Under review as a conference paper at ICLR 2024

BTBS-LNS: A BINARIZED-TIGHTENING, BRANCH
AND SEARCH APPROACH OF LEARNING LARGE
NEIGHBORHOOD SEARCH POLICIES FOR MIP

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning to solve the large-scale Mixed Integer Program (MIP) problems is an
emerging research topic, and policy learning-based Large Neighborhood Search
(LNS) has recently shown its effectiveness. However, prevailing approaches pre-
dominantly concentrated on binary variables and often susceptible to becoming
ensnared in local optima derived from the learning complexity. In response to
these challenges, we introduce a novel technique, termed Binarized-Tightening
Branch-and-Search LNS (BTBS-LNS). Specifically, we propose the “Binarized
Tightening” technique for integer variables to deal with their wide range by en-
coding and bound tightening, and design an attention-based tripartite graph to
capture global correlations within MIP instances. Furthermore, we devised an ex-
tra branching network at each step, to identify and optimize some wrongly-fixed
backdoor variables' by the learned LNS policy. We empirically show that our
approach can effectively escape local optimum in some cases. Extensive exper-
iments on different problems, including instances from Mixed Integer Program-
ming Library (MIPLIB), show that it significantly outperforms the open-source
solver SCIP and LNS baselines. It performs competitively with, and sometimes
even better than the commercial solver Gurobi (v9.5.0), especially at an early
stage. Source code will be made publicly available.

1 INTRODUCTION AND RELATED WORK

Mixed-integer programming (MIP) is a well-established and general optimization problem and has
been widely studied across applications. In many cases, feasible or even optimal solutions are
required under strong time limits, and thus efficiently finding high-quality solutions is of great im-
portance in real-world scenarios. Recently, machine learning for combinatorial optimization has
been an emerging topic (Bengio et al., 2021) with prominent success in different tasks, e.g. graph
matching (Yan et al., 2020), and ML4MIP is also an emerging field (Zhang et al., 2023).

A variety of deep learning based solving methods were proposed to deal with specific MIP prob-
lems, including construction methods (Ma et al., 2019; Xing & Tu, 2020; Fu et al., 2021; Zhang
et al., 2020; Khalil et al., 2017; Xin et al., 2021) and iterative based refinements (Wu et al., 2021b;
Chen & Tian, 2019; Lu et al., 2019b; Li et al., 2020). While they cannot be directly applied to a
wider scope of MIP problems, and thus learning the solving policies for general MIP problems has
been also intensively studied, in which the primal heuristics catch more attention, including Large
Neighborhood Search (LNS) (Wu et al., 2021a; Song et al., 2020; Nair et al., 2020a) and Local
Branching (LB) (Liu et al., 2022). In this paper, we focus on LNS for solving general MIP problems
— the most powerful yet also the most expensive iteration-based heuristics (Hendel, 2022).

Traditional LNS methods usually explore a complex neighborhood by predefined heuristics (Gen-
dreau et al., 2010; Altner et al., 2000; Godard et al., 2005; Yagiura et al., 2006; Lee, 2009), in which
the heuristic selection is a long-standing challenging task, especially for general MIP problems,
which may require heavy efforts to design valid heuristics. Learning-based methods provide a pos-
sible direction. For example, both Imitation Learning (IL) (Song et al., 2020) and Reinforcement

'In this paper, we extend the meaning of backdoor variables Williams et al. (2003) to those with different
solutions compared with global optimum.

Under review as a conference paper at ICLR 2024

Learning (RL) (Wu et al., 2021a; Nair et al., 2020a) showed effectiveness in learning decomposition-
based LNS policies. While there still exist some challenges. The performance of the learned policies
may significantly degrade when applied to general integers due to the vast scale of candidate values
(compared to binary variables), leading to a large complexity in optimization. Moreover, the learned
policies may be trapped in local optimum when dealing with some complicated cases.

In this paper, we propose a Binarized-Tightening, Branch and Search based LNS approach (BTBS-
LNS) for general MIP problems. Specifically, we design the “Binarized Tightening” algorithm to
deal with the optimization for general integer variables. In particular, we first binarize the general
integer variables and express them with the resulting bit sequence, and then tighten the bound of
original variables w.r.t. the LNS decision along with the current solution. In this way, the variable
bounds can be tightened and effectively explored at a controlled complexity. Based on our binariza-
tion formulation, we further develop an attention-based tripartite graph (Ding et al., 2020) to encode
the MIP instances with three types of nodes, including objectives, variables, and constraints, which
delivers better expression. Meanwhile, to enhance exploration and optimize some wrongly-fixed
backdoor variables (Khalil et al., 2022) by the learned LNS policy, we leverage an extra branching
graph network at each step, providing branching decisions at global (or local) view to help escape
local optimum. In a nutshell, this paper can be characterized by the following bullets:

1) Bound Tightening for MIP. We propose the “Binarized Tightening” scheme for general MIP
problems with an efficient embodiment of variable encoding and bound tightening techniques.

2) Problem encoding with attentional tripartite graph. We develop an attention-based tripartite
graph to encode MIP problems, showing the potential to learn valid representations for general MIP.

3) Combining LNS with branching. We devise a variable branching mechanism to select and
optimize the wrongly-fixed backdoor variables by the learned LNS policy at each step. The hybrid
branch and search policy greatly enhances exploration and shows efficiency.

4) Strong empirical results. Experiments on seven MIP problems show that our method consis-
tently outperforms the LNS baselines and open-source SCIP (Gamrath et al., 2020). In some cases,
it even achieves superior performance over Gurobi, purely taking SCIP as the baseline solver. It can
further boost Gurobi when taking Gurobi as the baseline solver. The source code will be released.

We elaborate on the detailed comparison with existing works in Appendix A.1.

2 PRELIMINARIES
We introduce MIP and its mainstream solving heuristic: Large Neighborhood Search (LNS).

Mixed Integer Program (MIP) is in general defined as:

min c¢'x

st. Ax<bDb (D)
z; € {0,1},Vi € B;z; € Zt,Vj e Gyap > 0,Vk € C

where x € R" is a vector of n decision variables; ¢ € R™ denotes the vector of objective coefficients.
Ax < b denotes the overall m linear constraints, where A € R™*™ represents the incidence
matrix, with b € R™. For general MIP instances, the index set of n variables N := {1, ...,n} can
be partitioned into three sets, binary variable set B, general integer variable set G and continuous
variable set C. MIP is more difficult to deal with compared with integer programming Wu et al.
(2021a) as the continuous variables may require distinct optimization policies with integer variables.

Large Neighborhood Search (LNS) is a powerful yet expensive heuristic for MIP (Gendreau et al.,
2010). It takes so-far the best feasible solution x* as input and searches for the local optimum in its
neighborhood:
x' =arg min {c'x 2
& xEN (x*){ } ()
where N (-) is a predefined neighborhood, denoting the search scope at each step, and x’ denotes the
optimized solution within N (x*), obtained by destroying and re-optimization from current solution.

Compared to local search heuristics, LNS can be more effective by using a larger neighborhood.
However, the selection of neighborhood function N (+) is nontrivial. Heuristic methods mainly rely
on problem-specific operators, e.g., 2-opt (Flood, 1956) in TSP, which call for considerable trial-
and-error and domain knowledge (Papadimitriou & Steiglitz, 1998). The popular learning-based

Under review as a conference paper at ICLR 2024

Current solution X,

Initial feasible soluti
‘ nitial feasible solution IO...O...I ’ ub -

Tighten
—_—

Neighborhood Search Ib 1]

R

Search

min ¢'x

st Ax<b obj Sub-MIP
x, el01},VjeB
v, eZ°Vjeg —> g
x, 20,VjeC -

MIP solver
Input MIP
Graph Representation
j st | 0e0e00ee
% Branch

suod

uonN|os 3ua.Lnd ajepdn

Optimized solution X,

. Encode
7' —

0

Branching Policy
general integers 1 Update dynamic features

O variable to optimize . Current solution . Variable to branch O re-optimized solution

Figure 1: Overview of BTBS-LNS. First, we propose “Binarize Tightening” to handle general in-
teger variables. The Binarize mechanism can binary-encode the variables and split them into sub-
optimization bits. With the bit-wise decision by LNS, the variable upper/lower bounds can be refined
by bound tightening. Second, we devise a branching network on top of pure LNS policy to select
wrongly-fixed backdoor variables by pure LNS policy, thus making up for its local search limit.

policies mainly focus on binary variables and may be trapped in local optimum in some complicated
cases. To obtain a general neighborhood function, we propose a binarized-tightening branch-and-
search LNS approach. It destroys, branches, and re-optimizes the initial solution.

3 METHODOLOGY Algorithm 1 Bound tightening for integer variable x;

3.1 OVERVIEW Input: Initial lower and upper bound of x;: Ib, ub;
Current solution value: z; = p;

Fig. 1 presents the overview of our approach. Binary NS decision for z;: a! for unbounded vari-
The input is an MIP instance, with its ini- 4ples. and {al .|j =1,2,...,d} for others
? 7,] ISy ey .

tial feasible solution xo generated by a base- Qutput: Tightened Ib, ub
line solver. The general integer variables
are firstly encoded to binary substitute vari-
ables, and the instance is then represented ub = 2p — Ib

1:

2
as a tripartite graph Ding et al. (2020) and i else if ub existed and at — 0 then
fed into the large neighborhood search net- 5: b= 29 — ub ¢
: D — U
6
7
8

if z; unbounded then
if [b existed and a! = 0 then

work, selecting the variable subsets that may end if

need to optimize at each step, with the re- . else

maining variables fixed or bound tightening : d = [log, (ub — Ib)]
(see Sec. 3.2 and 3.3). Subsequently, we 9: for j — 02 d do
devise an extra branching network to select 10: if at - _ 0 then
some wrongly-fixed backdoor variables by) J

the learned LNS policy, to help escape local 1 b= ma’X(lle —1/2(ub — 1b));
optimum. With the sequential decisions of 12f ub = min(ub, p + 1/2(ub — ib));
the branch and search policy and the result- 13: elsg K

ing tightened variable bounds, an off-the- 14 reaxs

shelf solver, e.g. SCIP, is applied to obtain le enfd if

the optimized feasible solution x; ;. Itera- }g en(eini(t! or

tions continue until the time limit is reached,
and the optimized solutions can be finally obtained.

In general, the neighborhood search policy and branching policy are trained sequentially, where the
training details can refer to Sec. 3.3 and Sec. 3.4, respectively. They optimize the current solution at
different view and may remedy the local search drawbacks of the learned LNS policy in some cases.

3.2 THE BINARIZED TIGHTENING SCHEME

Variables in general MIP instances can be divided into three categories: binary, general integer (with
arbitrary large value), and continuous variables. Previous studies mainly focused on the binary vari-
ables (0/1). Limited values greatly simplify the optimization, making it easier to deal with compared
to the general integer variables, and some learning frameworks have proved their effectiveness (Wu

Under review as a conference paper at ICLR 2024

et al., 2021a; Song et al., 2020). In this paper, we concentrated on more general MIP problems,
especially for general integer variables.

An intuitive method is to directly migrate some efficient binary LNS approaches, e.g., Wu et al.
(2021a), to general integers. In this way, different types of variables are equally treated, and at
each step, we fix some of the variables (no matter what type the variable belongs to), and solve
the sub-MIP with a baseline solver e.g. SCIP (Gamrath et al., 2020) or Gurobi (G., 2020). How-
ever, empirical results revealed that the simplified generalized LNS approach is much slower and
significantly underperforms the MIP solvers, e.g., Gurobi.

To illustrate the underlying reason, we take a simple MIP instance as example:

min x 3)
st. z+y=z z,ye{0,1},ze€ 2"

Assume that the initial feasible solution is (z,y,z) = (1,1,2). At a certain iteration when the
general integer variable z is fixed, the remaining sub-MIP problem cannot be optimized as z has a
strong correlation with all the other variables, making it difficult to deal with by simply fixing.

We propose the so-called “Binarized Tightening” scheme for MIP. The idea is that we tend to confine
the variables within a narrow range around the current solution rather than directly fixing them, to
balance exploration and exploitation. It shares similar insights with local search, which relies on the
current best solution to guide the search, thus avoiding blind search throughout the entire solution
space. Specifically, we represent each general integer variable with d = [log, (ub — [b)] binary
variables at decreasing significance, where ub and [b are original variable upper and lower bounds,
respectively. The subsequent optimization is applied to the substitute binary variables, indicating
current solution reliable or not at corresponding significance. In this way, we transform the LNS
for the original variable to multiple decisions on substitution variables. Note that the unbounded
variables where ub or (b does not exist, will not be encoded and will remain a single variable.

The action for each substitute variable can be obtained from the LNS policy (see Sec. 3.3), where 0
means the variable indicates reliable at current significance, and 1 means it still needs exploration.
We design a bound-tightening scheme to fully use the bit-wise action in Alg. 1. Speciﬁcally, let

; represent the action for the 4" substitute variable of variable 7 at step t. Actions a! . for all
j are checked, and the upper and lower bounds will be updated and tightened around the current
solution every time when a! i.; = 0, asin Line 11-12. Therefore, more fixed substitute variables can
contribute to tighter bounds. In our embodiment, variables that sit far from both bounds can have
a significantly wider exploration scope than close-to-bound variables, as they showed no explicit
“preference” on either bound direction, which is significantly different from Nair et al. (2020b) (see
Appendix A.l for detailed discussion). Tightening on either bound when the current solution sits
precisely at the midpoint of variable bounds, may contribute to performance degradation derived
from reduced exploration, which conceptually drives us to design the bound tightening scheme,
tightening the bounds on the far side iteratively..

