BTBS-LNS: A Binarized-Tightening, Branch and Search Approach of Learning Large Neighborhood Search Policies for MIP

Anonymous authors
Paper under double-blind review

Abstract

Learning to solve the large-scale Mixed Integer Program (MIP) problems is an emerging research topic, and policy learning-based Large Neighborhood Search (LNS) has recently shown its effectiveness. However, prevailing approaches predominantly concentrated on binary variables and often susceptible to becoming ensnared in local optima derived from the learning complexity. In response to these challenges, we introduce a novel technique, termed Binarized-Tightening Branch-and-Search LNS (BTBS-LNS). Specifically, we propose the "Binarized Tightening" technique for integer variables to deal with their wide range by encoding and bound tightening, and design an attention-based tripartite graph to capture global correlations within MIP instances. Furthermore, we devised an extra branching network at each step, to identify and optimize some wrongly-fixed backdoor variables ${ }^{1}$ by the learned LNS policy. We empirically show that our approach can effectively escape local optimum in some cases. Extensive experiments on different problems, including instances from Mixed Integer Programming Library (MIPLIB), show that it significantly outperforms the open-source solver SCIP and LNS baselines. It performs competitively with, and sometimes even better than the commercial solver Gurobi (v9.5.0), especially at an early stage. Source code will be made publicly available.

1 Introduction and Related Work

Mixed-integer programming (MIP) is a well-established and general optimization problem and has been widely studied across applications. In many cases, feasible or even optimal solutions are required under strong time limits, and thus efficiently finding high-quality solutions is of great importance in real-world scenarios. Recently, machine learning for combinatorial optimization has been an emerging topic (Bengio et al., 2021) with prominent success in different tasks, e.g. graph matching (Yan et al., 2020), and ML4MIP is also an emerging field (Zhang et al., 2023).

A variety of deep learning based solving methods were proposed to deal with specific MIP problems, including construction methods (Ma et al., 2019; Xing \& Tu, 2020; Fu et al., 2021; Zhang et al., 2020; Khalil et al., 2017; Xin et al., 2021) and iterative based refinements (Wu et al., 2021b; Chen \& Tian, 2019; Lu et al., 2019b; Li et al., 2020). While they cannot be directly applied to a wider scope of MIP problems, and thus learning the solving policies for general MIP problems has been also intensively studied, in which the primal heuristics catch more attention, including Large Neighborhood Search (LNS) (Wu et al., 2021a; Song et al., 2020; Nair et al., 2020a) and Local Branching (LB) (Liu et al., 2022). In this paper, we focus on LNS for solving general MIP problems - the most powerful yet also the most expensive iteration-based heuristics (Hendel, 2022).

Traditional LNS methods usually explore a complex neighborhood by predefined heuristics (Gendreau et al., 2010; Altner et al., 2000; Godard et al., 2005; Yagiura et al., 2006; Lee, 2009), in which the heuristic selection is a long-standing challenging task, especially for general MIP problems, which may require heavy efforts to design valid heuristics. Learning-based methods provide a possible direction. For example, both Imitation Learning (IL) (Song et al., 2020) and Reinforcement

[^0]Learning (RL) (Wu et al., 2021a; Nair et al., 2020a) showed effectiveness in learning decompositionbased LNS policies. While there still exist some challenges. The performance of the learned policies may significantly degrade when applied to general integers due to the vast scale of candidate values (compared to binary variables), leading to a large complexity in optimization. Moreover, the learned policies may be trapped in local optimum when dealing with some complicated cases.

In this paper, we propose a Binarized-Tightening, Branch and Search based LNS approach (BTBSLNS) for general MIP problems. Specifically, we design the "Binarized Tightening" algorithm to deal with the optimization for general integer variables. In particular, we first binarize the general integer variables and express them with the resulting bit sequence, and then tighten the bound of original variables w.r.t. the LNS decision along with the current solution. In this way, the variable bounds can be tightened and effectively explored at a controlled complexity. Based on our binarization formulation, we further develop an attention-based tripartite graph (Ding et al., 2020) to encode the MIP instances with three types of nodes, including objectives, variables, and constraints, which delivers better expression. Meanwhile, to enhance exploration and optimize some wrongly-fixed backdoor variables (Khalil et al., 2022) by the learned LNS policy, we leverage an extra branching graph network at each step, providing branching decisions at global (or local) view to help escape local optimum. In a nutshell, this paper can be characterized by the following bullets:

1) Bound Tightening for MIP. We propose the "Binarized Tightening" scheme for general MIP problems with an efficient embodiment of variable encoding and bound tightening techniques.
2) Problem encoding with attentional tripartite graph. We develop an attention-based tripartite graph to encode MIP problems, showing the potential to learn valid representations for general MIP.
3) Combining LNS with branching. We devise a variable branching mechanism to select and optimize the wrongly-fixed backdoor variables by the learned LNS policy at each step. The hybrid branch and search policy greatly enhances exploration and shows efficiency.
4) Strong empirical results. Experiments on seven MIP problems show that our method consistently outperforms the LNS baselines and open-source SCIP (Gamrath et al., 2020). In some cases, it even achieves superior performance over Gurobi, purely taking SCIP as the baseline solver. It can further boost Gurobi when taking Gurobi as the baseline solver. The source code will be released.
We elaborate on the detailed comparison with existing works in Appendix A.1.

2 Preliminaries

We introduce MIP and its mainstream solving heuristic: Large Neighborhood Search (LNS).
Mixed Integer Program (MIP) is in general defined as:

$$
\begin{array}{ll}
\text { min.t. } & \mathbf{c}^{\top} \mathbf{x} \\
& \mathbf{A x} \leq \mathbf{b} \tag{1}\\
& x_{i} \in\{0,1\}, \forall i \in \mathcal{B} ; x_{j} \in Z^{+}, \forall j \in \mathcal{G} ; x_{k} \geq 0, \forall k \in \mathcal{C}
\end{array}
$$

where $\mathbf{x} \in \mathbb{R}^{n}$ is a vector of n decision variables; $\mathbf{c} \in \mathbb{R}^{n}$ denotes the vector of objective coefficients. $\mathbf{A x} \leq \mathbf{b}$ denotes the overall m linear constraints, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ represents the incidence matrix, with $\mathbf{b} \in \mathbb{R}^{m}$. For general MIP instances, the index set of n variables $\mathcal{N}:=\{1, \ldots, n\}$ can be partitioned into three sets, binary variable set \mathcal{B}, general integer variable set \mathcal{G} and continuous variable set \mathcal{C}. MIP is more difficult to deal with compared with integer programming Wu et al. (2021a) as the continuous variables may require distinct optimization policies with integer variables.

Large Neighborhood Search (LNS) is a powerful yet expensive heuristic for MIP (Gendreau et al., 2010). It takes so-far the best feasible solution x^{*} as input and searches for the local optimum in its neighborhood:

$$
\begin{equation*}
\mathbf{x}^{\prime}=\arg \min _{\mathbf{x} \in N\left(\mathbf{x}^{*}\right)}\left\{\mathbf{c}^{\top} \mathbf{x}\right\} \tag{2}
\end{equation*}
$$

where $N(\cdot)$ is a predefined neighborhood, denoting the search scope at each step, and \mathbf{x}^{\prime} denotes the optimized solution within $N\left(\mathbf{x}^{*}\right)$, obtained by destroying and re-optimization from current solution.
Compared to local search heuristics, LNS can be more effective by using a larger neighborhood. However, the selection of neighborhood function $N(\cdot)$ is nontrivial. Heuristic methods mainly rely on problem-specific operators, e.g., 2-opt (Flood, 1956) in TSP, which call for considerable trial-and-error and domain knowledge (Papadimitriou \& Steiglitz, 1998). The popular learning-based

Figure 1: Overview of BTBS-LNS. First, we propose "Binarize Tightening" to handle general integer variables. The Binarize mechanism can binary-encode the variables and split them into suboptimization bits. With the bit-wise decision by LNS, the variable upper/lower bounds can be refined by bound tightening. Second, we devise a branching network on top of pure LNS policy to select wrongly-fixed backdoor variables by pure LNS policy, thus making up for its local search limit.
policies mainly focus on binary variables and may be trapped in local optimum in some complicated cases. To obtain a general neighborhood function, we propose a binarized-tightening branch-andsearch LNS approach. It destroys, branches, and re-optimizes the initial solution.

3 Methodology

3.1 Overview

Fig. 1 presents the overview of our approach. The input is an MIP instance, with its initial feasible solution x_{0} generated by a baseline solver. The general integer variables are firstly encoded to binary substitute variables, and the instance is then represented as a tripartite graph Ding et al. (2020) and fed into the large neighborhood search network, selecting the variable subsets that may need to optimize at each step, with the remaining variables fixed or bound tightening (see Sec. 3.2 and 3.3). Subsequently, we devise an extra branching network to select some wrongly-fixed backdoor variables by the learned LNS policy, to help escape local optimum. With the sequential decisions of the branch and search policy and the resulting tightened variable bounds, an off-theshelf solver, e.g. SCIP, is applied to obtain the optimized feasible solution x_{t+1}. Iterations continue until the time limit is reached, and the optimized solutions can be finally obtained.

