)

∂x2
−ku(x,t). (88)

Notice for ϕ(x)≡0 we already solved this equation as it is identical to Fokker-Planck where F =0. Let us call this solution
u0. Another observation is that for this equation we can formulate a solution in the form

u(x,t)=u0(x,t)e
−
∫ t
0
k(s)ds,

u0(x,t)=Ce
−(x−x0)2

4Dt ,
(89)

whereC is some arbitrary normalization constant as in the previous solution:

G(x,t)=Cexp

(
−(x−x0)

2

4Dϵ
−
∫ x(t)

x(0)

k(s)ds

)
, (90)

and the original P (x,t) using Eq. (77):

P (x,t)=Cexp

(
−(x−x0)

2

4Dt
+

∫ x(t)

x(0)

(
−k(x(s))+ 1

2Dζ
Φ(s)

)
ds

)
. (91)

Now we repeat the same multiplication of probabilities for small time increments. However, this time, the situation is easier
as integrals would simply extend in the sum. Therefore the only limit would be in the first term exactly as done before. The
final probability of the path is then as follows:

P (x,t)=Cexp
[
− 1

4D

∫ t

0

(ẋ)2+

(
1

ζ

∂ϕ

∂x

)2

− 2D

ζ

∂2ϕ

∂x2
−2Φds

]
. (92)

The negative argument of the exponential will again be an action to minimize:

S(x(t))=
1

4D

∫ t

0

(ẋ)2+

(
1

ζ

∂ϕ

∂x

)2

− 2D

ζ

∂2ϕ

∂x2
−2Φ(s)ds. (93)

This can be further modified, by integrating forces along the path and using forces instead of a potential, to the more common
form:

S(x(t))=
1

2D
(ϕ(x)−ϕ(x0))+

1

4D

∫ t

0

ẋ2+

(
1

ζ

∂ϕ

∂x

)2

− 2D

ζ

∂2ϕ

∂x2
ds. (94)

This procedure to derive the Onsager-Machlup action is similar to that in (Mauri, 2012).
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D. Fixed endpoints
For the entirety of this paper, we operate with fixed endpoints. This means the actual minimized action will be reduced simply
to the following:

S(x(te))=
1

4D

∫ t

0

ẋ2+

(
1

ζ

∂ϕ

∂x

)2

− 2D

ζ

∂2ϕ

∂x2
ds. (95)

The first and simplest strategy to keep endpoint constant is to include a penalty in the form

Lp=Cspring

[
(x(0)−x0)

2+(x(t)−xT )
2
]
. (96)

Interestingly, as verified experimentally, the penalty term effectively works the same as using a more simple and straightforward
method. The method of choice was to set the endpoint gradients to 0 manually. Only a couple of points will be affected,
and the majority of the trajectory is the same for both approaches.

E. Numerical discretization
Another aspect to consider is the numerical discretization of the action. (Adib, 2008) discusses the different numerical
evaluations of the action stemming from the stochastic nature of the Langevin equation. Namely, the Onsager-Machlup action
depends on the discretization convention used for the SDE (Itô or Stratonovich). We consider the Stratonovich convention
for this paper, which yields the following Onsager-Machlup action:

S(x0,x1...xn)=
1

4D

N∑
j=1

− (xj−xj−1)
2

∆t
+∆t

(
Φ(xj)

ζ

)2

+
2D∆t

ζ
∇·Φ. (97)

If the Itô convention was used, there would not be a Jacobian term∇·Φ (Cugliandolo & Lecomte, 2017).

To make the multidimensional, multiparticle system discretization clear, we extend the sum along spatial dimensions (index
j) and we also sum particles (index k). The coefficient ζ is now a vector since it is originally ζk = γ/Mk whereMk is the
vector of masses. The total action is then,

S[x(0),...,x(L)]=

L−1∑
i=1

Np∑
j=1

1

4D∆t

∥∥∥x(i+1)
j −x(i)

j

∥∥∥2+ ∆t

4Dζ2j

∥∥∥Φj(x
(i))
∥∥∥2− ∆t

2ζj
∇·Φj(x

(i)). (98)

F. Classical Force Fields on All-Atom Proteins
We demonstrate that our OM action optimization framework is broadly useful for transition path sampling even beyond
the setting of generative modeling. Specifically, we aim to find all-atom transition paths between the unfolded and folded
states of the protein Chignolin and Trp-Cage, using a differentiable PyTorch implementation (Doerr et al., 2020; Sipka
et al., 2023) of the Amber ff14SB(Maier et al., 2015) forcefield and the TIP3P implicit water model. We choose the physical
parameters of the OM action to be consistent with commonly used values in molecular simulations (see Table 2). Since we
do not have a generative model from which to obtain an initial path guess via latent interpolation as described in 4, we instead
employ a hierarchical unwrapping warm-up procedure described in the Appendix G to obtain initial paths. As the classical
force field is dominated by quadratic terms whose Laplacian is constant and thus uninformative for optimization, we use
a zero-temperature approximation and optimize with the Truncated OM action. Using the Truncated action, we obtain a
physical transition path of length 2.6ps (shown in Fig. 6). This is much lower than previously reported transition path lengths
for Chignolin (Sobieraj & Setny, 2022; Lindorff-Larsen et al., 2011), which can be explained by the fact that our trajectories
proceed between the target states without fluctuations that would occur in unbiased simulations. The entire optimization
took on the order of hours on one NVIDIA RTX A6000 GPU, including the generation of initial trajectory.

