
Under review as a conference paper at ICLR 2023

σREPARAM: STABLE TRANSFORMER TRAINING WITH
SPECTRAL REPARAMETRIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training stability is of great importance to Transformers. In this work, we inves-
tigate the training dynamics of Transformers by examining the evolution of the
attention layers. In particular, we track the “attention entropy” for each attention
head during the course of training, which is a proxy of the attention’s sharpness. We
observe a common, non monotonic evolution of attention entropy across different
settings: the attention entropy first quickly decreases in the initial phase of training,
followed by quickly increasing, and finally entering a long stable phase. While
the exact shape can be affected by hyperparameters such as warmup, initialization,
learning rate etc., we found that there is a close correlation between the minima
of attention entropy and the model’s training stability. To this end, we propose a
simple and efficient solution dubbed σReparam, where we reparametrize all linear
layers with Spectral Normalization and an additional learned scalar. We provide
a lower bound on the attention entropy as a function of the spectral norms of the
query and key projections, which suggests that small attention entropy can be ob-
tained with large spectral norms. σReparam decouples the growth rate of a weight
matrix’s spectral norm from its dimensionality, which we verify empirically. We
conduct experiments with σReparam on image classification, image self supervised
learning, automatic speech recognition and language modeling tasks. We show
that σReparam provides great stability and robustness with respect to the choice of
hyperparameters.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are state-of-the-art models in many application domains. However,
despite their empirical success and wide adoption, great care often needs to be taken in order to
achieve good training stability and convergence. In the original paper (Vaswani et al., 2017), residual
connections and Layer Normalizations (LNs) (Ba et al., 2016) are extensively used for each Attention
and MLP block (specifically, in the “Post Norm” fashion). There has since been various works
attempting to promote better training stability and robustness. For example, the “Pre Norm” (Radford
et al., 2019) scheme has gained wide popularity, where one moves the placement of LNs to the
beginning of each residual block. Others have argued that it is important to properly condition the
residual connections. Bachlechner et al. (2021) proposes to initialize the residual connections to zero
to promoter better signal propagation. Zhang et al. (2018); Huang et al. (2020) remove LNs with
carefully designed initialization schemes.

In this work, we study the training instability of Transformers from the lens of training dynamics. We
start by monitoring the average entropy of the attention heads (by treating each attention head as a
multinomial distribution) over all query positions and examples. Interestingly, the average attention
entropy often evolves in a pattern consisting of three phases. In the beginning, attention entropy starts
high (corresponding to uniform attention scores) and quickly drops to a small value; This is then
followed by a second stage where it quickly increases to a relatively high entropy regime; Lastly
the attention entropy curve stabilizes and smoothly evolves to convergence. See the top left plot of
Figure 1 for an illustration, which is a Vision Transformer (Touvron et al., 2021) (ViT) trained on
ImageNet classification, using well optimized hyper parameters.

Empirically, we have found that the attention entropy is directly correlated with the model’s stability
and convergence. In particular, small attention entropy reached in the initial phase often causes slow

1

Under review as a conference paper at ICLR 2023

0 10 20 30 40 50 60 70 80

Training Epochs

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

L
os

s

0

1

2

3

4

5

E
nt

ro
py

Baseline

Training loss
Attn entropy layer 1
Attn entropy layer 6
Attn entropy layer 11

0 10 20 30 40 50 60 70 80

Training Epochs

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

L
os

s

0

1

2

3

4

5

E
nt

ro
py

0.2× Learning Rate

Training loss
Attn entropy layer 1
Attn entropy layer 6
Attn entropy layer 11

0 10 20 30 40 50 60 70 80

Training Epochs

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

L
os

s

0

1

2

3

4

5

E
nt

ro
py

2× Learning Rate Warmup

Training loss
Attn entropy layer 1
Attn entropy layer 6
Attn entropy layer 11

0 10 20 30 40 50

Training Epochs

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

L
os

s

0

1

2

3

4

5

E
nt

ro
py

2× Learning Rate

Training loss
Attn entropy layer 1
Attn entropy layer 6
Attn entropy layer 11

Figure 1: The training loss curves of ViT-B on ImageNet, together with the attention entropy for
three layers. From top left to bottom right: baseline with default hyper parameters from Touvron et al.
(2021); 0.2× learning rate; 2× warmup epochs; 2× learning rate. We see a close correlation between
the dip of the attention entropy and the convergence and stability of the training loss.

convergence, fluctuations in training loss and, in the worst case, divergence. This is shown in Figure
1 where we vary the learning rate and warmup epochs of the baseline ViT model. We see that both
decreased the learning rate and increased warmup epochs provide smoothing effects to the attention
entropy curves, which in turn yield lower training losses. On the other hand, increasing learning
rate brings a detrimental impact on training where the attention entropy collapses to near zero and
training diverges. We denote the rapid dip of attention entropy to a near zero value and its resulting
pathological optimization dynamics as “entropy collapse”.

The remaining questions are: 1) How do we get rid of entropy collapse? 2) Can we improve training
stability by doing so? We answer them by showing that attention entropy is closely related to the
spectral norms of the query and key projections. In particular, we show a lower bound of the attention
entropy, which suggests that large spectral norms of the projections can more easily lead to entropy
collapse. We then provide a simple fix, dubbed σReparam, which reparameterizes all weight matrices
by sequentially applying Spectral Normalization (Miyato et al., 2018) and a learned multiplicative
scalar. Intuitively, σReparam decouples the update of the spectral norms of weights from their
dimensionality, which allows them to update smoothly in a controlled way. Also note that σReparam
does not change the model space, which allows one to learn an arbitrarily expressive model.

We validate σReparam on 4 tasks: image classification, image self supervised learning, automatic
speech recognition and language modelling. We show that σReparam effectively slows down the
growth of each layer’s spectral norms, and as a result, their attention entropy curves are greatly
smoothed. This allows us to achieve great robustness with respect to the choice of hyper parameters.
In certain cases, we are able to remove Layer Norms and still achieve competitive results.

2 RELATED WORKS

Transformers have relied heavily on LNs to achieve training stability. Besides the popular Post Norm
and Pre Norm configurations, other variants have been proposed (Wang et al., 2022; Shleifer et al.,

2

Under review as a conference paper at ICLR 2023

2021). σReparam does not rely on LN and can even work in the absence of it, which avoids the
computational over head of explicit activation normalization.

There have also been numerous attempts to design better Transformer initialization schemes, includ-
ing Zhang et al. (2018); Huang et al. (2020); Yang et al. (2022); Bachlechner et al. (2021). σReparam
is an orthogonal approach as it addresses the training dynamics of attention layers, which makes it
compatible with standard initialization methods and provides robust performance.

