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Figure 1. We propose VTimeCoT, a Visual Time Chain-of-Thought framework for video temporal grounding and reasoning. VTimeCoT
constructs cross-modality reasoning across both video and text, which enables the MLLM to utilize progress bar tools to annotate the time
progression and highlight the key relevant segments to answer complex temporal questions.

Abstract

In recent years, video question answering based on multi-
modal large language models (MLLM) has garnered con-
siderable attention, due to the benefits from the substantial
advancements in LLMs. However, these models have a no-
table deficiency in the domains of video temporal grounding
and reasoning, posing challenges to the development of ef-
fective real-world video understanding systems. Inspired by
how humans use video players to interact with the progress
bar for video comprehension, we introduce VIimeCoT, a
simple yet effective training-free framework, designed for
high-performance video grounding and reasoning. The pro-
posed framework incorporates two novel visual tools of
the progress bar: a plug-and-play progress bar integration
tool and a high-efficiency highlighting tool. In addition,
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to address the limitations of conventional text-based chain-
of-thought (CoT) approaches, we introduce a visuotempo-
ral CoT process that integrates cross-modality reasoning
across both video and text. Our approach demonstrates sig-
nificant performance improvements on both Qwen2VL-7B
and GPT4o baselines in tasks of video temporal ground-
ing and reasoning-based question answering. Finally, we
showcase that the proposed framework achieves a compo-
sitional and interpretable reasoning process. Project page:
https://vtimecot.github.io.

1. Introduction

Video understanding is a longstanding problem in computer
vision and has attracted more attention with the emergence
of large language models (LLM) [5, 17, 40, 43]. Video QA
is a representative task reflecting the video reasoning abil-



ity. Given that videos typically contain numerous events oc-
curring at different time points, accurately answering ques-
tions is a highly challenging task. Recently, some end-
to-end video understanding models based on multimodal
large language models (MLLM) [20, 23, 26, 27, 56, 58]
have been proposed to address video question-answering
tasks, exhibiting remarkable capabilities. However, despite
their ability to generate seemingly plausible results, these
methods have been shown to exhibit a notable deficiency
in temporal grounding [15] and fail to provide a temporal-
grounded reasoning process.

With the advent of tool usage capabilities in LLMs, sev-
eral agent-based video question-answering methods have
been proposed [9, 33, 37, 44, 53], enabling step-by-step
video understanding. These methods prompt the LLMs to
sequentially reason and invoke external tool models (e.g.,
object detection and captioning models) to collect textual
clues, ultimately inferring the final answer. This, so called,
chain-of-thought approach offers significant potential, as it
is compositional and training-free, demonstrating impres-
sive zero-shot performance. However, such methods pre-
dominantly rely on language and captions as intermedi-
aries, limiting their ability to directly capture the visuotem-
poral dynamics inherent in videos, especially in the case
of long videos. Inspired by the time-progress bar com-
monly used in video players during human interactions, we
identify it as an intuitive tool for grounding time and en-
hancing video comprehension. In contrast to written lan-
guage, the progress bar, along with the concurrent visual
content, directly conveys the concept of temporal progres-
sion. The video progress bar can represent temporal rela-
tionships through sequential positioning or more abstract
temporal dependencies.

In this work, we propose a simple yet effective frame-
work that empowers multimodal LLMs to utilize a video
progress bar to construct a Visual Time Chain-of-Thought
(VTimeCoT), facilitating long video temporal grounding
and reasoning. Inspired by LLMs coupled with visual pro-
gramming [12, 39], we propose enabling multimodal LLMs
to generate code that overlays a progress bar on the video.
First, we construct a frame-sync progress bar integration
tool that can be invoked by the MLLM, which generates
a progress bar displayed at the bottom of the video, mark-
ing the progress and annotating the timestamps on each
frame. This is naturally adapted to long video and enables
the MLLM to perceive the speed of temporal progress di-
rectly from the annotated video frames, adapting seamlessly
to any frame-per-second (FPS) sampling rate. Second, to
guide the model’s attention on key relevant temporal seg-
ments, we propose a training-free and long-video-adaptive
highlighting tool for the progress bar based on video-text
similarity. Specifically, we leverage a robust video-text
foundation model to identify the time intervals with the

