
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROVABLY LEARNING CONCEPTS BY COMPARISON

Anonymous authors
Paper under double-blind review

ABSTRACT

We are born with the ability to learn concepts by comparing diverse observations.
This helps us to understand the new world in a compositional manner and facili-
tates extrapolation, as objects naturally consist of multiple concepts. In this work,
we argue that the cognitive mechanism of comparison, fundamental to human
learning, is also vital for machines to recover true concepts underlying the data.
This offers correctness guarantees for the field of concept learning, which, despite
its impressive empirical successes, still lacks general theoretical support. Specifi-
cally, we aim to develop a theoretical framework for the identifiability of concepts
with multiple classes of observations. We show that with sufficient diversity across
classes, hidden concepts can be identified without assuming specific concept
types, functional relations, or parametric generative models. Interestingly, even
when conditions are not globally satisfied, we can still provide alternative guaran-
tees for as many concepts as possible based on local comparisons, thereby extend-
ing the applicability of our theory to more flexible scenarios. Moreover, the hidden
structure between classes and concepts can also be identified nonparametrically.
We validate our theoretical results in both synthetic and real-world settings.

1 INTRODUCTION

Humans possess an innate ability to learn concepts by comparing diverse classes of observations,
a process foundational to cognitive development (Rosch, 1973; Fodor & Pylyshyn, 1988). For ex-
ample, a child distinguishes between different types of animals not by memorizing each species
separately, but by observing and comparing differences between various species, thereby identify-
ing the unique concepts that define each group (e.g., Fig. 1). This mechanism of learning through
comparison has been extensively studied and verified across various fields, including psychology
and neuroscience, affirming its universality and effectiveness (Bruner et al., 1957).

Figure 1: The class “shark”
has concepts like “predator,”
“sleek body,” and “ocean.”

Meanwhile, in machine learning, the extraction of conceptual fea-
tures is crucial for the development of robust and interpretable
models, illustrating the integration of cognitive principles into ma-
chine intelligence (Valiant, 1984; Mitchell, 1997). Recent research
has achieved notable success in deriving human-interpretable con-
cepts from various data modalities with different formulations of
the problem (Bau et al., 2017; Radford et al., 2017; Alvarez Melis
& Jaakkola, 2018; Kim et al., 2018; Zhou et al., 2018; Yeh et al.,
2020; Koh et al., 2020; Du et al., 2021; Bai et al., 2022; Achtibat
et al., 2022; Crabbé & van der Schaar, 2022; Liu et al., 2023; Park
et al., 2023; Jiang et al., 2024). These concepts have proven bene-
ficial for tasks such as extrapolation (Janner et al., 2022; Lachapelle et al., 2023; Du & Kaelbling,
2024), explanation (Alvarez Melis & Jaakkola, 2018; Sreedharan et al., 2020; Leemann et al., 2023;
Poeta et al., 2023), and decision-making (Grupen et al., 2022; Zabounidis et al., 2023; Delfosse
et al., 2024). Furthermore, advancements in this domain have significantly contributed to scientific
discovery, particularly in healthcare (Clough et al., 2019; Jia et al., 2022).

While numerous methods have been developed to extract concepts from data, most provide only
empirical support and lack theoretical guarantees concerning the correctness of the recovered con-
cepts. With the help of specific parametric assumptions, few studies have explored the identifiability
of concept learning. For example, by assuming all concepts are linearly related, recent research (Ra-
jendran et al., 2024) has shown that the concept space can be identified up to a linear transformation.
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Another line of research has tackled object-centric learning, attempting to identify individual objects
as groups of pixels (slots), such as trees or dogs, while excluding more abstract concepts like light-
ing and styles. In addition to these concept type restrictions, further assumptions are also required
for the identifiability results, such as no occlusion between objects (Brady et al., 2023; Wiedemer
et al., 2024) or the additivity of the generating process (Lachapelle et al., 2023; Wiedemer et al.,
2024). These studies mark significant exploration toward understanding concept learning. At the
same time, the constraints imposed on concept types and functional relationships may limit the con-
fidence to fully account for the empirical success observed in concept learning from real-world sce-
narios. Therefore, despite significant empirical progress, a fundamental question in concept learning
remains unanswered:

In the most general cases, which concepts can we reliably recover?

We try to provide an answer by drawing inspiration from the fundamental cognitive mechanism
through which humans learn concepts, i.e., comparing diverse classes of observations. For an infant,
devoid of empirical world knowledge, it is impossible to learn new concepts from two classes of
observations if they share an identical set of concepts. It is only through discerning the differences
between these classes that humans can unravel and understand previously unseen concepts. As a
result, in the most general setting, the essential information for provably learning hidden concepts
must pertain to the diversity present among different classes.

Inspired by this cognitive process of learning by comparison, we establish a set of theoretical guar-
antees on concept learning in the general setting. We show that hidden concepts can be identified
without relying on assumptions about the nature of the concepts or specific parametric models, pro-
vided there is sufficient diversity across classes. Specifically, we first prove that for any pair of
classes, the unique part of the concepts for each class can be disentangled from the remaining con-
cepts (Thm. 1). This pairwise comparison1 serves as a foundational prototype for learning concepts,
enabling the flexible identifiability of as many concepts as possible, given that they exhibit enough
diversity, even when others do not. We then extend the pair-wise identifiability to learn unique con-
cepts from an arbitrary subset of classes (Prop. 1). Given that most related works rely on global
assumptions for all concepts and fail to offer guarantees when assumptions are partially violated for
some concepts, the proposed flexible identifiability by local comparisons provides unique practical
value, since real-world scenarios often do not perfectly conform to ideal conditions for all concepts.

Furthermore, with sufficient diversity across different classes of observations, we prove the non-
parametric identifiability for all class-related hidden concepts up to an element-wise transformation
and permutation (Thm. 2). For other invariant background concepts, such as “chromatic” that re-
main consistent across all classes, we can also identify them under appropriate structural diversity
conditions (Prop. 2). Consequently, we introduce, to the best of our knowledge, one of the first
frameworks for concept identifiability in the general setting that does not confine itself to specific
concept types or parametric generative models. Moreover, the connective structure between classes
and concepts can also be recovered in a nonparametric way (Prop. 3). Our theoretical results are
substantiated through empirical validation on synthetic data and four different real-world datasets.

2 PRELIMINARIES

Figure 2: The problem setting.

In this section, we introduce the problem setting as well as some
essential notations. Fig. 2 illustrates the key notations and re-
lations of the considered setting. We also provide a structured
summary of notations in Appx. A for a quick reference.

Data-generating Process. Let x = (x1, . . . ,xm) ∈ X ⊆ Rm

be a vector representing observed variables. We assume that the
observation x is generated by hidden concepts z = (zA, zB) ∈
Z ⊆ Rn. The generating process is as follows:

x := f(z), (1)
where we divide z into the class-dependent part zA =
(z1, . . . , znA

) ∈ ZA ⊆ RnA and class-independent part zB =

1It might be worth noting that learning by comparison serves as an inspiration for our identifiability theory,
rather than being a specific estimation method like contrastive learning.
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(znA+1, . . . , zn) ∈ ZB ⊆ RnB . The class-dependent part zA and class-independent part zB
are conditionally independent given observed classes c = (c1, . . . , cu)⊆ Ru, i.e., p(z|c) =
p(zA|c)p(zB). We denote the number of classes as k. The density p(z|c) is smooth and posi-
tive. Since zA depends on the classes c, we represent zA := g(c, θ), where θ denotes a set of other
factors including potential noise. Let Ai denote the index set of concepts corresponding to class
ci, with the associated concepts represented as zAi

. Likewise, zAi\Aj
refers to the difference in the

concept sets between classes ci and cj . The generating function f is a general injective function that
encodes potentially complex mixing procedures to generate the observational data. Meanwhile, we
do not constrain z to be of specific distributions like Gaussian. Consequently, we consider a general
formulation of the problem that covers different types of concepts and nonparametric generative
models. Here is a real-world example of how the data-generating process may be instantiated:

Example 1. Consider images of animals in an aquarium, where the observed variables x represent
image pixels. The different animal types (e.g., “shark” and “turtle”) correspond to classes c. Class-
dependent concepts might include attributes like “predator,” “sleek body,” and “ocean” (see, e.g.,
Fig. 1), while class-independent concepts could be “lighting” and “position.” The hidden generative
process of each image depends on all of these concepts, though only some are specific to each class.