σReparam is a special case of weight reparameterization, which has found wide adoption in Deep
Learning. Weight Norm (WN) (Salimans & Kingma, 2016) is a well known example of such methods,
but its effectiveness in Transformers is limited. In ConvNets, simple additive weight reparameter-
ization (Ding et al., 2021) has been demonstrated useful in speeding up training convergence. To
the best of our knowledge, σReparam is the first simple reparamterization technique that provides
competitive performance with well optimized baseline models.

3 METHOD

3.1 ATTENTION ENTROPY

At the core of Transformers is dot product attention. Let X ∈ RT×d denote an input sequence to an
attention layer (we assume self attention for simplicity of presentation), where T, d are the number
of tokens and the token dimension, respectively; and let WK ,WQ ∈ Rd×na ,WV ∈ Rd×nv denote
the key, query and value matrices. A simple attention layer then computes Att(X) = AXWV where
A = ψ(a), a = XWKW

⊤
QX

⊤ and ψ is the row-wise softmax function. We define the attention
entropy of a row i of A by Ent(Ai) = −∑T

j=1Ai,j log(Ai,j). We also overload the notation and let

Ent(A) = 1
T

∑T
i=1 Ent(Ai) denote the average attention entropy of A. As shown in Figure 1, the

attention entropy (and the entropy collapse phenomenon) is a strong indicator of training stability of
Transformers. Our goal is to alleviate the entropy collapse problem and achieve a smooth evolution
of the attention entropy through training.

We next investigate the properties of attention entropy. We show in the the next theorem that Ent(A)
is directly connected to the Spectral norm (the largest singular value) of WKW

⊤
Q .

Theorem 3.1 (Attention entropy lower bound). Assume without loss of generality ∥X∥2 ≤ 1, and let
spectral norm σ = ∥WKW

⊤
Q ∥2. Then it holds that:

Ent(Ai) ≥ log

(
1 + (T − 1)e

−σ
√

T
T−1

)
+
σ
√
T (T − 1)e

−σ
√

T
T−1

1 + (T − 1)e
−σ

√
T

T−1

(1)

Moreover, there exists inputs X and weights WK ,WQ for which the lower bound in Eq. (1) is tight.

Therefore, for large σ, T , the minimum attainable entropy behaves like Ω(Tσe−σ). We note that
the bound on the entropy in Theorem 3.1 is tight in a sense that it is achievable for some inputs X .
Moreover, the typical Frobenious (L2) regularization would not ensure a small σ (a small Frobenious
norm is much more restrictive than a small Spectral norm), hence it would not be as effective in
preventing an “entropy collapse”. Proofs for Theorem3.1 and the following Proposition are provided
in Appendix A.

3.2 σREPARAM

We then present σReparam, a method to re-parameterize the weights of a linear layer with:

Ŵ =
γ

σ(W)
W, (2)

where σ(W) ∈ R is the spectral norm of W and γ ∈ R is a learnable parameter, initialized to 1.
In practice, σ(W) can be computed via power iteration (Mises & Pollaczek-Geiringer, 1929) as in
Spectral Normalization (SN) (Miyato et al., 2018), see Algorithm 1 for a sketch implementation.
Note that σReparam brings little extra overhead as the power iteration mainly consists of two matrix
vector products and is only performed on the parameters rather than activations. During inference,
one can compute Ŵ once and freeze it, which means that it has the same cost as a regular linear layer.

3

Under review as a conference paper at ICLR 2023

Table 1: Supervised Image Classification on ImageNet1k. The B/L refer to ViT-B/16 and ViT-L/16
variants respectively. SN corresponds to the Spectral Norm baseline without the learnable scalar.
Also note that the WN configuration leads to immediate divergence without using Layer Norm, and
here we only report the result with WN + LN.

DeiT (B) σReparam (B) SN (B) WN (B) MAE (B/L) σReparam (B/L)

Top-1 81.8% 82.2% 69.81% 78.25% 82.1% / 81.5% 81.88% / 82.41%
EMA Top-1 – – 68.41% 76.95% 82.3% / 82.6% 82.37% / 82.48%
Training Epochs 300 300 250 250 300 250 / 300
Layer Norm Yes No No Yes Yes No
SGD No No Yes (LARS) No No Yes (LARS)
Cosine Schedule Yes Yes No No Yes No / Yes
LR Warmup Yes Yes No No Yes No
Weight Decay Yes Yes No No Yes No

Why σReparam? Unlike the standard SN, σReparam introduces an additional multiplier γ which
explicitly controls the SN of the weights, and there is no explicit pressure to regularize the SN. The
additional multiplier is necessary to avoid restricting the capacity of the network, and we find that
training and overall performance is significantly degraded in its absence. Since the representational
capacity of the layer remains unchanged, it is not immediately clear why σReparam would effectively
regularize the SN of the weights. While a full theoretical characterization is beyond the scope of this
paper, we identify a property of adaptive optimizers which, if left unchecked, causes the spectral
norm of weight matrices to grow rapidly for large weight matrices. To illustrate this, we adopt
common assumptions in stochastic optimization, and model the stochastic gradients at some point
in the optimization by g = µ + ϵ ∈ Rw×w, where µ is the mean and ϵ is a random variable with
E[ϵ] = 0,E[ϵ2] = n2 ∈ Rw×w. A typical Adam optimizer update attempts to approximate the
following ideal update: ∆ = E[g]√

E[g2]
. The following proposition lower bounds the spectral norm of

the ideal update σ(∆):

Proposition 3.2. It holds that:

σ(∆) ≥ √
w

√√√√1− 1

w2

w∑
i,j=1

n2i,j
µ2
i,j + n2i,j

(3)

Note that the noise second moment n2 is typically in the order of µ2, hence Eq. (3) indicates that the
spectral norm of the ideal update should be large, growing linearly with

√
w. Moreover, for large

batch sizes we would have n2 ≪ 1, resulting in σ(∆) ∼ √
w 1. While such a large spectral norm

could be offset by a proper learning rate adjustment, this would be counter productive since 1) a small
learning rate typically induces inferior performance, and 2) architectures with layers of varying sizes,
such as attention layers, would require a per layer learning rate tuning. In contrast, σReparam avoids
this issue since the spectral norm of each layer is controlled by a single parameter γ, hence the size
of its update does not scale with w and is uniform across layers.