top-k highest similarity and highlight them on the visual
progress bar. Finally, we prompt the multimodal LLM to
invoke the progress bar tools within a visuotemporal chain-
of-thought process that integrates text, program, and video
annotated with the progress bar to facilitate long video rea-
soning. At each thought step, the model performs cross-
modality reasoning and determines whether to dynamically
update the video memory while progressively inferring the
answer. As shown in Fig. 1, to determine how many times

a cat crosses a stream in the input video, the model first

invokes tools to generate a progress bar, identifying the

key timestamps corresponding to ‘streams the cat crossed’.

By analyzing the progress bar annotated frames, the model

infers the exact timing of each crossing event and accu-

rately determines the number of crossings. This approach
enhances the model’s temporal reasoning capabilities by
seamlessly integrating temporal-grounded visual evidence.

We demonstrate the effectiveness of the proposed frame-
work across a wide range of video temporal grounding
and video-QA tasks. The proposed method consistently
outperforms the baseline models, Qwen2VL and GPT-40
in temporal grounding tasks, achieving significant perfor-
mance gains with an average IoU improvement of 6.58%
and 16.83% over GPT-40 across Charades-STA [11] and
QVHighlights [19] benchmarks. Similarly, VTimeCoT sig-
nificantly improves the accuracy of questions related to
temporal retrieval, event counting, and event ordering in
reasoning-based question-answering tasks. Specifically,
the proposed method consistently surpasses state-of-the-art
methods across Vript-RR [50] and VideoMME [10] bench-
marks.

To sum up, we present VTimeCoT, a training-free model
for temporal reasoning based on the visual progress bar.
Specifically:

* We propose the first, to the best of our knowledge, vi-
sual time chain-of-thought framework for video temporal
grounding and reasoning. In contrast to previous methods
that rely solely on textual reasoning, we leverage the vi-
sual progress bar as a medium, making a significant step
towards real-world video understanding systems.

* The proposed reasoning framework leverages two novel
tools from video progress bar integration and highlight-
ing, enabling the MLLM to accurately perceive the times-
tamp of each frame and identify key temporal segments.

* The proposed method enhances the performance of
MLLMs by a large margin in video temporal ground-
ing and reasoning tasks through a training-free approach,
while also demonstrating strong reasoning capabilities.

2. Related Work

Multimodal LLM for Video. In contrast with traditional
video understanding such as obeject detection, segmen-
tation and pose estimation [34, 36, 41, 57], recent mul-
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timodal LLMs enable understanding through natural lan-
guage. End-to-end video multimodal LLMs are trained
on large-scale datasets, to align visual inputs with the lan-
guage modality and integrate with large language models.
Video-ChatGPT [31] leveraged CLIP [35] to extract spa-
tial and temporal features from videos and integrate them
with Vicuna [7]. Video-LLaMA [56] proposed a video Q-
Former designed to enhance the modeling of temporal vari-
ations. Subsequently, a series of video multimodal LLM
variants [6, 20, 22, 24-26, 48] have introduced advance-
ments in enhancing video representation, expanding data
scale, and refining training methods, leading to improved
video question-answering performance. However, these
end-to-end models operate as black boxes, directly gener-
ating answers without an explicit video reasoning process.
In contrast, we propose a video understanding framework
that incorporates a structured reasoning process.

Programming and Tool Usage of LLM. Due to the strong
code-generation capabilities of LLMs, several works [8, 12,
14, 29, 39, 52] attempted to prompt LLMs to call compo-
sitional visual tools to address visual question-answering
tasks. VisProg [12] and ViperGPT [39] defined a vari-
ety of image foundation functions (e.g., object detection)
and prompted the LLMs to generate code that invokes
these functions for answering questions. MM-REACT [52]
tackled visual tasks through multi-step reasoning guided
by text prompts to the LLM, where each step involves
thought and calling visual tools. More recently, several
studies [9, 33, 37, 44, 53] proposed tool-usage frameworks
tailored for video understanding. By designing specialized
video tools and calling steps, these approaches extract tex-
tual cues from videos to facilitate question answering. In
contrast to the aforementioned works that solely rely on text
as the reasoning medium, we introduce a visual progress
bar, enabling more effective integration of visual and tem-
poral cues.