Technical Notations. Throughout this work, for any matrix S, we use Si,: to denote its i-th row,
and S:,j to denote its j-th column. For any set of indices I ⊂ {1, . . . ,m}×{1, . . . , n}, analogously,
we have Ii,: := {j | (i, j) ∈ I} and I:,j := {i | (i, j) ∈ I}. We also denote the support of the
matrix S ∈ Ra×b as supp(S) := {(i, j) | Si,j ̸= 0}. With a slight abuse of notation, we reuse
supp(·) to denote the support of a matrix-valued function S(Θ) : Θ → Ra×b, i.e., supp(S(Θ)) :=
{(i, j) | ∃θ ∈ Θ,S(θ)i,j ̸= 0}. Then we define D as the support of Dcg, i.e., D = supp(Dcg),
where Dcg represents the partial derivative of g w.r.t. c. Moreover, we define T as a set of matrices
with the same support of T in Dĉĝ = TDcg, where T is a matrix-valued function. In addition,
given a subset S ⊆ {1, . . . , n}, the subspace Rn

S is defined as:

Rn
S := {s ∈ Rn | si = 0 if i /∈ S}, (2)

where si is the i-th element of the vector s. Throughout the work, we use the hat symbol (e.g., ẑ)
to denote estimated quantities, such as ẑ for estimated concepts. Since the considered problem is
identifiability, the theory is agnostic to estimators and the goal is to fit the marginal distribution p(x)

with model (learner) f̂ and estimated variables ẑ to achieve certain identifiability. We introduce
several identifiability objectives (Hyvärinen & Morioka, 2017; Lachapelle et al., 2022; Zheng et al.,
2022; Kong et al., 2022; Hyvärinen et al., 2024) that are common in the literature as follows:

Definition 1 (Element-wise Identifiable). The set of latent variables z ⊆ Rn are element-wise
identifiable if there exists an invertible function hi : R → R and a permutation π s.t. ẑi = hi(zπ(i)).

Definition 2 (Subspace-wise Identifiable). The set of latent variables z ⊆ Rn are subspace-wise
identifiable if there exists an invertible function h : Rn → Rn s.t. ẑ = h(z).

It might be worth noting that the subspace-wise identifiability implies the disentanglement between
subsets of latent variables. For instance, if zB is subspace-wise identifiable, then zB will not contain
any information from zA after estimation. The subspace-wise identifiability is commonly used in
the literature (Von Kügelgen et al., 2021; Kong et al., 2022; Li et al., 2024; Yao et al., 2024).

Connective Structure. Based on these, we define the structure M as a binary matrix with the
support D:nA,:. The class-dependent part zA can be further represented as

p(zA|c) =
nA∏
i=1

p(zi|Mi,: ⊙ c), (3)

where Mi,: is the i-th row of M . The operator ⊙ denotes the element-wise (Hadamard) product.
Since classes c are not connected to class-independent part zB , M illustrates the connective structure
between classes c and concepts z. The conditional independence provides a form of modularity com-
monly adopted in prior work on identifiable latent variable models (Hyvärinen & Morioka, 2016;
Khemakhem et al., 2020a; Sorrenson et al., 2020; Lachapelle et al., 2022; Hyvärinen et al., 2024). It
may be particularly natural in our class-concept framework; for example, while the concepts “wings”
and “feathers” are related, they become conditionally independent given the class variable “bird.”
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3 IDENTIFIABILITY THEORY

Without any assumptions on specific concept types, functional relations, or parametric generative
models, to what extent can we provably learn hidden concepts from diverse classes of observations?

To answer this, in Section 3.1, we first prove that the unique concepts in any pair of classes can be
disentangled from the remaining ones (Thm. 1). Based on this, we can fully leverage the diversity
in the data and provide flexible identifiability for any subset of concepts, as long as there exists suffi-
cient diversity for local comparison (Prop. 1). For the global identification, in Section 3.2, we prove
the nonparametric identifiability for all class-dependent hidden concepts (Thm. 2) under the struc-
tural diversity condition (Assump. 1). Together with a sparsity condition for the remaining class-
independent part, all hidden concepts can be identified up to trivial indeterminacy (Prop. 2). Fur-
thermore, in Section 3.3, we show that we can also recover the hidden connective structure between
classes and concepts (Prop. 3), providing further insights into the latent compositional relations.

3.1 LEARNING CONCEPTS BY LOCAL COMPARISON

Humans learn concepts by leveraging the diversity across classes. We argue that the fundamental
mechanism in this cognitive process is learning through pair-wise comparison, since any two classes
can only be distinguished by identifying their unique concepts. Pairwise comparison thus serves as
the basic unit for concept learning across multiple classes, as comparisons among any set of classes
can be reduced to pairs. In the following theorem, we prove that the unique concepts between any
pair of classes can be disentangled from the remaining concepts, of which the proof is in Appx. B.1.
Theorem 1. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. Suppose for each i ∈ {1, . . . , nA}, there exist a set of points {(c, θ)(ℓ)}|D:,i|

ℓ=1 , a point (c, θ)(r),
and a matrix T ∈ T such that the following conditions hold:

i. The Jacobian spans its support space, i.e., span{Dcg((c, θ)
(ℓ)):,i}

|D:,i|
ℓ=1 = RnA

D:,i
, and[

TDcg((c, θ)
(ℓ))
]
:,i

∈ RnA

D̂:,i
.

ii. The Jacobian Dcg((c, θ)
(r)) is of full row rank.

Then for any two classes ci and cj , there exists a permutation π such that ẑπ(Ai\Aj), do not depend
on the latent concepts zAj associated with class cj , and ẑπ(Aj\Ai) do not depend on the latent
concepts zAi

associated with class ci.

Theorem 1 demonstrates the process of learning through pair-wise comparison, which is fundamen-
tal to the learning mechanism. It is worth noting that the identifiability theory remains agnostic to
the choice of estimator, provided the marginal distributions of the observations are matched. The
results demonstrate that for any pair of classes, the unique concepts specific to each class can be
disentangled from the other concepts. Additionally, we extend the theoretical guarantees of pairwise
comparisons to arbitrary class sets, facilitating more efficient learning in complex scenarios:
Proposition 1. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. Suppose that the assumptions in Thm. 1 hold. Then, for a set of classes cI and its
corresponding concept sets zAI

with a set of indices I , there exists a permutation π that the unique
part of a concept set for the class ci, i.e., ẑπ(Ai\AI\i), does not depend on the latent concepts
associated with other classes, i.e., zAI\i .

Insights. Theorem 1 and Proposition 1 show that as long as there exists any diversity between
different classes, we can identify the corresponding hidden concepts with theoretical guarantees.
This aligns with the fundamental cognitive mechanism of learning and offers a more flexible
method to locally exploit available information. In contrast, most prior identifiability conditions
focus on the entire system, often losing guarantees if any part violates the assumptions.

Discussion on Assumptions. The assumption here helps ensure the connection between the
dependency structure and the Jacobian of the function in the general nonlinear cases, following the
similar spirit in (Lachapelle et al., 2022; Zheng et al., 2022). In general, it avoids pathological cases
where all samples originate from highly restricted sub-populations that only cover a degenerate
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subspace. The first part makes sure that there are at least |D:nA,i| data points such that the Jacobian
function spans the support space, which is almost guaranteed asymptotically. The condition[
TDcg((c, θ)

(ℓ))
]
:,i

∈ RnA

D̂:,i
is also mild since D̂:,i = TDcg((c, θ)

(ℓ)) always resides in RnA

D̂:,i
.

Even in some rare cases where the matrix does not fit the support due to some generic combination
of values, the assumption is still almost always satisfied asymptotically. This is because it only
necessitates the existence of one matrix in the entire space (T ∈ T , where T denotes a set of matri-
ces with the same support of T). The second part avoids rank-deficiency and has been extensively
employed in the literature (Hyvärinen et al., 2024). An illustrative example is as follows:
Example 2. Suppose there exist two samples with their corresponding Jacobians given by
Dcg((c, θ)

(1)):,i = (0, 1, 2) and Dcg((c, θ)
(2)):,i = (0, 3, 4). Clearly, these two vectors span a

2-dimensional subspace. We can also find a matrix T (e.g., a binary matrix with the same support
as T) s.t.

[
TDcg((c, θ)

(ℓ))
]
:,i

∈ RnA

D̂:,i
for ℓ ∈ {1, 2}. Any invertible function satisfies the full rank

condition. Since identifiability theory considers an infinite number of samples, the requirement for
several non-degenerate samples is almost always satisfied asymptotically.

Implications. Theorem 1 demonstrates that for any given pair of classes and their corresponding
sets of hidden concepts, the unique concepts in each class can be disentangled from all the
remaining concepts. This process is fundamental to the cognitive mechanism of learning through
comparison. Consider an infant with no prior experience of the world: when presented with two
classes, such as a cat and a dog, the infant learns and memorizes the unique concepts associated
with each class, such as ”meows” for the cat and ”barks” for the dog. The invariant concepts, like
”furry” or ”four-legged,” cannot be distinctly learned because they do not provide distinguishing
information between the classes. From a cognitive science perspective, infants and young learners
rely heavily on contrastive features to form distinct categories and concepts (Eimas et al., 1971).
For instance, if an infant repeatedly hears a cat meow and a dog bark, they begin to associate these
unique sounds with the respective animals. In contrast, shared attributes like fur or four legs do
not stand out because they do not help in differentiating between the two animals. This emphasizes
the role of unique concepts in early learning and memory, highlighting how pair-wise comparisons
are essential in the process of discovering the new world. For machines to learn without prior
knowledge, we argue that similar mechanisms also help.