4 EXPERIMENTS

4.1 SUPERVISED IMAGE CLASSIFICATION

Improved robustness. We first start from a well tuned recipe with ViT-B on ImageNet-1k (Touvron
et al., 2021), and vary its hyper parameters in the grid [base lr ∈ {5e − 4, 1e − 3}, batch size ∈
{1024, 2048}, warmup epochs ∈ {0, 5}]. 7/8 configurations lead to divergence except for the
default [5e− 4, 2048, 5] hyper parameter. We next apply σReparam to all the linear layers (including
the initial patch embedding), and removed all the LayerNorm instances. All configurations in the
same grid search converge with an average top-1 accuracy of 81.4% (max 82.2%, shown in Table 1).
This suggests improved robustness with respect to hyperparameters.

1This would be exact for full batch optimization.

4

Under review as a conference paper at ICLR 2023

Simplified recipe. σReparam also enables a simplified framework for training ViT-B and ViT-L
models, in contrast to state-of-the art ImageNet-1k ViT training protocols such as the fully supervised
MAE recipe (He et al., 2022) and DeiT (Touvron et al., 2021), (Table 1). In the case of ViT-B models,
we are able to train for a shorter duration, remove all LayerNorm layers, remove LR warmup, remove
cosine scheduling (requiring only a simple step schedule at 210 epochs) and use no weight decay.
Furthermore, σReparam enables SGD training via LARS (You et al., 2017) (with momentum 0.9) –
something not possible with traditional ViT training protocols (Touvron et al., 2021; He et al., 2022).
These simplifications also have the added benefit of reducing GPU memory overhead2. For the ViT-L
model we relax the LR schedule back to cosine and match the baseline model’s training interval.
Both models use FP32 precision on the attention operands and keep mixed precision training for the
rest of the network. The full set of hyperparameters is available in Appendix E.

20

40

60

80

Te
st

To
p

1
(%

)

σReparam
MAE Baseline
SN

2

3

4

5

α
(1

) –
en

tr
op

y
(n

at
s)

0 50 100 150 200 250 300

2

4

6

8

10

α
(1

)
W

σ
–n

or
m

Training Epochs

Figure 2: Test performance, attention entropy, and largest singular value of attention weights of a supervised
σReparam ViT-B/16 alongside supervised MAE ViT-B/16 and SN baselines. Best (solid line) and worst (dashed
line) trials of each method are presented. The MAE ViT-B/16 presents a more constrained attention entropy
in contrast to the DeiT formulation from Figure 1 due to the longer warmup, lower learning rate and stronger
weight decay.

To further understand the effect of σReparam, we track both the attention entropy, and the largest
singular value of the attention weight matrix over the course of training. In Figure 2, σReparam
maintains a lower largest attention weight singular value and presents a higher, but monotonically
decreasing attention entropy throughout training. As previously discussed, a smaller bounded singular
value helps with stable training, whereas a higher attention entropy encourages exploration of more
diverse solutions. This is reinforced by the accelerated performance observed in Test Top 1 and the
50 epoch reduction in training time for the σReparam ViT-B/16 shown in Figure 2.

4.2 SELF-SUPERVISED TRAINING OF VISUAL REPRESENTATIONS

In computer vision, self-supervised learning (SSL) has been effective in enabling efficient training on
downstream tasks (Assran et al., 2022). Most of this progress has been made using convolutional
architectures, while works using ViTs often require specialized training recipes (Caron et al., 2021).

Recently, it was found that ViTs suffer from training instabilities in SSL tasks Chen et al. (2021).
These instabilities can be remedied through a combination of frozen patch embedders, initialization

2We observe a 8.2% memory reduction in full FP32 (for a 1:1 comparison) with a batch size of 86 per GPU.

5

Under review as a conference paper at ICLR 2023

Table 2: (top) Best SimCLR ImageNet1k trial top 1 linear probing performance training for 300 epochs.
σReparam + LN yields the highest performing run, with Frozen Patcher performing competitively. (bottom)
Configuration of the variants used in our stability analysis. The MoCo v3 weight initialization and patch
initialization scheme are described in Chen et al. (2021). For full hyperparameters, see Table 6 of Appendix C.1.

Baseline Frozen Patcher σReparam σReparam + LN

Top 1 @ 300 (ours) 72.4 74.4 73.7 74.5

Weight Init MoCo v3 MoCo v3 trunc norm(.02) trunc norm(.02)
Patcher Init MoCo v3 MoCo v3 trunc norm(.02) trunc norm(.02)
Frozen Patcher No Yes No No
σReparam No No Yes Yes
Layer Norm Yes Yes No Yes

0

20

40

60

Te
st

To
p

1
(%

)

0

1

2

3

4

5

α
(1

) –
en

tr
op

y
(n

at
s)

0

20

40

60

80

α
(1

)
W

σ
–n

or
m

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

α
(1

)
W

gr
ad
` ∞

–n
or

m Baseline
Frozen Patcher
σReparam + LN
σReparam

Training Epochs

(a) Statistics of best and worst trials per method.

0

20

40

60
Baseline

0

20

40

60
Frozen Patcher

0

20

40

60
σReparam + LN

0 20 40 60 80 100
0

20

40

60
σReparam

Training Epochs

Te
st

To
p

1
(%

)

(b) Stability over 10 trials per method.

Figure 3: Ten trials of SimCLR for each method on ImageNet1k with 40 epochs of learning rate warmup.
(a) Linear probe performance for the best (solid line) and worst (dashed line) trials of each method, against
relevant metrics from the first attention layer (top to bottom): attention entropy, the spectral norm of the attention
weights, and the ℓ∞–gradient norm of the attention weights. We see that the Frozen Patcher method functions as
intended, regulating its gradient norm, and protecting it from the large gradient norms inducing instability in
Baseline. We also observe a second form of instability during training: the growing spectral norm leads to a
poorly behaved attention mechanism, entropy collapse, and a drop in performance as described in Section 3.
This affects Baseline, as well as Frozen Patcher, as neither method gives specific protection against this second
type of instability (solid and dashed red, and dashed green lines). Finally, we see that σReparam with and
without layer normalization regulate both the gradient norms, as well as the spectral norms, giving defense
against both types of instability. (b) Linear probe performance of every trial. We see that σReparam is the most
stable method. σReparam + LN is also quite stable. In the case where it experiences instabilities, we see that it is
able to recover much quicker than Baseline and Frozen Patcher. This is due to the regularization of the spectral
norm which 1) prevents any arising instability pushing the model too far away from the current solution, and 2)
keeps the attention mechanism useful, such that gradients are available for any required correction.

schemes, and longer learning rate warmups; however, there is an open question whether a general
solution providing stable SSL ViT training exists Chen et al. (2021).