Visual Prompt for Multimodal LLM. LLMs have been
shown to enhance their understanding capabilities by incor-
porating overlaid visual prompts on images (e.g., circles,
keypoints) [3, 4, 13, 21, 32, 38, 46, 47, 51]. SoM [51] pro-
posed to utilize SAM [18] segmentation model to overlay
mask colors and labels on images as input of GPT-4V [2],
demonstrating strong zero-shot performance on vision-
grounding tasks. Hu et al. [13] introduced a chain-of-
thought framework combined with visual prompts to draw
markers on images during reasoning, effectively enhancing
the image understanding performance of MLLMs. How-
ever, all previous methods are limited to spatial prompts,
limiting their understanding capabilities. In this work,
we propose to design the progress bar as visual-temporal
prompts to facilitate temporal reasoning.

3. Method

We propose VTimeCoT, a general framework that em-
powers multimodal large language models using a visual
progress bar as an intermediate reasoning step, facilitating
temporal grounding and reasoning. Fig. 2 illustrates how
our approach works. Given a raw video and a question, our
method generates a chain-of-thought and invokes a set of
tools for progress bar integration. By utilizing the visual
cues from the progress bar as a medium, the model progres-
sively infers the final answer.

3.1. Visuotemporal Chain-of-Thought

In video understanding, particularly for long videos, exist-
ing MLLM methods can only provide static answers, which
limits the model’s ability to focus on critical scenes and
results in significant shortcomings in real-world settings.
Since the MLLMs fail to identify key scenes within a sin-
gle forward pass, it is necessary to interact with the video
to progressively infer the answer. Therefore, we propose a
framework based on interactive mechanisms and dynamic
video memory.

Our framework tackles video grounding and reasoning
tasks through an iterative interaction with the MLLM, built
upon a tool set leveraging the progress bar. Given a tex-
tual question and a video as input, VTimeCoT generates
a sequence of thoughts and actions to dynamically update
the video memory. By manipulating the video, it acquires
the necessary information to answer the question. In this
process, the MLLM reasons by plotting and analyzing the
progress bar, seamlessly integrating both textual and visual
reasoning into a Visuotemporal Chain-of-Thought. As illus-
trated in Fig. 2, VTimeCoT first provides the MLLM with
a formatted prompt for initialization and executes actions
at each time step t. The tool set includes the <progress
bar>, <highlight>, <cut>, etc. The <cut>tool is uti-
lized to trim specific segments when the MLLM determines
that the video is too long to find the required information.
The pseudo-code is presented in Algorithm 1, where V and
LL represent the modalities of video and language, respec-
tively. In Algorithm 1, p serves as a parser to retrieve spe-
cific sub-strings by keyword, and c is a code builder that
integrates the toolset library and generated code.
Initialization Prompt. To enable the MLLM to perform
step-by-step reasoning and a structured output, we fol-
low [13] and construct a set of initialization prompts.
These prompts define the specific output structure (format-
ted by keywords of “THOUGHT’, ‘ACTION’, and ‘TER-
MINATE’) for each step and declare the Python tools that
the model should invoke. The initialization prompts, along
with the question and video frames, are then fed into the
MLLM, triggering the iterative loop.

Thought. During this step, the model analyzes the his-
torical context and video memory to generate its reasoning
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Figure 2. Overview of our method. On the left, we demonstrate how the framework iteratively generates thoughts and actions, which
dynamically updates the video memory with an overlaid progress bar for reasoning. On the right, we illustrate two novel tools that integrate

the frame-sync visual progress bar and highlight key moments.

for the current step. It determines whether a direct answer
can be provided directly in this step or if tool assistance is
needed, and if so, which tools should be invoked.

Action. Following the thought step, the model generates an
executable Python script utilizing the given tool functions.
The framework then builds the code with the toolset library
and executes the script to manipulate the video frames.
Dynamic Video Memory. Using the manipulated video
frames we subsequently update the frames in the video
memory. The updated context with the manipulated video
frames is then fed into the MLLM to proceed with the next
step of thought.