G. Additional Details on Onsager-Machlup Action Minimization Method
Initial Path Guess Methods. We provide a complete description and algorithmic formulation of the initial path guess
method using a generative model, mentioned in Section 4.
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Figure 6. Transition paths from OM optimization of all-atom chignolin and trp-cage with a classical force field.

Table 2. Hyperparameters used for OM action optimization on all atom proteins
Hyperparameter Chignolin - warmup Chignolin TRP Cage - warmup TRP Cage

Number of points per path 40 - 2600 2600 40 - 2600 2600
Action Type Truncated Truncated Truncated Truncated
Optimizer Adam Adam Adam Adam
Learning Rate 10−4 10−5 10−4 10−5

Action Timestep (∆t) 1 fs 1 fs 1 fs 1 fs
Action Friction (γ) 10 ps−1 10 ps−1 10 ps−1 10 ps−1

Formally, consider a generative model with a non-parametric, probabilistic encoding (i.e corruption) process q(xτ |x0), and a
corresponding, parametric decoding (i.e generative) process pθ(x0|xτ ). We first roto-translationally align the endpoints of the
path via a Kabsch alignment (Kabsch, 1993). We encode the aligned endpoints of the path into the chosen latent level for the
initial guess, τinitial to produce two latent endpoints z(0)∼q(zτinitial |x(0)) and z(L)∼q(zτinitial |x(L)). We then interpolate linearly
to generate a latent pathZ=

{
z(i)=(1− i

L )z
(0)+ i

Lz
(L)
}
i∈[0,L]

. We can then either decode the path back to the configurational

space via pθ(x|z(i)) to obtain a path x, in which case the subsequent OM optimization would occur in configurational space,
or defer decoding, in which case optimization occurs at the latent level τinitial starting from the latent path Z. Intuitively, larger
values of τinitial produce more diverse initial guesses at the expense of decreasing correspondence to the endpoint states.

Algorithm 2 Initial Guess Path Generation with a Generative Model

1: Given a generative model with non-parametric encoder q, and decoder pθ.
2: Function InitialGuess(x(0),x(L),τinitial)
3: Align both samples via Kabsch alignment:
4: x(0),x(L)=KabschAlign(x(0),x(L))
5: Encode both samples into latent level τinitial of the generative model:
6: z(0)∼q(zτinitial |x(0)), z(L)∼q(zτinitial |x(L))
7: Interpolate linearly (or spherically) in the latent space to generate an initial guess latent path:
8: Z=

{
z(i)=(1− i

L )z
(0)+ i

Lz
(L)
}
i∈[0,L]

9: Decode each point on the initial latent path Z from τinitial to τ=0 to produce a data path:
10: x=

{
x(i)∼pθ(x|z(i))

}
i∈[0,L]

11: Return x

When using a classical FF, we do not have access to a generative model. Thus, we must use a different scheme than what is
described in 4 to compute the initial guess path. We first start with a small number of replicas in each basin, creating a large gap in
the middle of the path. We then optimize with an unphysically large path term, creating a short but interpolating trajectory. After
we are satisfied with the initial guess we multiply each replica twice, creating a path of twice the length that we then optimize
again. This simple procedure is repeated until we reach desired length of the path. This procedure is described in Algorithm 3.

Hutchinson Trace Estimator. The third term in Eq. (14) involves the trace of the Jacobian of the force,∇·Fθ(x
(i),τopt),

or equivalently for conservative forces, the trace of the Hessian (Laplacian) of a scalar energy. Naively computing
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Algorithm 3 Initial Guess Path Generation with Iterative Unwrapping

1: Function InitialGuess(x(0),x(L),L1,N)
2: Initialize trajectory by copying boundary pointsL1/2 times on both ends.
3: x=

{
x(0),...,x(0),x(L),...,x(L)

}
4: Form from 1 toN repeat:
5: Duplicate every point along the path: x←

{
x(0),x(0),x(1),x(1)...,x(L)x(L)

}
6: Optimize Truncated Onsager-Machlup action: x←argminxS

trunc
θ (x)

7: Obtain initial guess x=
{
x(0),x(1),...,x(2N∗L1−1),x(L)

}

gradients of this quantity can be prohibitively expensive. We thus employ the Hutchinson trace estimator (Hutchinson,
1989) to accelerate computation. Formally, letH(x) =∇·Fθ(x,τopt) ∈RNp∗d×Np∗d. We approximate the trace ofH as
tr(H(x))≈ 1

N

∑N
i=1v

⊺H(x)v, where v∼N (0,I). By leveraging vector-Jacobian products (VJP), we can compute the trace
without materializingH or its diagonal elements.