Here, we demonstrate that σReparam is a ViT SSL stabilizer. Taking SimCLR as our SSL method,
we investigate four variants. Baseline and Frozen Patcher were studied in Chen et al. (2021), whereas
σReparam and σReparam + LN are our solution. These methods are detailed in Table 2 and their
full hyperparameters given in Table 6 of Appendix C.1.

6

Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10

Run rank

40

45

50

55

60

65

70

Te
st

To
p

1
(%

)

Baseline
Frozen Patcher
σReparam + LN
σReparam

Figure 4: Linear probe performance on Ima-
geNet1k at the end of training over 10 trials for
each method. Trials are ordered by decreasing per-
formance, with run rank 1 (10) corresponding to the
best (worst) trial. Frozen Patcher and σReparam +
LN produce the best individual runs, with σReparam
marginally lower. σReparam + LN and σReparam
are the methods most reliably giving good perfor-
mance, with Baseline and Frozen Patcher each sus-
ceptible to at least one instability type.

We observe two types of instability. The first, as observed in Chen et al. (2021), is induced by large
gradient norms in early layers. The second, described in Section 3, relates to entropy collapse. We
find that Frozen Patcher protects against the first type, but is still susceptible to the second. σReparam,
however, can protect against both types of instability, yielding more reliable training (see Figure 3).

As noted in Chen et al. (2021), instabilities reduce final performance. We show instability impact on
performance in Figure 4. The methods with the best performing individual runs are Frozen Patcher
and σReparam + LN, whereas the most stable methods are σReparam + LN and σReparam.

Our main stability experiments use 40 epochs of learning rate warmup, matching the setting of Chen
et al. (2021). Using σReparam, as in the supervised setting, gives training stability even at the lower
learning rate warmup of 10 epochs. For more details, see Appendix C.2.

Finally, we look at the performance attainable when training for a longer duration of 300 epochs in
Table 2. The best performing method run is given by with σReparam + LN, with Frozen Patcher
performing almost as well, and both outperforming the reference SimCLR result (Chen et al., 2021).

Ultimately, we see while σReparam produces the lowest degree of instability, the best overall method
for stable training of SimCLR ViTs is σReparam + LN, producing both the highest ImageNet1k
linear probe performance at 100 epochs (69.6 %) and 300 epochs (74.5 %) epochs, as well as very
stable training over many trails, both at long and short learning rate warmup.

4.3 SPEECH

In this section we focus on experiments for automatic speech recognition (ASR).

Data All experiments are performed on the subset of 100h audio paired with transcriptions (train-
clean-100) of LibriSpeech dataset Panayotov et al. (2015). The standard LibriSpeech validation sets
(dev-clean and dev-other) are used to tune all hyper parameters, as well as to select the best models.
Test sets (test-clean and test-other) are used only to report final word error rate (WER) performance
without an external language model. We keep the original 16kHz sampling rate and compute log-mel
filterbanks with 80 coefficients for a 25ms sliding window, strided by 10ms, later normalized to zero
mean and unit variance per input sequence.

Acoustic Models We are using current, to the best of our knowledge, state-of-the-art model on
100h of LibriSpeech (Likhomanenko et al., 2021a). The model consists of 1D convolution to perform
striding, Transformer encoder with post-LN and a final linear layer to map to the output number of
tokens3. The model is trained with Connectionist Temporal Classification (Graves et al., 2006) loss.
To speed up the model training (2-3x) and decrease memory usage we are using CAPE positional
embeddings (Likhomanenko et al., 2021c) instead of relative embeddings Shaw et al. (2018).

Data augmentation We use SpecAugment (Park et al., 2019) activated right at the beginning of
training. We use two frequency masks with frequency mask parameter F = 30, ten time masks with
maximum time-mask ratio p = 0.1 and time mask parameter T = 50; time warping is not used.

Training We use Adagrad (Duchi et al., 2011) if not specified otherwise, and LR decaying by 2
each time the WER reaches a plateau on the validation. We use dynamic batching of 240s audio per
GPU and train with tensor cores fp32 on 8 Ampere A100 (40GB) GPUs for 350-500k updates. No

3The token set consists of the 26 English alphabet letters augmented with the apostrophe and a word boundary
token.

7

Under review as a conference paper at ICLR 2023

Table 3: Comparison between different normalizations and our re-parametrization for speech domain:
training loss and word error rate are reported for the best models.

post-LN pre-LN pre-LN SN SN WN WN σReparam σReparam
(same) (optimized) +post-LN +post-LN +post-LN

Train Loss 37.7 35.3 37.2 160.4 120.3 35.6 35.4 37.5 34.9
dev-clean WER 5.9 6.9 6.2 42.6 20.3 7.0 6.3 6.4 6.1
dev-other WER 17.7 21.3 19.1 62.9 42.7 22.3 19.4 20.5 17.8
test-clean WER 6.2 7.1 6.3 42.4 20.4 7.3 6.7 6.8 6.4
test-other WER 17.8 21.6 19.3 63.6 43.6 22.6 19.5 21.0 18.0

weight decay is used. Default warmup is set to 64k for the baselines and varied for different models.
The default LR is 0.03 and also optimized across models. We also apply gradient clipping of 1.

4.3.1 TRAINING STABILITY, ROBUSTNESS AND GENERALIZATION

First, we experiment with stability of training for the baselines using both “Pre Norm” (pre-LN) and
“Post Norm” (post-LN) architectures. If we vary LR, warmup, and gradient clipping, all post-LN
experiments either diverge or no training is observed. At the same time, pre-LN is stable: we can
reduce warmup from 64k to 16k, increase learning rate from 0.03 to 0.5, and obtain better results
than before. While pre-LN is more stable than post-LN, it generalizes worse: validation WER is
worse while training loss is lower, see Table 3. When we switch to σReparam we observe the same
stability as for pre-LN, Figure 5, while having better generalization than not optimized pre-LN.
We are not able to match the post-LN results until we combine post-LN together with σReparam,
which allows us to achieve similar performance on the dev and test sets and lower training loss. In
Figure 5 both σReparam and σReparam with post-LN demonstrate robustness with respect to training
hyperparameters. We also compare with Spectral Norm (SN) where γ is set to 1 and is not learnable
and WN baselines. Both SN and WN perform poor compared to σReparam, see Table 3.

In prior works it was reported that post-LN can be impossible to train with very deep architectures,
see e.g. Liu et al. (2020b;a). We reproduced similar results: if we increase the encoder size to 2x then
post-LN does not train, while pre-LN works out of the box and improves over the smaller architecture.
We applied the same settings to σReparam and combination of σReparm and post-LN: for both cases
out of the box models train well and achieve similar results as pre-Norm. This confirms σReparam’s
ability for stable training even with post-LN.