To terminate the loop, the model determines at each
step whether to cease reasoning and generate the “TERMI-
NATE’ keyword to end. To prevent excessively prolonged
reasoning, we impose a maximum step limit, enforcing ter-
mination at step 7.

3.2. Frame-Sync Visual Progress Bar Integration

Enabling MLLM to perceive the precise timestamp of each
frame is a significant challenge and an unresolved problem,
due to the diverse temporal sampling rates during MLLM
training and inference without time. Although recent ap-
proaches [15, 16] have attempted to address this issue by
incorporating temporal positional embeddings before the
video encoder and introducing temporal-grounding training
tasks, their flexibility is limited due to the scarcity of spe-
cific data and the need for fine-tuning. This issue is partic-
ularly pronounced in long videos, where the token limita-
tions of MLLMs prevent them from accurately perceiving
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Algorithm 1 Visuotemporal Chain-of-Thought
Imput: {V,Q||V € V,Q e L}; T € L;

MLLM : V,IL — LL; Toolset : {T1,...,T,} €L
s« 0;Vp <V
2. Hy +{I,Q} > Initialization prompt and query
3: while true do
4y, < MLLM (V,, H,)
5. THOUGHT,, ACTION,, TERMINATE, < p(ys)
6: if not TERMINATE, then
7: Cs < ¢(ACTION;, Toolset) > Build code
8: Vig1 < Cs(Vy) > Update video
9: Hopq < {Hs,ys} > Update history
10: else
11: return y, > Respond final answer
12: end if
13: end while

the timestamp of each frame.

Inspired by visual programming paradigms [12, 39], we
propose a simple yet effective method to empower MLLMs
to perceive the precise timestamp of each frame, by generat-
ing the video progress bar. Leveraging the code generation
capabilities of MLLMs, our approach prompts the MLLM
to invoke Python plotting tools and use their universal OCR
and shape understanding capabilities to perceive time, with-
out any additional training requirements. Specifically, given
araw video V. € RT*HXWX3 aq input, this tool can gen-
erate the progress bar at the bottom of the original frames
and return the annotated frames. To enable adaptation to ar-



bitrary FPS sampling, we perform a frame-synchronization
step to convert frame indexes to the real second time, as
shown in Fig. 2. To enable MLLM to perceive seconds di-
rectly without any additional hour-minute-second conver-
sions, we design the timestamps using a straightforward
seconds format. To construct a robust visual prompt that can
be easily interpreted from the MLLM, we employ composi-
tional components using elongated rectangles, circles, and
timestamps to plot the progress bar. Finally, the progress
bar is placed at the bottom of raw frames, which can be ex-
pressed as:

Vi=VieT, ey

where @ represents the vertical concatenation operation, 7
denotes the image of the progress bar generated by OpenCV
attime ¢ and V// is the resulting frame. We wrap this integra-
tion process into a Python tool function, allowing MLLM to
invoke it for generating the annotated video.

3.3. Moment Highlight by Video-Text Similarity

Although multimodal LLMs have made significant progress
in video content captioning, recent studies [15, 16] have re-
vealed substantial deficiencies in their temporal grounding
capabilities. Existing works [15, 16] rely on constructing
temporal grounding instructional data and require finetun-
ing to emerge such capability. Besides, due to token limita-
tions in MLLMs, they struggle to perform temporal ground-
ing for long videos. In contrast, we propose a training-free
and long-video-adaptive method to enhance the temporal
grounding capabilities of MLLMs, leveraging the similar-
ities from the robust video-text foundation models.

Given a query and a video V € RT*HXWX3 contain-
ing multiple events, our proposed tool estimates the query-
relevant temporal segments, including their start and end
times, and generates a highlighted visual prompt.