In general, the neighborhood search policy and branching policy are trained sequentially, where the training details can refer to Sec. 3.3 and Sec. 3.4, respectively. They optimize the current solution at different view and may remedy the local search drawbacks of the learned LNS policy in some cases.

3.2 The Binarized Tightening Scheme

Variables in general MIP instances can be divided into three categories: binary, general integer (with arbitrary large value), and continuous variables. Previous studies mainly focused on the binary variables ($0 / 1$). Limited values greatly simplify the optimization, making it easier to deal with compared to the general integer variables, and some learning frameworks have proved their effectiveness (Wu
et al., 2021a; Song et al., 2020). In this paper, we concentrated on more general MIP problems, especially for general integer variables.

An intuitive method is to directly migrate some efficient binary LNS approaches, e.g., Wu et al. (2021a), to general integers. In this way, different types of variables are equally treated, and at each step, we fix some of the variables (no matter what type the variable belongs to), and solve the sub-MIP with a baseline solver e.g. SCIP (Gamrath et al., 2020) or Gurobi (G., 2020). However, empirical results revealed that the simplified generalized LNS approach is much slower and significantly underperforms the MIP solvers, e.g., Gurobi.
To illustrate the underlying reason, we take a simple MIP instance as example:

$$
\begin{array}{ll}
\min & x \\
\text { s.t. } & x+y=z \quad x, y \in\{0,1\}, z \in Z^{+} \tag{3}
\end{array}
$$

Assume that the initial feasible solution is $(x, y, z)=(1,1,2)$. At a certain iteration when the general integer variable z is fixed, the remaining sub-MIP problem cannot be optimized as z has a strong correlation with all the other variables, making it difficult to deal with by simply fixing.
We propose the so-called "Binarized Tightening" scheme for MIP. The idea is that we tend to confine the variables within a narrow range around the current solution rather than directly fixing them, to balance exploration and exploitation. It shares similar insights with local search, which relies on the current best solution to guide the search, thus avoiding blind search throughout the entire solution space. Specifically, we represent each general integer variable with $d=\left\lceil\log _{2}(u b-l b)\right\rceil$ binary variables at decreasing significance, where $u b$ and $l b$ are original variable upper and lower bounds, respectively. The subsequent optimization is applied to the substitute binary variables, indicating current solution reliable or not at corresponding significance. In this way, we transform the LNS for the original variable to multiple decisions on substitution variables. Note that the unbounded variables where $u b$ or $l b$ does not exist, will not be encoded and will remain a single variable.

The action for each substitute variable can be obtained from the LNS policy (see Sec. 3.3), where 0 means the variable indicates reliable at current significance, and 1 means it still needs exploration. We design a bound-tightening scheme to fully use the bit-wise action in Alg. 1. Specifically, let $a_{i, j}^{t}$ represent the action for the $j^{t h}$ substitute variable of variable i at step t. Actions $a_{i, j}^{t}$ for all j are checked, and the upper and lower bounds will be updated and tightened around the current solution every time when $a_{i, j}^{t}=0$, as in Line 11-12. Therefore, more fixed substitute variables can contribute to tighter bounds. In our embodiment, variables that sit far from both bounds can have a significantly wider exploration scope than close-to-bound variables, as they showed no explicit "preference" on either bound direction, which is significantly different from Nair et al. (2020b) (see Appendix A. 1 for detailed discussion). Tightening on either bound when the current solution sits precisely at the midpoint of variable bounds, may contribute to performance degradation derived from reduced exploration, which conceptually drives us to design the bound tightening scheme, tightening the bounds on the far side iteratively..
In addition, as for unbounded variables, our meticulous analysis on MIPLIB benchmark set (Gleixner et al., 2021) revealed that all unbounded variables within the instances are characterized by unbounded in only one direction, which means that either $l b$ or $u b$ will exist for all general integer variables. In this respect, we define a virtual upper (lower) bound when $a_{i}^{t}=0$ as in Line 3 and 5, which share similar insights with regular variables to put the current solution at precisely the midpoint of the updated bounds.
Connection with bound tightening techniques in constraint programming. Bound tightening techniques have been commonly applied in some constraint integer programming problems, including Constraint Propagation (Achterberg, 2007; Savelsbergh, 1994; Moskewicz et al., 2001), Optimization-Based Bound Tightening (OBBT) (Gleixner et al., 2017), Feasibility-Based Bound Tightening (FBBT) (Belotti et al., 2012), and so on. They share similar insights with our approach in terms of reducing the solving complexity of the re-defined problem. These techniques aim to maintain optimality, making them sometimes computationally expensive. However, our iterative refinement procedure for bound tightening differs from them. The iterative optimization scheme focuses on searching for better feasible solutions within the neighborhood of the current solution, guided by the learned policy. Consequently, our approach allows for a significant reduction of the complexity of the re-defined problem, leading to improved solutions efficiently.

3.3 GRAPH-BASED LNS POLICY PARAMETERIZATION

Bipartite graph is recently popular utilized in Gasse et al. (2019), Nair et al. (2020b), and Wu et al. (2021a) to represent the MIP instance states. However, the objective is not explicitly considered, which may contribute to performance degradation in some cases, e.g., when all discrete variables do not exist in the objectives (Yoon, 2022). To capture the correlations between objectives with variables and constraints reasonably, we propose to describe the input instance as a tripartite graph $\mathcal{G}=(\mathcal{V}, \mathcal{C}, \mathcal{O}, \mathcal{E})$, where \mathcal{V}, \mathcal{C}, and \mathcal{O} denote the variable, constraint, and objective nodes, and \mathcal{E} denotes the edges. The features of nodes and edges can refer to Appendix A.3, where the new objective node representations are defined as the average states of corresponding variables.

We parameterize the policy $\pi_{\theta}\left(a_{t} \mid s_{t}\right)$ by an attention-based Graph Convolution Network (GCN). Slightly different from graph attention networks (Veličković et al., 2018), we remove the softmax normalization to fully reserve the absolute importance between neighborhood nodes and edges, which may help capture the contributions for each node to the final objectives (see Appendix A. 7 for detailed comparison). The message passing $\mathcal{C} \rightarrow \mathcal{V}$ is as follows (likewise for others):

$$
\begin{equation*}
\mathbf{h}_{i}^{t+1}=f_{\mathcal{C} \mathcal{V}}\left(\operatorname{CONCAT}\left(\mathbf{h}_{i}^{t}, \frac{\sum_{j \in \mathcal{C} \cap N_{i}} w_{i j}^{t}\left(\mathbf{h}_{j}^{t}+\mathbf{h}_{e_{i j}}^{t}\right)}{\left|\mathcal{C} \cap N_{i}\right|}\right)\right) \tag{4}
\end{equation*}
$$

where \mathbf{h}_{i}^{t} and $\mathbf{h}_{e_{i j}}^{t}$ denote the features of node i and edge (i, j) at step $t ; f_{\mathcal{C} \mathcal{V}}$ is a 2-layer perceptron with relu activation that maps the current states to the next iteration $\mathbf{h}_{i}^{t+1} ; N_{i}$ denotes the neighborhood nodes of i and $\left|\mathcal{C} \cap N_{i}\right|$ denotes the counts of neighborhood constraint nodes for node i, utilized to normalize the weighted sum neighboring features; $w_{i j}^{t}$ denotes the weighted coefficient between node i and node j at step t, measuring their correlations as follows, where $\mathbf{W}_{\mathcal{C}}$ denotes the weight matrix between constraint and variable nodes.

$$
\begin{equation*}
w_{i j}^{t}=\sigma_{s}\left(\mathbf{W}_{\mathcal{C V}} \cdot \operatorname{CONCAT}\left(\mathbf{h}_{i}^{t}, \mathbf{h}_{e_{i j}}^{t}, \mathbf{h}_{j}^{t}\right)\right) \tag{5}
\end{equation*}
$$

At each graph attention layer, the message passing between different types of nodes are: $\mathcal{V} \rightarrow \mathcal{O}, \mathcal{O} \rightarrow \mathcal{C}, \mathcal{V} \rightarrow \mathcal{C}, \mathcal{C} \rightarrow \mathcal{O}$, $\mathcal{O} \rightarrow \mathcal{V}, \mathcal{C} \rightarrow \mathcal{V}$, which are calculated as Eq. 4 sequentially. In this way, after K iterations (throughout this paper $K=2$), the features for both the nodes and edges are updated. We finally process the variable nodes by a multi-layer perceptron and the output value can be regarded as the destroy probability for each variable at this step, serving as the neighborhood search policy in Fig. 1. The neighborhood search policy was trained with Q-actor-critic algorithm by RL, following the same protocol with Wu et al. (2021a), while with the following major differences:
States: We adopt an attentional tripartite graph to capture correlations among variables, constraints, and objectives. Details of the features are gathered in Table 7.