In addition, as for unbounded variables, our meticulous analysis on MIPLIB benchmark set
(Gleixner et al., 2021) revealed that all unbounded variables within the instances are character-
ized by unbounded in only one direction, which means that either Ib or ub will exist for all general
integer variables. In this respect, we define a virtual upper (lower) bound when a} = 0 as in Line 3
and 5, which share similar insights with regular variables to put the current solution at precisely the
midpoint of the updated bounds.

Connection with bound tightening techniques in constraint programming. Bound tightening
techniques have been commonly applied in some constraint integer programming problems, in-
cluding Constraint Propagation (Achterberg, 2007; Savelsbergh, 1994; Moskewicz et al., 2001),
Optimization-Based Bound Tightening (OBBT) (Gleixner et al., 2017), Feasibility-Based Bound
Tightening (FBBT) (Belotti et al., 2012), and so on. They share similar insights with our approach
in terms of reducing the solving complexity of the re-defined problem. These techniques aim to
maintain optimality, making them sometimes computationally expensive. However, our iterative
refinement procedure for bound tightening differs from them. The iterative optimization scheme
focuses on searching for better feasible solutions within the neighborhood of the current solution,
guided by the learned policy. Consequently, our approach allows for a significant reduction of the
complexity of the re-defined problem, leading to improved solutions efficiently.

Under review as a conference paper at ICLR 2024

3.3 GRAPH-BASED LNS POLICY PARAMETERIZATION

Bipartite graph is recently popular utilized in Gasse et al. (2019), Nair et al. (2020b), and Wu et al.
(2021a) to represent the MIP instance states. However, the objective is not explicitly considered,
which may contribute to performance degradation in some cases, e.g., when all discrete variables
do not exist in the objectives (Yoon, 2022). To capture the correlations between objectives with
variables and constraints reasonably, we propose to describe the input instance as a tripartite graph
G = (,C,0,E), where V, C, and O denote the variable, constraint, and objective nodes, and £
denotes the edges. The features of nodes and edges can refer to Appendix A.3, where the new
objective node representations are defined as the average states of corresponding variables.

We parameterize the policy g (at|s¢) by an attention-based Graph Convolution Network (GCN).
Slightly different from graph attention networks (Velickovi¢ et al., 2018), we remove the softmax
normalization to fully reserve the absolute importance between neighborhood nodes and edges,
which may help capture the contributions for each node to the final objectives (see Appendix A.7
for detailed comparison). The message passing C — V is as follows (likewise for others):
> wj;(hf +hl)
+ JECNN; !
v IC NN

h!*! = ey, | CONCAT [h)

where h! and h;j denote the features of node ¢ and edge (i, j) at step ¢; fcy is a 2-layer perceptron

with relu activation that maps the current states to the next iteration hf“; N; denotes the neigh-
borhood nodes of ¢ and |C N IV;| denotes the counts of neighborhood constraint nodes for node i,
utilized to normalize the weighted sum neighboring features; w;?j denotes the weighted coefficient
between node ¢ and node j at step ¢, measuring their correlations as follows, where Wy, denotes
the weight matrix between constraint and variable nodes.

w!; = 0(Wey - CONCAT(h!,h' h!)) (5)

At each graph attention layer, the message

passing between different types of nodes are:
V - 0,0 = CV = C, C — O,
O — V,C — V, which are calculated as
Eq. 4 sequentially. In this way, after K it-
erations (throughout this paper K = 2), the
features for both the nodes and edges are up-
dated. We finally process the variable nodes
by a multi-layer perceptron and the output
value can be regarded as the destroy proba-
bility for each variable at this step, serving
as the neighborhood search policy in Fig. 1.
The neighborhood search policy was trained
with Q-actor-critic algorithm by RL, follow-
ing the same protocol with Wu et al. (2021a),
while with the following major differences:

States: We adopt an attentional tripartite
graph to capture correlations among vari-
ables, constraints, and objectives. Details of
the features are gathered in Table 7.

Actions: For the general variable x; repre-
sented with d substitutes, the LNS decision
at step ¢ will contain d binary actions aﬁ’ o
indicating the current solution reliable or not
at current significance (see Alg. 1).

Transition and rewards: We follow the
same protocol as in Wu et al. (2021a), where

Algorithm 2 Branch and search at the ¢” step

Input: Number of variables n;
LNS decisions Nt = {nt]i =1,2,....n};
branching decisions B! = {bt|i = 1,2,...,n};
variable set x = {z;|i = 1,2,...,n};
best solution at the t*" step x* = {zt|i = 1,2,...,n};
The ratio for branching variables 7;
Output: x1;
1: Let D = 0;
2: whilei < ndo
3: if z; is general integer variable then

4: Tighten the bound as in Alg. 1 using nfj
(with d separate decisions);

5: else

6: if n! = 0 then

7 Fix the value 2! ™! = z!;

8 else

9: if b! = 1 and x; is binary variable then

10: D=D U {i};

11: end if

12: end if

13: endif

14: end while

15: add constraint 3 |zi* — 21| <rn to sub-MIP;
i€D

16: Optimize x'*! with the solver;

the next state sy is obtained by the baseline solver, and the reward is defined as objective value

improvements.

Under review as a conference paper at ICLR 2024

3.4 BRANCHING PoLICY

As discussed above, previous single-policy approaches were easy to be trapped in local optimum at
an early stage in some complicated tasks. To remedy this issue, an intuition is to select and optimize
those wrongly-fixed backdoor variables by LNS policy at each step. With this insight, we proposed
to learn an extra branching network with imitation learning on top of LNS to filter out those variables
at each step. Note that it was only applied to binary variables which are more likely to be backdoors
that fixed earlier leading to local optima.

The most critical issue for the branching policy learning is the collection of branching variable
labels. In other words, we need to figure out how to identify the potentially wrongly-fixed variables
at each step. We proposed two different variants, which deals with the issue in global and local view
as in Fig. 2:

Global branching (BTBS-LNS-G): It gathers labels from the fixed variables by LNS at each step
and contrast them with the global optimal solution. Variables that exhibit differing values between
these solutions are indicative of potentially misclassified variables within the current LNS decisions
from a global perspective. Since the global optimal solution may be too difficult to acquire in a
reasonable time for hard instances, it was replaced by the best-known solution in our embodiment.

__

Local branching (BTBS-LNS-L): Different |.°..‘.';°... i O.zls.mgw. - o ints Eq. 6
from the global view contrast, it gathers labels 3 b i
by incorporating the following local branching ¢ e byins | iy - Satution
constraints (Liu et al., 2022) at each step: @ current solution [CeseCees] [Cesecess)
© Lot || pmtiatats ||| oo
t+ 1 t Global Branching Local Branching
E lo; T —xj| <k (6)

Mt Figure 2: Global branching vs Local branching.
where F denotes the currently fixed variables set by LNS. With this extra constraint, the re-defined
sub-MIP problem can be solved by the baseline solver, and up to k changed fixed variables will be
selected at a local view as the branching variable labels at current step. The selected variables can
be regarded as locally wrongly-fixed variables by LNS.

With the collected labels, the branching network can be offline trained. The inputs are tripartite
graph-based features (see Table.= 7 in Appendix A.3 for detail), where we additionally append the
LNS decisions made by the learned LNS policy as variable features, as we only focused on the
fixed variables for extra branching. Note that the input states are collected by resolving the training
instances, along with the learned LNS policy. And the labels are also gathered within the resolving at
each step. Then the graph-based features are fed into a similar graph attention network as described
in Sec. 3.3 to update the node/edge representations. We finally process the variable nodes by a
multi-layer perceptron (MLP) and the output value can be regarded as the branching probability for
each variable at this step. Cross-entropy loss was utilized to train the branching network to bring the
outputs closer to the collected labels, with the pipeline as Alg. 3 in Appendix A.2.

Note that except for the different label collection scheme, BTBS-LNS-L and BTBS-LNS-G remain
all the same. In general, the learned branching policy takes effect on top of LNS, enhancing explo-
ration and optimizing its wrongly-fixed backdoor variables at each step. The pipeline for the hybrid
framework is given in Alg. 2, where we select r =10% of the variables with maximum branching
probability to branch on at each step in the inference phase. In general, the hybrid branch and search
policy work together to formulate the sub-MIP at each step (see Line 15). As can be seen from the
experimental results in Table | to Table 3, hybrid branch and search clearly outperforms pure LNS
policy, even better than the commercial solver Gurobi (G., 2020) in many cases.

4 EXPERIMENTS
4.1 SETTINGS AND PROTOCOLS

Peer methods. We compare with the following baselines, and more details are illustrated in Ap-
pendix A.3. All methods are solved in 200s time limit by default.

1) SCIP (v7.0.3), Gurobi (v9.5.0): state-of-the-art open source and commercial solvers, and were
fine-tuned with the aggressive mode to focus on improving the objective value.

2) U-LNS, R-LNS, DINS, GINS, RINS and RENS: heuristic LNS methods (Achterberg, 2007).

Under review as a conference paper at ICLR 2024

Table 1: Comparison with baselines for binary Integer Programming (IP) with four hard problems:
SC, MIS, CA, MC. We also let SCIP run for a longer time (500s with SCIP (500s) and 1000s with
SCIP (1000s), respectively). So for Gurobi and our BTBS-LNS in other tables.

Methods Set Coverin (SC) Maximal Independent Set (MIS) ~ Combinatorial Auction (CA) Maximum Cut (MC)

) Obj Gap% PI Obj Gap% PI Obj Gap% PI(x10%) Obj Gap% PI
SCIP 56392 323 20225 -68452 025 312.25 -109960 4.71 33124 -852.64 8.01 15193
SCIP (500s) 553.11 1.40 / -684.98 0.18 / -111511 3.36 / -861.55 7.11 /
SCIP (1000s) 551.33 1.06 / -685.66 0.09 / -112627 2.40 / -863.99 6.87 /
U-LNS 567.70 3.84 22459 -680.44 1.50 1145.4 -104526 9.42 4003.0 -865.32 6.72 11565
R-LNS 569.40 4.17 23015 -682.54 1.29 693.45 -107407 6.92 3631.2 -868.95 6.33 10923
FT-LNS 565.28 348 20988 -680.84 1.42 1103.7 -104048 9.83 4123.6 -869.29 630 10554
DINS 567.88 397 22735 -682.71 1.24 657.5 -108948 4.48 33374 -87233 575 10006
GINS 567.28 3.81 22197 -68324 0.75 683.6 -107548 6.90 3599.8 -874.62 541 9765.0
RINS 566.52 3.63 21835 -681.75 1.32 816.5 -106548 7.33 38434 -870.17 6.04 10277
RENS 56148 235 19112 -683.12 0.79 792.36 -109025 4.40 3125.2 -875.44 5.29 9116
RL-LNS 552.38 1.29 17623 -685.74 0.07 182.63 -112666 2.36 2271.6 -888.25 425 6538
Branching 557.41 1.72 18007 -685.70 0.07 183.44 -111835 3.09 2492.7 -891.58 3.99 6104
LNS-TG 548.65 0.66 16828 -685.69 0.08 182.24 -112711 232 2247.8 -898.28 3.05 47826
LNS-Branch 551.55 111 17234 -685.65 0.09 182.19 -112665 2.36 22753 -891.59 373 5840.0
LNS-ATT 54845 0.65 16714 -685.75 0.07 182.10 -112820 2.23 2231.5 -902.11 299 3975.1
BTBS-LNS-L 54788 047 16234 -685.86 0.05 181.47 -112864 2.18 21968 -909.17 1.99 2518
BTBS-LNS-G 54748 035 16205 -68592 0.05 178.35 -113742 143 1998.9 -922.18 0.59 785
Gurobi 549.44 0.75 16796 -686.24 0 173.15 -113731 1.44 2075.4 -921.90 0.62 842

Table 2: Generalization to large-scale binary integer programming (IP) instances using the trained
polcies from small problems in Sec. 4.2.