Moment Retrieval by Video-Text Similarity. To construct
arobust zero-shot moment retrieval module, capable of gen-
eralizing across a wide range of videos, we employ the
VideoCLIP-XL [42] foundation model as our embedding
extractor. The video is initially processed at a high temporal
resolution of r FPS. We group every 8 frames into a video
clip, resulting in NV clips. It should be noted that since the
temporal retrieval module operates as an external compo-
nent, it can efficiently handle high frame rates without being
constrained by the token count of the MLLM. This makes
our method adaptive to long-form video. These clips are
then processed by the VideoCLIP-XL visual encoder, pro-
ducing N video embeddings. We use VideoCLIP-XL text
encoder to extract the text embedding for the text query and
we compute the cosine similarity between the query embed-
ding and the video embeddings of each clip:
v
sim(s) = 5% )

~lelles]”

where e} denotes the embedding of the ¢-th clip and e? is
the query embedding. Using top-k selection, we obtain the
k clips with the highest similarity and extract the start and
end timestamps of each contiguous segment.

Moment Highlight on the Progress Bar. Motivated by a
series of works that demonstrated the effectiveness of vi-
sual cues as a medium for reasoning beyond text [3, 13,
21, 32, 46], we propose using moment-highlighting cues
for video temporal reasoning. As shown in Fig. 2, we con-
struct the highlight tool using OpenCV library to plot col-
orful highlight masks on specific intervals of the progress
bar. This tool takes the video frames and time intervals as
input and annotates the highlighted progress bar under the
frames. To ensure that the MLLM can easily interpret the
highlights, we utilize different colors between the mask and
the progress bar. We wrap the aforementioned retrieval and
highlighting process as a Python tool function, enabling the
MLLM to invoke it to manipulate the input video frames.

4. Experiments

In this section, we first present the implementation de-
tails, datasets and evaluation metrics. Subsequently, we
assess the performance of the proposed framework on the
video temporal grounding benchmarks (Sec. 4.1). To fur-
ther evaluate the reasoning capabilities, we conducted ex-
tensive quantitative and qualitative analyses on the “reason-
ing based on retrieving” benchmark of Vript-RR (Sec. 4.2).
In addition, we demonstrate the significant role our rea-
soning framework plays in enhancing long video question-
answering performance (Sec. 4.3). Finally, we give the ab-
lations of key modules (Sec. 4.4).

Implementation Details. In the framework, we conducted
experiments on two core MLLMs, Qwen2VL-7B [43] and
GPT40-20240513 [17], as they represent the state-of-the-
art open-source and closed-source MLLM models, respec-
tively. We set the decoding temperature of the MLLM to 0.
By default, the input for the MLLM consists of 32 frames
uniformly sampled from the video. For video frames, H
and W are resized to make the longer side 480 pixels. Our
agent implementation is based on AutoGen [45]. The im-
plementations of tool functions are adapted from Gradio [1].
For GPT4o0, we utilize the OpenAl API service. The details
of the MLLM prompts are provided in the supplementary
materials. For VideoCLIP-XL we use FPS r = 1 to sample
video frames and group every 8 frames as a clip to extract
embedding. Regarding the top-k selection of clips, k is em-
pirically set to 8. The maximum number of reasoning steps
T is set to 3.

Datasets and Evaluation Metrics. To evaluate the pro-
posed VTimeCoT method, we utilized four benchmark
datasets, spanning a wide range of video temporal ground-
ing, reasoning, and long-video question-answering tasks.
Charades-STA [11] is a benchmark dataset for temporal
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Method R1@0.3 R1@0.5 R1@0.7 mloU
VideoChat-7B [23] 9.00 3.30 1.30  6.50
VideoLLaMA-7B [56] 10.40  3.80 090 7.10

VideoChatGPT-7B [31] 20.00 7.70 1.70 13.70
LLAVA-Onevision-7B [20] 33.04 11.05 4.11 20.98

VTimeLLM-7B [15] 51.00 27.50 11.40 31.20
VTimeLLM-13B [15] 55.30 3430 14.70 34.60
Qwen2VL-7B [43] 37.31 12.85 411 2434
VTimeCoTqwen2vL-78 66.96 38.79 20.83 43.41
GPT4o [17] 63.76  37.12 14.65 40.20
VTimeCoTgpr40 74.06 51.02 22.45 46.78
Table 1. Quantitative comparison on the Charades-STA

dataset for temporal grounding. We report the mIoU and the
recall performance at different IoU thresholds.