Actions: For the general variable x_{i} represented with d substitutes, the LNS decision at step t will contain d binary actions $a_{i, j}^{t}$, indicating the current solution reliable or not at current significance (see Alg. 1).

Transition and rewards: We follow the same protocol as in Wu et al. (2021a), where the next state s_{t+1} is obtained by the baseline solver, and the reward is defined as objective value improvements.

```
Algorithm 2 Branch and search at the \(t^{t h}\) step
```

Algorithm 2 Branch and search at the $t^{t h}$ step
Input: Number of variables n;
Input: Number of variables n;
LNS decisions $N^{t}=\left\{n_{i}^{t} \mid i=1,2, \ldots, n\right\}$;
LNS decisions $N^{t}=\left\{n_{i}^{t} \mid i=1,2, \ldots, n\right\}$;
branching decisions $B^{t}=\left\{b_{i}^{t} \mid i=1,2, \ldots, n\right\}$;
branching decisions $B^{t}=\left\{b_{i}^{t} \mid i=1,2, \ldots, n\right\}$;
variable set $\mathbf{x}=\left\{x_{i} \mid i=1,2, \ldots, n\right\}$;
variable set $\mathbf{x}=\left\{x_{i} \mid i=1,2, \ldots, n\right\}$;
best solution at the $t^{t h}$ step $\mathbf{x}^{t}=\left\{x_{i}^{t} \mid i=1,2, \ldots, n\right\}$;
best solution at the $t^{t h}$ step $\mathbf{x}^{t}=\left\{x_{i}^{t} \mid i=1,2, \ldots, n\right\}$;
The ratio for branching variables r;
The ratio for branching variables r;
Output: \mathbf{x}^{t+1};
Output: \mathbf{x}^{t+1};
Let $D=\emptyset$;
Let $D=\emptyset$;
while $i \leq n$ do
while $i \leq n$ do
if x_{i} is general integer variable then
if x_{i} is general integer variable then
Tighten the bound as in Alg. 1 using $n_{i, j}^{t}$
Tighten the bound as in Alg. 1 using $n_{i, j}^{t}$
(with d separate decisions);
(with d separate decisions);
else
else
if $n_{i}^{t}=0$ then
if $n_{i}^{t}=0$ then
Fix the value $x_{i}^{t+1}=x_{i}^{t}$;
Fix the value $x_{i}^{t+1}=x_{i}^{t}$;
else
else
if $b_{i}^{t}=1$ and x_{i} is binary variable then
if $b_{i}^{t}=1$ and x_{i} is binary variable then
$D=D \cup\{i\} ;$
$D=D \cup\{i\} ;$
end if
end if
end if
end if
end if
end if
end while
end while
add constraint $\sum_{i \in D}\left|x_{i}^{t+1}-x_{i}^{t}\right| \leq r n$ to sub-MIP;
add constraint $\sum_{i \in D}\left|x_{i}^{t+1}-x_{i}^{t}\right| \leq r n$ to sub-MIP;
Optimize \mathbf{x}^{t+1} with the solver;

```
    Optimize \(\mathbf{x}^{t+1}\) with the solver;
```

improvements.

3.4 Branching Policy

As discussed above, previous single-policy approaches were easy to be trapped in local optimum at an early stage in some complicated tasks. To remedy this issue, an intuition is to select and optimize those wrongly-fixed backdoor variables by LNS policy at each step. With this insight, we proposed to learn an extra branching network with imitation learning on top of LNS to filter out those variables at each step. Note that it was only applied to binary variables which are more likely to be backdoors that fixed earlier leading to local optima.
The most critical issue for the branching policy learning is the collection of branching variable labels. In other words, we need to figure out how to identify the potentially wrongly-fixed variables at each step. We proposed two different variants, which deals with the issue in global and local view as in Fig. 2:

Global branching (BTBS-LNS-G): It gathers labels from the fixed variables by LNS at each step and contrast them with the global optimal solution. Variables that exhibit differing values between these solutions are indicative of potentially misclassified variables within the current LNS decisions from a global perspective. Since the global optimal solution may be too difficult to acquire in a reasonable time for hard instances, it was replaced by the best-known solution in our embodiment.

Local branching (BTBS-LNS-L): Different from the global view contrast, it gathers labels by incorporating the following local branching constraints (Liu et al., 2022) at each step:

$$
\begin{equation*}
\sum_{i \in \mathcal{B} \cap \mathcal{F}}\left|x_{i}^{t+1}-x_{i}^{t}\right| \leq k \tag{6}
\end{equation*}
$$

Figure 2: Global branching vs Local branching.
where \mathcal{F} denotes the currently fixed variables set by LNS. With this extra constraint, the re-defined sub-MIP problem can be solved by the baseline solver, and up to k changed fixed variables will be selected at a local view as the branching variable labels at current step. The selected variables can be regarded as locally wrongly-fixed variables by LNS.

With the collected labels, the branching network can be offline trained. The inputs are tripartite graph-based features (see Table. $=7$ in Appendix A. 3 for detail), where we additionally append the LNS decisions made by the learned LNS policy as variable features, as we only focused on the fixed variables for extra branching. Note that the input states are collected by resolving the training instances, along with the learned LNS policy. And the labels are also gathered within the resolving at each step. Then the graph-based features are fed into a similar graph attention network as described in Sec. 3.3 to update the node/edge representations. We finally process the variable nodes by a multi-layer perceptron (MLP) and the output value can be regarded as the branching probability for each variable at this step. Cross-entropy loss was utilized to train the branching network to bring the outputs closer to the collected labels, with the pipeline as Alg. 3 in Appendix A.2.

Note that except for the different label collection scheme, BTBS-LNS-L and BTBS-LNS-G remain all the same. In general, the learned branching policy takes effect on top of LNS, enhancing exploration and optimizing its wrongly-fixed backdoor variables at each step. The pipeline for the hybrid framework is given in Alg. 2, where we select $r=10 \%$ of the variables with maximum branching probability to branch on at each step in the inference phase. In general, the hybrid branch and search policy work together to formulate the sub-MIP at each step (see Line 15). As can be seen from the experimental results in Table 1 to Table 3, hybrid branch and search clearly outperforms pure LNS policy, even better than the commercial solver Gurobi (G., 2020) in many cases.

4 EXPERIMENTS

4.1 Settings And Protocols

Peer methods. We compare with the following baselines, and more details are illustrated in Appendix A.3. All methods are solved in 200s time limit by default.

1) SCIP (v7.0.3), Gurobi (v9.5.0): state-of-the-art open source and commercial solvers, and were fine-tuned with the aggressive mode to focus on improving the objective value.
2) U-LNS, R-LNS, DINS, GINS, RINS and RENS: heuristic LNS methods (Achterberg, 2007).

Table 1: Comparison with baselines for binary Integer Programming (IP) with four hard problems: SC, MIS, CA, MC. We also let SCIP run for a longer time (500s with SCIP (500s) and 1000s with SCIP (1000s), respectively). So for Gurobi and our BTBS-LNS in other tables.

Methods	Set Coverin (SC)			Maximal Independent Set (MIS)			Combinatorial Auction (CA)			Maximum Cut (MC)		
	Obj	Gap\%	PI	Obj	Gap\%	PI	Obj	Gap\%	$\mathrm{PI}\left(\times 10^{3}\right)$	Obj	Gap\%	PI
SCIP	563.92	3.23	20225	-684.52	0.25	312.25	-109960	4.71	3312.4	-852.64	8.01	5193
SCIP (500s)	553.11	1.40	1	-684.98	0.18	1	-111511	3.36	1	-861.55	7.11	,
SCIP (1000s)	551.33	1.06	,	-685.66	0.09	1	-112627	2.40	1	-863.99	6.87	1
U-LNS	567.70	3.84	22459	-680.44	1.50	1145.4	-104526	9.42	4003.0	-865.32	6.72	11565
R-LNS	569.40	4.17	23015	-682.54	1.29	693.45	-107407	6.92	3631.2	-868.95	6.33	10923
FT-LNS	565.28	3.48	20988	-680.84	1.42	1103.7	-104048	9.83	4123.6	-869.29	6.30	10554
DINS	567.88	3.97	22735	-682.71	1.24	657.5	-108948	4.48	3337.4	-872.33	5.75	10006
GINS	567.28	3.81	22197	-683.24	0.75	683.6	-107548	6.90	3599.8	-874.62	5.41	9765.0
RINS	566.52	3.63	21835	-681.75	1.32	816.5	-106548	7.33	3843.4	-870.17	6.04	10277
RENS	561.48	2.35	19112	-683.12	0.79	792.36	-109025	4.40	3125.2	-875.44	5.29	9116
RL-LNS	552.38	1.29	17623	-685.74	0.07	182.63	-112666	2.36	2271.6	-888.25	4.25	6538
Branching	557.41	1.72	18007	-685.70	0.07	183.44	-111835	3.09	2492.7	-891.58	3.99	6104
LNS-TG	548.65	0.66	16828	-685.69	0.08	182.24	-112711	2.32	2247.8	-898.28	3.05	4782.6
LNS-Branch	551.55	1.11	17234	-685.65	0.09	182.19	-112665	2.36	2275.3	-891.59	3.73	5840.0
LNS-ATT	548.45	0.65	16714	-685.75	0.07	182.10	-112820	2.23	2231.5	-902.11	2.99	3975.1
BTBS-LNS-L	547.88	0.47	16234	-685.86	0.05	181.47	-112864	2.18	2196.8	-909.17	1.99	2518
BTBS-LNS-G	547.48	0.35	16205	-685.92	0.05	178.35	-113742	1.43	1998.9	-922.18	0.59	785
Gurobi	549.44	0.75	16796	-686.24	0	173.15	-113731	1.44	2075.4	-921.90	0.62	842