In practical terms, the estimator converges rather slowly. Let us denote the approximated trace by T̂r. One can derive the
variance of the estimator as,

V ar(T̂r)=
1

N
Var(vi ·H(x)vi), (99)

which, when vi are distributed identically means the error of the trace estimator decays as,

|T̂r−Tr(H(x))|≤ C√
N
. (100)

WhereC depends on the properties of the matrix. This convergence is rather slow and means that one requires many iterations
to arrive to an accurate value of the trace. In practice, however, we found thatN =15 worked well and led to smooth OM
optimization. This is likely due to the fact that our trajectories were composed of many neighboring points that likely had
similar Laplacian values.

Selection of optimization time. As described in Section 4, the time τopt used to condition the generative model score
function sθ(x,τopt is treated as a hyperparameter. In principle, τopt=0 ensures maximal correspondence with the true atomistic
force field for Boltzmann-distributed data, but consistent with Arts et al. (2023), we find in practice that a small, nonzero value
works better. In Fig. 7, we show the average cosine similarity between the true forces and our pretrained denoising diffusion
model’s score function at various values of τopt for the Müller-Brown and alanine dipeptide systems. Notably, τopt =0 is
not the optimal time conditioning with respect to true force recovery for DDPM.

H. Müller-Brown Potential Experiments
We provide further details on the Müller-Brown experiments in Section 5.1. All experiments were performed on a single
NVIDIA RTX A6000 GPU.

Potential Parameters. The exact form of the potential used is the following:

U(x,y)=−17.3e−0.0039(x−48)2−0.0391(y−8)2

−8.7e−0.0039(x−32)2−0.0391(y−16)2

−14.7e−0.0254(x−24)2+0.043(x−24)(y−32)−0.0254(y−32)2

+1.3e0.00273(x−16)2+0.0023(x−16)(y−24)+0.00273(y−24)2

This generates the potential shown in Fig. 1. Fig. 8 shows OM optimization using the analytical potential as the force field.
Increasing the diffusivity yields paths that cross higher energy barriers, aligning with physical intuition. The results with
the diffusion model in Section 5.1 align with the paths derived from the analytical potential, confirming the validity of the
diffusion model as an approximation of the forces.
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(b) Alanine Dipeptide.

Figure 7. Cosine similarity between true force fields and learned force field from a DDPM’s learned time-dependent score model sθ(·,τopt)
over different diffusion latent times τopt. Results are averaged over all paths and atoms, for a Müller-Brown potential and Alanine Dipeptide.
Notably, τopt =0 is not the optimal time conditioning with respect to true force recovery for DDPM.

Figure 8. OM optimization can be done with an analytical potential. We show paths generated with OM optimization using the analytical
potential with a timestep of 1, a friction of 1, and multiple diffusivities. Higher diffusivities, corresponding to higher temperatures in
physical interpretation, can cross higher energy barriers, aligning with physical intuition.

Data generation. To ensure that the transition region is adequately represented with relatively short simulation times, we
choose initial conditions for the simulations by uniformly sampling the transition path resulting from OM optimization under
the true MB potential. We generate training data by running unbiased, constant-temperature simulations with the MB potential
under Langevin dynamics. We run 1,000 parallel simulations for 1,000 steps, yielding a total of 1 million datapoints. Of
these, 800,000 are used for training, and 200,000 are reserved for validation.

Training. We then train a standard denoising diffusion model on this dataset, with the denoising model parameterized
by a 3-layer MLP with a GELU activation (Hendrycks & Gimpel, 2023) and a hidden dimension of 256. The model is trained
for 10 epochs, with a batch size of 4096 and a learning rate of 1e−3 using the Adam optimizer (Kingma & Ba, 2017).
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Figure 9. OM optimization from a flow matching model. The analogous experiment to Fig. 8, but using a flow matching model trained
on Müller-Brown data, and using the extracted score via Eq. (17) for OM optimization. Since the stochastic encoding/decoding processes
of flow matching models are deterministic and the Müller-Brown setting has a single minimal landscape, the encoding/decoding scheme
in itself cannot generate diversity in this setting. The trajectory is generated at diffusivity D=0.

Energy Laplacian Term. We estimate the Laplacian of the potential energy surface by using the Hutchinson Trace
Estimator (see Section G). As shown in Fig. 10, one random vector (N =1) is enough to capture the local minima and the
energy barrier using the Hutchinson Trace Estimator, so we useN=1 in our experiments. Using more random vectors gives
a less noisy estimate of the Laplacian, trading off accuracy for computational expense.