Methods . SC2 . MIS2] CA2] MC2

Obj Gap% PI Obj Gap% PI Obj Gap% PI(x10%) Obj Gap% PI
SCIP 306.06 451 14953 -1325.80 345 95421 -185914 17.87 12312 -1702 838 30039
SCIP (500s) 30025 274 / -1361.33 0.86 / -207856 8.18 / -1704 8.26 /
SCIP (1000s) 296.18 1.37 / -1366.06 0.52 / -214754 5.13 / -1707 8.13 /
U-LNS 30428 396 14268 -1359.86 097 27785 -207054 853 80325 -1727 7.03 24862
R-LNS 30424 394 14392 -1363.30 071 2079.3 -212024 6.34 7050.0 -1737 6.52 22450
FT-LNS 306.10 4.49 14885 -1359.90 0.96 2765.6 -205812 9.08 83242 -1738 644 22347
DINS 30155 299 13916 -1364.22 0.65 19354 -212523 6.11 6848.5 -1727 7.02 24815
GINS 30233 3.14 14008 -1363.17 0.69 2011.5 -210539 6.74 74337 1737 6.52 22477
RINS 30129 295 13793 -1365.52 0.58 18447 -211367 6.55 71293 -1732 6.75 23619
RENS 30042 278 13465 -1365.71 0.55 17826 -212789 6.02 67352 -1742 623 20959
RL-LNS 29785 1.66 13007 -1367.12 051 15247 -216255 413 59334 -1803 320 8449.6
Branching 29688 1.53 12916 -136591 0.55 1769.4 -215379 452 61427 -1805 3.19 78573

BTBS-LNS-L 293.56 0.51 12431 -1372.66 0.04 543.69 -222590 1.67 4800.3 -1831 1.45 33859
BTBS-LNS-G 294.05 0.68 12498 -1372.89 0.02 51528 -222075 1.89 5012.6 -1831 1.44 33975

Gurobi 29412 071 12528 -1373.14 0.01 495.88 -218245 3.60 57235 -1839 1.01 2195.6
Methods . SC4 . MIS4] CA4] MC4

Obj Gap% PI Obj Gap% PI Obj Gap% PI(x10%) Obj Gap% PI
SCIP 178.1 541 15524 265438 345 22745 -371580 16.61 25275 -3397 871 78510
SCIP (500s) 1758 4.21 / -2654.45 344 / -371580 16.61 / -3398 8.69 /
SCIP (1000s) 1738 3.05 / -2665.90 3.03 / -371580 16.61 / -3406 8.46 /
U-LNS 1744 342 14814 -271042 141 9759.0 -412510 7.42 16470 -3446 739 68245
R-LNS 1740 326 14747 -2722.10 098 77455 -418014 6.19 15875 <3461 698 64712
FT-LNS 1750 375 14882 -2713.50 1.30 91503 -408611 8.30 17328 -3459 7.02 65329
DINS 1739 323 14725 -272033 1.03 79824 -420542 5.02 14789 -3461 697 64593
GINS 174.1 328 14782 -272541 085 72447 -418751 5.99 15538 -3459 7.04 65778
RINS 1735 296 14599 -2718.72 1.09 8218.0 -419592 5.78 15309 -3463 6.89 63575
RENS 1734 295 14573 -2727.11 082 6972.1 -420311 5.17 14916 -3464 6.85 62998
RL-LNS 1752 373 14866 -273541 0.57 5365.1 -427433 352 13572 -3587 3776 39645
Branching 1745 339 14689 -2732.82 0.64 5744.8 -428325 3.37 13349 -3569 421 42718

BTBS-LNS-L 169.8 0.84 13716 -2747.04 0.07 21404 -439431 1.39 11128 -3664 1.52 21195
BTBS-LNS-G 170.5 1.20 13789 -2745.15 0.11 26369 -437522 146 11705 -3666 1.51 20984
Gurobi 170.5 122 13795 -2748.02 0.04 22157 -389396 12.61 21959 -3521 5.38 51298

3) FT-LNS (Song et al., 2020), RL-LNS (Wu et al., 2021a) and Branching (Sonnerat et al., 2021):
some learning-based LNS policies.

4) LNS-TG, LNS-Branch, LNS-IBT, LNS-IT, LNS-ATT, BTBS-LNS-F: Degraded versions of
BTBS-LNS to test the effectiveness of each component. Details can refer to the Appendix. A.3.

Instances. It covers both binary and MIP problems. We follow Wu et al. (2021a) to test our approach
on four NP-hard binary Integer Programming Problems: Set Covering (SC), Maximal Independent
Set (MIS), Combinatorial Auction (CA), and Maximum Cut (MC). We generate 200, 20, and 100
instances as training, validation, and testing sets, respectively. To evaluate the generalization ability,
we also generate scale-transfer test instances, such as SC2, and MIS4 in Table 2. The suffix number
refers to instance scales, for which the details are gathered in Table. 6 in Appendix A.3.

We also test our method on two NP-hard MIP datasets provided in Machine Learning for Combi-
natorial Optimization (ML4CO) competition’: Balanced Item Placement (Item) and Anonymous
MIPLIB (AMIPLIB), on their official testing instances. Balanced Item Placement contained 1050

“https://www.ecole.ai/2021/ml4co-competition/

Under review as a conference paper at ICLR 2024

binary variables, 33 continuous variables, and 195 constraints per instance. The anonymous MIPLIB
consists of a curated set of instances from MIPLIB, which is a long-standing standard benchmark for
MIP solvers, with diverse problem distributions, in which general integer variables are included. We
also show empirical results on the whole MIPLIB benchmark set in Appendix A.5 and per-instance
comparison in Appendix B, where our BTBS-LNS even surpasses Gurobi on average.

Hyperparameters. We run experiments on Intel(R) Xeon(R) E5-2678 2.50GHz CPU. Performance
comparison on CPU vs GPU version of our approach are discussed in Appendix A.9. Note that
all the approaches were evaluated with three different seeds, and the average performance was re-
ported (see detail stability analysis in Appendix A.8). We use the open source SCIP? (v7.0.3) as
the baseline solver by default (recall the blue box in Fig. 1). Gurobi version experiments are gath-
ered in Appendix. A.6. We train 20 epochs for each instance, with 50 iterations per epoch and 2s
re-optimization time limit per iteration. LNS and branching are trained sequentially, with RL (see
see Sec. 3.3) and imitation learning (see Sec. 3.4), respectively. The embedding for nodes and edges
were both 64-dimensional vectors. Specifically for branching, we set the max branching variables
k = 50 in Eq. 6 for local branching variant. In the inference phase, the branching variable ratio r
in Alg. 2 are empirically set to 10% for both branching variants. Note that BTBS-LNS by default
denotes the local branching variant BTBS-LNS-L throughout this paper.

Evaluation metric. As the problems are too large to be solved in a reasonable time, we calculate the
primal gap (Nair et al., 2020b) to measure the gap between the current solution x and the best-known
solution x* found by all methods, within a fixed time bound 7:

lcTx — x|

= 7
9P = ax(leTx], [e T x*]) 2
We also calculate Primal Integral (PI) to evaluate the anytime performance within the time limit:
T
PI = / c'xpdt — Te'x* (8)
t=0

where x; denotes the best feasible solution within time .

4.2 OVERALL PERFORMANCE EVALUATION

Table 1 compares the results on integer programming. As can be seen, compared with SCIP and
all competing LNS baselines, both BTBS-LNS-G and BTBS-LNS-L achieves consistently superior
performance across all problems. LNS-TG, LNS-Branch, and LNS-ATT are degraded versions
of BTBS-LNS and they all perform slightly worse, revealing the effectiveness of attention-based
tripartite graph and the extra branching policy. And comparing the two variants, BTBS-LNS-G
delivers consistently superior performance over BTBS-LNS-L, and it even surpasses the leading
commercial solver on SC, CA and MC. Note that detailed anytime performance on these instances
are shown in Fig. 5 to Fig. 8 in Appendix A.4, further revealing the effectiveness of BTBS-LNS.

We also test our method on two NP-hard MIP problems, Table 3: Performance on MIP instances.

and the results are gathered in Table 3. Note that the any- Methods obi G“ef; ol A“(/}IIP;TB
. aj aj
time primal gap comparison are also shown in Fig. 3. Our SCIP LA E T
method consistently outperforms SCIP and the competing SCIP (500s) ~ 19.83 3941/ /
LNS baseli dis slishtl han Gurobi SCIP (1000s) 17.02 3105 / /
aselines, and 18 Slig ty worse than Gurobi, capa- U-LNS 2039 4429 3685.6 15.73
ble of finding even better solutions for around 27% test é‘TLLI;SS 5883 i;gg ;ggg }‘2*22
instances on both Item and AMIPLIB. DINS 1308 3723 30759 13.10
))) GINS 1978 4211 35147 13.64
Specifically for the AMIPLIB problem, it contains a cu- RINS 2053 4488 36625 13.89
. . . RENS 1751 3418 29250 1175
}rated set of instances from MIPLIB. We split the instances Branching 1884 4012 32376 1295
into train, validation, and test sets by 70%, 15%, and 15% LNS-TG 1805 3785 30905 645
: L . LNS-Branch 2012 4390 35370 932
with cross-validation to test full performance. Policies LNSATT 1554 2601 25128 545
learned from diverse training instances are directly ap- LNS-IBT / / / 7.63
LNS-IT / / / 7.65

plied to the test set. .NOtf? that we increase the solving —rpeiNeT 38 1652 20503 419
and re-optimization time limit at each step to 1800s and ~ BTBS-LNS-G 1345 1578 19125 435

. . BTBS-LNS-F / / / 7.01
60s for both the training and testing phase, as they are too - 26673 18956 08I
large to be solved. Different from Wu et al. (2021a), we

3https://www.scipopt.org/

Under review as a conference paper at ICLR 2024

0.8
—— RENS

— FT-LNS
— SCIP
— Gurobi
—— BTBS-LNS

o

0.6

0.4

Average Primal Gap
o
v
Average Primal Gap
o

o

t T T T l t T T T
0 50 100 150 200 0 500 1000 1500
Time (second) Time (second)

Figure 3: Performance on Balanced Item Placement (Left) & AMIPLIB (Right).

= — Item ” --- Selected
R R -
% 04 —MIPLIB | £ %; 0 — Optimized
g = £
£ s =
s, 0.2 5 551072
s 2 g
0 T T T T 0 - T T T T T 0 - T T T T T
0 5.1072 0.1 015 02 025 0 10 20 30 40 50 0 10 20 30 40 50
Branching Variable Ratio Iteration Iteration

Figure 4: Impact of different branching ratios (Left). Selected & Optimized variables by LNS
policy (Middle) & Branching Policy (Right) on Balanced Item Placement instances. selected means
variables filtered by the learned branch & search policy; optimized denotes the updated variables.

consistently utilize open-source SCIP as the baseline solver. As seen from Table 3 and Fig. 3, our
method significantly outperforms SCIP and LNS baselines, and even deliver slightly better perfor-
mance than Gurobi at an early stage. LNS-IBT, LNS-IT and BTBS-LNS-F achieve significantly
inferior performance than our BTBS-LNS, illustrating the effect of “Binarized Tightening” tech-
nique and its superior performance over Nair et al. (2020b).

4.3 PROBLEM-SCALE GENERALIZATION ABILITY STUDY

We test the generalization ability in line with Wu et al. (2021a) with 200s time limit. We directly
use the trained policies on small-scale problems in Sec. 4.2. The results are gathered in Table 2.

As can be seen, the two variants show similar performance on the generalized instances. And com-
pared with SCIP and all the competing LNS baselines, our approach still delivers significantly su-
perior performance, showing a better generalization ability. As the problem sizes become larger, it
can produce even better results than Gurobi on SC2, SC4, CA2, CA4, and MC4, and only slightly
inferior on the remaining 3 groups. It suggests that our policies can be sometimes more efficient for
larger instances than the leading commercial solver. Notably, there is a large gap between BTBS-
LNS and Gurobi for Combinatorial Auction (CA), especially on CA4.

4.4 BRANCHING POLICY STUDY BY VARIABLE RATIOS

To enhance exploration, an extra branching policy was trained and utilized to help the pure LNS
escape local optimum. Fig. 4 (Left) depicts the impact of branching variables ratios r (see Alg. 2).

When the ratio is small (< 0.1), a larger branching size leads to a better performance. In fact,
the leverage of branching can be regarded as a correction for LNS, facilitating it to escape local
optimum. Fig. 4 (Right) depicts the selected and updated variable ratios. Branch and search policy
adaptively select different variable subsets for re-optimization. However, when the branching size
becoming extremely large, the performance significantly degrades limited by the solving ability.

5 CONCLUSION AND OUTLOOK

We have proposed a binarized tightening branch and search approach to learn LNS policies. It was
designed to efficiently deal with general MIP problems, and delivers superior performance over nu-
merous competing baselines, including MIP solvers, learning and heuristic based LNS approaches,
on ILP, MIP datasets and even heterogeneous instances from MIPLIB. Sufficient ablation studies
demonstrate the effectiveness of each component, including the tripartite graph, binarize and tighten
scheme, and the extra branching at each step.

However, the proposed approach is only a primal heuristic that cannot prove optimality, which are
also common limitations of LNS-based approaches. Implementing them into MIP solvers as primal
heuristics may be a possible solution. However, interaction with current existed primal heuristics,
and the rule to take effect, are key challenges in practical implementation. In general, applications
of the learning-based approach in real-world scenarios will be our future directions.

Under review as a conference paper at ICLR 2024

REFERENCES
T. Achterberg. Constraint integer programming. Springer Berlin Heidelberg, 2007.

D. S. Altner, R. K. Ahuja, Ozlem Ergun, and J. B. Orlin. Very large-scale neighborhood search.
International Transactions in Operational Research, 7(4):301-317, 2000.

Pietro Belotti, Sonia Cafieri, Jon Lee, and Leo Liberti. On feasibility based bounds tightening. 2012.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405421, 2021.

Timo Berthold. Rens: the optimal rounding. Mathematical Programming Computation, 6:33-54,
2014.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

E Danna, E Rothberg, and Pape C Le. Exploring relaxation induced neighborhoods to improve mip
solutions. Mathematical Programming, (1):102, 2005.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 14521459, 2020.

Merrill M Flood. The traveling-salesman problem. Operations research, 4(1):61-75, 1956.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474-7482, 2021.

Optimization L L C G. Gurobi optimizer reference manual. 2020.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse,
Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The scip optimization
suite 7.0. 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.

Shubhashis Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer
Programming and Combinatorial Optimization, pp. 310-323. Springer, 2007.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443-490, 2021.

Ambros M Gleixner, Timo Berthold, Benjamin Miiller, and Stefan Weltge. Three enhancements for
optimization-based bound tightening. Journal of Global Optimization, 67:731-757, 2017.

D. Godard, P. Laborie, and W. Nuijten. Randomized large neighborhood search for cumulative
scheduling. In Proceedings of the Fifteenth International Conference on Automated Planning
and Scheduling (ICAPS 2005), June 5-10 2005, Monterey, California, USA, 2005.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087-18097, 2020.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

10

Under review as a conference paper at ICLR 2024

Gregor Hendel. Adaptive large neighborhood search for mixed integer programming. Mathematical
Programming Computation, 14(2):185-221, 2022.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Local branch-
ing relaxation heuristics for integer linear programs. In Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pp. 96—113. Springer Nature Switzer-
land, 2023a. doi: 10.1007/978-3-031-33271-5_7. URL https://doi.org/10.1007%
2F978-3-031-33271-5_7.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 13869-13890. PMLR, 23-29 Jul 2023b. URL https://proceedings.mlr.
press/v202/huang23g.html.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Elias B Khalil, Pashootan Vaezipoor, and Bistra Dilkina. Finding backdoors to integer programs: a
monte carlo tree search framework. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 3786-3795, 2022.