Table 2: Generalization to large-scale binary integer programming (IP) instances using the trained polcies from small problems in Sec. 4.2.

Methods	SC2			MIS2			CA2			MC2		
	Obj	Gap\%	PI	Obj	Gap\%	PI	Obj	Gap\%	$\mathrm{PI}\left(\times 10^{3}\right)$	Obj	Gap\%	PI
SCIP	306.06	4.51	14953	-1325.80	3.45	9542.1	-185914	17.87	12312	-1702	8.38	30039
SCIP (500s)	300.25	2.74	,	-1361.33	0.86	1	-207856	8.18	1	-1704	8.26	1
SCIP (1000s)	296.18	1.37	1	-1366.06	0.52	1	-214754	5.13	1	-1707	8.13	1
U-LNS	304.28	3.96	14268	-1359.86	0.97	2778.5	-207054	8.53	8032.5	-1727	7.03	24862
R-LNS	304.24	3.94	14392	-1363.30	0.71	2079.3	-212024	6.34	7050.0	-1737	6.52	22450
FT-LNS	306.10	4.49	14885	-1359.90	0.96	2765.6	-205812	9.08	8324.2	-1738	6.44	22347
DINS	301.55	2.99	13916	-1364.22	0.65	1935.4	-212523	6.11	6848.5	-1727	7.02	24815
GINS	302.33	3.14	14008	-1363.17	0.69	2011.5	-210539	6.74	7433.7	-1737	6.52	22477
RINS	301.29	2.95	13793	-1365.52	0.58	1844.7	-211367	6.55	7129.3	-1732	6.75	23619
RENS	300.42	2.78	13465	-1365.71	0.55	1782.6	-212789	6.02	6735.2	-1742	6.23	20959
RL-LNS	297.85	1.66	13007	-1367.12	0.51	1524.7	-216255	4.13	5933.4	-1803	3.20	8449.6
Branching	296.88	1.53	12916	-1365.91	0.55	1769.4	-215379	4.52	6142.7	-1805	3.19	7857.3
BTBS-LNS-L	293.56	0.51	12431	-1372.66	0.04	543.69	-222590	1.67	4800.3	-1831	1.45	3385.9
BTBS-LNS-G	294.05	0.68	12498	-1372.89	0.02	515.28	-222075	1.89	5012.6	-1831	1.44	3397.5
Gurobi	294.12	0.71	12528	-1373.14	0.01	495.88	-218245	3.60	5723.5	-1839	1.01	2195.6
Methods		SC4			MIS4			CA4			MC4	
Method	Obj	Gap\%	PI	Obj	Gap\%	PI	Obj	Gap\%	$\mathrm{PI}\left(\times 10^{3}\right)$	Obj	Gap\%	PI
SCIP	178.1	5.41	15524	-2654.38	3.45	22745	-371580	16.61	25275	-3397	8.71	78510
SCIP (500s)	175.8	4.21	1	-2654.45	3.44	1	-371580	16.61	1	-3398	8.69	/
SCIP (1000s)	173.8	3.05	1	-2665.90	3.03	1	-371580	16.61	1	-3406	8.46	1
U-LNS	174.4	3.42	14814	-2710.42	1.41	9759.0	-412510	7.42	16470	-3446	7.39	68245
R-LNS	174.0	3.26	14747	-2722.10	0.98	7745.5	-418014	6.19	15875	-3461	6.98	64712
FT-LNS	175.0	3.75	14882	-2713.50	1.30	9150.3	-408611	8.30	17328	-3459	7.02	65329
DINS	173.9	3.23	14725	-2720.33	1.03	7982.4	-420542	5.02	14789	-3461	6.97	64593
GINS	174.1	3.28	14782	-2725.41	0.85	7244.7	-418751	5.99	15538	-3459	7.04	65778
RINS	173.5	2.96	14599	-2718.72	1.09	8218.0	-419592	5.78	15309	-3463	6.89	63575
RENS	173.4	2.95	14573	-2727.11	0.82	6972.1	-420311	5.17	14916	-3464	6.85	62998
RL-LNS	175.2	3.73	14866	-2735.41	0.57	5365.1	-427433	3.52	13572	-3587	3.76	39645
Branching	174.5	3.39	14689	-2732.82	0.64	5744.8	-428325	3.37	13349	-3569	4.21	42718
BTBS-LNS-L	169.8	0.84	13716	-2747.04	0.07	2140.4	-439431	1.39	11128	-3664	1.52	21195
BTBS-LNS-G	170.5	1.20	13789	-2745.15	0.11	2636.9	-437522	1.46	11705	-3666	1.51	20984
Gurobi	170.5	1.22	13795	-2748.02	0.04	2215.7	-389396	12.61	21959	-3521	5.38	51298

3) FT-LNS (Song et al., 2020), RL-LNS (Wu et al., 2021a) and Branching (Sonnerat et al., 2021): some learning-based LNS policies.
4) LNS-TG, LNS-Branch, LNS-IBT, LNS-IT, LNS-ATT, BTBS-LNS-F: Degraded versions of BTBS-LNS to test the effectiveness of each component. Details can refer to the Appendix. A.3.
Instances. It covers both binary and MIP problems. We follow Wu et al. (2021a) to test our approach on four NP-hard binary Integer Programming Problems: Set Covering (SC), Maximal Independent Set (MIS), Combinatorial Auction (CA), and Maximum Cut (MC). We generate 200, 20, and 100 instances as training, validation, and testing sets, respectively. To evaluate the generalization ability, we also generate scale-transfer test instances, such as SC2, and MIS4 in Table 2. The suffix number refers to instance scales, for which the details are gathered in Table. 6 in Appendix A.3.
We also test our method on two NP-hard MIP datasets provided in Machine Learning for Combinatorial Optimization (ML4CO) competition ${ }^{2}$: Balanced Item Placement (Item) and Anonymous MIPLIB (AMIPLIB), on their official testing instances. Balanced Item Placement contained 1050

[^1]binary variables, 33 continuous variables, and 195 constraints per instance. The anonymous MIPLIB consists of a curated set of instances from MIPLIB, which is a long-standing standard benchmark for MIP solvers, with diverse problem distributions, in which general integer variables are included. We also show empirical results on the whole MIPLIB benchmark set in Appendix A. 5 and per-instance comparison in Appendix B, where our BTBS-LNS even surpasses Gurobi on average.
Hyperparameters. We run experiments on $\operatorname{Intel}(\mathrm{R}) \operatorname{Xeon}(\mathrm{R}) \mathrm{E} 5-26782.50 \mathrm{GHz}$ CPU. Performance comparison on CPU vs GPU version of our approach are discussed in Appendix A.9. Note that all the approaches were evaluated with three different seeds, and the average performance was reported (see detail stability analysis in Appendix A.8). We use the open source SCIP^{3} (v7.0.3) as the baseline solver by default (recall the blue box in Fig. 1). Gurobi version experiments are gathered in Appendix. A.6. We train 20 epochs for each instance, with 50 iterations per epoch and 2 s re-optimization time limit per iteration. LNS and branching are trained sequentially, with RL (see see Sec. 3.3) and imitation learning (see Sec. 3.4), respectively. The embedding for nodes and edges were both 64-dimensional vectors. Specifically for branching, we set the max branching variables $k=50$ in Eq. 6 for local branching variant. In the inference phase, the branching variable ratio r in Alg. 2 are empirically set to 10% for both branching variants. Note that BTBS-LNS by default denotes the local branching variant BTBS-LNS-L throughout this paper.