Proposition 1 extends these theoretical guarantees from pair-wise comparisons to local comparisons
among multiple classes. Although pair-wise comparison is fundamental to the learning mechanism,
local comparison is more efficient in complex scenarios. For instance, when an infant is exposed to
a variety of stimuli, they do not learn by isolating pairs indefinitely. Instead, they begin to discern
patterns and unique features within a broader context, comparing multiple classes simultaneously.
For example, a child distinguishing between a cat, a dog, and a bird must identify unique concepts
such as ”meows,” ”barks,” and ”chirp.” As the child interacts with these animals in different con-
texts—perhaps hearing a bird chirp in the park, a dog bark at home, and a cat meow in the neighbor’s
yard—they learn to associate specific sounds and behaviors with each animal. This local comparison
ensures that even as the number of classes increases, the child can efficiently disentangle and learn
the unique concepts of each class, providing a more complete understanding of the new environment.

Besides being the foundation for the learning process, the principles of local comparisons in both
Thm. 1 and Prop. 1 also enable partial identifiability for a subset of concepts when diversity is not
universally satisfied across all classes and concepts. Previous theoretical studies on concept learning
often assume that certain conditions, such as linearity or additivity, apply universally to all concepts.
While these assumptions can simplify the conceptual space and the generating process, they can
not offer any guarantees for any concepts when there exists any degree of violation. However, since
real-world scenarios are often complex and unpredictable, it is relatively rare for these assumptions
to hold true universally. Most latent variable identifiability works also face the same challenge deal-
ing with partial assumption violation (Zheng et al., 2022; Kong et al., 2022; Zheng & Zhang, 2023;
Hyvärinen et al., 2024). Unlike our local or even pair-wise identification strategy, these methods
lack the flexibility to recover arbitrary parts of the hidden process in a localized manner. Fortunately,
with the proposed theory based on local comparisons (Thm. 1 and Prop. 1), we can leverage the
diversity in observations to recover the hidden system as much as possible, even when the degree
of diversity does not support global identifiability. For instance, in scenarios where some classes
are very similar and several concepts are shared across all classes, these concepts cannot be learned
through comparison. However, we can still achieve appropriate identifiability for the other concepts
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with sufficient diversity. Notably, these flexible guarantees do not come with the cost of more
restrictive conditions—the identifiability theory still applies to most generating processes without
assumptions on specific concept types, functional relations, or parametric generative models.

3.2 LEARNING CONCEPTS BY GLOBAL COMPARISON

Inspired by the mechanism of local comparison, we have shown that it is possible to fully leverage
the diversity among different classes of observations to recover hidden concepts as much as possible.
This naturally leads us to consider the conditions required for identifying all hidden concepts in a
global manner. We first prove that, under the condition of Structural Diversity (Assump. 1), all
class-dependent concepts are identifiable up to a composition of a permutation and an element-wise
invertible transformation (Thm. 2). The proof is included in Appx. B.3.
Assumption 1. (Structural Diversity) For any class-dependent concept zi, there exists a set of in-
dices J (|J | > 1) and j ∈ J where Mi,j ̸= 0 and Mi,k = 0 for all k ∈ J , k ̸= j, and Mi,J\{j} is
the only row with all zero entries in M:,J\{j}.
Theorem 2. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. In addition to the assumptions in Thm. 1 and Assump. 1, suppose for any set Az ⊆ Z with
non-zero probability measure and cannot be expressed as BzB

× zA for any BzB
⊂ ZB , there exist

two values of c, i.e., c(k) and c(v) (which may vary across different Az), that∫
z∈Az

p(z | c(k))dz ̸=
∫
z∈Az

p(z | c(v))dz.

Then zA is identifiable up to an element-wise invertible transformation and a permutation (Defn.
1), and zB is identifiable up to a subspace-wise invertible transformation (Defn. 2).

Insights. Theorem 2 demonstrates that, with sufficient diversity of the global structure, all class-
dependent concepts can be identified up to element-wise indeterminacies. Notably, this result
imposes no parametric constraints on the generative models or the nature of concepts, allowing for
concept learning in a fully nonparametric setting. It also provides key insights into understanding
nonlinear latent variable models without requiring additional prior knowledge.

Figure 3: The Structural Di-
versity assumption, where the
matrix represents M . Green
lines indicate variables rele-
vant to the discussion, while
variables within the blue dot-
ted square represent the class-
independent variables zB .

Discussion on Assumptions. Assumption 1, referred to as Struc-
tural Diversity, ensures sufficient diversity across different classes
of observations for the nonparametric identifiability of all class-
dependent concepts. Without any parametric assumptions such as
concept types, functional relations, or specific generative models,
the only available information is the natural connective structure
between classes and concepts. As previously discussed, if there
is no diversity between classes, it becomes impossible to identify
individual concepts without additional knowledge. Therefore, the
Structural Diversity condition is essential for providing correctness
guarantees for all concepts without relying on specific parametric
assumptions or additional knowledge. Intuitively, it suggests that
for each class-dependent concept zi, there exists a set of classes
such that zi is unique to one of these classes. For instance:
Example 3. Consider i = 1 (z1 in Fig. 3). There exists a set of
class indices J = {1, 3} s.t. M1,1 ̸= 0 and M1,3 = 0. Meanwhile,
Mi,J\{j} = M1,3 is the only row with all zero entries in M:,J\{j} =
M:,3. Thus, the structural diversity holds for concept z1.

Intuitively, the structural difference in the example above implies
that z1 can be distinguished by considering these class indices. Si-
multaneously, we have sufficient information for all the remaining
concepts, as the submatrix M:,J\1 encompasses the other concepts.
Consequently, it is possible to uniquely identify z1 among all the
class-dependent hidden concepts. Coupled with this sufficient di-
versity for other concepts, we have the Structural Diversity assump-
tion for the nonparametric identifiability of all class-dependent hidden concepts. In general, the pro-
posed assumption necessitate the existence of diversity across classes in a structural way. Different
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from various assumptions encouraging the sparsity of the structure in the literature (Rhodes & Lee,
2021; Moran et al., 2021; Zheng et al., 2022; Zheng & Zhang, 2023), our assumption only ensures
necessary variability on the dependency structure and could also hold true with relatively dense
connections. At the same time, we permit arbitrary structures between the class-dependent hidden
concepts and the observed variables, while previous work has to assume a sparse structure on the
generating process between latent and observed variables. This flexibility accommodates a general
generative process, thereby distinguishing our assumptions from others. Additionally, another line
of work on latent variable models requires 2nA + 1 distinct domains or classes to achieve latent
variable identifiability (e.g., (Hyvärinen & Morioka, 2017; Khemakhem et al., 2020a; Kong et al.,
2022; Hyvärinen et al., 2024)), a condition we do not impose.

Of course, since we aim for the general nonparametric identifiability for all class-dependent
concepts, there are scenarios where it is impossible to fully recover every hidden concept, even
with the help of the Structural Diversity condition. For instance, consider a scenario where all
classes correspond to the same set of concepts, such as different breeds of dogs all sharing the
concepts of ”barks,” ”furry,” and ”four-legged.” In this case, an infant or a machine without any
prior knowledge would find it impossible to distinguish between the breeds based solely on these
observational data. The lack of unique, distinguishing features for each breed means that the
Structural Diversity condition cannot be satisfied, making it impossible to identify each breed’s
unique concepts purely from observation. This example highlights the limitations of the Structural
Diversity condition in cases where inherent diversity across classes is absent. That being said,
while the condition encourages diversity and can hold true in dense structures, it will fail if all
concepts and classes are fully connected. In such a scenario, the lack of diversity between different
classes makes it impossible to distinguish them without any extra information. In these instances,
previous assumptions in provable concept learning—such as no occlusions between concepts
(disjoint Jacobians), linear concept representations, and additive generating functions—can provide
the additional information about the hidden process to ensure the identifiability of those concepts
(Brady et al., 2023; Lachapelle et al., 2023; Wiedemer et al., 2024). Given this perspective, our
assumption does not supersede the previous ones; rather, it offers a new direction that can be helpful
for learning hidden concepts with minimal prior knowledge about the system.

The other assumption introduced in Thm. 2 requires distributional variability across different
classes. Specifically, it necessitates the existence of at least two classes with differing conditional
distributions. As discussed and empirically verified in Kong et al. (2022), the likelihood of all classes
having identical probability measures is exceedingly slim. Importantly, these two classes may vary
across different Az. Therefore, this assumption is highly likely to be satisfied in real-world sce-
narios, as it is virtually impossible for the measures corresponding to all classes (e.g., all kinds of
animals in a zoo) to be almost identical. A concrete example is as follows:

Example 4. Consider c as a 2-dimensional vector with c(k) = [1, 0] and c(v) = [0, 1]. Let Z = R2,
and Az = {(z1, z2) ∈ R2 : 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1}. The conditional densities are p(z | c =

[1, 0]) = 1
2π e

− (z1−1)2+(z2−0)2

2 and p(z | c = [0, 1]) = 1
2π e

− (z1−0)2+(z2−1)2

2 . Evaluating the integrals
over Az, we have∫ 1

0

∫ 1

0

1

2π
e−

(z1−1)2+(z2−0)2

2 dz1dz2 ̸=
∫ 1

0

∫ 1

0

1

2π
e−

(z1−0)2+(z2−1)2

2 dz1dz2.