18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5
dev-other WER

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Le
ar

ni
ng

 R
at

e

18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0
dev-other WER

10000

20000

30000

40000

50000

60000

W
ar

m
up

18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0
dev-other WER

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

St
d

of
 in

iti
al

iza
tio

n

(kq, v) + post-LN
(kq, v)
(kqv) + post-LN
(kqv)

Figure 5: Robustness of σReparam with respect to different hyperparameters: learning rate (left),
warmup (middle) and initialization std value (right).

4.3.2 TRAINING WITH SGD

Prior works report different problems training transformers with SGD (see e.g. (Li et al., 2022)).
First, we experimented with the baselines, pre-LN and post-LN and observed similar issues. It is
hard to find hyperparameters that enable the model to train. Following vision experiments we switch
to the LARS (You et al., 2017) (with momentum 0.9) optimizer, and are able to train pre-LN and
post-LN by carefully tuning the LR (the rest stays the same, including gradient clipping) which is
varied from 0.1 to 1.5, see Table 4. First, we observe that post-LN is more unstable (many LRs are
diverging or not training) and gives significantly worse results than pre-LN. Second, pre-LN is still
behind the baseline that uses an adaptive optimizer. However, if we switch to σReparam (key, queries
and values are represented as one matrix) we observe stable training with respect to LR changes,

8

Under review as a conference paper at ICLR 2023

Table 4: Comparison between different normalizations and our re-parametrization for speech domain
when no warmup and LARS optimizer are used: training loss and word error rate are reported for the
best models. σReparam performs re-parametrization for joint matrix for key, queries and values in
self-attention. DV denotes model divergence: we are not able to train SN with post-LN configuration.

post-LN pre-LN SN SN WN WN σReparam σReparam
+post-LN +post-LN +post-LN

Train Loss 64.5 29.4 160.0 DV 59.1 63.2 51.1 34.2
dev-clean WER 8.1 5.9 49.8 DV 8.3 7.1 7.2 5.8
dev-other WER 25.0 18.9 69.6 DV 25.9 22.0 22.8 18.1
test-clean WER 8.6 6.4 49.4 DV 8.7 7.5 7.5 6.2
test-other WER 25.6 19.2 70.9 DV 26.4 22.1 23.2 18.7

and combined together with post-LN it achieves similar performance to the best results from Table 3
while keeping the train loss low4.

4.4 LANGUAGE

Setup. We use the WikiText-103 language model (LM) benchmark, which consists of 103M tokens
sampled from English Wikipedia (Merity et al., 2017). Our baseline is a highly optimized Transformer
(Baevski & Auli, 2019) with 32 layers, 8 heads, 128 head dimensions, 1024 model dimensions, 4096
fully connected dimensions and post LayerNorm. The word embedding and softmax matrices are tied
(Press & Wolf, 2017). We partition the training data into non-overlapping blocks of 512 contiguous
tokens and train the model to autoregressively predict each token (Baevski & Auli, 2019). Validation
and test perplexity is measured by predicting the last 256 words out of the input of 512 consecutive
words to avoid evaluating tokens in the beginning with limited context (early token curse, Press et al.,
2021).

Table 5: WikiText-103 language modeling results in perplexity.

Model PPL↓
train dev. test

σReparam w/ weight decay 16.5 17.9 18.6
σReparam w/o weight decay 12.9 18.5 19.3

Baseline Transformer Baevski & Auli (2019) 15.4 18.1 18.7

Results. We do not experience training instability with the baseline Transformer, likely because the
masked attention in autoregressive models makes entropy collapse less likely to occur. Nonetheless,
we experimented with σReparam to test its generality on a different modality/problem. We apply
σReparam to all linear layers of the Transformer while removing all LayerNorms, and search for
learning rate in a grid [1, 1.5, 2, 2.5] and weight decay in the grid [1e-3, 1e-4, 0]. All other
hyperparameters are kept the same as the baseline. The results are shown in Table 5. We see that
even in the absence of LayerNorm, σReparam shows strong performance in convergence and dev/test
performance. With a mild weight decay, σReparam also outperforms the baseline wrt the dev/test
PPL.

5 CONCLUSION

We analyze the training stability of Transformers from the lens of the attention entropy. We show
that training instability or divergence is often accompanied by the entropy collapse phenomenon, and
provide a simple fix named σReparam. We demonstrate over a wide set of benchmarks, domains,
and training methodologies, that σReparam provides great stability and robustness, often leading to
simplified model design and/or better performance.

4For the separate reparametrization for (keys, queries) and values we observe less stable training with LARS
and no warmup relative to reparametrizing them together.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent,
Armand Joulin, Michael G. Rabbat, and Nicolas Ballas. Masked siamese networks for label-
efficient learning. CoRR, abs/2204.07141, 2022. doi: 10.48550/arXiv.2204.07141. URL https:
//doi.org/10.48550/arXiv.2204.07141.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian McAuley.
Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial Intelligence,
pp. 1352–1361. PMLR, 2021.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In
Proc. of ICLR, 2019. URL https://arxiv.org/abs/1809.10853.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021, pp. 9630–9640. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00951. URL https:
//doi.org/10.1109/ICCV48922.2021.00951.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9640–9649, 2021.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg:
Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13733–13742, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings
of the 23rd international conference on Machine learning, pp. 369–376, 2006.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimization
through better initialization. In International Conference on Machine Learning, pp. 4475–4483.
PMLR, 2020.

Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank Reddi, and Sanjiv Kumar. Robust training
of neural networks using scale invariant architectures. In International Conference on Machine
Learning, pp. 12656–12684. PMLR, 2022.

Tatiana Likhomanenko, Qiantong Xu, Jacob Kahn, Gabriel Synnaeve, and Ronan Collobert. slimipl:
Language-model-free iterative pseudo-labeling. Proc. Interspeech, 2021a.

Tatiana Likhomanenko, Qiantong Xu, Vineel Pratap, Paden Tomasello, Jacob Kahn, Gilad Avidov,
Ronan Collobert, and Gabriel Synnaeve. Rethinking evaluation in asr: Are our models robust
enough? Proc. Interspeech, 2021b.

Tatiana Likhomanenko, Qiantong Xu, Gabriel Synnaeve, Ronan Collobert, and Alex Rogozhnikov.
Cape: Encoding relative positions with continuous augmented positional embeddings. Advances
in Neural Information Processing Systems, 34, 2021c.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the difficulty
of training transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2020), 2020a.