M. Z. Lee. Constrained weapon—target assignment: Enhanced very large scale neighborhood search
algorithm. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,
40(1):198-204, 2009.

Longkang Li, Hui-Ling Zhen, Mingxuan Yuan, Jiawen Lu, Jia Zeng, Jun Wang, Dirk Schnieders,
et al. Bilevel learning model towards industrial scheduling. arXiv preprint arXiv:2008.04130,
2020.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198-26211, 2021.

Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3796-3803, 2022.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019a.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019b.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial opti-
mization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint
arXiv:1911.04936, 2019.

Stephen J Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion
Gottwald, Gregor Hendel, Thorsten Koch, Marco Liibbecke, Matthias Miltenberger, et al. The
scip optimization suite 4.0. 2017.

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient sat solver. In Proceedings of the 38th annual Design Automation Con-
ference, pp. 530-535, 2001.

Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020a.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020b.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and com-
plexity. Courier Corporation, 1998.

11

https://doi.org/10.1007%2F978-3-031-33271-5_7
https://doi.org/10.1007%2F978-3-031-33271-5_7
https://proceedings.mlr.press/v202/huang23g.html
https://proceedings.mlr.press/v202/huang23g.html

Under review as a conference paper at ICLR 2024

Vangelis Th Paschos. Applications of combinatorial optimization, volume 3. John Wiley & Sons,
2014.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International conference
on machine learning, pp. 17584-17600. PMLR, 2022a.

Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris J. Maddison. Learning
to cut by looking ahead: Cutting plane selection via imitation learning. In ICML, 2022b.

Martin WP Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6(4):445-454, 1994.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012-20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pp. 9367-9376. PMLR, 2020.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Ryan Williams, Carla P Gomes, and Bart Selman. Backdoors to typical case complexity. In IJCAI,
volume 3, pp. 1173-1178, 2003.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075-30087,
2021a.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems.. IEEE transactions on neural networks and learning systems,
2021b.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042-12049, 2021.

Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach to
traveling salesman problem. IEEE Access, 8:108418-108428, 2020.

M. Yagiura, M. Kishida, and T. Ibaraki. A 3-flip neighborhood local search for the set covering
problem. European Journal of Operational Research, 172(2):472-499, 2006.

J. Yan, S. Yang, and E. Hancock. Learning graph matching and related combinatorial optimization
problems. In IJCAI, 2020.

Taehyun Yoon. Confidence threshold neural diving. arXiv preprint arXiv:2202.07506, 2022.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 3931-3939, 2021.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:1621-1632, 2020.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205-217, 2023.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 FURTHER DISCUSSION ON RELATED WORK

Table 4: Comparison of our method to existing works.

References | Applicability Approach Addressing Local Optima Training
Huang et al. (2023a) Binary Branching Relaxation ~Adaptive Neighborhood Size /
Huang et al. (2023b) Binary LNS Adaptive Neighborhood Size ~ Contrastive Learning
Liu et al. (2022) Binary Local Branching RL-based Branching Size Regression + RL
Nair et al. (2020a) Binary LNS / RL
Ding et al. (2020) Binary Solution Prediction / Imitation
Song et al. (2020) Binary LNS / Imitation & RL
Wu et al. (2021a) Binary LNS / RL
ALNS Adaptive Control for . .
202 : R :
Hendel (2022) General MIP (Heuristic in B&B) Mutiple Heuristics Multi-armed Bandit
Paulus et al. (2022a) General MIP Learn to cut / Imitation
Sonnerat et al. (2021) | General MIP LNS Adaptive Neighborhood Size Imitation
. .. Imitation
Nair et al. (2020b) General MIP Diving / (Generative Model)

Branching on
top of LNS

RL (LNS) +

BTBS-LNS (Ours) General MIP Imitation (Branching)

Global (Local) Branching

Table 4 compares our approach with some existing works in detail. The core contribution of our
BTBS-LNS is the general applicability and the addressing for local optima. As can be seen, most
LNS-based papers (Liu et al., 2022; Nair et al., 2020a; Ding et al., 2020; Song et al., 2020; Wu et al.,
2021a) solely deal with the binary programming problems due to its simpleness. Recently, some
studies try to address the general MIP problems (Hendel, 2022; Sonnerat et al., 2021; Paulus et al.,
2022a), in which Nair et al. (2020b) proposed a similar ”bound tightening” technique. They differ
with our approach in the following aspects. On one hand, the binary decision for each encoded vari-
able was only applied for bound tightening, rather than directly fixed similar to Nair et al. (2020b).
And on the other hand, current solution value was also considered in bound tightening decisions in
our approach. Variables that sit far from both bounds may have a significantly wider exploration
scope than close-to-bound variables, as they showed no explicit “preference” on either direction. In
addition, our approach can easily transfer to unbounded variables as illustrated in Alg. 1. We made
detailed comparison between the two approaches in Table. 3 and Table. 10. As can be seen, our
BTBS-LNS consistently outperforms BTBS-LNS-F, demonstrating the effectiveness of our novel
”Binarized Tightening” technique.

As for the local optima challenge, a few studies have tried Adaptive Neighborhood Size (ANS)
(Huang et al., 2023a;b; Sonnerat et al., 2021) or hybrid heuristics control (Hendel, 2022), while it
still requires hand-crafted hyperparameters, which are essential but difficult to determine. To address
it more adaptively, we proposed to combine branching on top of pure LNS. When trapped in local
optima, branching mechanism has the potential to select those wrongly-fixed backdoor variables
by pure LNS for re-optimization. It is important to note that the concept of branching extends
beyond the confines of the local branching (Sonnerat et al., 2021) and we also devised a novel
variant termed “global branching” (see Sec. 3.4), which can deliver even better performance in
some cases. In addition, the major difference between our hybrid framework and the pure local
branching approach (Sonnerat et al., 2021) lies in that we concentrates solely on variables fixed
by LNS to correct its decisions, rather than the whole variable set. This specificity arises from
the observation that LNS frequently converges to local optima when a limited number of backdoor
variables are inaccurately fixed. Empirical results in Table. 1, 2 and 3 demonstrated that our BTBS-
LNS consistently outperforms the Branching baseline by Sonnerat et al. (2021).

We further review other studies related to ours, which can be divided into two categories: One is
learning-based methods for specific MIP problems and the other is for general MIP problems.

A.1.1 POLICY LEARNING FOR SPECIFIC MIP PROBLEMS

MIP problems cover numerous real-world tasks in many fields (Paschos, 2014) and quite a few
studies attempt to solve certain types of problems, such as Traveling Salesman Problem (TSP) and
Vehicle Routing Problems (VRP) (Li et al., 2021; Lu et al., 2019a), etc. The algorithms can be
divided into two folds, construction methods and learned improvement heuristics.

13

Under review as a conference paper at ICLR 2024

Construction methods usually attempt to directly learn approximate optimal solutions. For example,
different models, like Graph Pointer Networks (GPNs) (Ma et al., 2019) and Monte Carlo tree search
(Xing & Tu, 2020; Fu et al., 2021) were both proposed to solve TSP instances, and Zhang et al.
(2020) trains a policy to learn priority dispatching rules for scheduling problems via an end-to-end
deep reinforcement learning agent.

Compared to construction models, methods that learn improvement heuristics can often deliver bet-
ter performance, by learning to iteratively improve the solution (Wu et al., 2021a). The improvement
heuristics can be a guide for next solution selection (Wu et al., 2021b), or policy to pick heuristics
(Chen & Tian, 2019), or refinement from current solution (Lu et al., 2019b; Li et al., 2020), which all
have demonstrated the effectiveness in routing and scheduling problems. In general, both the learned
improvement heuristics and construction methods have proved validity in some specific problems. In
contrast, this paper aims to solve general MIP problems by learning improvement heuristic policies.

A.1.2 LEARNING TO SOLVE GENERAL MIP PROBLEMS

Dual and primal are two main perspectives to improve solving efficiency for general MIP problems.
Specifically, dual view aims to improve inner policies of Branch and Bound (B&B), e.g., variable
selection (Gasse et al., 2019; Zarpellon et al., 2021; Gupta et al., 2020), node selection (He et al.,
2014) and cut selection (Tang et al., 2020; Paulus et al., 2022b;a). With a better decision at each
node, the overall solving process can be greatly simplified.

Different from the dual view, in the primal perspective, the algorithms aim to find better feasible
solutions by prediction or learning-based heuristics. For example, Ding et al. (2020) learned a
tripartite graph based deep neural network to generate partial assignments for binary variables, and
in order to deal with the general integer variables, Nair et al. (2020b) proposed a bound tightening
mechanism and learned partial assignments for each bit, respectively. Nevertheless, they were only
applied in neural diving, and directly fixing may also lead to performance degradation, or even
infeasible. To obtain broader applicability, learning-based primal heuristics, like large neighborhood
search (Huang et al., 2023b; Song et al., 2020; Sonnerat et al., 2021; Nair et al., 2020a), local
branching (Liu et al., 2022), gradually catch the attention of researchers.

In this paper, we mainly focus on large neighborhood search heuristics, which have achieved re-
markable progress in recent years. For example, Hendel (2022) designed an adaptive approach to
combine multiple existed LNS heuristics to enhance performance of single policy, while it is largely
limited by the rule-based heuristics and requires hand-crafted hyperparameters. To make it further,
learning a better neighborhood function have been more and more popular in recent years. Sonnerat
et al. (2021) utilized imitation learning to select variable subsets to optimize at each step. Similarly,
Song et al. (2020) also proposed a decomposition-based framework with imitation learning to learn
the best variable decomposition. However, the imitation learning framework and the equal-size sub-
sets makes it inflexible and dramatically limit the performance of learned policies. In this respect,
Wu et al. (2021a) factorize the LNS policy into elementary actions on each variable, and trained a
RL-based policy to select variable subsets dynamically. However, they cannot generalize to general
integer variables and the local search drawbacks make it easy to converge in local optimum.

In general, current studies on LNS mainly focus on binary variables, and local search properties in-
terfere with the performance in some complicated scenarios. In this respect, we propose a binarized-
tightening branch and search approach to learn more efficient LNS policies for general problems.

A.2 HYBRID BRANCH AND SEARCH

In this paper, we proposed a hybrid binarized tightening branch and search framework for general
MIP problems. We tend to illustrate some details about the framework. Specifically, Alg. 1 depicts
the pipeline of bound-tightening technique for each general integer variable, where we represent
them with d substitute binary variables and tighten the original variable bounds w.r.t the current
solution value p and bit-wise LNS decision af ;.

Alg. 3 depicts the overall training pipeline for the offline graph based branching policy. Specifically,
we make the branching policy into a binary decision process (branch or not) for each variable, and
utilize the cross-entropy loss to train the graph-based branching network. The output probability
can help filter the potentially wrongly-fixed backdoor variables in a global or local perspective. The

14

Under review as a conference paper at ICLR 2024

Algorithm 3 Offline training of branching policy for LNS

Input: tripartite graph based states S' = {s:|t = 1,2, ...,n}

LNS decisions at each step N = {n;|t = 1,2,...,n}

branching variable labels B = {b;|t = 1,2, ..., n} collected from the local or global branching;
Output: trained policy my(B|S, N)

. // Samples are collected by resolving the training instances, along with the learned LNS;
: Let D = {((s¢,n4),b0)[t = 1,2, ...,n}.

. // train the model;

. Initialize all learnable parameters 6,

: while stopping criteria not meet do

Randomly select a batch of instances D¢ from D;

Optimize 6 by minimizing cross-entropy loss;

: end while

Table 5: Training, Validation and Test accuracy for graph based branching network.

Local Branching Global Branching
SC MIS CA MC Item AMIPLIB| SC MIS CA MC Item AMIPLIB
Train% 89.5 849 79.6 863 855 77.5 869 873 81.5 885 834 75.9
Validation% | 84.8 83.5 75.1 82.1 828 74.9 83.7 849 809 87.0 818 75.1
Test% 825 816 729 805 81.5 74.2 83.1 82.6 80.1 845 80.7 73.8

Table 6: Average variable/constraints of instances

Training Generalization
SC MIS CA MC SC2 MIS2 CA2 MC2 SC4 MIS4 CA4 McC4
Variables 1000 1500 4000 2975 2000 3000 8000 5975 4000 6000 16000 11975
Constraints 5000 5939 2674 4950 5000 11933 5344 9950 5000 23905 10717 19950

Num of

overall training, validation and testing accuracy on different problems are listed in Table 5, including
both the local and global branching variants.

The hybrid branch and search framework works as in Alg. 2 in the main text, where we place the
branching network on top of LNS. Specifically, n! denotes the LNS decision for each variable. Note
that as illustrated above, there will be d separate decisions for general integer variables, denoted as

nt e b denotes the branching decision (branch or not) for each variable. The hybrid branch and
search pOlle work together to formulate the sub-MIP at each step. It consists of three main steps,
bound tightening in Line 3-4 for general integer variables, directly fixing in Line 6-7 for binary
variables and extra branching in Line 9-10. Branching policy can be regarded as an approach to
enhance the learned LNS policy by selecting and optimizing some wrongly-fixed variables by LNS
(see Line 15-16).

A.3 DETAIL FOR THE EXPERIMENTS

As discussed, the tripartite graph is utilized to represent the problem states in both the RL-based LNS
policy and the offline branching policy. We describe in Table 7 the variable, constraint, objective,
and multi-source edge features in detail. Except for the dynamic solving status, all the other features
are collected at the root node of the B&B search tree, and the dynamic features are collected along
with the optimization process.