Figure 10. Hutchinson Trace Estimator accurately estimates the Laplacian. The diffusion model learns an estimate of the Laplacian
that captures the Müller-Brown energy wells. The Hutchinson Trace Estimator efficiently approximates this Laplacian, and the estimate
becomes less noisy when using more random samples.

OM Optimization Details. We pick two points on the potential energy surface (PES) at alternate ends of the transition
barrier as target points for interpolation. The hyperparameters for the OM optimization are given in Table 3

Committor Function and Rate Estimation We provide additional details on the committor function and transition rate
estimation experiment presented in Section 5.1.

According to transition path theory (Vanden-Eijnden et al., 2006), for a transition event between endpoints A,B ∈Ω, the
committor function q(x), captures the probability that a trajectory initiated at x0=x reaches B beforeA:

q(x)=E[hB(xτ ) |x0=x]; τ= argmin
t∈[0,+∞)

{xt∈A∪B :x0=x}, (101)

where hB is the indicator function for reaching state B. The transition state ensemble is formally defined as the level set
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Table 3. Hyperparameters used for OM action optimization on the Müller-Brown potential with diffusion.
Hyperparameter Value

Number of Generated Paths 50
Action Type Full
Initial Guess Time (τinitial) 8
Optimization Time (τopt) 8
Optimization Steps 200
Optimizer Adam
Learning Rate 0.2
Path Length (L) 50
Action Timestep (∆t) 0.01
Action Friction (γ) 0.01
Action Diffusivity (D) 0, 1.0, 4.0

{x∈Ω : q(x)=0.5}. The committor function q(x) can be used to estimate transition rates between a reactant stateA and
product state B using the following formula (Vanden-Eijnden et al., 2006):

k=
kBT

γ

∫
x∈Ω

p(x)|∇xq(x)|2dx=
kBT

γ
⟨|∇xq(x)|2⟩Ω, (102)

where p(x) is the probability density under the Boltzmann distribution and Ω is the configuration space. Thus, with a
differentiable estimate of the committor function, we can compute reaction rates as an ensemble average over samples from
p(x). By applying the Backward Kolmogorov Equation (BKE) and Vainberg’s Theorem, we can show that the committor
function is the solution to the following functional optimization problem (Hasyim et al., 2022):

q(x)=argmin
q̃
L[q̃]=argmin

q̃

1

2
⟨|∇xq̃(x)|2⟩Ω\A∪B, (103)

subject to the boundary conditions q̃(x)=0,x∈∂A;q̃(x)=1,x∈∂B. Thus, we can train a neural network approximation to
the committor function qθ(x) by extremizing the following loss function:

L(θ)=
1

2
⟨|∇xqθ(x)|2⟩Ω\A∪B+λA

1

2
⟨qθ(x)2⟩A+λB

1

2
⟨(1−qθ(x))2⟩B (104)

The first term minimizes the BKE functional, and the second and third terms enforce the boundary conditions with penalty
strengths λA and λB, respectively. The ensemble averages in the loss, which are high-dimensional integrals whose
computational cost grows exponentially with system size, are in practice by replaced by importance-sampled Monte Carlo
averages over a dataset of samplesDtrain={xi}Ni=1 from MD simulations, MCMC, or any enhanced sampling method (such
as OM optimization). Once trained, the neural network committor function qθ(x) can be used to estimate the rate via Eqn
102, substituting qθ(x) in place of q(x), and averaging overDtrain instead of the intractable full ensemble average over Ω.

kθ=
kBT

γ
⟨|∇xqθ(x)|2⟩Ω≈ Êx∼Dtrain |∇xqθ(x)|2 (105)

Notice that the neural network estimate of the ratekθ is equivalent (up to constants) to the BKE functional lossL[q̃]. The primary
challenge with learning the committor function in this way is the issue of sampling: the optimization problem is dominated
by rare events with large values of |∇xqθ(x)|2 (i.e events in the transition region). Therefore, if the transition region(s) are
insufficiently sampled, the training procedure will likely fail to converge, and the estimate rate kθ will be inaccurate. Therefore,
committor and rate estimation using this method reduces to a rare event sampling problem. Inspired by Hasyim et al. (2022), our
idea is to use the transition paths obtained from our OM optimization procedure (shown in Fig. 11a) as samples over which to
minimize Eq. (104). Specifically, for the Müller-Brown potential, we first sampled more points by initiating unbiased Langevin
dynamics simulations along the OM-optimized paths (100 simulations, each 50 ps long, kBT =1), using the diffusion model’s
score function at τ =0 as the force field (we could have also used the analytical forces from the Müller-Brown potential).
This resulted in a collection of pointsDtrain={xi}Ni=1 (shown in Fig. 11b). To account for the biased initial conditions of the
simulations, we reweight the samples inDtrain to the underlying Boltzmann distribution using the reweighting factors

wi=

e−βU(xi)

pOM(xi)