10

https://doi.org/10.48550/arXiv.2204.07141
https://doi.org/10.48550/arXiv.2204.07141
https://arxiv.org/abs/1809.10853
https://doi.org/10.1109/ICCV48922.2021.00951
https://doi.org/10.1109/ICCV48922.2021.00951

Under review as a conference paper at ICLR 2023

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao. Very deep transformers for neural machine
translation. In arXiv:2008.07772 [cs], 2020b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In Proc. of ICLR, 2017. URL https://arxiv.org/abs/1609.07843.

RV Mises and Hilda Pollaczek-Geiringer. Praktische verfahren der gleichungsauflösung. ZAMM-
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik, 9(1):58–77, 1929.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5206–5210. IEEE, 2015.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
Quoc V Le. Specaugment: A simple data augmentation method for automatic speech recognition.
Proc. Interspeech 2019, pp. 2613–2617, 2019.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proc. of
EACL, 2017. URL https://arxiv.org/abs/1608.05859.

Ofir Press, Noah A. Smith, and Mike Lewis. Shortformer: Better language modeling using shorter
inputs, 2021. URL https://arxiv.org/abs/2012.15832.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 464–468,
2018.

Sam Shleifer, Jason Weston, and Myle Ott. Normformer: Improved transformer pretraining with
extra normalization. arXiv preprint arXiv:2110.09456, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:
Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. In International Conference on Learning Representations, 2018.

11

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1608.05859
https://arxiv.org/abs/2012.15832

Under review as a conference paper at ICLR 2023

A PROOF OF THEOREM 3.1 AND PROPOSITION 3.2

Theorem 3.1 (Attention entropy lower bound). Assume without loss of generality ∥X∥2 ≤ 1, and let
spectral norm σ = ∥WKW

⊤
Q ∥2. Then it holds that:

Ent(Ai) ≥ log

(
1 + (T − 1)e

−σ
√

T
T−1

)
+
σ
√
T (T − 1)e

−σ
√

T
T−1

1 + (T − 1)e
−σ

√
T

T−1

(1)

Moreover, there exists inputs X and weights WK ,WQ for which the lower bound in Eq. (1) is tight.

Proof. WLOG let u ∈ RT denote the j’th row of a. From the condition that ∥X∥2 ≤ 1 it holds that
∥u∥ ≤ σ. Let p = p(u) denote the softmax probabilities given by:

pi =
eui

Z
(4)

where Z =
∑T

j=1 e
uj is the partition function. The entropy given p(u) is then:

Ent(u) = −
T∑

i=1

eui

Z
log(

eui

Z
) = −

T∑
i=1

uie
ui

Z
+ log(Z). (5)

We wish to solve the following constrained minimization problem:

min
u

Ent(u) s.t ∥u∥2 ≤ σ2 (6)

where D > 0. Define the lagrangian:

L(u, λ) = Ent(u) +
1

2
λ(∥u∥2 − σ2) (7)

To find all saddle points, we solve the system of equations:

∂L(u, λ)
∂u

= 0,
∂L(u, λ)
∂λ

= 0 (8)

Giving rise to the following set of equations:

∀1≤k≤T , λuk =

T∑
i=1

eui

Z
(δi,k − euk

Z
)(1 + log(

eui

Z
)) (9)

= pk(log(pk) + Ent(u)) (10)

∥u∥2 = σ2 (11)

As a first step, assume that for the minimizer u⋆ of Eq. (6) there exists an index k such that u⋆k = 0.
Using Eq. (7):

0 = log(pk) + Ent(u) = −
T∑

i=1

pi log(
pi
pk

) = −
T∑

i=1

pi log(e
ui) = −

T∑
i=1

piui = −Eu (12)

From the first set of equations we arrive at the condition:

∀uj ,uj′ ̸=0, pj
log(pj) + Ent(u)

uj
= pj′

log(pj′) + Ent(u)
uj′

(13)

−→ pj +
Eu
uj

= pj′ +
Eu
uj′

(14)

−→ pj = pj′ (15)

This however implies that u⋆1 = u⋆2 = ... = u⋆T = 0, hence a contradiction to Eq. (9).
Now, assuming ∀k uk ̸= 0, we have that:

∀uj ̸=uj′

euj − euj′

1
uj′

− 1
uj

= ZEu = const (16)

12

Under review as a conference paper at ICLR 2023

The monotonicity of the LHS of Eq. (16) implies that u contains only 2 distinct values. WLOG

assume u⋆1 = α,∀i>1, u
⋆
i = −

√
D2−α2

T−1 . Then we have:

eα − e−
√

σ2−α2

T−1

− 1√
σ2−α2

T−1

− 1
α

= αeα + (1− T)

√
σ2 − α2

1− T
e−

√
σ2−α2

T−1 (17)

With a solution:

α = σ

√
1− 1

T
, β = −σ

√
1

T (T − 1)
(18)

With the corresponding entropy:

Ent(u⋆) = log
(
1 + (T − 1)e

−σ
√

T
T−1

)
+
σ
√
T (T − 1)e

−σ
√

T
T−1

1 + (T − 1)e
−σ

√
T

T−1

(19)

Proposition A.1. It holds that:

σ(∆) ≥ √
w

√√√√1− 1

w2

w∑
i,j=1

n2i,j
µ2
i,j + n2i,j

(3)

Proof. We have that:

σ(∆) ≥ 1√
w

√
Trace(∆⊤∆) =

1√
w

√√√√ w∑
i,j=1

µ2
i,j

µ2
i,j + n2i,j

=
√
w

√√√√1− 1

w2

w∑
i,j=1

n2i,j
µ2
i,j + n2i,j

(20)

B IMPLEMENTATION OF σREPARAM

To compute spectral norm of the current matrix we use the power method as approximation method
to speed up computations. See Algorithm 1 for a sketch implementation.

Algorithm 1 Pseudo code of σReparam in a PyTorch-like style.

parameters. W: weight matrix, shape (d, c); gamma: the learned spectral norm, shape (1,)
buffers. u: shape (d,), v: shape (c,), the left and right singular vectors of W
if init: # initialize u, v as random unit vectors and gamma to 1

u = randn(d)
u = u / u.norm(dim=0)
v = randn(c)
v = v / v.norm(dim=0)
gamma = ones(1)

if training: # if in the training mode, perform one step of power iteration first
u = W.mv(v)
u = u / u.norm(dim=0)
v = W.T.mv(u)
v = v / v.norm(dim=0)

sigma = einsum(’d,dc,c->’, u, W, v)
W_hat = gamma / sigma * W # the effective spectral norm of W_hat would be gamma

13

Under review as a conference paper at ICLR 2023

Table 6: Default hyperparameters of the variants of SimCLR used in our stability analysis. The MoCo v3
weight initialization and patch initialization scheme are described in Chen et al. (2021). SinCos refers to stacked
2D SinCos positional encodings Vaswani et al. (2017). The table is divided vertically into hyperparameters that
differ across methods (top) and hyperparameters shared across methods (bottom).