The average variable and constraint size used in our experiments are listed in Table 6, which consists
of small-scale training instances and some hard instances used for evaluating the generalization
ability. And as illustrated in Sec. 4, we compare our proposed BTBS-LNS with various baselines,
which are explained as follows in detail:

* SCIP (v7.0.3): state-of-the-art open source solver with default settings. Note that SCIP is
allowed to run for a longer time, i.e., 500s and 1000s.

¢ Gurobi (v9.5.0): state-of-the-art commercial solver.

15

Under review as a conference paper at ICLR 2024

Table 7: Description of the tripartite graph features.

Tensor Feature Description
variable type (binary, integer, continuous).
objective coefficient.
lower and upper bound.
reduced cost.
solution value fractionality.
(dynamic) solution value in incumbent.
(dynamic) average solution value.
(dynamic) best solution value.
(Branching Only) LNS decisions at current step.
cosine similarity with objective.
C tightness indicator in LP solution.
dual solution value.
bias value, normalized with constraint coefficients
average states of related variables.
constraint coefficient per variable.
objective coefficient per variable.
constraint right-hand-side (RHS) coefficients.

Q<<
Qg™

e U-LNS: an LNS version that uniformly samples variables at a fixed subset size. Note
that for U-LNS, R-LNS and FT-LNS, we perform the same settings as those in Wu et al.
(2021a).

* R-LNS: an LNS version (Song et al., 2020) that randomly groups variables into equal
subsets and reoptimizes them.

¢ DINS (Ghosh, 2007), GINS (Maher et al., 2017), RINS (Danna et al., 2005) and RENS
(Berthold, 2014): heuristic-based LNS policies that have been implemented in SCIP.

* FT-LNS: an LNS version (Song et al., 2020) that applies imitation learning to learn the
best R-LNS policies.

* RL-LNS: A similar reinforcement learning LNS approach for variable subset optimization
(Wu et al., 2021a), while mainly focused on binary variable optimization.

* Branching (Sonnerat et al., 2021): An LNS framework by imitation learning from the
labels collected by incorporating local branching constraints.

* LNS-TG: A variant of our method, where we replace the tripartite graph with the widely
used bipartite graph.

* LNS-Branch: A variant of our method, where we remove the branching policy.

e LNS-IBT: A variant of our method, where the general integer variables are equally treated
as binary variables.

* LNS-IT: A variant of our method, where we remove the “Tightening” technique and fix
the integer variable to its current solution when either bit is fixed.

e LNS-ATT: A variant of our method, where we replace our attention-based graph attention
network with the widely used GNN.

¢ BTBS-LNS-F: A variant of our BTBS-LNS, where we replace our bound tightening mech-
anism with that proposed by Nair et al. (2020b).

Note that the work by Sonnerat et al. (2021) doesn’t have open-source code and some hyperparam-
eters are difficult to fine-tune in different MIP problems. However, in order to further evaluate our
proposed framework with pure local branching based methods, we try to reproduce them. Some
reproduction details are as follows:

1) For fair comparison, we replace the neural diving in Sonnerat et al. (2021) with an initial feasible
solution generated by SCIP, the same as our approach.

2) In data collection, the desired Hamming radius 7, are selected as 50, the same as our branching
policy.

16

Under review as a conference paper at ICLR 2024

— RENS

g & g
o 0.2]] —— Branching
E =] E RL-LNS
E z E — sap
e 0.1 o o — Gurobi
= = =
5 g g — BTBS-LNS
z ~ < z

0 T T T | 0+ T T T l 0 T T T l

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (second) Time (second) Time (second)

Figure 5: Anytime Performance on Set Covering (SC) problem and its scale-transfer instances.
From left to right: Performance comparison on instances from SC, SC2, SC4. (see Table 6 for
detail).

3) The model structure were the same as its descriptions, where we use the code provided by Gasse
et al. (2019), and additionally use a fixed-size window (3 in the paper) of past variable assignments
as variable features.

4) Loss function and training were all respect to the settings in the paper.

5) In the inference phase with the learned policy, we performed the same action sampling mechanism
as in Sonnerat et al. (2021). As for the adaptive neighborhood size, we start with 10% of the integer
variable size, and the dynamic factor a was tuned from 1.01 to 1.05. Best-performing parameters
will be selected for comparison in each problem. As a result, on SC and MIS, a was set as 1.02, and
a = 1.03 can deliver the best performance on other problems.

6) Reproduction details will also be public along with the code and data.

In addition, we do not make comparisons with Hendel (2022), as it is embedded in SCIP as a
heuristic and difficult for fair comparison, and thus we solely tested the implemented heuristics
separately, e.g.,RINS, DINS, RENS.

To further evaluate our approach on generalized ILP instances, we further increase the time limit
to 500s and 1000s respectively on CA, with results shown in Table 8. Our method consistently
outperforms Gurobi with the same time limit. For CA4, it can even produce better solutions with a
much shorter time limit. It empirically requires over 3 hours for Gurobi to deliver the same primal
gap on CA4, being 58 x slower than our method.

Table 8: Evaluation on CA against Gurobi. Table 9: Evaluation by Gurobi as baseline solver.

CA2 CAd Tiem AMIPLIB
Methods Obj Gap% Obj Gap% Methods o0 Gapoe PI Gap%
Gurobi 218245 3.60 389396 12.61 U-LNS 17.64 3608 30043 644
Gurobi(500s) -224245 095 -431626 3.14 RINS 1662 3194 27886 601
Gurobi(1000s) -225629 033 -436188 2.11 FLLNS 1564 2731 25194 545
BTBS-LNS 222500 167 439431 139 BTBS-LNS 1227 456 18237 047
BTBS-LNS(500s) 225108 056 -445563 0 Gurobi 1267 673 18956 08I

A.4 ANYTIME PERFORMANCE ON BINARY INTEGER PROGRAMMING PROBLEMS

In order to further evaluate the anytime performance among the competing approaches, we plot the
anytime primal gap curves on four binary integer programming problems, Set Covering (SC), Max-
imal Independent Set (MIS), Combinatorial Auction (CA) and Maximum Cut (MC), respectively.
The results are gathered in Figure 5, 6, 7, 8, respectively.

As seen from the results, our BTBS-LNS delivers consistently superior performance over the com-
peting LNS baselines almost at any point, demonstrating its efficiency and effectiveness. More
surprisingly, the proposed approach can achieve superior performance over the leading commercial
solver in some cases, especially on the scale-transfer instances, purely by the learned policy on
small-scale instances.

A.5 SUPPLEMENTARY EXPERIMENTS ON MIPLIB

As illustrated in Sec. 4, we have tested the effectiveness of the proposed BTBS-LNS on Anonymous
MIPLIB(AMIPLIB) from ML4CO 2021 competition*. To make further evaluation, especially on

*https://www.ecole.ai/2021/ml4co-competition/

17

Under review as a conference paper at ICLR 2024

84 0.15

=}
o
|

— RENS
—— Branching
RL-LNS
— SCIP
Q — Gurobi
— BTBS-LNS

e
=

0.1

1072

H
<
3

Average Primal Gap
-~ S

Averfge Primal Gap

Avéfage Primal Gap
j=1

T T T | 0 T T T l T T T |
50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (second) Time (second) Time (second)

o

Figure 6: Anytime Performance on Maximal Independent Set (MIS) problem and its scale-transfer
instances. From left to right: Performance comparison on instances from MIS, MIS2, MIS4. (see
Table 6 for detail).

0.4 0.4
o . - o — RENS
= 0.3 I 53 B hi
© © 03 O 03 —— Branching
E | E RL-LNS
g 02 £ 02 £ 02 — Scp
) o) — Gurobi
g 01 & g — BTBS-LNS
§ X k Q:) 0.1 § 0.1 "~ -
< < < S ——

T T T] 0 T T T] T T T]
50 100 150 200 50 100 150 200 50 100 150 200
Time (second) Time (second) Time (second)

o
o
o

Figure 7: Anytime Performance on Combinatorial Auction (CA) problem and its scale-transfer
instances. From left to right: Performance comparison on instances from CA, CA2, CA4. (see
Table 6 for detail).

0.3 0.3

= = o —— RENS
o 0.2] 6] —— Branching
E] T 02 E 02 RL-LNS
g £ g
= B B — SCIP
~ -9 ~ .
o 0.1 . P o — Gurobi
sh 0.1 0.1
g ~ g g — BTBS-LNS
R \

z z .

0 T T T] 0 T T T 1 0 T T T |

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (second) Time (second) Time (second)

Figure 8: Anytime Performance on Maximum Cut (MC) problem and its scale-transfer instances.
From left to right: Performance comparison on instances from MC, MC2, MC4. (see Table 6 for
detail).

Table 10: Performance comparison on the whole MIPLIB benchmark set.

SCIP SCIP(600s) SCIP(900s) U-LNS R-LNS FT-LNS BTBS-LNS BTBS-LNS-F Gurobi
Gap% 15.15 11.08 8.79 16.26 15.94 13.07 1.75 3.11 1.98

some heterogeneous and hard instances, we also performed the experiments on the whole MIPLIB
benchmark set’, which is a standard test set used to compare the performance of mixed integer
optimizers. The benchmark set contains 240 instances. We compared different methods in a 300s
time limit, which is the geometric mean of solving time of the solved instances with SCIP, and
the re-optimization time for each step was set as 5s. Other hyperparameters remain the same as
AMIPLIB in Sec. 4. We perform cross-validation to make fair comparison and split them into
training, validation, and testing sets by 70%, 15%, and 15% at each round. Policies learned from
diverse training instances are directly applied to the test set.

The overall comparison results were gathered in Table 10. As can be seen, our BTBS-LNS can
deliver significantly better results compared with all the competing baselines, including the leading
commercial solver, indicating its effectiveness and generalization ability. Furthermore, we notice
that BTBS-LNS-F performs slightly inferior than Gurobi and our approach, further revealing the su-
perior performance of our Binarized Tightening technique over that proposed by Nair et al. (2020b).
Detailed per-instance comparison are gathered in Table 17 in Appendix B.

In addition, as illustrated in Alg. 1, we devised a novel virtual bound technique specifically for un-
bounded integer variables. To evaluate its performance, we conducted an extensive analysis across
all instances featured in MIPLIB benchmark set. Notably, there are 19 and 4 instances that con-
tained unbounded integer variables before and after the presolve, respectively. In this section, we

>https://miplib.zib.de/

18

Under review as a conference paper at ICLR 2024

Table 11: Performance comparison on MIPLIB instances that contained unbounded variables.

Instance SCIP U-LNS R-LNS FT-LNS BTBS-LNSw/oubd BTBS-LNS Gurobi
gen-ip054 6858.879 6858.879 6852.733 6858.879 6852.733 6852.733 6840.966*
gen-ip002 -4783.733*% 4772597 -4772.597 -4768.253 -4783.733* -4783.733*% -4783.733*

neos-3046615-murg 1610 1670 1651 1651 1610 1607 1600%*
buildingenergy 42652.34 42652.34 42652.34 42652.34 34243.89 33324.73 33283.85%

Table 12: Experiments with Gurobi as the baseline for binary Integer Programming (IP).

Methods . SC . MIS . cA . MC
Obj Gap% PI Obj Gap% PI Obj Gap% PI(x10%) Obj Gap% PI
U-LNS 559.74 259 18820 -683.45 041 63532 -111036 3.78 2690.5 -889.62 4.07 5633.8
R-LNS 560.49 3.01 18925 -683.94 034 54571 -109797 4.85 2999.0 -891.95 3.75 51895
FT-LNS 564.76 338 19521 -684.16 0.73 462.45 -110319 440 2856.4 -891.06 3.79 5214.7
RL-LNS 549.16 1.57 16911 -686.12 0.09 179.94 -113862 1.37 2029.1 -894.51 3.52 48125
BTBS-LNS 546.84 0.28 15987 -686.24 0 165.24 -115083 0.27 1710.6 -923.96 0.38 426.89
Gurobi 549.44 075 16796 -686.24 0 173.15 -113731 1.44 20754 -921.90 0.62 842

Table 13: Generalization to large-scale binary integer programming (IP) instances with Gurobi as
the baseline.

Methods SC2 MIS2 CAZ A MC2
Obj Gap% PI Obj Gap% PI Obj Gap% PI(x10%) Obj Gap% PI
U-LNS 29828 248 13509 -1368.81 032 1551.6 219447 3.06 5442.1 -1788 3.76 13713
RLNS 300.17 273 14052 -1365.68 0.55 18452 -220497 2.60 51120 -1789 375 13359
FLLNS 30208 329 14338 -1369.30 028 14852 -217950 3.72 58235 -1783 404 13753
BTBS-LNS 29288 028 12275 -1373.18 0 46238 -225319 047 41251 -1858 0.01 350.45
Gurobi 29412 071 12528 -1373.14 001 49583 -218245 3.60 57235 -1839 101 21956
Methods SC4 MIS4 CA4 A MC4
Obj Gap% PI Obj Gap% PI Obj Gap% PI(x10%) Obj Gap% PI
U-LNS 1726 256 14150 -2731.62 0.64 55157 427694 4.02 15712 3537 495 46965
R-LNS 1719 236 14112 273472 052 48463 -427992 395 15275 -3541 4.84 46380
FLLNS 1742 334 14515 273422 054 49150 -429190 3.68 14588 -3543 478 45795
BTBS-LNS 1688 027 13424 -2748.84 001 20518 -442616 0.67 10025 -3721 0 11034
Gurobi 1705 122 13795 -2748.02 004 22157 -389396 12.61 21959 -3521 538 51298

compared our BTBS-LNS with a variant BTBS-LNSw/o ubd, where the special handling for un-
bounded integer variables (see Line 2-6 in Alg. 1) are removed. In other words, unbounded variables
were free to optimize at each step. The comparison results on the four instances that still contain
unbounded variables after presolve are gathered in Table. 11. As can be seen, our proposed BTBS-
LNS, outperforms the variant BTBS-LNSw/o ubd on two instances and achieves parity on the other
two. These findings underscore the potent effectiveness of our proposed bound tightening technique,
substantiating its value in enhancing solution quality and optimization efficiency. We will continue
the experimentation on more unbounded MIP problems in the future.