Evaluation metric. As the problems are too large to be solved in a reasonable time, we calculate the primal gap (Nair et al., 2020b) to measure the gap between the current solution \mathbf{x} and the best-known solution \mathbf{x}^{*} found by all methods, within a fixed time bound T :

$$
\begin{equation*}
g a p=\frac{\left|\mathbf{c}^{\top} \mathbf{x}-\mathbf{c}^{\top} \mathbf{x}^{*}\right|}{\max \left(\left|\mathbf{c}^{\top} \mathbf{x}\right|,\left|\mathbf{c}^{\top} \mathbf{x}^{*}\right|\right)} \tag{7}
\end{equation*}
$$

We also calculate Primal Integral (PI) to evaluate the anytime performance within the time limit:

$$
\begin{equation*}
P I=\int_{t=0}^{T} \mathbf{c}^{\top} \mathbf{x}_{t} d t-T \mathbf{c}^{\top} \mathbf{x}^{*} \tag{8}
\end{equation*}
$$

where \mathbf{x}_{t} denotes the best feasible solution within time t.

4.2 Overall Performance Evaluation

Table 1 compares the results on integer programming. As can be seen, compared with SCIP and all competing LNS baselines, both BTBS-LNS-G and BTBS-LNS-L achieves consistently superior performance across all problems. LNS-TG, LNS-Branch, and LNS-ATT are degraded versions of BTBS-LNS and they all perform slightly worse, revealing the effectiveness of attention-based tripartite graph and the extra branching policy. And comparing the two variants, BTBS-LNS-G delivers consistently superior performance over BTBS-LNS-L, and it even surpasses the leading commercial solver on SC, CA and MC. Note that detailed anytime performance on these instances are shown in Fig. 5 to Fig. 8 in Appendix A.4, further revealing the effectiveness of BTBS-LNS.

We also test our method on two NP-hard MIP problems, and the results are gathered in Table 3. Note that the anytime primal gap comparison are also shown in Fig. 3. Our method consistently outperforms SCIP and the competing LNS baselines, and is slightly worse than Gurobi, capable of finding even better solutions for around 27% test instances on both Item and AMIPLIB.

Specifically for the AMIPLIB problem, it contains a curated set of instances from MIPLIB. We split the instances into train, validation, and test sets by $70 \%, 15 \%$, and 15% with cross-validation to test full performance. Policies learned from diverse training instances are directly applied to the test set. Note that we increase the solving and re-optimization time limit at each step to 1800s and 60 s for both the training and testing phase, as they are too large to be solved. Different from Wu et al. (2021a), we

Table 3: Performance on MIP instances.				
Methods	Obj	Item Gap $\%$	PI	AMIPLIB Gap\%
SCIP	23.33	50.73	4152.4	13.72
SCIP (500s)	19.83	39.41	$/$	$/$
SCIP (1000s)	17.02	31.05	$/$	$/$
U-LNS	20.39	44.29	3685.6	15.73
R-LNS	20.04	43.64	3485.0	14.96
FT-LNS	20.04	43.58	3498.5	12.55
DINS	18.08	37.23	3075.9	13.10
GINS	19.78	42.11	3514.7	13.64
RINS	20.53	44.88	3662.5	13.89
RENS	17.51	34.18	2925.0	11.75
Branching	18.84	40.12	3237.6	12.95
LNS-TG	18.05	37.85	3090.5	6.45
LNS-Branch	20.12	43.90	3537.0	9.32
LNS-ATT	15.54	26.91	2512.8	5.45
LNS-IBT	$/$	$/$	$/$	7.63
LNS-IT	$/$	$/$	$/$	7.65
BTBS-LNS-L	13.82	16.82	2030.3	4.19
BTBS-LNS-G	13.45	15.78	1912.5	4.35
BTBS-LNS-F	$/$	$/$	$/$	7.01
Gurobi	$\mathbf{1 2 . 6 7}$	$\mathbf{6 . 7 3}$	$\mathbf{1 8 9 5 . 6}$	$\mathbf{0 . 8 1}$

[^2]

Figure 3: Performance on Balanced Item Placement (Left) \& AMIPLIB (Right).

Figure 4: Impact of different branching ratios (Left). Selected \& Optimized variables by LNS policy (Middle) \& Branching Policy (Right) on Balanced Item Placement instances. selected means variables filtered by the learned branch \& search policy; optimized denotes the updated variables.
consistently utilize open-source SCIP as the baseline solver. As seen from Table 3 and Fig. 3, our method significantly outperforms SCIP and LNS baselines, and even deliver slightly better performance than Gurobi at an early stage. LNS-IBT, LNS-IT and BTBS-LNS-F achieve significantly inferior performance than our BTBS-LNS, illustrating the effect of "Binarized Tightening" technique and its superior performance over Nair et al. (2020b).

4.3 Problem-scale Generalization Ability Study

We test the generalization ability in line with Wu et al. (2021a) with 200s time limit. We directly use the trained policies on small-scale problems in Sec. 4.2. The results are gathered in Table 2.

As can be seen, the two variants show similar performance on the generalized instances. And compared with SCIP and all the competing LNS baselines, our approach still delivers significantly superior performance, showing a better generalization ability. As the problem sizes become larger, it can produce even better results than Gurobi on SC2, SC4, CA2, CA4, and MC4, and only slightly inferior on the remaining 3 groups. It suggests that our policies can be sometimes more efficient for larger instances than the leading commercial solver. Notably, there is a large gap between BTBSLNS and Gurobi for Combinatorial Auction (CA), especially on CA4.

4.4 Branching Policy Study by Variable Ratios

To enhance exploration, an extra branching policy was trained and utilized to help the pure LNS escape local optimum. Fig. 4 (Left) depicts the impact of branching variables ratios r (see Alg. 2).
When the ratio is small (<0.1), a larger branching size leads to a better performance. In fact, the leverage of branching can be regarded as a correction for LNS, facilitating it to escape local optimum. Fig. 4 (Right) depicts the selected and updated variable ratios. Branch and search policy adaptively select different variable subsets for re-optimization. However, when the branching size becoming extremely large, the performance significantly degrades limited by the solving ability.

5 CONCLUSION AND OUTLOOK

We have proposed a binarized tightening branch and search approach to learn LNS policies. It was designed to efficiently deal with general MIP problems, and delivers superior performance over numerous competing baselines, including MIP solvers, learning and heuristic based LNS approaches, on ILP, MIP datasets and even heterogeneous instances from MIPLIB. Sufficient ablation studies demonstrate the effectiveness of each component, including the tripartite graph, binarize and tighten scheme, and the extra branching at each step.

However, the proposed approach is only a primal heuristic that cannot prove optimality, which are also common limitations of LNS-based approaches. Implementing them into MIP solvers as primal heuristics may be a possible solution. However, interaction with current existed primal heuristics, and the rule to take effect, are key challenges in practical implementation. In general, applications of the learning-based approach in real-world scenarios will be our future directions.

References

T. Achterberg. Constraint integer programming. Springer Berlin Heidelberg, 2007.
D. S. Altner, R. K. Ahuja, Özlem Ergun, and J. B. Orlin. Very large-scale neighborhood search. International Transactions in Operational Research, 7(4):301-317, 2000.

Pietro Belotti, Sonia Cafieri, Jon Lee, and Leo Liberti. On feasibility based bounds tightening. 2012.
Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a methodological tour d'horizon. European Journal of Operational Research, 290(2): 405-421, 2021.

Timo Berthold. Rens: the optimal rounding. Mathematical Programming Computation, 6:33-54, 2014.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. Advances in Neural Information Processing Systems, 32, 2019.

E Danna, E Rothberg, and Pape C Le. Exploring relaxation induced neighborhoods to improve mip solutions. Mathematical Programming, (1):102, 2005.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Accelerating primal solution findings for mixed integer programs based on solution prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1452-1459, 2020.

Merrill M Flood. The traveling-salesman problem. Operations research, 4(1):61-75, 1956.
Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7474-7482, 2021.

Optimization L L C G. Gurobi optimizer reference manual. 2020.
Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The scip optimization suite 7.0. 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial optimization with graph convolutional neural networks. Advances in Neural Information Processing Systems, 32, 2019.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.
Shubhashis Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer Programming and Combinatorial Optimization, pp. 310-323. Springer, 2007.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: datadriven compilation of the 6th mixed-integer programming library. Mathematical Programming Computation, 13(3):443-490, 2021.

Ambros M Gleixner, Timo Berthold, Benjamin Müller, and Stefan Weltge. Three enhancements for optimization-based bound tightening. Journal of Global Optimization, 67:731-757, 2017.
D. Godard, P. Laborie, and W. Nuijten. Randomized large neighborhood search for cumulative scheduling. In Proceedings of the Fifteenth International Conference on Automated Planning and Scheduling (ICAPS 2005), June 5-10 2005, Monterey, California, USA, 2005.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio. Hybrid models for learning to branch. Advances in neural information processing systems, 33: 18087-18097, 2020.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms. Advances in neural information processing systems, 27, 2014.