Note that (k, v) can even be different for different Az, which further weakens the assumption.

Implications. Extending the results on a subset of concepts (Thm. 1 and Prop. 1), Thm. 2 provides
correctness guarantees for learning all class-dependent hidden concepts. Unlike previous work that
focuses on specific parametric constraints such as disjointness, linearity, and additivity, the proposed
global guarantees mainly rely on the Structural Diversity between classes and concepts, and thus can
be applied on general scenarios given sufficient diversity. As discussed before, this aligns with the
fundamental cognitive process of learning by comparison and ensures provably uncovering the latent
world in a nonparametric manner. Despite being one of the essential pieces on learning the hidden
concepts, our proposed theory also sheds light on understanding the latent variable models without
additional knowledge, since the formulation is just based on the basic generating process between
latent and observed variables. As a result, part of the proposed results might also be of indepen-
dent interest to other fields such as disentanglement (Hyvärinen et al., 2024), causal representation
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learning (Schölkopf et al., 2021), object-centric learning (Mansouri et al., 2024), compositional gen-
eralization (Du & Kaelbling, 2024), and causal structure learning (Spirtes et al., 2000).

Class-independent concepts. In Thm. 2, we have established the nonparametric identifiability of
all class-dependent concepts. Similar to how infants learn about different objects by remembering
their unique features, learning all concepts that do not always remain invariant might be sufficient
for exploring the new world. However, we may still be interested in how to provably uncover the re-
maining class-independent concepts, even though they may not stand out in the cognitive process due
to their invariance. Therefore, we provide the following result, with its proof in Appx. B.5, which
identifies all concepts, whether class-dependent or class-independent, in a nonparametric manner.

Proposition 2. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. In addition to assumptions in Thm. 2, further suppose that, for all zi ∈ zB , there
exists Ci s.t.

⋂
k∈Ci

supp(Dzi
f)i,nA+1: = {i}. Meanwhile, for each i ∈ {nA + 1, . . . , n}, there

exist {z(ℓ)}|Fi,nA+1:|
ℓ=1 and a matrix Tf ∈ Tf s.t. span{Dzf(z

(ℓ))i,nA+1:}
|Fi,nA+1:|
ℓ=1 = RnB

Fi,nA+1:

and
[
Dzf(z

(ℓ))Tf

]
i,nA+1:

∈ RnB

F̂i,nA+1:
. Then z is identifiable up to an element-wise invertible

transformation and a permutation (Defn. 1).

To avoid introducing parametric assumptions, we still mainly rely on conditions on the connective
structure. Since classes c are not connected to those class-independent concepts zB , the proposed
structural condition on M does not help identify zB . Thus, we leverage the structural condition
between these concepts and the observed variables, as proposed in (Zheng et al., 2022). For brevity,
let F and F̂ denote the support of the Jacobian Dzf and Dẑf̂ , respectively. Additionally, Tf refers
to a set of matrices with the same support of Tf in Dẑf̂ = DzfTf , where Tf is a matrix-valued
function. Generally, the condition on the structure supp(Dzi

f) encourages sparsity in the Jacobian
of the generating function f . As verified empirically in previous work (Zheng & Zhang, 2023),
this condition is likely to hold in our setting where the number of observed variables x exceeds the
number of class-independent concepts zB . Consequently, if needed, we can provide nonparametric
guarantees under appropriate structural conditions for all types of concepts in general settings.

3.3 LEARNING STRUCTURE BETWEEN CLASSES AND CONCEPTS

Furthermore, we show that the hidden structure M , which encodes the dependency relations be-
tween classes and concepts, can also be identified based on multiple classes of observations (Prop.
3). This process parallels human learning, where distinguishing between classes involves recovering
underlying structures, such as aligning concepts with their corresponding classes. Though identify-
ing hidden structures in complex systems from observational data has remained an open problem for
decades (Spirtes et al., 2000), our findings offer potential insights into addressing this longstanding
challenge. The proof is included in Appx. B.4.

Proposition 3. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. Suppose all assumptions in Thm. 1 hold, except Assump. 1. Then the ground-truth structure
M is identifiable up to a row permutation.

Discussion on Assumptions. All assumptions have been discussed in the previous sections. Com-
pared to the previous theories on the identifiability of latent concepts, the recovery of the hidden
connective structure does not necessitate the structural diversity assumption (Assump. 1). This
allows us to uncover the structure in even more general scenarios, if the identification of latent
concepts might not be of particular interest.

Implications. Proposition 3 indicates that, the recovered hidden structure between classes and con-
cepts is an isomorphism of the ground-truth structure. Intuitively, this helps the machine understand
which concepts correspond to a given class of observations. While this process may seem straight-
forward to us, it can be challenging for infants or machines without prior experience, as it aligns
with an essential step of learning through comparison. For instance, consider an infant presented
with a set of objects like a cat, a dog, and a bird (the classes) and a set of concepts like ”furry,”
”barks,” and ”flies.” Without proper knowledge, the infant might incorrectly assign ”barks” to the
cat or ”flies” to the dog, lacking the experience to accurately match these concepts with the correct
classes. The concept of ”furry” might also be mistakenly assigned to the bird, despite its inapplica-
bility. Therefore, to distinguish different classes by their concepts and learn unique concepts through
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comparison, the machine must first recover the underlying connective structure. This is essential for
provably learning from multiple classes of observations.

Furthermore, if we consider the class variables c as exogenous to the system and the underlying con-
cept variables z as general hidden variables, the dependency structure between exogenous noises and
hidden variables encodes most of the structural information in the system, even if dependencies exist
among hidden variables (e.g., a hidden directed acyclic graph (DAG)). In structure learning, simi-
lar strategies have been applied to recover the DAG among hidden variables by first recovering the
structure of how exogenous noises influence the system in both linear (Shimizu et al., 2006) and
nonlinear (Reizinger et al., 2022) cases—the DAG constraint ensures the correspondence between
the Jacobian of the mixing function and the adjacency matrix. It is worth noting that identifying the
hidden structure in a general nonlinear system from purely observational data (i.e., without interven-
tions) is a challenging problem that has been open for decades (Spirtes et al., 2000). Although this is
not the focus of our work, the insights provided here may be of independent interest to researchers
in related fields exploring this longstanding challenge.

4 EXPERIMENTS

In order to show the recovery of hidden concepts based on the proposed nonparametric identifiability
theory, we conduct experiments on both synthetic and real-world datasets. It is noteworthy that
an extensive body of research has empirically verified the ability to learn hidden concepts from
various data modalities (Bau et al., 2017; Radford et al., 2017; Alvarez Melis & Jaakkola, 2018;
Kim et al., 2018; Zhou et al., 2018; Yeh et al., 2020; Koh et al., 2020; Bai et al., 2022; Achtibat
et al., 2022; Crabbé & van der Schaar, 2022; Liu et al., 2023). Furthermore, the application range
of concept learning is expanding significantly with recent advancements in foundation models (Park
et al., 2023; Rajendran et al., 2024; Jiang et al., 2024). Our results complement previous empirical
findings by verifying the proposed theory, and we refer to the extensive previous research outlined
above for more applications of concept learning across various scenarios.

Setup. In the considered setting, different samples may correspond to different classes selected
by a mask. We structure the dataset as {(x(i), c(i))}Ni=1, where N denotes the sample size, and
c(i) is a multi-hot vector representing the classes for the data point x(i). A mask Mi,: ⊙ c(i) is
applied to account for the specific class for each sample. We employ a regularized maximum-
likelihood method during estimation, following the standard approach in (Sorrenson et al., 2020).
The objective function is defined as L(θ) = E(x,c)[log pf̂−1(x | Mi,: ⊙ c) − λR], where λ is

the regularization parameter, and R represents the ℓ1 norm applied to M̂ and, if estimating class-
independent concepts, also to F̂ . Following previous work, we use Mean Correlation Coefficient
(MCC) to measure the alignment between the ground-truth and the recovered latent concepts. The
results are from 10 random trials. Additional details and results are provided in Appx. C.

Synthetic datasets. We conduct experiments on various synthetic datasets to verify the proposed
identifiability theory. Specifically, we focus on two settings: learning all class-dependent concepts
(Fig. 4) and learning all concepts, including class-independent ones, under appropriate conditions
(Fig. 5). For Ours, the observations are generated according to the assumptions required for the
theory; while for Base, no structural conditions on either M or F have been imposed. The details
are included in Appx. C.1. Moreover, to measure the element-wise identifiability, we use the
standard Mean Correlation Coefficient (MCC) between the ground-truth and estimated hidden
concepts. The results (Fig. 4 and Fig. 5) demonstrate that our models achieve higher MCCs
compared to the base model in both settings. This suggests that it is possible to identify hidden
concepts from purely observational data without making assumptions about the concept type,
functional relationships, or parametric generative models. Meanwhile, our models also provide
lower variances across different runs, which further verifies our theoretical findings. As suggested
by these results, hidden concepts can be identified up to an element-wise transformation and a
permutation under our conditions, while the base model fails to disentangle and recover most
concepts from data, further suggesting the necessity of the proposed conditions.