A.6 SUPPLEMENTARY EXPERIMENTS WITH GUROBI

In order to evaluate the performance of different approaches with Gurobi as the baseline solver, we
perform extensive experiments on MIP problems, four binary integer programming problems and
their scale-transfer instances.

The hyperparameters remain unchanged as those in SCIP counterparts. The results on four binary
integer programming problems and their scale-transfer instances are gathered in Table 12 and Ta-
ble 13. And the comparison results on MIP problems are reported in Table 9. As can be seen, our
BTBS-LNS consistently outperforms Gurobi across all the problems with different sizes, indicating
the effectiveness and generalization ability to different solvers.

A.7 EVALUATION ON OUR PROPOSED ATTENTION APPROACH

As illustrated in Sec. 3.3, we proposed a slightly different attention approach for the Graph Attention
Network (Velickovi¢ et al., 2018), where we remove the commonly-utilized Softmax-normalized
formulation. Specifically, for a node ¢ in the tripartite graph, the weight coefficient w;; across all
neighboring nodes j € N; are simply averaging by |N;| (see Eq. 4) to fully reserve the absolute
importance between nodes, rather than Softmax normalized in the general handling.

19

Under review as a conference paper at ICLR 2024

Table 14: Performance comparison for different attention approaches on four binary Integer Pro-
gramming problems: SC, MIS, CA, MC.

Methods . S¢ . MIS . CA . MC
Obj Gap% PI Obj Gap% PI Obj Gap% PI(x10%) Obj Gap% PI
LNS-Softmax | 54822 0.56 16493 | -685.82 0.05 18175 | -112810 227 _ 2233.6 | -906.15 198 1755.0
BTBS-LNS | 547.88 047 16234 | -685.86 0.05 181.47 | -112864 2.18 2196.8 | -909.17 199 2518
Table 15: Average Standard Deviations for our proposed BTBS-LNS on different problems.
SC SC2 SC4
Methods Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | 54788 £0.59% 047 £0.88% | 29356 £0.77% 0.51 £0.68% | 169.80 £0.68% 0.84 + 1.01%
Methods ~MIS M2 ~ Mis4
i Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | -685.86 = 0.74% 0.05 £ 0.78% | -1372.66 + 0.51% 0.04 £ 0.21% | -2747.04 + 0.32% 0.07 £ 0.19%
Methods . CA . CA2 . Cad
Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | -112864 +0.32% 2.18 £ 0.29% | -222590 £ 0.39% 1.67 £ 0.41% | -439431 +0.33% 1.39 + 0.49%
Methods . MC MC2 M4
Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | -909.17 £ 0.48% 1.99 £ 0.52% | -1831.00 + 0.66% 1.45 £ 0.58% | -3664 £0.73% 1.52 + 0.84%
Methods ~ Tem —AMIPLIB ~ MIPLIB
Obj Gap% Obj Gap% Obj Gap%
BTBS-LNS | 13.82+1.09% 16.82 +0.96% / 419 £ 1.51% / 175 £ 1.62%

To further evaluate the performance of different attention approaches, we compare our proposed
BTBS-LNS with LNS-Softmax, where we instead utilized the common Softmax normalized ap-
proach and all the others remain the same. We performed the comparison on four binary program-
ming problems, and the results are gathered in Table 14. As can be seen, with our updated attention
mechanism, BTBS-LNS can obtain consistently superior performance over LNS-Softmax, reveal-
ing the effectiveness of our novel attention approach.

A.8 STABILITY ANALYSIS OF OUR APPROACH

As illustrated in Sec. 4, all the experiments were performed with three different seeds to make fair
comparison for different approaches. The average standard deviations for our proposed BTBS-LNS
on different problems are gathered in Table. 15. As can be seen, the BTBS-LNS is fairly robust
to different seeds, with average standard deviations lower than 2% even on some heterogeneous
instances, like MIPLIB.

A.9 EXPERIMENTS WITH CPU vs GPU

As illustrated in Sec. 4, all the experiments

Table 16: Performance Analysis (GPU vs CPU).
were performed on the Intel(R) Xeon(R) ES-

2678 v3 2.50GHz CPU with 4 physical cores, Ttem
and it achieved competitive performance com- Methods Obj Gap% PI
pared even with the leading commercial solver. BTBS-LNS + CPU 13.82 16.82 2030.3
In this section, we will further test the GPU ver- BTBS-LNS + GPU 1378 16.68 2010.2
sion (NVIDIA GeForce RTX 2080) of our pro-
posed BTBS-LNS on the balanced item place-
ment problem, and the results are given in Table g g
16. © —GPU

E 0.6 —CPU
Fig. 9 further depicts the anytime primal gap & 04
comparison between CPU and GPU version g 02
in detail. As can be seen from the results, z 0 . ; - . o
compared with CPU implementation, GPU ver- Time (second)
sion BTBS-LNS delivers slightly better perfor- Figure 9: Anytime Performance comparison
mance, in which the overall primal gap and pri- (GPU vs CPU).

mal integral improve by 0.83% and 0.99%, re-

spectively. In other words, our proposed BTBS-LNS may achieve even better performance when

implemented in GPU environment.

20

Under review as a conference paper at ICLR 2024

B PER-INSTANCE PERFORMANCE COMPARISON ON MIPLIB

Considering that the results on MIPLIB instances may deliver high variances due to the significantly
different problem distributions across instances, showing only the average gap like Table 10 may be
not sufficient. In this respect, we report the detail per-instance performance within the given time
limit on the competing approaches, and the results are gathered in Table 17.

Note that we only report 218/240 instances from MIPLIB benchmark set. The following instances
were removed, as no feasible solution can be found for them within the pre-defined time limit:

1) Instances that are infeasible (6):

* bnatt500

* cryptanalysiskb128n50bj14
 fhnw-binpack4-4

* neos-2075418-temuka

* neos-3988577-wolgan

* neos859080

2) Instances that cannot generate feasible solution by the baseline solver within timelimit (16):

* cryptanalysiskb128n50bj16
* gfd-schedulen180f7d50m30k18
* highschooll-aigio

* irish-electricity

* neos-1354092

* neos-3402454-bohle

* neos-4532248-waihi

* neos-5104907-jarama

* neos-5114902-kasavu

* ns1116954

* 151952667

* peg-solitaire-a3

* physiciansched3-3

* rail02

* supportcasel9

* supportcase22

21

Under review as a conference paper at ICLR 2024

9CIVLE 9TIVLE 9CIVLE 9CIVLE €T1699S €T1699S €T1699S 9¥ €LSSE SS'6LI9Y €£T1699S 10-800SMP
L¥9'C8T101 €82101 €82101 €82101 YrE101 Yre101 L6890 €82101 €82101 €82101 £C-Gz-o8eAeIp
YLY EEEE0] YEEE0T YEEE0T YEEE0T YEEE0T YEEE0T YEEE0T PEEE0T YECE0T PEEEOT €2-001-93eAeIp
091- 091- 091- 091- €€1- TSI- TSI- 091~ 091- 091~ gdwooop
ST69LS ST69LS ST69LS ST69LS 91E€'LLS STL'ISS STLISS ST69LS ST69LS ST6'9LS G gourp
SPE9LS SPE9LS SPE9LS SPE9LS TS9LS TS9LS SLY'LLS SYE9LS SPE9LS SYE9LS ¢-gouep
L6 96- L6 L6 ¥8- 08- 98- S6 6 €6 68-8C119[SAD

€L1 €L1 €L1 €L1 YLI 8L1 9L1 €L1 €L1 €L1 800PY0$d
IS¢ IS¢ IS¢ IS¢ 493 96¢ 79¢ IS¢ IS¢ 79¢ LOOP3YI$d
1768715T 1768715T 1768715T 1¥6871ST | 0LOY9IST 008TTTST 008TTTST 1¥6871ST I76871ST 008TTTST H00-997IS0d
YL 88 88 SL STt 0S¢ 0S¢ Tl 6L1 0S¢ xpig-1zdwoo

9 9 €T 9 8L 81 81 8p1 81 €78 xpig-Lodwiod

[zl- z1- z1- 8- 11- 11- Z1- - - S01p0od
90°TH66£9C | 90°TH66£9T | 90°Tr66£9T 90°TH66£9T | OTLEESIT OTLEESIT OTLEESIT OTLEESIT OTLEESTT OTLEESII 001-02
1454 1454 1454 1454 £6T 692 19T 1454 ¥ST 192 ¥ 0SLSIND
06£68LSS 06£68LSS 06£68LSS 06£68LSS | 00VIT6LS 00VIT6LS 00VIT6LS — 00VIT6LS — 00VIT6LS — 00VIT6LS 8-8-pZ-0sdsgurd
4 4 4 4 4 4 4 4 4 ¥ L-T1 SXdpuronewoyd

4 4 4 4 4 4 4 v v v L-pT0 1 X9pUIdNRWOIyd

0 0 0 0 0 91°cP 91°cP 0 0 0 ©10-8Q
G8'€8TES G8'€8TES 8€°0STHE 68 EVTYE | YETSITY $ETSITY ¥ETSITY 8E0STYE 8€°0STYE ¥ETS9TH A310ua3uIp[ing
T T Iy Iy 201 201 201 201 201 201 gl1zeiq

€6 39 €6 €6 7S 96 9 €6 €6 €6 80-2ddq

I I I I I I I I I I 00pheuq

Sy 161 Sy 16vY Sy 16vh Sy 16vh 99°€96% 99'€961 L'61LY LL1Y9Y '61LY 80'vyLY 8621-d|q
12°5079 125029 125029 125029 66'S9S9 E€'78S9 66'S9S9 LL'E€YT9 11°€0£9 665959 g6re-diq
TTPLY TTPL9 TTPLY TTPLY YTEPL9 SLLYL9 9L'9¥L9 TTPL9 TTPL9 TTHL9 [-014eyuIq
¥SL ¥SL ¥SL ¥SL SSL 6SL 65L ¥SL ¥SL vSL £DAdIsBAq
€TSYTYST- | €TSYTVST ¥'9rS08CT- Y'9rS08T- | ¥'9¥S08T- ¥'9¥S08T- ¥'9¥S08T- TITI6LT- TITI6LT- TITI6LT 9qeq
TISPPSLSE- | 96'STSLSE- 6607SE- 6T60VSE- | 160VSE- LP90VSE- LY90PSE- LP90PSE- LY90PSE- L P90pSE- 798q
STYPSHT STYYSHT STYYSHT STYYSHT Y'6LE9T 9I'IE0LT SL'OVSLT TO'1LSST SSP00LT 91'1€0LT 11919
1006 10°06 1006 1006 10°€6 10°S6 10°€6 10°€6 10°€6 10°86 dr-ejuepe
[aré [aré [aré [aré [aré (4K ¥1¢ (At (4K (4K §-G-JusIsse
I - I I 6" €C- v I~ It~ €T 7-1dde

€ € € € € T € € € € [-1dde
¥LEIT ¥LE9T ¥LE9T ¥LE9T 17v9C ¥LE9T 6£79C YLEIT ¥LE9T YLEIT Soire

0 9 Sy Sy 87T 87T 87T 8T¢ 87T 8T¢ [[PWISI[qRIOWOIUIPRIL
SI'TIEE SI'TIEE YT S1€E SI'TIEE 10VEEE LEOVEE 8EHTEE gI'¢lee 7691¢€ LEOFEE 01-A0S
[20€ 20€ 20€ 20€ z0€ £6¢ 20€ 20€ 20€ 890TU0E
uonn[o§1s3g | I1qoanH | J-SN'T-SALd SNT-SALd | SNT-LA SNT-A SNT-0 (S006)dIDS (S009)dIDS dIDS soue)suy

L10T 9IIdTIN uo uosteduwod aoueuriojrad soueisur-194 :/ 1 9[qe],

22

Under review as a conference paper at ICLR 2024

0vS0T- 0rsoT- 0vS0T- 0rsoT- 00%0C- 0rS0T- 0vs0T- 0vrsoT- 0vs0T- 0rsoT- ZTHAZZW
8ILIT- 8ILIT- 8ILIT- 8ILIT- 8.91C- 8991¢- 8/91¢- 8ILIT- 8ILIC- 8ILIT- [[AZZW
€550°0 €550°0 €550°0 £550°0 £550°0 6980°0 6980°0 €550°0 €550°0 £550°0 1899-wooysnw
SEr1601 S V1601 S V1601 S V1601 ¥ 66£TLE YP6S9¢€ Yr6S9€ L6SYEL 1'Ly¥T8T ¥ 66£TLE [WNuawowt
1'1879T€ 1 1879T€ 1'1879T€ 1 1879T€ 1 1879T€ 9:0T892€ 9:0T89ZE 1 1879T€ 1'1879T€ 1 1879T€ 1-0b-T1-9-T1A-O[IW
10£2S- 10£2S- 10£2S- 10£2S- 10£2S- 10£TS- 10€2S- 10£2S- 10£2S- 10£2S- ¥-SL-0T-0ST- W
€1611C €1611T €1611C €1611T 116212 vLSTIT vLSTIT €1611T €1611C €1611C payosow
68911 68911 68911 68911 96811 1€L11 0TLIT 68911 68911 68911 []ow
S0°S000Y S0°S000¥ S0°S000% S0°S000¥ S0°S000¥ S0°S000% S0°S000% S0°S000¥ S0°S000% S0°S000¥ 9/sew
LSST'TOST1 6110811 6110811 6110811 6110811 6110811 6110811 6110811 61°10811 6110811 pLSeW
I 1 11 1 1€ 9¢ 1€ 8T 8T 1€ 7aTeysyIRW