Method R1@0.3 R1@0.5 R1@0.7 mloU
LLAVA-Onevision-7B [20] 3491 1791 9.7 2553
VTimeLLM-7B [15] 4458 25.03 929 28.99
Qwen2VL-7B [43] 31.87 1465 735 22.77
VTimeCoTqwen2vL-78 67.50 45.79 25.11 46.21
GPT4o [17] 55.61 35.68 19.29 37.66
VTimeCoTgpr40 79.35 59.74 33.81 54.49

Table 2. Quantitative comparison on the QVHighlights dataset
for temporal grounding of discontinuous segments. We report
the mloU and the recall performance at different IoU thresholds.

grounding, composed of 1334 videos along with the corre-
sponding start-end frame annotations of 3720 queries. The
average video length is 30 seconds. We follow [15] and
report mean IoU (mloU) and recall@1, IoU > m(R@m)
metrics, where m includes 0.3, 0.5 and 0.7. IoU denotes
the intersection over the union between the predicted and
ground truth time segments.

QVHighlights [19] is a benchmark dataset for semantic
relevance and temporal grounding from discontinuous time
segments. It contains 1519 videos, with an average length
of 150 seconds, and 1550 queries with time annotations,
where each query spans multiple discontinuous time seg-
ments within a video. For evaluation, we report the com-
monly used mloU and R@m metrics.

Vript-RR [50] is a challenging benchmark dataset for scene
retrieval and multi-hop reasoning. The average length of
the videos is 622 seconds. It contains 152 questions, each
accompanied by a hint to locate the scene that the question
refers to. The benchmark includes both multiple-choice and
open-ended question-answering settings. We follow [50]
and evaluate the open-ended accuracy using GPT4.
VideoMME [10] is a video question-answering benchmark
tailored for MLLMs, featuring diverse videos ranging from

Methods Multi-Choice  Open
VideoChatGPT [31] 29.60 17.80
Video-LLaMA [56] 28.30 14.50
VideoChat [23] 22.40 15.10
VideoChat2 [24] 42.10 22.40
ST-LLM [28] 33.60 26.30
PLLaVA 7B [48] 55.30 36.20
VILA-1.5 8B [27] 55.30 32.30
Qwen2VL-7B [43] 59.87 35.95
VTimCCOTQwen2VL.7B 62.50 41.45
GPT4o [17] 70.39 61.18
VTimeCoTc,pmo 83.55 68.42

Table 3. Quantitative comparison on the Vript-RR dataset. We
report the response accuracy on both multiple-choice and open-
ended question settings.

11 seconds to 1 hour in length. It contains 900 videos and
2700 question-answer pairs. We follow [10] to report ac-
curacy metrics under two evaluation settings with subtitles
and without subtitles.

4.1. Temporal Grounding

To ensure accurate temporal reasoning, it is essential to
achieve robust and high-performance temporal grounding.
In Tab. 1, we compare VTimeCoT with two state-of-the-
art baselines, Qwen2VL-7B and GPT4o, to identify the
start and end timestamps of the query event. Specifically,
using both Qwen2VL-7B and GPT40 models as the core
MLLM of our framework, we evaluate the performance of
VTimeCoT to localize the query event. As can be easily
observed, although these advanced MLLMs achieve state-
of-the-art performance in video content recognition, they
fall short in accurately grounding temporal boundaries for
events in videos, facing difficulties in perceiving the pre-
cise timestamp and the boundaries of events. In contrast,
the proposed method effectively addresses these challenges,
providing accurate visual cues of the progress bar through
the reasoning process that facilitates the grounding perfor-
mance in videos. Note that VTimeCoT demonstrates supe-
rior performance without any additional training cost, even
compared to the VTimeLLM model, which has been metic-
ulously fine-tuned on extensive temporal grounding data.
To further evaluate the temporal grounding performance
of the proposed and the baseline methods in the presence
of multiple discontinuous time segments for each query,
we utilized the QVHighlights benchmark dataset (Tab. 2).
Given a query and a video, we request from each model to
identify start-end timestamps of all temporal segments in
the video that fit the query. As can be observed, VTime-
CoT consistently enhances the performance compared to
different MLLMs. On the contrary, baseline MLLM meth-
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THOUGHTO: | can use the progress_bar and highlight tool to highlight the key
moments. Since the video is too long, | will cut the video into segments for a
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ACTION 0:#

sentence = ‘A scene in the video features ..’
s . . . . . frames = progress_bar(frames)
f Hint: A scene in the video features a first-person perspective from a frames, segment = highlight(frames, sentence, return_segment=True) _7

motorcyclist cruising on a highway. ... The motorcycle's chrome details, frames = cut(frames, segment)
for frame in frames:

black leather accessories, the rider's gloved hands are noticeable. A S
display(frame)