Σi
e−βU(xi)

pOM(xi)

, (106)
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where β= 1
kBT , U(x) is the analytical Müller-Brown potential energy, and pOM is the empirical density ofDtrain, obtained

via binning. We train a 5-layer MLP with a hidden dimension of 64 and a sigmoid activation function to approximate the
committor function. The model is trained for 2000 steps with a batch size of 4096, using an Adam optimizer with a learning
rate of 0.0001 and a cosine decay scheduler. The boundary condition loss weights are λA=λB =20. The final estimated
committor function profile is shown in Fig. 11c. We obtain a transition rate estimate of 1.3×10−5, compared with the true
rate of 5.4×10−5 obtained by solving the Backward Kolmogorov Equation numerically using a finite-element method in
FEniCS (Baratta et al., 2023).

Figure 11. Efficient committor and transition rate estimation on the 2D Müller-Brown potential using OM optimization. (a) Initial
OM optimized transition path with a pretrained denoising diffusion model, using τopt =4 and 100 paths. (b) Subsequent diversification of the
sampled transition paths by performing unbiased Langevin dynamics simulations initiated along the OM optimized paths (100 simulations,
each 10,000 steps, kBT = 1) with the diffusion model’s score function at τ = 0. (c) Predicted values of the committor function q(x),
obtained via minimizing ⟨|∇xqθ(x)|2⟩Ω, where ⟨·⟩Ω denotes an ensemble average over the samples collected in part b) and the committor
function qθ(x) is parameterized by a 5 layer MLP with hidden dimension of 64 and sigmoid activation. (d) True committor function
calculated by solving the Backward Kolmogorov Equation numerically using a finite-element method in FEniCS. The reaction rate k is
computed via the relation k= kBT

γ
⟨|∇xq(x)|2⟩Ω. Our predicted reaction rate is 1.3×10−5, compared with the true rate of 5.38×10−5.

I. Alanine Dipeptide Experiments.
We present additional results on the alanine dipeptide results in Section 5.2.

Details on Traditional Enhanced Sampling Baselines. For MCMC, we report metrics found in (Du et al., 2024) for the fixed-
length, two-way, exact method. We implement metadynamics ourselves with Ramachadran angles as CVs. We use a hill height
of 0.2kcal/mol, a width of 10Å, and a temperature of 300K. We report the number of force field (or generative model score) eval-
uations required per 1,000 step transition path (a batched computation over many samples is considered to be one evaluation).
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Diffusion Model Training. We construct a training dataset from MD simulations of alanine dipeptide at 1000K (a large
temperature is chosen to promote the inclusion of transition regions in the data). We then train a diffusion model on these
samples, using the Graph Transformer architecture described in Section J. We train models for 50,000 steps, using an Adam
optimizer with a learning rate of 0.0004 and a cosine annealing schedule reducing to a minimum learning rate of 0.00001.
We use an exponential moving average with α=0.995. The diffusion model uses 1,000 integration steps at inference time.

OM Optimization Details. We choose a path length ofL=300 and noise/denoise by 300 steps (out of 1,000) to initialize via
Algorithm 2, then conduct OM optimization for 50,000 steps, fixing latent diffusion time τopt=3. γ and ∆t are set to 0.7 and
1e-4 respectively. After OM optimization, we run a short energy minimization procedure for 1400 steps using the Amber ff19SB
classical force-field to relax structures, followed by OM optimization using BFGS algorithm that required around 21,000 steps.

Calculating Free Energy Barriers with Umbrella Sampling. Since we optimized with the truncated OM action Eq. (4)
we obtained minimum energy paths. To compute free energy barriers that are necessary for reaction rate predictions and
comparisons with literature, we employ some sampling to estimate the entropic contribution. On alanine dipeptide, we use
the following procedure to obtain free energy profiles along the OM-optimized paths.

1. Perform umbrella sampling (Torrie & Valleau, 1977): short, 10ps, simulations with a harmonic string potential centered
around the points that define the original minimum energy path. The spring constant used had value of 5 kcal/mol/rad2

2. Fit a collective variable (CV) on the resulting samples. We choose Principal Component Analysis (PCA).

3. Employ the WHAM algorithm (Kumar et al., 1992) to obtain the reweighted potential of mean force, shown in Fig. 3b.

J. Fast-Folding Protein Experiments
We present additional details on the fast-folding protein results in Section 5.3. All experiments were performed on a single
NVIDIA RTX A6000 GPU.