I I I I I I 5 I I 1 0" dTeysyIeW

I11- 111~ 111~ 111~ £8- 8L 8- 111~ 601~ 8L- ¥0-S1.91dew
S6b- S6v- S S61- TLy- 01y~ 891~ S6b- S 087~ 01dew
8920°0 820°0 8920°0 8920°0 T6£0°0 TLLOO L90°0 TS€0°0 8€0°0 L90°0 pew
S6108Y1 1017671 S6108Y1 S6108Y1 7895611 898LSST L8S9T91 096£871 €TEVSYI 898LSS1 971810]
I¥PLLOYOY T¥PLLOYOY 00T1€SSOF 00TISSSOP | 000vbP9sy 00TO0L9Er 00ISTISEr 0068S6YTYy 0090609TF 00TOOLIEY 7091
9E€SLTTYOY | 9ESLTTYOY 007686V0F 00v686¥0F | 00ITSI6CTF 00IS6EEPY 000912887 00T60L0IY 00¥009TI¥ 00TSS961Y 109]
T ¥T LT ¥T a4 8P 9 6€ It 8y [qo-6-payos)o9]
88T¢- 88T¢- [ad b [ad b ¥0z- ¥0T- ¥0z- 88T¢- €6C ¥0C- wooysnuw |y
80'10C 80'70T 80'10C 80'70T L6LYIT 196°CIT L6L V1T 80'70C 80'10C 80 70T JJoind-ou-[nque;st
665121 61'651C1 6'651C1 61'651C1 S 19121 S'19121 T0912I 61'651C1 6°651T1 67°6S1C1 da
SLEY SLEY SLEY SLEY 9L£9 78€9 SLEY SLEY 78€9 T6£9 UOISUSY /61101
TheE TH6E TS6¢ Th6E TS6E SP6E TS6¢ SP6E SY6¢ SY6€ enuajod-/ 601
168¢- 168¢- 1682~ 168¢- 168C- 1682~ 168C- 1682~ 168¢- 168C- 1{-prosAyodAy
1°28€9 1°28€9 1°28€9 1°28€9 1°28€9 1°28€9 199119 1°28£9 1°28€9 1°28€9 POTEYX08Y
98961 98961 88961 98961 TLL6] 87861 87861 98961 98961 98961 urewop-mepydes3

6 6 6 6 6 8- 8- 6 6 6 puei-gz-ozydels
€€'8S6L09T- | L'TTOELO9T- | €8S6L09T- €8S6L09T- | 0£6909T L8ES09T- S9¥S09T- 0£6909C- 0£6909C- 1.8909C- 0S-s¢-nws
LEE€EL90VT- €€L90VT- 8SY90¥T- 8SY90YT- 8SY90YT- 8SY90¥ T 8SY90YT- 8SY90YT- 8S¥90¥ T 8SY90YT- Op-sg-nws
009Z1000ZI | 0092100021 | 009ZI000ZI 0092100021 | 009ZI000TI 009ZI000TI 009TI000TI 009TI000TI 009TI000TI 009TIO00TI Sse[3
€T €T €T €T vT ST ST €T €T €T 0s-$SB[3
9°'698S60LY 00SSETLY 0€90+¥8Y 0€90v78Y 0£90v78Y 0€90+¥8¥ 0£90v78Y 06196081 06196081 0£90t+8Y LueuiIog
L6°0789 L6°0Y89 85'8689 €1°7589 88'8589 €L°7S89 88'8689 L6°0¥89 L6°0789 88'8589 ySodr-uag
€L ESLY- €L°E8LY" €CTLLY- €LE8LY" ST'89LY- 9TLLY- 9TLLY- €L°E8LY" €L ESLY- €LESLY" 200dr-ua3
8¢l 8¢l 8¢l 8¢l 8¢€1 ov1 8¢€1 8¢l 8¢1 ovl 11eqy

0 0 0 0 0 0 0 0 0 0 gp-poedurq-muyy

0€T 0€T 0€T 0€T 0€T 9¢T 0€T 0€T 0£2 0€T T0SYITU-WwaFx)sey
PLI PLI PLI YLI YLI SL1 9L1 PLI PLI YLI LOS0ISE)
L88S9 L8859 L88S9 L8859 L8859 L8859 L88S9 L8859 L88S9 L88S9 6-6-00S-1-dxo

18 18 18 18 18 18 18 18 18 18 6X°
001 001 001 001 001 001 001 001 001 001 01X

LE LE LE LE LE LE LE LE LE LE pIey JySIud
76088 10°€26 26'088 76°088 €S EPPI €S EPP1 €S EPPI LL'S66 LL'S66 LY E1€T TI01VIR
800°7€6 800°7£6 800°7£6 800 <6 800°v£6 vL9'L86 vL9'L86 800°7£6 800°7€6 800°v£6 TECIP
uonnjos 1sdg 1qoans A-SNT-SALd SNT-SALd | SNT-LA SN'T-I SN'T-N (8006)dIDS (S009)dIDS dIDS soue)suy

23

Under review as a conference paper at ICLR 2024

10T¢ 10T¢ 10T€ 10T¢ 10T€ L9TE 10T¢ 10T¢ 10T¢ 10T€ 00£098-s03u
1€0t°1S€T T1°90T¢ £'85¢€T £'86¢€T 0996S€T1 0996S€71 0996S€21 ¥$'6S€T $$'65€C 0996S€T1 685818-s0au
200°CI1 200°CI1 T00°CII 200°CI1 200°CI1 00Tl 200°CI1 200°CI1 200°CI1 200°CI1 SL1LT8-S03u
0€ 0g 0¢ 0¢ 0¢ 0¢ 0¢ 0¢ 0¢ 0¢ £€6L8L-S03U
08¢¥81 08¢781 06£781 08¢781 SYE0SHT ¥¥0STT S €661 S'6L9Y81 S'SLYSI SYE0SHT 691799-s0su
€02 €02 €0T €0T ¥1T ¥1T ¥1T ¥1T ¥1¢ Y12 01L1€9-s0du
¥8€00°0 ¥8€00°0 ¥8€00°0 ¥8€00°0 90+00°0 81+00°0 81+00°0 ¥8€00°0 ¥8£00°0 90+00°0 INWRU-[7ZGH[S-S0U
62011°0 62011°0 62011°0 62011°0 LSTIT0 LSTIT0 LSTIT0 LOTIT0 LSTIT0 LSTITQ 1e)3BU-8()88Q | S-SOU
SH9¢ S9¢ St9¢ SH9¢ 8STY €6TY ¥61¥ ¥$9¢ YrLE 44 odeyey-/65L01§-S03u
0929 0L29 0929 0929 9899 0969 9899 9899 9899 9899 wnyeny-/g¢E60S-S0U
281 281 281 281 €62 €62 €62 781 €62 €62 19U K2-€0FTS0SG-S0U
798 798 009 009 009 9¢9 9¢9 9¢9 9¢9 9¢9 BZUBNI-¢G/ 61(0G-S0U
01L219¢ 188719¢ 01L219¢ 01L219¢ 90$8L9¢ 90S8L9¢ 90$8L9C SELYTIT 095L29¢ 90$8L9¢ [H29-7L9PS6H-S0sU
6€0°€191 6£0°€191 6£0°€191 6£0°€191 SEL'09L9 S€L°09L9 SEL'09L9 SEL°09L9 S€L°09L9 SEL09L9 nIN30}-47¢ €9/ 50U
LS6LTIE8T | LS6LTIEST LS6LTIE8T 0019L9€8T | 00SOI0SST 006T99S8CT 006799S8T 001089€8T 008089€8T 00S010SST OJBI)B-7] 68E Ly-SOU
L'600ST L'600S¢ 99°'60£5¢ L'600S¢ ¥ LLTIT ¥¥ LLTIT 88°LOLLT 88°012ST 88°01TST ¥ 8E¥ST USPPIM-EH8T T/ y-S0U
1L°S9TLT 1L°S9TLT 1L°69TLT 1L°69TLT 81'897LT 81'897LT 81'897LT 81'897LT 81'89C7LT 81'897LT D{eIN-0€0L Y9-S0
LESY LESY LESY LESY LESY ¥6°'1S ¥6°1S LESY LESY LESY BLN)-{ [L] $-S03U
8¢ee 8¢'€e 8¢'ee 8¢ee P1°6¢ y1°6¢ y1°s¢ P1°6¢€ ¥1°6¢ P1°6¢ BNAB)-/8/8¢H-S0U
ILy] ILY] €LY] ILp] 6LY1 6LY1 81 €LYT YLY1 LLYY Amous-4(88¢c-s0du
91+1'C 91+1'C 91+1'C 91+1'C €181°9 YSyi'L €181°9 S6SLC €618C YSri'L anyeI-g6900g-S0U
S0r6Tl 6917621 S0r6eI S0r6cI L1°TE8ET LT'TESET L1'TESET L6'6£9¢1 L6'6£9€1 L1°TE8ET BPPIU-081 S LE-S03U
TTLIET- ILIET- 0zIgl- LTIET- 1'L9011- 1°L9011- 1°L9011- 1°L9011- 1°L9011- 1'L9011- NaWNy-g/0959¢-S0U
79685886 79685886 79°$85886 79°85886 9'T0£686 9'T0£686 8900066 9'T0£686 9'T0£686 9'T0£686 1eseY-891 £ T9€-S03U
LyE- LvE- LyE- Lye- LyE- Ly LyE- Lye- LvE- LyE- BUIRIN-H ()65 SSE-S0dU
$TL90°0 $TL90°0 $TL90°0 $TL90°0 SL180°0 $2TL90°0 SLL800 $2L90°0 $TL90°0 $TL90°0 UI909-46ZT0PE-S0U
£SY €Sy 1454 €Sy £SY 1454 €Sy 1984 €Sy £SY BIYME-9(T [8EE-S0U
0TEIL 0TEIL SLTIYI SLTIYI SLTIYI 0911ST SLTIVI 0911ST 091181 0911ST und-1¢6917¢-S0U
966L0£9 966L0£9 966L0€9 966L0€9 966L0£9 966L0£9 966L0£9 966L0€9 966L0£9 966L0£9 nqnu-678¢g(E-S0U
0091 0091 1191 0191 1S91 1591 0L91 LO91 0191 0191 3IMuw-¢ 1994 ()¢-S0dU
96/9C 95L9C 6YELT 96.9T 0Ts9T1 9rL6 69718 9¢¢IL L6 0Ts9T1 aN0[-ZS6HTOE-S03U

0 0 0 0 0 0 0 0 0 0 eY-970700¢-S03U
886T0LLO9- | 886T0LLO9- | 886T0LLO9- 886TOLLO9- | 886T0LLO9- 886TOLLO9- 886TOLLO9- 886TOLLO9- 886TOLLO9- 886T0LLOY- sa0[-01¢/86C-s03U
6919088€°C- 88¢'C 88¢'C 88¢'C 88¢'C 88¢°C L61'C 88¢'C 88¢C 88¢'C SpUI-¢68L6T-SOU
7'800T 7'800C 9'660C 9'660C 9'660C 9'660C 9'660C 9'660C 9'660C 9'660C U00P-68G91/7-S0U
SLOIS'T SLOIS'T €TL SLOIS'T €TL 90'8 €TL €TL €TL €TL BUID-GTG6/,C9T-S03U
16 16 16 16 16 16 16 16 16 16 0THT8S[-s0au
9LI 9LI 8LI 9LI 981 781 LOT ¥81 81 981 6L69SH1-S0U
€8LLI- €8LLI- €8LLI- €8LLI- €8LLI- €8LLT- €8LLI- €8LLI- €8LL1- €8LLI- S9LSHP[-sodu
S61- S61- S61- S61- 061- 061- €LI- 61- 61- 061- LELTLTT-S0dU
60¢- 60¢- 60¢- 60¢- 60¢- S0¢- LOg- 60¢- 60¢- 60¢- 8P 1LI[-S03U
191 191 191 191 191 191 191 191 191 191 LY0TTI[-S0dU
S018 S018 S018 S018 S018 5018 SOv8 S018 S018 S018 g-gu
0080€1 0080€1 0080€1 0080€1 0080¢1 00¥I€1 0080€1 0080¢1 0080¢1 0080¢1 9gAIpgU
002zTs 002zs 00TCs 00TzCs 00tcs 0092S 008¢S 0022ZS 002Ts 009¢S bggbaszu
uonnjos 1sdg 1qoano A-SNT-SALd SNT-S4dLd | SNT-LA SNT-d SNT-N (5006)dIDS (S009)dIDS dIDS ue)Isuy