Real-world datasets. To assess the applicability of our proposed structural condition in real-world
contexts, we performed experiments using the Fashion-MNIST (Xiao et al., 2017), EMNIST (Cohen
et al., 2017), AnimalFace (Si & Zhu, 2011), and Flower102 (Nilsback & Zisserman, 2008) datasets.
We highlight the identified concepts with the largest standard deviations (SDs) for Fashion-MNIST
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Figure 4: Identification of class-dependent
concepts w.r.t. different number of concepts.
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Figure 5: Identification of all concepts w.r.t.
different number of concepts.

Figure 6: Results on Fashion-MNIST. The
rows correspond to different concepts of a
pullover: “sleeve length,” “torso length,” and
“shoulder width,” respectively.

Figure 7: Results on Fashion-MNIST. The
rows correspond to different concepts of an
ankle boot: “heel height,” “ankle width,” and
“toe box width,” respectively.

Figure 8: Results on AnimalFace. The rows
correspond to different concepts of a panda:
“Ursid” and “Monochrome,” respectively.

Figure 9: Each row corresponds to the same
concept (“Blooming”) consistently identified
from different environments in Flower102.

(Figs. 6 and 7), EMNIST (Fig. 10 in Appx. C.2), and AnimalFace (Fig. 8). Each row in the figures
shows reconstructed images with the corresponding concept value varying to illustrate its effect.
Additionally, the rightmost column features a heat map depicting the absolute pixel differences to
visualize the influence. Clearly, the semantics of the identified concepts align with our understanding
of the corresponding classes. For Flower102, we test the robustness of the recovered concept by
comparing the same concept across different angles and environments. As seen in Fig. 9, the concept
can be consistently identified from the same class across various conditions, further supporting our
theory. Therefore, these results indicate that hidden concepts can be identified from observational
data alone without the need to specify the generative model, underscoring the practical viability.

5 CONCLUSION

Drawing inspiration from the fundamental cognitive mechanism of learning through comparison,
we establish a set of theoretical guarantees for learning concepts in general nonparametric settings.
We provide a theoretical framework that potentially explains the impressive empirical successes in
many previous works. Specifically, we prove that hidden concepts can be identified up to trivial
indeterminacy from diverse classes of observations without any assumptions on the concept types,
functional relations, or parametric generating models. Interestingly, even in scenarios where the
structural conditions do not universally hold, we can still provide appropriate identifiability for a
subset of concepts with sufficient diversity based on the mechanism of local comparison, thereby
greatly broadening the applicability of the proposed theory. Furthermore, the connective structure
between classes and concepts can also be recovered in a nonparametric manner. As a current
limitation, future work involves exploiting the theory to a wider range of practical problems, such
as compositional generalization, decision-making, and controllable generation.
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A SUMMARY OF NOTATION

We summarize the key notations used throughout the paper to provide a quick reference for readers.

VARIABLES AND FUNCTIONS

• x = (x1, . . . ,xm) ∈ X ⊆ Rm : Observed variables.

• z = (zA, zB) ∈ Z ⊆ Rn, where n = nA + nB : Latent concept variables.

• zA ∈ RnA : Class-dependent concepts influenced by the classes c.

• zB ∈ RnB : Class-independent concepts, unaffected by c.

• c = (c1, . . . , cu) : Class variables represented as vectors, with u classes.

• f : Z → X : Injective generative function mapping latent concepts to observations.

• zA = g(c, θ, ϵ) : Class-dependent concept function parameterized by c, θ (factors), and ϵ
(noise).

• θ : Additional influencing factors in the function g.

• ϵ : Noise term in the function g.

• ẑ : Estimated latent concepts.

• f̂ : Estimated generative model.

PROBABILITIES AND DENSITIES

• p(z | c) = p(zA | c)p(zB) : Conditional density of latent concepts z given classes c,
assuming conditional independence.

• p(zA | c) =
∏nA

i=1 p(zi | Mi,: ⊙ c) : Factorized density of class-dependent concepts zA.

• E[·] : Expectation operator.

• P : Probability measure.

15
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INDICES AND SETS

• Ai : Index set of concepts corresponding to class ci.

• zAi : Concepts associated with class ci.

• zAi\Aj
: Difference in concept sets between classes ci and cj .

• I ⊂ {1, . . . ,m} × {1, . . . , n} : Set of indices for matrix elements.

• Ii,: = {j | (i, j) ∈ I} : Indices corresponding to row i in I.

• I:,j = {i | (i, j) ∈ I} : Indices corresponding to column j in I.

• S ⊂ {1, . . . , n} : Subset of indices.

• Rn
S = {s ∈ Rn | si = 0 if i /∈ S} : Subspace of Rn where components not in S are zero.

MATRICES AND OPERATIONS

• S ∈ Ra×b : An arbitrary matrix with the shape (a, b).

• Si,:, S:,j : i-th row, j-th column of matrix S.

• supp(S) = {(i, j) | Si,j ̸= 0} : Support of matrix S.

• supp(S(Θ)) = {(i, j) | ∃θ ∈ Θ,S(θ)i,j ̸= 0} : Support of a matrix-valued function S(Θ).

• Dcg : Partial derivative of g with respect to class labels c.

• D = supp(Dcg) : Support of the Jacobian of g with respect to c.

• T : Matrix-valued function representing a transformation between Dcg and Dĉĝ.

• T : Set of matrices sharing the same support as T.

• M ∈ {0, 1}nA×u : Binary structure matrix showing connections between classes and con-
cepts.

• ⊙ : Element-wise (Hadamard) product.

• span{·} : Linear span of a set of vectors.

• rank(·) : Rank of a matrix.

DATA AND PARAMETERS

• {(x(i), c(i))}Ni=1 : Dataset of N samples with observed variables and corresponding
classes.

• M : Mask applied to classes in the dataset.

• λ : Regularization parameter used in the estimation objective.

• R : Regularization term (e.g., ℓ1 norm applied to estimated supports).

• π : Permutation function used to align estimated concepts.

• Θ : Parameter space.

CONVENTIONS

• Bold lowercase letters (e.g., x) denote vectors; uppercase letters (e.g., S, M ) denote matri-
ces.

• Calligraphic letters (e.g., X , Z) denote sets or spaces.

• Subscripts with colons denote slicing: Si,: represents the i-th row; S:,j represents the j-th
column.

• Estimated quantities are denoted with hats (e.g., ẑ for estimated latent concepts).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B PROOFS

B.1 PROOF OF THEOREM 1

Theorem 1. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. Suppose for each i ∈ {1, . . . , nA}, there exist a set of points {(c, θ)(ℓ)}|D:,i|

ℓ=1 , a point (c, θ)(r),
and a matrix T ∈ T such that the following conditions hold:

i. The Jacobian spans its support space, i.e., span{Dcg((c, θ)
(ℓ)):,i}

|D:,i|
ℓ=1 = RnA

D:,i
, and[

TDcg((c, θ)
(ℓ))
]
:,i

∈ RnA

D̂:,i
.

ii. The Jacobian Dcg((c, θ)
(r)) is of full row rank.

Then for any two classes ci and cj , there exists a permutation π such that ẑπ(Ai\Aj), do not depend
on the latent concepts zAj associated with class cj , and ẑπ(Aj\Ai) do not depend on the latent
concepts zAi associated with class ci.

Proof. Since both Dcg and Dĉĝ are of full row rank, we have

Dĉĝ = TDcg, (4)

where T is an invertible matrix. According to the assumption, the span is nondegenerate in the sense
that

span{Dcg((c, θ)
(ℓ)):,j}

|D:,j |
ℓ=1 = RnA

D:,j
. (5)

Then we can construct an one-hot vector ei0 ∈ RnA

D:,j
for any i0 ∈ D:,j as a linear combination

of vectors {Dcg((c, θ)
(ℓ)):,j}

|D:,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D:,j

βℓDcg((c, θ)
(ℓ)):,j , where βℓ denotes some

coefficient. Note that we define D as the support of Dcg. Additionally, we define T as a set of
matrices that share the same support as T in the equation Dĉĝ = TDcg, where T is a matrix-
valued function and T ∈ T . Then we have

T:,i0 = Tei0 =
∑

ℓ∈D:,j

βℓTDcg((c, θ)
(ℓ)):,j . (6)

According to the assumption, we have

TDcg((c, θ)
(ℓ)):,j ∈ RnA

D̂:,j
. (7)

Therefore, Eq. (6) implies T:,i0 ∈ RnA

D̂:,j
, which is equivalent to

∀i ∈ D:,j ,T:,i0 ∈ RnA

D̂:,j
. (8)

This further indicates
∀(i, j) ∈ D, T:,i × {j} ⊂ D̂. (9)

Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (10)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the

summation, which indicates that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (11)

Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (12)

Thus, it follows that
∀i ∈ {1, . . . , nA}, σ(i) ∈ T:,i. (13)
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Then it yields
∀(i, j) ∈ D, (σ(i), j) ∈ T:,i × {j}. (14)

Because of Eq. (9), we have

∀(i, j) ∈ D, (σ(i), j) ∈ D̂. (15)

Let us denote π̃(D) as a row permutation of D, where ∀(i, j) ∈ D, there must be

(σ(i), j) ∈ π̃(D) (16)

and
|π̃(D)| = |D|. (17)

Furthermore, Eq. (15) indicates that

π̃(D) ⊂ D̂, (18)

We have the following relation based on the sparsity regularization:

|D̂| ≤ |D|. (19)

Therefore, we have the following relation:

|π̃(D)| = |D| ≥ |D̂|. (20)

Together with Eq. (18), it follows that

D̂ = π̃(D). (21)

Let us denote the permutation indeterminacy in our goal as π s.t.