Baseline Frozen Patcher σReparam σReparam + LN

σReparam No No Yes Yes
Frozen Patcher No Yes No No
Layer Norm Yes Yes No Yes
Patcher Init MoCo v3 MoCo v3 trunc norm(.02) trunc norm(.02)
Weight Init MoCo v3 MoCo v3 trunc norm(.02) trunc norm(.02)

Architecture ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16
Batch Size 4096 4096 4096 4096
ColorJitter Strength 0.5 0.5 0.5 0.5
Learning Rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Learning Rate Sched Cosine Cosine Cosine Cosine
Learning Rate Warmup 40 Epochs 40 Epochs 40 Epochs 40 Epochs
Optimizer AdamW AdamW AdamW AdamW
Positional Encoding SinCos SinCos SinCos SinCos
Weight Decay 0.1 0.1 0.1 0.1

C SELF-SUPERVISED TRAINING OF VISUAL REPRESENTATIONS

C.1 HYPERPARAMETERS

Here we outline the hyperparameters of our experimental setup for SimCLR+ViT stability. For the
variations, alongside their default hyperparameters see Table 6. These hyperparameters are used in
all SimCLR runs unless stated otherwise.

Augmentations We use SimCLR augmentations throughout, however, we run at half ColorJit-
ter strength, equal to the ColorJitter strength of MoCo v3. For completeness, we provide our
training augmentation here, our testing augmentation is the standard resize, center crop and
normalize. Half color strength corresponds to color jitter strength = 0.5. Setting
color jitter strength = 1.0 recovers the base SimCLR training augmentations.
[

transforms.RandomResizedCrop(
image_size_override, scale=crop_scale, interpolation=Image.BICUBIC

),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(

[
transforms.ColorJitter(

brightness=0.8 * color_jitter_strength,
contrast=0.8 * color_jitter_strength,
saturation=0.8 * color_jitter_strength,
hue=0.2 * color_jitter_strength,

)
],
p=0.8,

),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([M.GaussianBlur([0.1, 2.0])], p=0.5),
transforms.ToTensor(),
IMAGENET_NORMALIZE,

]

C.2 REDUCED LEARNING RATE WARMUP

In Chen et al. (2021) the authors noted that the learning rate warmup period needed extending from
its typical ImageNet1k default of 10 epochs to 40 epochs, enhancing the stability of the method.
We observe that using σReparam, either with or without Layer Norm, we are able to achieve stable
SimCLR+ViT training at the original warmup period of 10 epochs (see Figure 6).

As with our analysis at the longer warmup period, we also investigate the performance distribution
across the trials, giving a sense of how instability impacts the final model (see Figure 6).

14

Under review as a conference paper at ICLR 2023

0

20

40

60

Te
st

To
p

1
(%

)
Baseline
Frozen Patcher
σReparam + LN
σReparam (0.01)

0

1

2

3

4

5

α
(1

) –
en

tr
op

y
(n

at
s)

100

101

α
(1

)
W

σ
–n

or
m

0 20 40 60 80 100

10−4

10−3

10−2

10−1

α
(1

)
W

gr
ad
` ∞

–n
or

m

Training Epochs

(a) Statistics of best and worst trials per method.

0

20

40

60
Baseline

0

20

40

60
Frozen Patcher

0

20

40

60
σReparam + LN

0 20 40 60 80 100
0

20

40

60
σReparam (0.01)

Training Epochs
Te

st
To

p
1

(%
)

(b) Stability over 8 trials per method.

Figure 6: Eight trials of SimCLR for each method on ImageNet1k with 10 epochs of learning rate warmup.
(a) Linear probe performance for the best (solid line) and worst (dshed line) trials of each method, against
relevant metrics from the first attention layer (top to bottom): attention entropy, the spectral norm of the attention
weights, and the ℓ∞–gradient norm of the attention weights. Our observations are consistent with those of the
longer warmup of 40 epochs investigated in Figure 3, except that here, Frozen Patcher is less able to tame
early layer gradient norms than it was in the longer warmup (dashed green line). (b) Linear probe performance
of every trial. Observations are again consistent with the longer warmup; σReparam with and without Layer
Norm are the most stable methods. σReparam (0.01) refers to a σReparam with an initialization scheme of
trunc normal(.01) instead of trunc normal(.02), with the former showing some signs of instability.
Understanding the source of this instability will be the subject of future work. σReparam + LN uses the default
trunc normal(.02).

1 2 3 4 5 6 7 8

Run rank

20

30

40

50

60

70

Te
st

To
p

1
(%

)

Baseline
Frozen Patcher
σReparam + LN
σReparam (0.01)

Figure 7: Linear probe performance on ImageNet1k
at the end of training over 8 trials for each method.
Trials are ordered by decreasing performance, with
run rank 1 (8) corresponding to the best (worst) trial.
Frozen Patcher produce the best individual, with all
other methods marginally lower. σReparam + LN
and σReparam are the methods most reliably giving
good performance, with Baseline and Frozen Patcher
each susceptible to at least one instability type.

D SPEECH EXPERIMENTS

D.1 ABLATIONS ON THE INITIALIZATION FOR σREPARAM

First, we found that it is better to initialize γ as 1 and not compute it from the initialized kernel as
there could be different values for spectral norm depending on the initialization of the kernel. In this
case we observed values greater than 1 for the spectral norm which cause divergence / no training.
From practical point it is native to keep γ = 1. We compared different initializations for kernel and
we didn’t see any differences in initialization (e.g. uniform, normal). The only thing influences is the
std of the initialization pdf which influences also effective LR. In speech we found that training is
robust with respect to changes of std (Figure 5), however larger std performs better and sweet spot is
0.2-0.3.

15

Under review as a conference paper at ICLR 2023

D.2 FULL LIBRISPEECH EXPERIMENTS

We also evaluate σReparam for large scale data in speech domain: we take now the whole LibriSpeech
as the training data. We consider again Adagrad optimizer with two schedules on learning rate: cosine
(with 1 phase of 500k iterations) and step-wise decaying as before for train-clean-100 experiments.
We use exactly the same architecture and hyper-parameters as in Table 9 except dropout and layer
drop which are decreased to 0.1 to decrease model regularization. For all models we tune only
learning rate. Keys and queries spectral reparametrization is done separately from values, also we
use learning rate on gamma to be twice bigger than the main learning rate. Our experiments as for
train-clean-100 show, see Tables 7 and 8, that σReparam accompanied with post-LN can match
the post-LN baseline, while having robustness to the hyper-parameter changes (e.g. allows larger
learning rate values without any issues).