24

Under review as a conference paper at ICLR 2024

12°€9- 12°€9- 12°€9- 12°€9- L1°€9- 1929 1929~ L1°€9- L1°€9- LET9- yugeydregiox
09¥11 09b11 09¥11 09+11 09+11 TLYIT 9LSTT 09¥11 09¥11 0€STT 000700-01D090901
611761 L6761 67761 6761 88661 61861 10L61 YES61 6L861 88661 000110-01 020901
89'9- 89°6- 899~ 89°9- S9p- 99°G- S9p- LS 99°G- S9'p-] [-S-I1001
£020209- £020209- £020209- €020209- | €0T0T09- £0€0v0S- €0€00S- £070209- €020209- €020209- [1--1001
125 125y 125y 125 6875 687 6875 12SYy 687S 687S ¢d-gozaeuLr
%44 %44 €T %44 LSY vy Ty €T %44 %44 014d-00 140w
€090089¢- | £090089¢- | £090089¢- £090089¢- | 0£S66L9€- 0€S66L9€- OLTLLLIE- 0090089¢- 0£S66L9€- 0801TLIE- ST1Yo0[ga1
£66£591 £'66£591 £66£591 £66£591 8ISL6LT SISL6LL S9E86LIY 8 1SL6LI 8 ISL6LI 8 ISL6LI 1z-osnjdi-px
TILE 9¢LE TILE TILE SILE 86LE 86LE TILE YILE SILE g-Isip-gyxpyues
YL vL1 YLI vL1 GLI 081 8LI vLI vLI YLI LOSIrex
LSOL- LSOL- 68°69- 68°69- 60°69- 68°69- 68°69- 60°69- 60°69- 60°69- TQ[red
8TESSIT 1€€GST 6£69S1 0£€SS1 96L60¢ 96£5€T 96£S€T ¥SESST ¥SESST 96£5€T 20-01-OttuuoneIpe:
996L1 L9SLT 69SLI 996L1 20261 LTS61 £5861 ¥L881 ¥L881 LTS61 S0-Z1-gTwuoneIpes
(0143 (0143 (012 (014 (0143 (014 ore (0123 (0143 (0143 01deb
LYL] 8L L1 LYLY 9162 9162 916¢ 916¢ 916¢ 916C gd[xngz [udisapurajord
€LYT LLYT 609C 6092 6092 6092 6092 6092 609T 6092 6dz1Szy g UsIsepurejord
11 11 11 11 11 4 4 11 1 11 id
¥C18 ¥CTI18 ¥T18 ¥T18 ¥TI8 ¥ZI8 ¥CI8 ¥Z18 ¥CI8 Y18 LZ-oxadid
$50STT $S0STT $S0ST1 $S0STT $S0STT $S0STI LOLEET $S0STT $S0ST1 $S0STT g0-ynoxodrd
YTE6Y vTE6Y YTe6h YTE6h YTE6h YTe6y YTE6h YTe6h YTe6h vTe6Y Z-9payosuendrsAyd
Y 6EEh1- ¥ 6EEh1- ¥ 6EETT- ¥ 6EEh]- ISPTEPI- 9P PTEVI- 96°01EPI- €8'STEVI- 1SYTEVI- 9 beehl- y¢¢3d
YEYL98- YEYL98- Y1198 YEYLI8- YEVLI8- ¥87T7998- +87998- YEL98- Y1198 YEYL98- 3d
8L0S1 8L0S1 8L0S1 8L0S1 8L0S1 8L0S1 8L0S1 8L0S1 8L0S1 8L0S1 2881 1X00cd
697€¢- 6€1€¢E- 69T€¢- 697€¢- 8€69T- 8€69T- 8€59T- 790£€- 790€¢- 21162 ¥8-012-gwdo
79891 79891 79891 79891 9/891 9/891 9,891 79891 79891 79891 yomu
8¢ 8¢ 8¢ 8¢ 8¢ L9 8¢ 8¢ 8¢ 8¢ Z0IuLds-payosasinu
SIT 49| L66 L11 0808 0808 0808 906L 0808 0808 £0IUIY-WNIPIW-PIYOSIsInu
S06€S S06€S S06¢€S S06€S S06€S S06€S S06€S S06¢€S S06¢€S S06€S 711d-gznu
T290T TT90T TT90¢T TT90T TW91T TTYET TTYET T290T 7290 TT90T £690€81SU
S8EVIT 61S- LO9IS- 20°8+S- 20°8%S- 9¢°6Ch- 9¢°6Ch- 9¢°6Ch- 9" 6CY- 9¢€°6Th- 9¢°6Ch- $6609L1SU
€CYTST- €CYTST- €CHTST- €CPTST- LY6IYI- L998VI- L9'98PI- €CHTST- €CHTST- LY6IHI- SS8HP9Isu
14 14 14 14 14 14 4 14 14 14 00780TIsu
1€2 6£C 1€ 1€ LET I1LL ILL 1€ ¥€T 00€ 6-8-07-0S1-dxau
e e ¥t ¥ €97 8¢H006Y 8€¥0061 €92 810061 8¢¥0061 UOISIOAIPIOU
v1T v1T v1T ¥1T ¥1T 6sT ¥1T Y1z v1T v1T Z1Ru
61LE- 61LE- 61LE- 61LE- 61LE- 61LE- 61LE- 61LE- 61LE- 61LE- gsoau
SI SI Sl SI SI SI ST Sl Sl SI gsoau
S1°0 S1°0 S0 S1°0 1S1°0 L9T°0 1L1°0 S1°0 S1°0 S1°0 L1s03u
8¢z~ 8¢T- 8¢z~ 8¢T- % 0 0 8¢z~ 8€C- 0 76£096-S03U
9L°LET- 9L°LET- 9L°LET- 9L°LET- 9L°6¢T- 9L°6¢T- 9LtET- 9L LET- 9L°LET- 9L°LET- €T€LS6-s0dU
v v ¥ v v S v v ¥ v THT0S6-soau
8I¢ 8I¢ 8I¢ 81¢ 88€T 88€T 68€T 0cg 0zg 88€T 996££6-S03U
9L¥S 9L¥S 9L+S 9L¥S 9L¥S €87 €87 9L+S 9L+S 9L¥S 0L6T16-S03u
959°€11 959°¢1 1 959°¢11 959°¢1 1 99°€T1 T6'TT1 €6'ST1 TLTT TLTTI T6'TT1 190€L8-S03u
uoyno§ 389 | qoany | J-SN'T-SILd SNT-SALd | SNT-LA SN'T-4 SNT-N (S006)dIDS (S5009)dIDS dIds ENIR |

25

Under review as a conference paper at ICLR 2024

8- 8- 8- 8- 8- 8- 8- 8- 8- 8- uejdyoem
SLE6YI- SLE6YI- SLE6YI- SLE6YI- SLE6YI- TIE9YI- 1€0°LY1- SLE6YI- SLE6YI- SLE6YI- | 9lgw-Arowalews-Tea
8666€961 8566€961 8566€961 8CCGEO61 | 8SSSE961 8SSSE961 8SSSE961 8SSSE961 8666061 0T9SE961 L TeoIun
v1€g jats v1g v1€g At SIg LIE v1g v1g SIE goxdgns-jon
YIE1°€6601 €1 76601 1€2S011 1€2S011 189,107 60°8TE8Y 60°8TESY SLLYEST 60°8C€8Y £ EETEIY 6oseoon
17 LOST] 1¥°LOST 1 1¥°LOST] 17 LOST] I¥'LOSTT SP'LOSIL TP LOSII 1¥°LOST 1 I¥LOST] 17 LOST] 719seo0on
L8TT L8'TT L8'TT L8TT L8'TT $'6T L8'TT $'6T S'sT g'6T Jumdiy
L8Y681S L8V681S 7951618 79S161S 06L186S1 SPTTSTL 018€TT8I 018€7T8I 018€TTS1 0£9SSTST [ojuan
06282 06282 0ST6T 06282 0ST62C 0978C 0628T 09+8C 0978 0Ty62 QdOUE)SUTUIRT)
0TS8IL 0z8IL 0S62L 0£0ZL 0816L 060%8 0816L 0TPLL 0TYLL 0816L 7RouR)sUIUIRY)
96S0€1 96S0€1 96S0€1 9650€1 8090¢ 1 96S0€1 8090€ 1 96S0€1 96S0€1 96S0€1 0£-210
TLLYYL TLLY9L TLLY9L TLLYIL TLLY9L SPE99L 99199L TLLY9L TLLYIL TLLYIL [qeIwn
L1¥0P L1¥0¥ L1¥0¥ L1¥0V TEVOY EVOY (452014 TEVOY 01£6S 01£6S Aepppgioyy
91+ 91T 91°¥C 91+¢ 91T 167C [ANY4 91T 91'+¢ 88°1€1 Spomiou-dyq)
9L°L6E 9L°L6E 9L°L6E 9L°L6E 9L°L6E 9L°L6E £€°66€ 9L°L6E 9L°L6E 9L°L6E cyiems
LO'6LE LO'6LE LO'6LE LO'6LE LO'6LE 16°18€ LO'6LE LO'6LE LO'6LE LO'6LE [yems
€TTTEIT- €TTTELL- €TTTELL- €TTTEIL- | €TTTEIL- €TTTEII- 8T 6TII- €TTTEIT- €TTTENL- €TTTEIL- Laseoroddns
8490615 8490615 8790615 890615 8Y'9061S 9L1T6IS 9L'1T61S 9L 1T61S 9L 1261S 9L 1261S goseopoddns
98GLL 98GL°L SILLL 8L9L°L 118L°L S89L°L 819L°L €89L°L 6100°8 ¥060'8 Zposeouoddns
1€°9STHT 1€°9STHT 1€°9STHT 1€°9STHT 60V6TrT 98'SLYYC 8L'SOVHT 8L °S9THT 8L°S9PYT 98'8LY1C Otoseouoddns
Spe- She- Sye- Spe- She- Spe- ove- Sye- Sye- Sye- ggaseartoddns
YTISYLL YTISYLI GTS'SSLT GTS'SSLI Y9T'89LL ¥9T'S9LI SY8'SSLY €€0'LYLI €€0°LYLY £00'I8L1 ggoseouoddns
8P 6¥ 8P 8P 6v IS 0S 61 61 61 g1oseouoddns
61T 6SSL- | 61¥T6SSL 9T EVSL- 9T EVSL- €I'6vPL- L1'9EYL- L61SEL- LYSLYL- I LEYL- SI'0SPL- Z19seouoddns
L 8 8 8 61 61 6 61 61 61 Q19seopoddns

91 0T 0T 81 1T 1T 1T 6C 6C 6C Lpdrenbs

Sl 91 L1 Sl 1T 1T 9T 9T 9T 9T [orenbs
Y6€- 8¢¢- Y6¢- Y6€- 121~ 121~ 121~ Y6¢- 121~ €L~ [{[901ds
€790VL6TS | €T90VL6TS | 008S066TS 008S066TS | 00E168TES 00ESSYEES 00S0I0SES 009S06TES — 00SOI0EES 009SPTLES Tegeds
9v9S0L099 | 9¥9S0L099 | 000¥€8099 000¥£8099 | 001+TS6L9 00616¥€L9 00ITECI®Y 00ITECIZY 00668689 008TE3889 e/ 6ds
69 69 69 69 0L 69 69 69 69 69 POOEX0S1ds

91- 91- 91- 91- SI- SI- 11- SI- SI- 11- €[[o108
6£T€0898S | 6£TE0898S | 6£TE0898S 00SY0898S | 00SIT89SS 00E680L8S 00L6TS98S — 00SFOS98S 00£91898S 00LTI698S ¥01-700-20-dus
1€88C18 €490€18 1€88218 1€88T18 GS9G/L18 869¢918 €E8LLIS LYLYLIS LOLYLIS GS9GL18 yr3urs
SLOESLL 9L9ESLL SLOESLL SLOESLL 9€EEE8L 9€ECE8L 9€€EESL 11LS9LL T1LS9LL 9€€CESL 9zgsuIs
9L01Y 9L°01% 9L°01% 9L01Y 9L°01% 9L01Y 9L°01Y 9L°01¥ 9L°01Y 9L°01¥ [nowA3s
€Ty €Ty €T €Ty LT 8Th LT €T STy LTy InowAas
660€C 66°0€C 66'0£T 66°0£T- 16°0£T- $8°0€T- 8L°0£T 66'0£T 66°0£T 16°0£C- s
8Ic€ 81Z€ S9ze S9ze €9p8I€ 6'SLSSY 6'SLSSY €9p8I¢ €9p81¢ €9p81¢ [PaYOsAes
61- 61- 61- 61- LT LT LT LT 8T 8T SJ-09-ZSAN[[2Ies
61- 61- 61- 61- 61 61 61 61 6 61 Ob-sa[oIes
8LILI0- 8LILL0- 8LILL'0- 8LILI0- LEVI 0~ LEVT'0- LEVT'O- 80L1°0~ 8691°0~ LEVT'0- 01105Ts
LTSETL69T0- | S¥6E0°0- 99691°0- 99691°0- 0 0 0 0 0 0 0018
06821 06821 06821 06821 06821 06821 20621 06821 0681 0681 000€[101
YrLTTTE TS 65°0S- 8T'TS- 8T'TS- 68 - 68 - 9€ - SISt~ SI'Sh- 68 - guQeydegros
uonnjoSis9g | qoans | J-SNT-SILd SNT-SALd | SNT-LA SN'T-d SN'T-N (S006)dIDS (S009)dIDS dIDS soueIsuy

26

	Introduction and Related Work
	Preliminaries
	Methodology
	Overview
	The Binarized Tightening Scheme
	Graph-based LNS policy parameterization
	Branching Policy

	Experiments
	Settings and Protocols
	Overall Performance Evaluation
	Problem-scale Generalization Ability Study
	Branching Policy Study by Variable Ratios

	Conclusion and outlook
	Appendix
	Further Discussion on Related Work
	Policy learning for specific MIP Problems
	Learning to solve general MIP problems

	Hybrid Branch and Search
	Detail for the Experiments
	Anytime performance on binary integer programming problems
	Supplementary Experiments on MIPLIB
	Supplementary Experiments with Gurobi
	Evaluation on our proposed attention approach
	Stability Analysis of our approach
	Experiments with CPU vs GPU

	Per-instance performance comparison on MIPLIB