D̂ := {(π(i), j) | (i, j) ∈ D}. (22)

Given two classes ci and cj , for any zk ∈ zAi
, we have

(k, i) ∈ D. (23)

Because of Eq. (9), this further implies

T:,k × {i} ∈ D̂. (24)

For any π(v) where zv ∈ zAj\Ai
, suppose we have

(π(v), k) ∈ T , (25)

which is equivalent to
π(v) ∈ T:,k. (26)

Then according to Eq. (24), we have

(π(v), i) ∈ T:,k × {i} ∈ D̂. (27)

Based on Eq. (22), Eq. (27) is equivalent to

(v, i) ∈ D, (28)

which indicates a contradiction since zv ∈ zAj\Ai
.

As a result, there must be (π(v), k) /∈ T . Similarly, for any zu ∈ zAj
, we can also show by

contradiction that there must be (π(u), j) /∈ T . Therefore, for any two classes ci and cj , there
exists a permutation π that the estimated latent concepts for the set difference, ẑπ(Ai\Aj), do not
depend on the latent concepts zAj associated with class cj , and similarly, ẑπ(Aj\Ai) do not depend
on of the latent concepts zAi associated with class ci.

18
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B.2 PROOF OF PROPOSITION 1

Proposition 1. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. Suppose that the assumptions in Thm. 1 hold. Then, for a set of classes cI and its
corresponding concept sets zAI

with a set of indices I , there exists a permutation π that the unique
part of a concept set for the class ci, i.e., ẑπ(Ai\AI\i), does not depend on the latent concepts
associated with other classes, i.e., zAI\i .
Proof. Because all assumptions in Theorem 1 hold, according to the proof of it, we know that, for a
row permutation of D, i.e., π̃(D) where

π̃(D) := {(σ(i), j)|(i, j) ∈ D}. (29)

There must be a relationship that
D̂ = π̃(D). (30)

Then we want to show that, there exists a permutation π that the unique part of a concept set for the
class ci, i.e., ẑπ(Ai\AI\i), does not depend on the latent concepts associated with other classes, i.e.,
zAI\i . For any zk ∈ zAI\i and its corresponding class cq ∈ cI and q ̸= i, we have

(k, q) ∈ D. (31)

According to the proof of Theorem 1, we have

TDcg((c, θ)
(ℓ)):,j ∈ RnA

D̂:,j
. (32)

Therefore, Eq. (31) further indicates that

T:,k × {q} ∈ D̂. (33)

Define the permutation π as
D̂ := {(π(i), j) | (i, j) ∈ D}. (34)

Then we consider any π(v) where we have

zv ∈ zAi\AI\i . (35)

Suppose we have
(π(v), k) ∈ T . (36)

This also implies that
π(v) ∈ T:,k. (37)

Based on Eq. (33), we further have

(π(v), q) ∈ T:,k × {q} ∈ D̂. (38)

According to the definition of D̂, this is equivalent to

(v, q) ∈ D, (39)

Because zv ∈ zAi\AI\i , the above equation indicates that there must be cq = ci. which is a
contradiction since q ̸= i. Therefore, we have

(π(v), k) /∈ T . (40)

This implies that there exists a permutation π that the unique part of a concept set for the class ci,
i.e., ẑπ(Ai\AI\i), does not depend on the latent concepts associated with other classes, i.e., zAI\i .

B.3 PROOF OF THEOREM 2

Theorem 2. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. In addition to the assumptions in Thm. 1 and Assump. 1, suppose for any set Az ⊆ Z with
non-zero probability measure and cannot be expressed as BzB

× zA for any BzB
⊂ ZB , there exist

two values of c, i.e., c(k) and c(v) (which may vary across different Az), that∫
z∈Az

p(z | c(k))dz ̸=
∫
z∈Az

p(z | c(v))dz.

Then zA is identifiable up to an element-wise invertible transformation and a permutation (Defn.
1), and zB is identifiable up to a subspace-wise invertible transformation (Defn. 2).
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Proof. Consider the transformation h : z → ẑ between true concepts z and estimated concepts ẑ.
Using the chain rule, the derivative of ĝ with respect to ĉ can be expressed as:

Dĉĝ = DzhDcg. (41)

The Jacobian of h can be written as:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB
∂ẑB

∂zA

∂ẑB

∂zB

]
. (42)

According to steps 1, 2, and 3 in the proof of Theorem 4.2 in Kong et al. (2022), the bottom-left block
of Dzh, i.e., DzhnA+1:,:nA

, consists of only zero entries. As a result, the Jacobian is equivalent to:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB

0 ∂ẑB

∂zB

]
. (43)

Since h is invertible, the determinant of Dzh is non-zero. Together with the structure of the Jacobian
matrix, we have

det(Dzh) = det(
∂ẑA
∂zA

) det(
∂ẑB
∂zB

), (44)

which further implies

det(
∂ẑA
∂zA

) ̸= 0, (45)

det(
∂ẑB
∂zB

) ̸= 0. (46)

Since det(∂ẑB

∂zB
) ̸= 0 and ∂ẑB

∂zA
= 0, it follows that ẑB depends solely on zB and not on zA, i.e., there

exists an invertible function hB : zB → ẑB s.t.,

ẑB = hB(zB). (47)

Since ẑA is independent of ẑB and ẑB = hB(zB), we further have ẑA is independent of zB , i.e.,

∂ẑA
∂zB

= 0. (48)

Then the Jacobian can be represented as

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (49)

Thus, ẑB is identifiable up to a subspace-wise invertible transformation, and we have{
∂ẑi

∂zj
= 0 i ∈ {1, . . . , nA}, j ∈ {nA + 1, . . . , n},

∂ẑk

∂zv
= 0 k ∈ {nA + 1, . . . , n}, v ∈ {1, . . . , nA}.

(50)

This implies that
Dĉĝ:nA,: = Dzh:nA,:nA

Dcg:nA,:. (51)
According to the assumption, we have

span{Dcg((c, θ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 = RnA

D:nA,j
. (52)

Then we can construct an one-hot vector ei0 ∈ RnA

D:nA,j
for any i0 ∈ D:nA,j as a linear combina-

tion of vectors {Dcg((c, θ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D:nA,j

βℓDcg((c, θ)
(ℓ)):nA,j , where βℓ

denotes some coefficient. Note that we define T as a set of matrices with the same support of T in
Dĉĝ:nA,: = TDcg:nA,:, where T is a matrix-valued function. Then we have

T:,i0 = Tei0 =
∑

ℓ∈D:nA,j

βℓTDcg((c, θ)
(ℓ)):nA,j . (53)
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According to the assumption, we have

TDcg((c, θ)
(ℓ)):nA,j ∈ RnA

D̂:nA,j
. (54)

Therefore, Eq. (53) implies T:,i0 ∈ RnA

D̂:nA,j
, which is equvalent to

∀i ∈ D:nA,j ,T:,i0 ∈ RnA

D̂:nA,j
. (55)

This further indicates
∀(i, j) ∈ D:nA,:, T:,i × {j} ⊂ D̂:nA,:. (56)

Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (57)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the

summation, which indicates that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (58)

Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (59)

Thus, it follows that
∀i ∈ {1, . . . , nA}, σ(i) ∈ T:,i. (60)

Then it yields
∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ T:,i × {j}. (61)

Because of Eq. (56), we have

∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ D̂:nA,:. (62)

Let us denote π̃(D:nA,:) as a row permutation of D:nA,:, where ∀(i, j) ∈ D:nA,:, there must be

(σ(i), j) ∈ π̃(D:nA,:), (63)

and
|π̃(D:nA,:)| = |D:nA,:|. (64)

Eq. 62 indicates that
π̃(D:nA,:) ⊂ D̂:nA,:. (65)

According to the sparsity regularization, we have the following relation based on the sparsity regu-
larization:

|D̂:nA,:| ≤ |D:nA,:|. (66)
Therefore, we have

|π̃(D:nA,:)| = |D:nA,:| ≥ |D̂:nA,:|. (67)
Together with Eq. (65), it follows that

D̂:nA,: = π̃(D:nA,:). (68)

Let us denote the permutation indeterminacy in our goal as π s.t.

D̂:nA,: := {(π(i), j) | (i, j) ∈ D:nA,:}. (69)

For a latent concept zi, according to the structural diversity assumption (Assump. 1), there exists
a set of column indices J , where Mi,J only has one non-zero entry. Let us denote that non-zero
entry as Mi,j . Since M is a binary matrix with the support D:nA,:, we have (i, j) ∈ D:nA,: and
(i, k) /∈ D:nA,: for any k ∈ J \ j.