MD Simulations with Diffusion Model To assess the computational efficiency and accuracy of our OM optimization
relative to alternative methods of sampling the configurational space (see Fig. 4a and b), we run Langevin MD simulations
for varying lengths of time (up to 12 ns) using the diffusion model’s score function as an effective force field (Arts et al.,
2023), with a timestep of 2 fs. To ensure a fair comparison, we set the number of parallel MD trajectories to be the same
as the number of transition paths sampled with OM optimization.

Markov State Model Construction. We provide further details on the Markov State Model analysis used to evaluate the qual-
ity of transition paths for the fast-folding protein experiments. We largely follow the procedure described in Jing et al. (2024b).

We perform k-means clustering of the reference MD simulations into 20 clusters using the top 2 Time Independent Component
(TIC) dimensions, which are fit on the pairwise distances and dihedral angles of the protein configurations. We then fit a
Markov State Model (MSM) with a lagtime of 200ps (the frequency at which the simulations were saved) to obtain a transition
probability matrix T between the 20 discrete states in the MSM (e.g, Tj,k = p(st+1= k|st= j), where st and st+1 are the
states at time t and t+1). This constitutes the reference MSM.

To evaluate transition paths sampled from our OM optimization method, we first discretize them under the reference MSM
(i.e represent them as a sequence of cluster indices between 1 and 20). We subsample the paths to be of length 20. From
this, we compute the probability of the path under the reference MSM via:

We also sample 1,000 discrete, reference paths of length L=20 (corresponding to a transition time of 200ps×20= 4ns)
from the reference MSM, conditioned on the start and end states s1 and sL (these are the cluster indices of the transition
endpoints x(0) and x(L)) . This can be achieved by sampling states s2...s19 iteratively as

st+1∼
T

(L−t−1)
:,sL TsL,:

T
(L−t)
st,sL

, (107)

where the superscipt denotes a matrix exponential. See Jing et al. (2024b) for precise details.

With both the reference and generated discretized paths, we compute the following metrics:
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1. Jensen-Shannon Divergence. Consider the probability of each MSM state based on the frequency at which it is visited
in the discretized paths. We compute these probabilities for both the reference and generated paths, and compute the
JSD between the resulting categorical distributions.

2. Transition Negative Log Likelihood. The average negative log likelihood of a transition from one discretized MSM
state to the next, averaged over transitions from all generated paths with nonzero probability under the reference MSM.
Since there areL−1 individual transitions for a path of lengthL, under the Markovian assumption the average negative

log likelihood of a transition is given by− 1
L−1 logP (s1...sL)=−

1
L−1

∑L−1
t=1 log

(
T (L−t−1)
st,sL

·Tst,st+1

T
(L−t)
st,sL

)
.

3. Fraction of Valid Paths. The fraction of generated paths with nonzero probability under the reference MSM.

When considering replicate MD simulations of different lengths (e.g 1 µs, 10 µs), we fit a MSM to the simulations using
the same discretized clusters as were used to fit the reference MSM, and sample 1,000 paths of length L=20 in the same
way described above.

We note that the reported metrics are sensitive to the choice of the MSM trajectory lengthL used for the reference simulations.
VaryingL changes the time horizon of the transition and yields qualitatively different reference paths. Since we choseL=20,
the reported metrics reflect the correspondence of generated paths with true paths of length 4 ns. We also find that in practice,
the optimal choice of ∆t in the OM action (i.e., the choice that yields the best MSM metrics as defined above) results in time
horizons Tp=L∆t (whereL here is the number of path discretization points during OM optimization) considerably smaller
than the reference time horizon of 4 ns (e.g., for the typical choices of L=200, ∆t=1fs, we have Tp =0.2ps). In other
words, OM optimization yields accelerated transition dynamics, because it largely bypasses local/minor fluctuations that
would occur in an actual MD simulation.

Committor Function Analysis. The committor function q(x) (see Section 5.1 for definition) is obtainable as the solution
to the steady-state backward Kolmogorov equation (BKE) (Hasyim et al., 2022), which is generally infeasible to solve
directly or numerically for high-dimensional systems. For the fast-folding proteins, we obtain an empirical estimate of
the committor function by dividing the TIC configuration space of each protein into 1002 discrete bins, and replacing the
expectation in Eq. (101) with an empirical average over trajectories starting from each bin in the reference MD simulations
from Lindorff-Larsen et al. (2011). The resulting committor estimates for the fast-folding proteins are shown in Fig. 12.

Model Architecture and Training. Our denoising diffusion and flow matching generative models are parameterized by
a Graph Transformer architecture identical to what was used in Arts et al. (2023) (in the case of diffusion, we use the exact
pretrained model from Arts et al. (2023)). To summarize, nodes are featurized by the ordering of each residue in the overall
sequence, while edges are featurized by the pairwiseCα-Cα distances. Nodes and edges are then jointly treated as tokens
for input to the Transformer, which updates the token representations. A scalar output is obtained by summing learned linear
projections of the token representations. Both the denoising diffusion vector field ϵθ and the flow model velocity field vθ
are parameterized as the gradient of the final scalar output of the model with respect to the inputCα coordinates.