What is the round object on the bike in the middle bottom of the screen?
(A) A GPS device (B) A sport camera
(C) The motocycle's headlight (D) The motocycle's spedometer

THOUGHT 1: From the highlighted frames, | can observe the details of the
x motorcycle's features. The round object fits a motocycle's speedmeter. J
ANSWER: (D) The motocycle's speedometer. TERMINATE

GPT40: (C) The motocycle's headlight.

Figure 3. Qualitative comparison on Vript-RR benchmark. In contrast to GPT-40 which is misled by the irrelevant scenes, VTimeCoT
reasons using the progress bar and highlights the key moments, leading to accurate answers.
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. GPT40:a2 X 5 VTimeCoT + GPT4o GPT4o:piank X | 57 VTimeCoT +GPT4o
THOUGHT 0: | can use the progress_bar and the highlight tool. This tool will THOUGHT 0: | can use the progress_bar and highlight tool. This tool will draw a
draw a progress bar on the video frames and detect the moment proposals progress bar on the video frames and detect the moment proposals for
for “different kinds of animal faces’ to highlight them. | will then display the ‘exercise demonstrated after the squatting exercise’ to highlight them. | will
highlighted frames to help me answer the question. then display the highlighted frames to help me answer the question.
ACTIONO: @ ACTIONO: @
sentence = "different kinds of animal faces" —— sentence = "exercise demonstrated after the squatting exercise" |
frames = progress_bar(frames) frames = progress_bar(frames) ,
frames = highlight(frames, sentence) frames = highlight(frames, sentence) u
for frame in frames: for frame in frames: —_—
display(frame) display(frame)
r
SilverSneakers
Fitness Tips ~
Outdoor Total Body Workout
_J
. L ) ) THOUGHT 1: The highlighted frames show the sequence of exercises
TH.OUﬁHT 1.bFr9m the;'shllthed _framzs, I(;:an iiuntfthrei:ﬁferenttklnds of demonstrated in the video. After the squatting exercise, the next
_anémaA;t;?Ale:gg njl'?ERel\"IEI’l\(l::'liEa [P ETE I IS, VIERAENE, UiS CeiEE s EEEE demonstrated exercise is step-ups, as shown in the frames around the 21-
5 . second mark. ANSWER: C TERMINATE /
- -

Figure 4. Qualitative comparison on VideoMME benchmark. Through reasoning that integrates the progress bar and highlights,
VTimeCoT accurately answers questions related to temporal counting and order, which GPT-4o falls short.

ods struggle with discontinuous time segments, failing to benchmark, which contains questions that require scene re-
identify multiple temporal spans and leading to degraded trieval. Given a scene hint and a question, the model must
grounding performance. identify the specific scene to deliver an accurate response.

We compared the proposed method with the state-of-the-
art baseline methods including Qwen2VL-7B and GPT4o.
In Tab. 3, we evaluate the question-answering performance As can be observed VTimeCoT achieves a significant per-
of the proposed and the baseline methods on the Vript-RR

4.2. Long-Video Reasoning Based on Retrieving
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Methods Frames wlo Sﬁ‘ggurasv}f subs MLLM CoT Progress Bar Highlight QV(I;IIiIg:IIJI)ghtS \(ll\r/f X?Cl?
Gemini-1.5-Flash [40] 1 fps 70.3 75.0 GPT40 X X X 37.66 70.39
GPT4o [17] 384 71.9 77.2 GPT40 Vv X X 41.85 73.68
Gemini-1.5-Pro [40] 1 fps 75.0 81.3 GPT40 Vv v X 49.40 76.32
Video-LLaVA-7B [26] 8 39.9 41.6 GPTdo v v v 2449 83.55
VideoLLaMA2-7B [6] 16 54.9 56.4

LLAVA-Onevision-7B [20] 32 58.2 61.5 Table 5. Ablations on the key modules. M-Acc is the multi-
LongVILA-7B [49] 256 60.1 65.1 choice accuracy on Vript-RR.