Then, according to the assumption, for any other concept zv where v ̸= i, there must be a class cq
s.t. q ∈ J \ j s.t.

(v, q) ∈ D:nA,:. (70)
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Because of Eq. (56), it follows that

T:,v × {q} ∈ D̂:nA,:. (71)

For any π(i), suppose we have
(π(i), v) ∈ T , (72)

which is equivalent to
π(i) ∈ T:,v. (73)

Then according to Eq. (71), we have

(π(i), q) ∈ T:,v × {q} ∈ D̂:nA,:. (74)

Based on Eq. (69), Eq. (74) is equivalent to

(i, q) ∈ D:nA,:. (75)

This is a contradiction since (i, q) /∈ D:nA,: for any q ∈ J \ j. Thus, for any i ∈ {1, . . . , nA} and
k ∈ {1, . . . , nA} \ {i}, there must be

(π(i), v) /∈ T . (76)

Because T is invertible, all row must have at least one non-zero entry. Thus, Eq. (76) further implies

(π(i), i) ∈ T . (77)
Combining both Eqs. (76) and (77) for each i ∈ {1, . . . , nA}, the transformation between ẑA and
zA must be a composition of an element-wise invertible transformation and a permutation, which is
our goal.

B.4 PROOF OF PROPOSITION 3

Proposition 3. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. Suppose all assumptions in Thm. 1 hold, except Assump. 1. Then the ground-truth structure
M is identifiable up to a row permutation.

Proof. Consider the transformation h : z → ẑ between true concepts z and estimated concepts ẑ.
Using the chain rule, the derivative of ĝ with respect to ĉ can be expressed as:

Dĉĝ = DzhDcg. (78)

The Jacobian of h can be written as:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB
∂ẑB

∂zA

∂ẑB

∂zB

]
. (79)

According to steps 1, 2, and 3 in the proof of Theorem 4.2 in Kong et al. (2022), the bottom-left block
of Dzh, i.e., DzhnA+1:,:nA

, consists of only zero entries. As a result, the Jacobian is equivalent to:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB

0 ∂ẑB

∂zB

]
. (80)

Since h is invertible, the determinant of Dzh is non-zero. Together with the structure of the Jacobian
matrix, we have

det(Dzh) = det(
∂ẑA
∂zA

) det(
∂ẑB
∂zB

), (81)

which further implies

det(
∂ẑA
∂zA

) ̸= 0, (82)

det(
∂ẑB
∂zB

) ̸= 0. (83)
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Since det(∂ẑB

∂zB
) ̸= 0 and ∂ẑB

∂zA
= 0, it follows that ẑB depends solely on zB and not on zA, i.e., there

exists an invertible function hB : zB → ẑB s.t.,

ẑB = hB(zB). (84)

Since ẑA is independent of ẑB and ẑB = hB(zB), we further have ẑA is independent of zB , i.e.,

∂ẑA
∂zB

= 0. (85)

Therefore, the Jacobian of h is

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (86)

Note that we have
Dĉĝ = DzhDcg, (87)

which is equivalent to

Dĉĝ:nA,: = (DzhDcg):nA,: = Dzh:nA,:Dcg. (88)

Because ∂ẑi

∂zk
= 0 for i ∈ {1, . . . , nA} and k ∈ {nA + 1, . . . , n}, the upper-right block of Dzh, i.e.,

Dzh:nA,nA+1:, consists of only zero entries. It further indicates that

Dĉĝ:nA,: = Dzh:nA,:nA
Dcg:nA,:. (89)

According to the assumption, we have

span{Dcg((c, θ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 = RnA

D:nA,j
. (90)

Then we can construct an one-hot vector ei0 ∈ RnA

D:nA,j
for any i0 ∈ D:nA,j as a linear combina-

tion of vectors {Dcg((c, θ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D:nA,j

βℓDcg((c, θ)
(ℓ)):nA,j , where βℓ

denotes some coefficient. Then we have

T:,i0 = Tei0 =
∑

ℓ∈D:nA,j

βℓTDcg((c, θ)
(ℓ)):nA,j . (91)

Note that we define D as the support of Dcg. Additionally, we define T as a set of matrices that
share the same support as T in the equation Dĉĝ:nA,: = TDcg:nA,:, where T is a matrix-valued
function and T ∈ T .

According to the assumption, we have

TDcg((c, θ)
(ℓ)):nA,j ∈ RnA

D̂:nA,j
. (92)

Therefore, Eq. (91) implies T:,i0 ∈ RnA

D̂:nA,j
, which is equivalent to

∀i0 ∈ D:nA,j ,T:,i0 ∈ RnA

D̂:nA,j
. (93)

This further indicates
∀(i, j) ∈ D:nA,:, T:,i × {j} ⊂ D̂:nA,:. (94)

Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (95)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the

summation, which indicates that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (96)
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Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (97)

Thus, it follows that
∀i ∈ {1, . . . , nA}, σ(i) ∈ T:,i. (98)

Then it yields
∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ T:,i × {j}. (99)

Because of Eq. (94), we have

∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ D̂:nA,:. (100)

Let us denote π(D:nA,:) as a row permutation of D:nA,:, where ∀(i, j) ∈ D:nA,:, there must be

(σ(i), j) ∈ π(D:nA,:). (101)

And it also implies
|π(D:nA,:)| = |D:nA,:|. (102)

Furthermore, Eq. 100 indicates that

π(D:nA,:) ⊂ D̂:nA,:, (103)

We have the following relation based on the sparsity regularization:

|D̂:nA,:| ≤ |D:nA,:|. (104)

Therefore, we have
|π(D:nA,:)| = |D:nA,:| ≥ |D̂:nA,:|. (105)

Together with Eq. (103), it follows that

D̂:nA,: = π(D:nA,:). (106)

Thus, we have proved the identifiability of D:nA,: up to a permutation on the row indices. Since M
is a binary matrix with the support of D, we have proved the connective structure between classes
and concepts up to a row permutation.

B.5 PROOF OF PROPOSITION 2

Proposition 2. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. In addition to assumptions in Thm. 2, further suppose that, for all zi ∈ zB , there
exists Ci s.t.

⋂
k∈Ci

supp(Dzi
f)i,nA+1: = {i}. Meanwhile, for each i ∈ {nA + 1, . . . , n}, there

exist {z(ℓ)}|Fi,nA+1:|
ℓ=1 and a matrix Tf ∈ Tf s.t. span{Dzf(z

(ℓ))i,nA+1:}
|Fi,nA+1:|
ℓ=1 = RnB

Fi,nA+1:

and
[
Dzf(z

(ℓ))Tf

]
i,nA+1:

∈ RnB

F̂i,nA+1:
. Then z is identifiable up to an element-wise invertible

transformation and a permutation (Defn. 1).

Proof. We denote the transformation between the true and estimated concepts as h : z → ẑ. Ac-
cording to the proof in Theorem 2, the Jacobian h is as follows:

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (107)

Therefore, any variable in ẑA does not depend on any variable in zB , and any variable in ẑB does
not depend on any variable in zA. At the same time, by using the chain rule on h = f̂−1 ◦ f , we
have

Dẑf̂ = DzfDẑh
−1, (108)

which is equivalent to
Dẑf̂ :,nA+1: = DzfDẑh

−1
:,nA+1:. (109)

Based on Eq. 107, this further indicates that

Dẑf̂ :,nA+1: = Dzf :,nA+1:Dẑh
−1

nA+1:,nA+1:. (110)
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Then we have the following equation according to the assumption:

span{Dzf(z
(ℓ))i,nA+1:}

|Fi,nA+1:|
ℓ=1 = RnB

Fi,nA+1:
(111)

Then we can construct an one-hot vector ej0 ∈ RnB

Fi,nA+1:
for any j0 ∈ Fi,nA+1: as a linear combi-

nation of vectors {Dzf(z
(ℓ))i,nA+1:}

|Fi,nA+1:|
ℓ=1 , i.e.,

ej0 =
∑

ℓ∈Fi,nA+1:

βℓDzf(z
(ℓ))i,nA+1:, (112)

where βℓ denotes some coefficient. Then we have

Tf j0,nA+1: = ej0Tf :,nA+1: =
∑

ℓ∈D:nA,j

βℓDzf(z
(ℓ))i,nA+1:Tf :,nA+1: ∈ RnB

F̂i,nA+1:
. (113)

This further implies that, for any j ∈ Fi,nA+1:, we always have Tf j,: ∈ RnB

F̂i,nA+1:
. Thus, we have

the connection between support as follows:

(i, j) ∈ F:,nA+1:, {i} × Tf j,: ⊂ F̂:,nA+1:. (114)

Then, because of the invertibility of Tf , its determinant must not equal to zero, i.e.,

∑
σ∈Sn

(
sgn(σ)

nB∏
i=1

Tf (z
(ℓ))i,σ(i)

)
̸= 0, (115)

where S is the set of n-permutations. Therefore, there must be at least one term in the summation
that does not equal to zero, i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , nB}, sgn(σ)
nB∏
i=1

Tf (z
(ℓ))i,σ(i) ̸= 0. (116)