For denoising diffusion, we use the pretrained models from Arts et al. (2023). For flow matching, we train our own models.
We train models with 3 attention layers for 1 million iterations, using an Adam optimizer with a learning rate of 0.0004 and
a cosine annealing schedule reducing to a minimum learning rate of 0.00001. We use an exponential moving average with
α=0.995. The diffusion models use 1,000 integration steps at inference time, while the flow matching models use 10 steps.

Protein-specific training and architecture hyperparameters are given in Table 4.

Table 4. Architecture and training hyperparameters for diffusion and flow matching generative models on fast-folding proteins.
Hyperparameter Chignolin Trp-cage BBA Villin Protein G

Batch size 512 512 512 512 256
Number of hidden features 64 128 96 128 128

OM Optimization Details. We list all the optimization hyperparameters used to perform OM optimization on the
fast-folding proteins, for both diffusion and flow matching models, in Tables 5 and 6.
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Figure 12. Empirical committor landscapes for fast-folding proteins. The committor is computed by binning the conformational space
into 1002 bins and measuring the frequency at which reference MD trajectories initiated in each bin reach the target state before the start
state. The empirical transition ensemble (shown in black) is defined as the level set {x :0.45≤q(x)≤0.55}.

Table 5. Hyperparameters used for OM action optimization on fast-folding proteins with diffusion models.
Hyperparameter Chignolin Trp-cage BBA Villin Protein G

Number of Generated Paths 8 8 32 4 4
Action Type Truncated Truncated Full Truncated Truncated
Initial Guess Time (τinitial) 250 250 250 250 250
Optimization Time (τopt) 20 15 20 10 10
Optimization Steps 5000 5000 5000 5000 5000
Optimizer Adam Adam SGD SGD SGD
Learning Rate 0.2 0.2 1e-5 1e-5 1e-5
Path Length (L) 200 200 200 200 200
Action Timestep (∆t) 0.001 0.001 0.001 0.005 0.002
Action Friction (γ) 1 1 1 1 1
Action Diffusivity (D) 0 0 1 0 0

Comparison to Transition Paths from Reference MD Simulations. We directly compare our generated paths against
the unbiased MD transition trajectories from the D.E.Shaw reference simulations (Lindorff-Larsen et al., 2011), finding
that our paths sample the correct regions of phase space (Fig. 13).

Visualization of Transition Paths. In Figures 14, 15, and 16, we provide additional visualizations of transition paths
sampled by our diffusion and flow matching models for the fast folding proteins, both in TIC and atomic space.

Transition Paths with Varying Time Horizons We vary the time horizon Tp over which OM optimization is performed,
and increase the timestep ∆t to maintain the same number of discretization pointsL for computational efficiency. As shown
in Fig. 17, paths with varying time horizons explore different parts of the transition state ensemble (black), with longer horizon
paths spending more time near the bottom-right energy well corresponding to the folded state, and shorter paths taking more
direct paths between the endpoints.

Training without Transition Regions. We provide additional details on the data-starved experiment described in Section
5.3. Transition states are challenging to sample, and therefore may not be abundant in reference MD simulations or structural
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Table 6. Hyperparameters used for OM action optimization on fast-folding proteins with flow matching models.
Hyperparameter Chignolin Trp-cage BBA Villin Protein G

Number of Generated Paths 8 8 32 4 4
Action Type Truncated Truncated Full Truncated Truncated
Initial Guess Time (τinitial) 7 7 7 7 7
Optimization Time (τopt) 0.5 0.5 0.5 0.5 0.5
Optimization Steps 5000 5000 5000 5000 5000
Optimizer Adam Adam SGD SGD SGD
Learning Rate 0.2 0.2 1e-4 1e-4 1e-4
Path Length (L) 200 200 200 200 200
Action Timestep (∆t) 0.0008 0.0005 0.001 0.001 0.001
Action Friction (γ) 1 1 1 1 1
Action Diffusivity (D) 0 0 1 0 0

databases, which typically serve as training datasets for generative models. To simulate the scenario in which the underlying
dataset is not exhaustive and under-represents the rare, transition regions, we remove 99% of the datapoints for which
0.1≤q(x)≤0.9, where q(x) is the empirical committor value (described in Committor Function Analysis). Thus, most
of the remaining datapoints have committor values close to 0 or 1, meaning they initiate trajectories which stay in their
respective local energy minima without transitioning across the path. For Chignolin, Trp-Cage, and BBA, the subsampling
procedure removes 1.4%, 68%, and 85% of the datapoints, respectively. We train diffusion models on these subsampled
datasets using the same hyperparameters described earlier, followed by OM optimization between the same endpoints, using
the same hyperparameters as used before. As shown in Fig. 18, the produced transition paths are similar to those shown
in Figures 4a and 16. The paths still pass through the expected transition state regions (denoted in black), despite having
seen them at a much lower frequency during training.