Table 7: Comparison between different normalizations and our re-parametrization for speech domain
on full LibriSpeech with step-wise LR schedule: word error rate are reported for the best models.

post-LN post-LN pre-LN pre-LN σReparam σReparam
(Likhomanenko et al., 2021b) (same) (optimized) +post-LN

dev-clean WER 2.6 2.6 2.9 2.6 2.7 2.8
dev-other WER 7.0 6.9 7.7 6.8 7.2 7.1
test-clean WER 2.7 2.7 3.0 2.8 2.9 2.9
test-other WER 6.9 6.9 7.8 6.8 7.3 7.0

Table 8: Comparison between different normalizations and our re-parametrization for speech domain
on full LibriSpeech with cosine LR schedule: word error rate are reported for the best models.

post-LN pre-LN σReparam σReparam
(same) +post-LN

dev-clean WER 2.6 2.6 2.8 2.7
dev-other WER 7.1 6.9 7.6 7.3
test-clean WER 2.9 2.8 3.0 2.9
test-other WER 7.2 7.0 7.7 7.2

D.3 ABLATIONS ON SEPARATE σREPARAM FOR KEY, QUERIES AND VALUES

We found that in the end they behaves more or less similar while separate normalization allows to
achieve lower training loss due to larger capacity ability which provides potential to scale. However,
for training with LARS it is better to have joint re-parametrization to achieve stable training and
comparable results with adaptive optimizers, see Section 4.3.2.

D.4 HYPERPARAMETERS

We present hyperparameters for our speech experiments in Table 9 and speech experiments with
LARS in Table 10.

16

Under review as a conference paper at ICLR 2023

Table 9: Training hyperparameter comparison for speech domain, Table 3.

post-LN pre-LN σReparam σReparam + post-LN

dev-clean 5.9 6.2 6.4 6.1
dev-other 17.7 19.1 20.5 17.8

Weight Init uniform(.036) uniform(.036) trunc normal(.1) trunc normal(.1)
σReparam No No Yes Yes
Layer Norm Yes Yes No Yes
Base LR 0.03 0.5 1 1
Optimizer Adagrad
LR schedule step(330k, 0.5)
Batch size 240s x 8
Weight decay none
Warmup steps 64k
Training steps 500k
Dropout 0.3
Stoch. Depth 0.3
SpecAugment F = 30, T = 50, p = 0.1, fmask = 2, tmask = 10
Grad. clip 1

Table 10: Training hyperparameter comparison for speech domain trained with LARS, Table 4.

post-LN pre-LN σReparam σReparam + post-LN

dev-clean 8.1 5.9 7.2 5.8
dev-other 25 18.9 22.8 18.1

Weight Init uniform(.036) uniform(.036) trunc normal(.1) trunc normal(.1)
σReparam No No Yes Yes
Layer Norm Yes Yes No Yes
Base LR 0.1 0.5 1 0.3
Optimizer LARS
Momentum 0.9
LR schedule step(300k, 0.5)
Batch size 240s x 8
Weight decay none
Warmup steps 0k
Training steps 500k
Dropout 0.3
Stoch. Depth 0.3
SpecAugment F = 30, T = 50, p = 0.1, fmask = 2, tmask = 10
Grad. clip 1

E HYPERPARAMETERS FOR SUPERVISED VISION

As mentioned in Section 4.1 we compare σReparam against DeiT (Touvron et al., 2021) and the
MAE (He et al., 2022) (Appendix A.2) supervised training recipes for vision transformers. In Table
11 we highlight the differences between DeiT, MAE supervised and σReparam. σReparam presents a
simplified and stable training objective for ViT-B variants. In Table 12 we present the same comparing
the ViT-L variants. There is no exact 1:1 comparison for a ViT-L with the DeiT training framework
so we only compare against the MAE supervised model.

17

Under review as a conference paper at ICLR 2023

Table 11: Training hyper-parameter comparison for supervised ViT-B/16.

DeiT MAE σReparam

Top-1 81.8% 82.1% 81.88%
EMA Top-1 - 82.3% 82.37%

Weight Init trunc normal(.02) trunc normal(.02) trunc normal(.02)
Patcher Init trunc normal(.02) trunc normal(.02) trunc normal(.02)
σReparam No No Yes
Layer Norm Yes Yes No
Optimizer AdamW(β1=0.9, β2=0.95) AdamW(β1=0.9, β2=0.95) LARS(mom=0.9)
Base LR 5× 10−4 1× 10−4 0.1
LR schedule cosine cosine step(210, 0.1)
Batch size 1024 4096 4096
Weight decay 0.05 0.3 0.0
Warmup epochs 5 20 0
Training epochs 300 300 250
Label smoothing 0.1 0.1 0.1
Stoch. Depth 0.1 0.1 0.1
Repeated Aug. 2 2 2
RandAug 9/0.5 9/0.5 9/0.5
Mixup prob. 0.8 0.8 0.8
Cutmix prob. 1.0 1.0 1.0
Erasing prob. 0.25 0.25 0.25

Table 12: Training hyperparameter comparison for supervised ViT-L/16.

MAE σReparam

Top-1 81.5% 82.41%
EMA Top-1 82.6% 82.48%

Weight Init trunc normal(.02) trunc normal(.01)
Patcher Init trunc normal(.02) trunc normal(.0025)
σReparam No Yes
Layer Norm Yes No
Optimizer AdamW(β1=0.9, β2=0.95) LARS(mom=0.9)
Base LR 1× 10−4 0.15
LR schedule cosine cosine
Batch size 4096 4096
Weight decay 0.3 0.0
Warmup epochs 20 0
Training epochs 300 300
Label smoothing 0.1 0.1
Stoch. Depth 0.2 0.2
Repeated Aug. 2 2
RandAug 9/0.5 9/0.5
Mixup prob. 0.8 0.8
Cutmix prob. 1.0 1.0
Erasing prob. 0.25 0.25

18

	Introduction
	Related Works
	Method
	Attention Entropy
	Reparam

	Experiments
	Supervised Image Classification
	Self-supervised training of visual representations
	Speech
	Training stability, robustness and generalization
	Training with SGD

	Language

	Conclusion
	Proof of thm:bound and prop
	Implementation of Reparam
	Self-supervised training of visual representations
	Hyperparameters
	Reduced learning rate warmup

	Speech Experiments
	Ablations on the initialization for Reparam
	Full LibriSpeech Experiments
	Ablations on separate Reparam for key, queries and values
	Hyperparameters

	Hyperparameters for supervised vision