Because sgn(σ) ̸= 0, every term in the production must not equal to zero, i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , nB},Tf (z
(ℓ))i,σ(i) ̸= 0. (117)

This follows that
∀j ∈ {1, . . . , nB}, σ(j) ∈ Tf j,nA+1:. (118)

Based on Eq. (114), Eq. (118) further implies that, for any (i, j) ∈ F:,nA+1:, we have (i, σ(j)) ∈
F̂:,nA+1:. Let us denote σ(F) = {(i, σ(j)) | (i, j) ∈ F}, the above connection implies σ(F) ⊂ F̂ .
Together with the sparsity regularization on the estimated Jacobian, we have

|F̂ | ≤ |F| (119)

Because of the definition of σ(F), there must be

|F| = |σ(F)|, (120)

which follows that
|σ(F)| ≥ |F̂ |. (121)

Together with the relation that σ(F) ⊂ F̂ ,there must be

F̂ = σ(F). (122)

Suppose T:,nA+1: is not a composition of a permutation matrix and a diagonal matrix, then

∃j1 ̸= j2, Tj1,nA+1: ∩ Tj2,nA+1: ̸= ∅. (123)

Additionally, consider j3 ∈ {1, . . . , nB} for which

σ(j3) ∈ Tj1,nA+1: ∩ Tj2,nA+1:. (124)
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Since j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. Based on assumption, there exists
Cj1 ∋ j1 such that

⋂
i∈Cj1

Fi,nA+1: = {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Fi,nA+1:, (125)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Fi3,nA+1:. (126)

Since j1 ∈ Fi3,nA+1:, it follows that (i3, j1) ∈ F:,nA+1:. Therefore, according to Eq. (114), we
have

{i3} × Tj1,nA+1: ⊂ F̂:,nA+1:. (127)
Notice that σ(j3) ∈ Tj1,nA+1: ∩ Tj2,nA+1: implies

(i3, σ(j3)) ∈ {i3} × Tj1,nA+1:. (128)
Then by Eqs. (127) and (128), we have

(i3, σ(j3)) ∈ F̂:,nA+1:. (129)
This further implies (i3, j3) ∈ F:,nA+1: by Eq. (122), which contradicts Eq. (126). Therefore, we
have proven by contradiction that T:,nA+1: is a composition of a permutation matrix and a diago-
nal matrix, which means that the invariant part zB is identifiable up to an element-wise invertible
transformation and a permutation. Together with the element-wise identifiability for concepts in the
changing part zA given by Theorem 2, we have proved that all latent concepts z = (zA, zB) is
identifiable up to an element-wise invertible transformation and a permutation.

C EXPERIMENTS

In this section, we provide more details regarding the experimental setup as well as additional ex-
perimental results to further support our theoretical findings.

C.1 SUPPLEMENTARY EXPERIMENTAL SETUP

We generate the data following the process outlined in our theorems. For our model that iden-
tifies only class-dependent concepts (Fig. 4), the connective structure between classes and con-
cepts is generated according to the Structural Diversity condition. For class-dependent concepts,
we sample from two multivariate Gaussian distributions with zero means and variances drawn from
a uniform distribution on [0.5, 3], consistent with parameters used in previous work (Khemakhem
et al., 2020b; Sorrenson et al., 2020). For our model that identifies all hidden concepts, including
class-independent ones (Fig. 5), the connective structure between class-independent concepts and
observed variables follows the structural condition in Prop. 2. These class-independent concepts are
sampled from a single multivariate Gaussian distribution with zero means and variances drawn from
a uniform distribution on [0.5, 3]. In the base model, we remove the structural constraints on both
types of connective structures to verify the necessity of the proposed conditions. All other settings
remain the same as ours.

In our model evaluation, we employ the Mean Correlation Coefficient (MCC) to measure the align-
ment between the ground-truth and the recovered latent concepts, which is standard in the literature
(Hyvärinen & Morioka, 2016). To calculate MCC, we first compute the pairwise correlation co-
efficients between the true concepts and the recovered concepts after applying a component-wise
transformation via regression. Following this, we solve an assignment to match each recovered
concept to the corresponding ground-truth concept with the highest correlation.

We use Generative Flow (Kingma & Dhariwal, 2018) as the nonlinear generating function. For
synthetic settings, the sample size is set as 10, 000. Experiments are conducted using the official im-
plementation of GIN2 (Sorrenson et al., 2020) with an additional ℓ1 regularization on the Jacobians
and FrEIA3 (Ardizzone et al., 2018-2022) for the flow-based generative function. The regularization
parameters λ is set according to a search in λ ∈ {0.01, 0.1, 1}, and we select λ = 0.1 according to
the average MCCs of experiments conducted on synthetic datasets. Moreover, all experiments are
conducted on 12 CPU cores with 16 GB RAM.

2https://github.com/VLL-HD/GIN
3https://github.com/vislearn/FrEIA
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(a) Angle (b) Height (c) Thickness

Figure 10: Results for each digit class in the EMNIST dataset, showing the identified concepts
with the top three standard deviations (SDs). Each subfigure represents a concept identified by our
model, with values ranging from −4 to +4 SDs to demonstrate their impact. The rightmost column
features a heat map of the absolute pixel differences between −1 and +1 SDs. These concepts can
be interpreted as variations in angle, height, and thickness.
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3 4 5 6
Dimensionality
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Figure 11: Identification of concepts w.r.t. different number of concepts and different settings.

C.2 SUPPLEMENTARY EXPERIMENTAL RESULTS

As discussed in Sec. 4, we include the results on EMNIST dataset here in the appendix. The
EMNIST dataset (Cohen et al., 2017) is an extension of the classical MNIST, which consists of
a much larger set of handwritten digits derived from the NIST Special Database 19 (Grother &
Hanaoka, 1995).

The results are shown in Fig. 10. Similar to the other datasets, we select the identified components
with the top three standard deviations and vary the value of the identified components to visual-
ize their potential semantics. According to the results, it is clear that the hidden concepts can be
identified by only learning from diverse classes of observations. This further indicates that the pro-
posed nonparametric identifiability, which is based on the basic cognitive mechanism of learning by
comparison, has potential applicability in real-world scenarios.

Partial violation of previous conditions. We also conduct experiments to evaluate the identifica-
tion under partial violations of previously established assumptions in the literature of latent variable
models. Specifically, we generated datasets with the following conditions:

1. Base (a): The structural sparsity assumption on the mixing structure between latent con-
cepts and observed variables, as outlined in (Zheng et al., 2022; Zheng & Zhang, 2023), is
partially violated for a subset of concepts, with the size randomly selected from all integers
in the range 1 to n/2.
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Figure 12: Multiple concepts (e.g., skin, eyes, face shape, etc.) corresponding to “Age” are entangled
after estimation.

Figure 13: Multiple concepts (e.g., lipstick, eye shadow, powder, etc.) corresponding to “Makeup”
are entangled after estimation.

Figure 14: Multiple concepts (e.g., hairstyle, head shape, eye, etc.) corresponding to “Gender” are
entangled after estimation.

2. Base (b): The 2n + 1 domain requirement in (Kong et al., 2022) is partially violated.
Instead, latent concepts are generated from n+ 1 multivariate Gaussian distributions, each
with zero mean and variances drawn from a uniform distribution over [0.5, 3].

3. Ours: The data-generating process adheres to our proposed structural diversity condition.
While there are no constraints on the mixing structure between latent concepts and ob-
served variables, the structure between classes and concepts satisfies the required structural
diversity.
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The results, shown in Fig. 11, indicate that when assumptions from previous works are partially
violated, the recovery of latent concepts becomes unreliable. This demonstrates the sensitivity of
prior methods to these assumptions. All results are from 10 runs with different random seeds.

Additional real-world experiments. To explore scenarios where not all concepts can be identified
component-wise, we conduct additional real-world experiments on a more complex scenario, i.e.,
the FFHQ dataset (Karras et al., 2019). The dataset contains 70, 000 human face images, which is
more complicated than the datasets in our other experiments. In addition to the estimation method
introduced before, we incorporate a sparsity regularization (ℓ1 norm) on the Jacobian of the mixing
function f , as required by (Zheng et al., 2022; Zheng & Zhang, 2023). Note that the identifiability
theory in (Kong et al., 2022) does not require specific regularization during estimation if the task is
not domain adaptation.

From Figs. 12, 13, and 14, it is evident that some concepts remain entangled and cannot be fully
recovered. For instance, for the class “Age”, concepts like “skin,” “eye,” and “face shape” are all
entangled together, suggesting that assumptions in (Zheng et al., 2022; Zheng & Zhang, 2023; Kong
et al., 2022) for component-wise identifiability may not be fully satisfied in this scenario. However,
these class-related concepts can still be identified as a group, consistent with our theorem based on
local or pairwise comparisons. This suggests that, even in complex scenarios where prior theories
fail to guarantee identifiability due to assumption violations, our alternative identifiability framework
based on pairwise comparisons may still provide an alternative theoretical basis for recovering class-
related concepts collectively, even if they remain entangled. This sheds light on the necessity of our
alternative identifiability guarantees in some complicated real-world scenarios.
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