K. Tetrapeptide Experiments
We provide further details on the tetrapeptide experiments from Section 5.4. All experiments were performed on a single
NVIDIA RTX A6000 GPU.

Heavy-Atom Representation. Following Jing et al. (2024b), we use a heavy-atom representation of the tetrapeptides
(that is, hydrogens are excluded from the representation). The terminal oxygen (OXT) of the C-terminus is also excluded.
This results in tetrapeptides with at most 56 atoms each.

Training. We train a flow matching model, parameterized by a Graph Transformer with all the same architecture and
training hyperparameters used for the fast-folding proteins (Section J), with the only differences being the inclusion of
learnable atom type embeddings and the use of padding tokens due to the variable number of atoms in each tetrapeptide.
The atom embeddings are concatenated to the residue ordering and the flow timestep to form the node features. We train
on a dataset of 3109 tetrapeptides simulated in (Jing et al., 2024b), taking 10,000 evenly spaced configurations from the
simulations for each tetrapeptide. We use the same optimizer and learning rate scheduler as with the fast folding proteins
(J), training for 100,000 steps with a batch size of 2048.

OM Optimization on Held-Out Proteins. We perform OM optimization on 100 held-out tetrapeptide sequences not seen
during training (using the same splits as in (Jing et al., 2024b)). As in Jing et al. (2024b), we choose endpoints for the transition
paths by picking the pair of states from the MSM with the lowest, non-zero probability flux between them, ensuring that
the transitions are challenging but feasible to find.

The optimization hyperparameters are given in Table 7.

Energy Minimization. After OM optimization, we add the missing OXT and hydrogen atoms (at neutral pH) back to the
structures using PDBFixer (https://github.com/openmm/pdbfixer). We then perform up to 200 steps of energy
minimization in OpenMM in vacuum with the amber14 force field using L-BFGS. We restrict the Kabsch-aligned RMSD
between the initial and final structures to 1 Angstrom to ensure that only very minor structural changes occur.

Evaluation. We use the same Markov State Model-based evaluation pipeline described in Section J for the fast-folding
proteins. Following (Jing et al., 2024b), the TIC dimensions are fit on the backbone and sidechain torsion angles. The reported
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Figure 13. Sample trajectories from reference, unbiased fast-folding protein MD simulations from D.E.Shaw (left) and paths sampled
via OM optimization (right) overlaid on TICA plots with committor values shaded from blue to red. We observe strong agreement in the
TICA space, with our OM paths traversing the same transition regions and exhibiting similar structural transitions. While the OM paths are
smoother/do not contain the same fluctuations found in unbiased MD trajectories, they capture the same essential features. OM optimization
somewhat oversamples transition paths which avoid energy wells. This could be improved by increasing the time horizon of the transition
to accommodate time spent in kinetic traps.

metrics are averaged over the 100 held-out test proteins.

Visualization of Sampled Paths. We provide TIC visualizations of sampled transition paths for selected tetrapeptides
alongside paths from the reference MSM in Fig. 19.
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Figure 14. Visualization of sampled transition paths from OM optimization with pretrained diffusion models for fast-folding proteins.

Table 7. Hyperparameters used for OM action optimization on tetrapeptides with flow matching models.
Hyperparameter Value

Number of Generated Paths 16
Action Type Truncated
Initial Guess Time 7
Optimization Time 0.5
Optimization Steps 250
Optimizer Adam
Learning Rate 0.2
Path Length (L) 100
Action Timestep (∆t) 0.0001
Action Friction (γ) 1
Action Diffusivity (D) 0
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Figure 15. Visualization of sampled transition paths from OM optimization with pretrained flow matching models for fast-folding proteins.

Figure 16. Visualization of sampled fast-folding protein transition paths in TIC space.
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Figure 17. Varying time horizons of path sampling. OM-optimized transition paths for Trp-Cage using physical values for hyperparameters
controlling relative contributions of path and force norm terms in the OM action. Here we set γ = 1ps−1, and vary the transition time
horizon over Tp∈{0.2,0.4,1,2}ps and the timestep over ∆t∈{0.001,0.002,0.005,0.01}ps, which fixes L=200 discretization points.

Figure 18. Training datasets and sampled transition paths resulting from removing intermediate committor function values. (Top
Row) Original training datasets. Middle Row Datasets resulting from removing 99% of datapoints with committor values (obtained
empirically) between 0.1 and 0.9. Bottom row. Transition paths resulting from OM optimization with a diffusion model trained on the
subsampled datasets.
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Figure 19. Sampled transition paths from OM optimization on selected, held-out tetrapeptide sequences. The sampled paths are
diverse and intuitively pass through high density regions in the TIC free energy landscape.
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