Gregor Hendel. Adaptive large neighborhood search for mixed integer programming. Mathematical Programming Computation, 14(2):185-221, 2022.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Local branching relaxation heuristics for integer linear programs. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 96-113. Springer Nature Switzerland, 2023a. doi: 10.1007/978-3-031-33271-5_7. URL https://doi.org/10.1007\% 2F978-3-031-33271-5_7.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large neighborhoods for integer linear programs with contrastive learning. In Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 13869-13890. PMLR, 23-29 Jul 2023b. URL https: / /proceedings.mlr. press/v202/huang23g.html.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Elias B Khalil, Pashootan Vaezipoor, and Bistra Dilkina. Finding backdoors to integer programs: a monte carlo tree search framework. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3786-3795, 2022.
M. Z. Lee. Constrained weapon-target assignment: Enhanced very large scale neighborhood search algorithm. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(1):198-204, 2009.

Longkang Li, Hui-Ling Zhen, Mingxuan Yuan, Jiawen Lu, Jia Zeng, Jun Wang, Dirk Schnieders, et al. Bilevel learning model towards industrial scheduling. arXiv preprint arXiv:2008.04130, 2020.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances in Neural Information Processing Systems, 34:26198-26211, 2021.

Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3796-3803, 2022.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing problems. In International conference on learning representations, 2019a.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing problems. In International conference on learning representations, 2019 b.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936, 2019.

Stephen J Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion Gottwald, Gregor Hendel, Thorsten Koch, Marco Lübbecke, Matthias Miltenberger, et al. The scip optimization suite 4.0. 2017.

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual Design Automation Conference, pp. 530-535, 2001.

Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020a.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan O'Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020b.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity. Courier Corporation, 1998.

Vangelis Th Paschos. Applications of combinatorial optimization, volume 3. John Wiley \& Sons, 2014.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to cut by looking ahead: Cutting plane selection via imitation learning. In International conference on machine learning, pp. 17584-17600. PMLR, 2022a.

Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris J. Maddison. Learning to cut by looking ahead: Cutting plane selection via imitation learning. In ICML, 2022b.

Martin WP Savelsbergh. Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal on Computing, 6(4):445-454, 1994.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework for solving integer linear programs. Advances in Neural Information Processing Systems, 33: 20012-20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201, 2021.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming: Learning to cut. In International conference on machine learning, pp. 9367-9376. PMLR, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In International Conference on Learning Representations, 2018.

Ryan Williams, Carla P Gomes, and Bart Selman. Backdoors to typical case complexity. In IJCAI, volume 3, pp. 1173-1178, 2003.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy for integer programming. Advances in Neural Information Processing Systems, 34:30075-30087, 2021a.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics for solving routing problems.. IEEE transactions on neural networks and learning systems, 2021b.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12042-12049, 2021.

Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach to traveling salesman problem. IEEE Access, 8:108418-108428, 2020.
M. Yagiura, M. Kishida, and T. Ibaraki. A 3-flip neighborhood local search for the set covering problem. European Journal of Operational Research, 172(2):472-499, 2006.
J. Yan, S. Yang, and E. Hancock. Learning graph matching and related combinatorial optimization problems. In IJCAI, 2020.

Taehyun Yoon. Confidence threshold neural diving. arXiv preprint arXiv:2202.07506, 2022.
Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 3931-3939, 2021.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch for job shop scheduling via deep reinforcement learning. Advances in Neural Information Processing Systems, 33:1621-1632, 2020.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan. A survey for solving mixed integer programming via machine learning. Neurocomputing, 519: 205-217, 2023.

A Appendix

A. 1 Further Discussion on Related Work

Table 4: Comparison of our method to existing works.

References	Applicability	Approach	Addressing Local Optima	Training
Huang et al. (2023a)	Binary	Branching Relaxation	Adaptive Neighborhood Size	$/$
Huang et al. (2023b)	Binary	LNS	Adaptive Neighborhood Size	Contrastive Learning
Liu et al. (2022)	Binary	Local Branching	RL-based Branching Size	Regression + RL
Nair et al. (2020a)	Binary	LNS	$/$	RL
Ding et al. (2020)	Binary	Solution Prediction	$/$	Imitation
Song et al. (2020)	Binary	LNS	$/$	Imitation \& RL
Wu et al. (2021a)	Binary	LNS	$/$	RL
Hendel (2022)	General MIP	ALNS (Heuristic in B\&B)	Adaptive Control for Mutiple Heuristics	Multi-armed Bandit
Paulus et al. (2022a)	General MIP	Learn to cut	$/$	Imitation
Sonnerat et al. (2021)	General MIP	LNS	Adaptive Neighborhood Size	Imitation
Nair et al. (2020b)	General MIP	Diving	$/$	Imitation (Generative Model)
BTBS-LNS (Ours)	General MIP	Branching on top of LNS	Global (Local) Branching	RL (LNS) + Imitation (Branching)

Table 4 compares our approach with some existing works in detail. The core contribution of our BTBS-LNS is the general applicability and the addressing for local optima. As can be seen, most LNS-based papers (Liu et al., 2022; Nair et al., 2020a; Ding et al., 2020; Song et al., 2020; Wu et al., 2021a) solely deal with the binary programming problems due to its simpleness. Recently, some studies try to address the general MIP problems (Hendel, 2022; Sonnerat et al., 2021; Paulus et al., 2022a), in which Nair et al. (2020b) proposed a similar "bound tightening" technique. They differ with our approach in the following aspects. On one hand, the binary decision for each encoded variable was only applied for bound tightening, rather than directly fixed similar to Nair et al. (2020b). And on the other hand, current solution value was also considered in bound tightening decisions in our approach. Variables that sit far from both bounds may have a significantly wider exploration scope than close-to-bound variables, as they showed no explicit "preference" on either direction. In addition, our approach can easily transfer to unbounded variables as illustrated in Alg. 1. We made detailed comparison between the two approaches in Table. 3 and Table. 10. As can be seen, our BTBS-LNS consistently outperforms BTBS-LNS-F, demonstrating the effectiveness of our novel "Binarized Tightening" technique.
As for the local optima challenge, a few studies have tried Adaptive Neighborhood Size (ANS) (Huang et al., 2023a;b; Sonnerat et al., 2021) or hybrid heuristics control (Hendel, 2022), while it still requires hand-crafted hyperparameters, which are essential but difficult to determine. To address it more adaptively, we proposed to combine branching on top of pure LNS. When trapped in local optima, branching mechanism has the potential to select those wrongly-fixed backdoor variables by pure LNS for re-optimization. It is important to note that the concept of branching extends beyond the confines of the local branching (Sonnerat et al., 2021) and we also devised a novel variant termed "global branching" (see Sec. 3.4), which can deliver even better performance in some cases. In addition, the major difference between our hybrid framework and the pure local branching approach (Sonnerat et al., 2021) lies in that we concentrates solely on variables fixed by LNS to correct its decisions, rather than the whole variable set. This specificity arises from the observation that LNS frequently converges to local optima when a limited number of backdoor variables are inaccurately fixed. Empirical results in Table. 1, 2 and 3 demonstrated that our BTBSLNS consistently outperforms the Branching baseline by Sonnerat et al. (2021).

We further review other studies related to ours, which can be divided into two categories: One is learning-based methods for specific MIP problems and the other is for general MIP problems.

A.1.1 Policy learning for specific MIP Problems

MIP problems cover numerous real-world tasks in many fields (Paschos, 2014) and quite a few studies attempt to solve certain types of problems, such as Traveling Salesman Problem (TSP) and Vehicle Routing Problems (VRP) (Li et al., 2021; Lu et al., 2019a), etc. The algorithms can be divided into two folds, construction methods and learned improvement heuristics.

Construction methods usually attempt to directly learn approximate optimal solutions. For example, different models, like Graph Pointer Networks (GPNs) (Ma et al., 2019) and Monte Carlo tree search (Xing \& Tu, 2020; Fu et al., 2021) were both proposed to solve TSP instances, and Zhang et al. (2020) trains a policy to learn priority dispatching rules for scheduling problems via an end-to-end deep reinforcement learning agent.
Compared to construction models, methods that learn improvement heuristics can often deliver better performance, by learning to iteratively improve the solution (Wu et al., 2021a). The improvement heuristics can be a guide for next solution selection (Wu et al., 2021b), or policy to pick heuristics (Chen \& Tian, 2019), or refinement from current solution (Lu et al., 2019b; Li et al., 2020), which all have demonstrated the effectiveness in routing and scheduling problems. In general, both the learned improvement heuristics and construction methods have proved validity in some specific problems. In contrast, this paper aims to solve general MIP problems by learning improvement heuristic policies.