InternVL2.5-8B [5] 64 64.2 66.9

mPLUG-OwI3-7B [54] 128 59.3 68.1

LLaVA-Video-7B [58] 64 63.3 69.7 ing that VTimeCoT, apart from its superior performance in
NVILA-8B [30] 256 64.2 70.0 question-answering accuracy, demonstrates logical and in-
VideoLLaMA3-7B [55] 180 66.2 70.3 terpretable reasoning steps.

GPT4o [17] 32 61.6 65.1 4.4. Ablations

VTimeCOTGpT40 32 64.2 73.6

Table 4. Quantitative comparison on the VideoMME dataset.
We report the response accuracy under two settings: with subtitles
and without subtitles.

formance improvement, surpassing the baseline methods in
both multiple-choice and open-ended settings.

To further illustrate the superiority of the proposed
method in the task of scene retrieval and reasoning, we qual-
itatively compare GPT40 and VTimeCoT on the Vript-RR
dataset in Fig. 3. Through multi-step reasoning that lever-
ages the progress bar and highlights the key time interval,
VTimeCoT accurately identifies the correct answer, while
GPT-4o falls short.

4.3. Long-Video Question Answering

A pivotal challenge in long-form video question answering
lies in accurately inferring the frequency and sequential re-
lationships of temporal events. Currently, end-to-end video
MLLMs struggle to accurately localize events and capture
their temporal dependencies across multiple frames, lim-
iting their ability to generalize to real-world temporal un-
derstanding. In Tab. 4, we evaluate the performance of
the proposed VTimeCoT model in question answering on
long videos of the VideoMME benchmark dataset. Due to
the prohibitive evaluation costs and to ensure a fair com-
parison, we re-evaluate GPT-40 using 32 frames. Utilizing
robust temporal grounding and reasoning, VTimeCoT sig-
nificantly outperforms the baseline methods in long-video
question answering.

The effectiveness of the proposed method can be fur-
ther validated in Fig. 4, where we compared the responses
of the state-of-the-art GPT40 and VTimeCoT. In contrast
to GPT40, VTimeCoT can accurately identify the cor-
rect answers through its systematic, step-by-step reasoning
process, even in challenging scenarios involving temporal
counting and order discernment. It is also worth mention-

To further investigate the contribution of each component
in the proposed method, we conducted an ablation study.
In Tab. 5, we evaluate the importance of the Chain-of-
Thought (CoT), progress bar, and highlighting modules. As
can be observed the GPT40 employing standard CoT with-
out the use of the progress bar (i.e., solely on text-based
step-by-step reasoning), results in significant performance
degradation compared to the proposed method. To assess
the effect of the proposed modules of the progress bar, we
developed a configuration that utilizes only the progress bar
tool without using the highlighting module. For comple-
tion, we also report the full VTimeCoT results, utilizing
both the progress bar and highlighting tools. Both tools
contribute to the performance improvement of the proposed
method, which highlights the effectiveness of explicitly vi-
sualizing the precise timestamp and highlighting the rele-
vant moments.

5. Conclusion

In this work, we propose the first visual time framework,
designed to formulate a visuotemporal chain-of-thought for
video temporal grounding and reasoning. We introduce
a plug-and-play tool of the progress bar to generate vi-
sual temporal cues from any video, that can enable multi-
modal large language models (MLLMs) to leverage tool-
usage capabilities for accurately perceiving the speed of
temporal progression. In addition, we propose a zero-shot
temporal retrieval tool, built on top of a strong video-text
foundational model, augmenting it with temporal ground-
ing capabilities without any further training requirements.
We integrate these two tools into a visuotemporal chain-
of-thought framework to facilitate cross-modal reasoning
between video and text. Through extensive experiments,
we demonstrate that the proposed method surpasses pre-
vious state-of-the-art baselines in temporal grounding and
reasoning-based question-answering benchmarks, demon-
strating logical and interpretable reasoning steps.
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