A.1.2 LeARning to solve general MIP problems

Dual and primal are two main perspectives to improve solving efficiency for general MIP problems. Specifically, dual view aims to improve inner policies of Branch and Bound (B\&B), e.g., variable selection (Gasse et al., 2019; Zarpellon et al., 2021; Gupta et al., 2020), node selection (He et al., 2014) and cut selection (Tang et al., 2020; Paulus et al., 2022b;a). With a better decision at each node, the overall solving process can be greatly simplified.
Different from the dual view, in the primal perspective, the algorithms aim to find better feasible solutions by prediction or learning-based heuristics. For example, Ding et al. (2020) learned a tripartite graph based deep neural network to generate partial assignments for binary variables, and in order to deal with the general integer variables, Nair et al. (2020b) proposed a bound tightening mechanism and learned partial assignments for each bit, respectively. Nevertheless, they were only applied in neural diving, and directly fixing may also lead to performance degradation, or even infeasible. To obtain broader applicability, learning-based primal heuristics, like large neighborhood search (Huang et al., 2023b; Song et al., 2020; Sonnerat et al., 2021; Nair et al., 2020a), local branching (Liu et al., 2022), gradually catch the attention of researchers.
In this paper, we mainly focus on large neighborhood search heuristics, which have achieved remarkable progress in recent years. For example, Hendel (2022) designed an adaptive approach to combine multiple existed LNS heuristics to enhance performance of single policy, while it is largely limited by the rule-based heuristics and requires hand-crafted hyperparameters. To make it further, learning a better neighborhood function have been more and more popular in recent years. Sonnerat et al. (2021) utilized imitation learning to select variable subsets to optimize at each step. Similarly, Song et al. (2020) also proposed a decomposition-based framework with imitation learning to learn the best variable decomposition. However, the imitation learning framework and the equal-size subsets makes it inflexible and dramatically limit the performance of learned policies. In this respect, Wu et al. (2021a) factorize the LNS policy into elementary actions on each variable, and trained a RL-based policy to select variable subsets dynamically. However, they cannot generalize to general integer variables and the local search drawbacks make it easy to converge in local optimum.
In general, current studies on LNS mainly focus on binary variables, and local search properties interfere with the performance in some complicated scenarios. In this respect, we propose a binarizedtightening branch and search approach to learn more efficient LNS policies for general problems.

A. 2 Hybrid Branch and Search

In this paper, we proposed a hybrid binarized tightening branch and search framework for general MIP problems. We tend to illustrate some details about the framework. Specifically, Alg. 1 depicts the pipeline of bound-tightening technique for each general integer variable, where we represent them with d substitute binary variables and tighten the original variable bounds w.r.t the current solution value p and bit-wise LNS decision $a_{i, j}^{t}$.
Alg. 3 depicts the overall training pipeline for the offline graph based branching policy. Specifically, we make the branching policy into a binary decision process (branch or not) for each variable, and utilize the cross-entropy loss to train the graph-based branching network. The output probability can help filter the potentially wrongly-fixed backdoor variables in a global or local perspective. The

```
Algorithm 3 Offline training of branching policy for LNS
Input: tripartite graph based states \(S=\left\{s_{t} \mid t=1,2, \ldots, n\right\}\)
LNS decisions at each step \(N=\left\{n_{t} \mid t=1,2, \ldots, n\right\}\)
branching variable labels \(B=\left\{b_{t} \mid t=1,2, \ldots, n\right\}\) collected from the local or global branching;
Output: trained policy \(\pi_{\theta}(B \mid S, N)\)
    // Samples are collected by resolving the training instances, along with the learned LNS;
    Let \(D=\left\{\left(\left(s_{t}, n_{t}\right), b_{t}\right) \mid t=1,2, \ldots, n\right\}\).
    // train the model;
    Initialize all learnable parameters \(\theta\);
    while stopping criteria not meet do
        Randomly select a batch of instances \(D_{C}\) from D ;
        Optimize \(\theta\) by minimizing cross-entropy loss;
    end while
```

Table 5: Training, Validation and Test accuracy for graph based branching network.

	Local Branching					Global Branching						
	SC	MIS	CA	MC	Item	AMIPLIB	SC	MIS	CA	MC	Item	AMIPLIB
Train\%	89.5	84.9	79.6	86.3	85.5	77.5	86.9	87.3	81.5	88.5	83.4	75.9
Validation\%	84.8	83.5	75.1	82.1	82.8	74.9	83.7	84.9	80.9	87.0	81.8	75.1
Test\%	82.5	81.6	72.9	80.5	81.5	74.2	83.1	82.6	80.1	84.5	80.7	73.8

Table 6: Average variable/constraints of instances

Num of	Training				Generalization							
	SC	MIS	CA	MC	SC2	MIS2	CA2	MC2	SC4	MIS4	CA4	MC4
Variables	1000	1500	4000	2975	2000	3000	8000	5975	4000	6000	16000	11975
Constraints	5000	5939	2674	4950	5000	11933	5344	9950	5000	23905	10717	19950

overall training, validation and testing accuracy on different problems are listed in Table 5, including both the local and global branching variants.
The hybrid branch and search framework works as in Alg. 2 in the main text, where we place the branching network on top of LNS. Specifically, n_{i}^{t} denotes the LNS decision for each variable. Note that as illustrated above, there will be d separate decisions for general integer variables, denoted as $n_{i, j}^{t}$. b_{i}^{t} denotes the branching decision (branch or not) for each variable. The hybrid branch and search policy work together to formulate the sub-MIP at each step. It consists of three main steps, bound tightening in Line 3-4 for general integer variables, directly fixing in Line 6-7 for binary variables and extra branching in Line 9-10. Branching policy can be regarded as an approach to enhance the learned LNS policy by selecting and optimizing some wrongly-fixed variables by LNS (see Line 15-16).

A. 3 Detail for the Experiments

As discussed, the tripartite graph is utilized to represent the problem states in both the RL-based LNS policy and the offline branching policy. We describe in Table 7 the variable, constraint, objective, and multi-source edge features in detail. Except for the dynamic solving status, all the other features are collected at the root node of the B\&B search tree, and the dynamic features are collected along with the optimization process.
The average variable and constraint size used in our experiments are listed in Table 6, which consists of small-scale training instances and some hard instances used for evaluating the generalization ability. And as illustrated in Sec. 4, we compare our proposed BTBS-LNS with various baselines, which are explained as follows in detail:

- SCIP (v7.0.3): state-of-the-art open source solver with default settings. Note that SCIP is allowed to run for a longer time, i.e., 500 s and 1000s.
- Gurobi (v9.5.0): state-of-the-art commercial solver.

Table 7: Description of the tripartite graph features.

Tensor	Feature Description
\mathcal{V}	variable type (binary, integer, continuous).
	objective coefficient.
	lower and upper bound.
	reduced cost.
	solution value fractionality.
	(dynamic) solution value in incumbent.
	(dynamic) average solution value.
	(dynamic) best solution value.
	(Branching Only) LNS decisions at current step.
\mathcal{C}	cosine similarity with objective.
	tightness indicator in LP solution.
	dual solution value.
	bias value, normalized with constraint coefficients
\mathcal{O}	average states of related variables.
$\mathcal{V}-\mathcal{C}$	constraint coefficient per variable.
$\mathcal{V}-\mathcal{O}$	objective coefficient per variable.
$\mathcal{C}-\mathcal{O}$	constraint right-hand-side (RHS) coefficients.

- U-LNS: an LNS version that uniformly samples variables at a fixed subset size. Note that for U-LNS, R-LNS and FT-LNS, we perform the same settings as those in Wu et al. (2021a).
- R-LNS: an LNS version (Song et al., 2020) that randomly groups variables into equal subsets and reoptimizes them.
- DINS (Ghosh, 2007), GINS (Maher et al., 2017), RINS (Danna et al., 2005) and RENS (Berthold, 2014): heuristic-based LNS policies that have been implemented in SCIP.
- FT-LNS: an LNS version (Song et al., 2020) that applies imitation learning to learn the best R-LNS policies.
- RL-LNS: A similar reinforcement learning LNS approach for variable subset optimization (Wu et al., 2021a), while mainly focused on binary variable optimization.
- Branching (Sonnerat et al., 2021): An LNS framework by imitation learning from the labels collected by incorporating local branching constraints.
- LNS-TG: A variant of our method, where we replace the tripartite graph with the widely used bipartite graph.
- LNS-Branch: A variant of our method, where we remove the branching policy.
- LNS-IBT: A variant of our method, where the general integer variables are equally treated as binary variables.
- LNS-IT: A variant of our method, where we remove the "Tightening" technique and fix the integer variable to its current solution when either bit is fixed.
- LNS-ATT: A variant of our method, where we replace our attention-based graph attention network with the widely used GNN.
- BTBS-LNS-F: A variant of our BTBS-LNS, where we replace our bound tightening mechanism with that proposed by Nair et al. (2020b).

Note that the work by Sonnerat et al. (2021) doesn't have open-source code and some hyperparameters are difficult to fine-tune in different MIP problems. However, in order to further evaluate our proposed framework with pure local branching based methods, we try to reproduce them. Some reproduction details are as follows:

1) For fair comparison, we replace the neural diving in Sonnerat et al. (2021) with an initial feasible solution generated by SCIP, the same as our approach.
2) In data collection, the desired Hamming radius η_{t} are selected as 50, the same as our branching policy.

Figure 5: Anytime Performance on Set Covering (SC) problem and its scale-transfer instances.
From left to right: Performance comparison on instances from SC, SC2, SC4. (see Table 6 for detail).
3) The model structure were the same as its descriptions, where we use the code provided by Gasse et al. (2019), and additionally use a fixed-size window (3 in the paper) of past variable assignments as variable features.
4) Loss function and training were all respect to the settings in the paper.
5) In the inference phase with the learned policy, we performed the same action sampling mechanism as in Sonnerat et al. (2021). As for the adaptive neighborhood size, we start with 10% of the integer variable size, and the dynamic factor a was tuned from 1.01 to 1.05 . Best-performing parameters will be selected for comparison in each problem. As a result, on SC and MIS, a was set as 1.02, and $a=1.03$ can deliver the best performance on other problems.
6) Reproduction details will also be public along with the code and data.

In addition, we do not make comparisons with Hendel (2022), as it is embedded in SCIP as a heuristic and difficult for fair comparison, and thus we solely tested the implemented heuristics separately, e.g.,RINS, DINS, RENS.

To further evaluate our approach on generalized ILP instances, we further increase the time limit to 500 s and 1000 s respectively on CA, with results shown in Table 8. Our method consistently outperforms Gurobi with the same time limit. For CA4, it can even produce better solutions with a much shorter time limit. It empirically requires over 3 hours for Gurobi to deliver the same primal gap on CA4, being $58 \times$ slower than our method.

Table 8: Evaluation on CA against Gurobi.

Methods	CA2		CA4	
	Obj	Gap\%	Obj	Gap\%
Gurobi	-218245	3.60	-389396	12.61
Gurobi(500s)	-224245	0.95	-431626	3.14
Gurobi(1000s)	$\mathbf{- 2 2 5 6 2 9}$	$\mathbf{0 . 3 3}$	-436188	2.11
BTBS-LNS	-222590	1.67	-439431	1.39
BTBS-LNS(500s)	-225108	0.56	$\mathbf{- 4 4 5 5 6 3}$	$\mathbf{0}$

Table 9: Evaluation by Gurobi as baseline solver.
$\left.\begin{array}{ccccc}\hline \text { Methods } & \text { Obj } & \text { Item } & \text { Gap\% } & \text { PI }\end{array} \begin{array}{c}\text { AMIPLIB } \\ \text { Gap\% }\end{array}\right]$

A. 4 ANYTIME PERFORMANCE ON BINARY INTEGER PROGRAMMING PROBLEMS

In order to further evaluate the anytime performance among the competing approaches, we plot the anytime primal gap curves on four binary integer programming problems, Set Covering (SC), Maximal Independent Set (MIS), Combinatorial Auction (CA) and Maximum Cut (MC), respectively. The results are gathered in Figure 5, 6, 7, 8, respectively.
As seen from the results, our BTBS-LNS delivers consistently superior performance over the competing LNS baselines almost at any point, demonstrating its efficiency and effectiveness. More surprisingly, the proposed approach can achieve superior performance over the leading commercial solver in some cases, especially on the scale-transfer instances, purely by the learned policy on small-scale instances.

A. 5 Supplementary Experiments on MIPLIB

As illustrated in Sec. 4, we have tested the effectiveness of the proposed BTBS-LNS on Anonymous MIPLIB(AMIPLIB) from ML4CO 2021 competition ${ }^{4}$. To make further evaluation, especially on

[^3]

Figure 6: Anytime Performance on Maximal Independent Set (MIS) problem and its scale-transfer instances. From left to right: Performance comparison on instances from MIS, MIS2, MIS4. (see Table 6 for detail).

Figure 7: Anytime Performance on Combinatorial Auction (CA) problem and its scale-transfer instances. From left to right: Performance comparison on instances from CA, CA2, CA4. (see Table 6 for detail).

Figure 8: Anytime Performance on Maximum Cut (MC) problem and its scale-transfer instances. From left to right: Performance comparison on instances from MC, MC2, MC4. (see Table 6 for detail).

Table 10: Performance comparison on the whole MIPLIB benchmark set.

	SCIP	SCIP(600s)	SCIP(900s)	U-LNS	R-LNS	FT-LNS	BTBS-LNS	BTBS-LNS-F	Gurobi
Gap\%	15.15	11.08	8.79	16.26	15.94	13.07	$\mathbf{1 . 7 5}$	3.11	1.98

some heterogeneous and hard instances, we also performed the experiments on the whole MIPLIB benchmark set ${ }^{5}$, which is a standard test set used to compare the performance of mixed integer optimizers. The benchmark set contains 240 instances. We compared different methods in a 300s time limit, which is the geometric mean of solving time of the solved instances with SCIP, and the re-optimization time for each step was set as 5 s . Other hyperparameters remain the same as AMIPLIB in Sec. 4. We perform cross-validation to make fair comparison and split them into training, validation, and testing sets by $70 \%, 15 \%$, and 15% at each round. Policies learned from diverse training instances are directly applied to the test set.
The overall comparison results were gathered in Table 10. As can be seen, our BTBS-LNS can deliver significantly better results compared with all the competing baselines, including the leading commercial solver, indicating its effectiveness and generalization ability. Furthermore, we notice that BTBS-LNS-F performs slightly inferior than Gurobi and our approach, further revealing the superior performance of our Binarized Tightening technique over that proposed by Nair et al. (2020b). Detailed per-instance comparison are gathered in Table 17 in Appendix B.

In addition, as illustrated in Alg. 1, we devised a novel virtual bound technique specifically for unbounded integer variables. To evaluate its performance, we conducted an extensive analysis across all instances featured in MIPLIB benchmark set. Notably, there are 19 and 4 instances that contained unbounded integer variables before and after the presolve, respectively. In this section, we

[^4]Table 11: Performance comparison on MIPLIB instances that contained unbounded variables.

Instance	SCIP	U-LNS	R-LNS	FT-LNS	BTBS-LNSw/o ubd	BTBS-LNS	Gurobi
gen-ip054	6858.879	6858.879	6852.733	6858.879	6852.733	6852.733	6840.966^{*}
gen-ip002	-4783.733^{*}	-4772.597	-4772.597	-4768.253	-4783.733^{*}	-4783.733^{*}	-4783.733^{*}
neos-3046615-murg	1610	1670	1651	1651	1610	1607	1600^{*}
buildingenergy	42652.34	42652.34	42652.34	42652.34	34243.89	33324.73	33283.85^{*}

Table 12: Experiments with Gurobi as the baseline for binary Integer Programming (IP).

Methods	SC			MIS			CA			MC		
	Obj	Gap\%	PI	Obj	Gap\%	PI	Obj	Gap\%	$\mathrm{PI}\left(\times 10^{3}\right)$	Obj	Gap\%	PI
U-LNS	559.74	2.59	18820	-683.45	0.41	635.32	-111036	3.78	2690.5	-889.62	4.07	5633.8
R-LNS	560.49	3.01	18925	-683.94	0.34	545.71	-109797	4.85	2999.0	-891.95	3.75	5189.5
FT-LNS	564.76	3.38	19521	-684.16	0.73	462.45	-110319	4.40	2856.4	-891.06	3.79	5214.7
RL-LNS	549.16	1.57	16911	-686.12	0.09	179.94	-113862	1.37	2029.1	-894.51	3.52	4812.5
BTBS-LNS	546.84	0.28	15987	-686.24	0	165.24	-115083	0.27	1710.6	-923.96	0.38	426.89
Gurobi	549.44	0.75	16796	-686.24	0	173.15	-113731	1.44	2075.4	-921.90	0.62	842

Table 13: Generalization to large-scale binary integer programming (IP) instances with Gurobi as the baseline.

Methods	SC2			MIS2			CA2			MC2		
	Obj	Gap\%	PI	Obj	Gap\%	PI	Obj	Gap\%	$\mathrm{PI}\left(\times 10^{3}\right)$	Obj	Gap\%	PI
U-LNS	298.28	2.48	13599	-1368.81	0.32	1551.6	-219447	3.06	5442.1	-1788	3.76	13713
R-LNS	300.17	2.73	14052	-1365.68	0.55	1845.2	-220497	2.60	5112.0	-1789	3.75	13359
FT-LNS	302.08	3.29	14338	-1369.30	0.28	1485.2	-217950	3.72	5823.5	-1783	4.04	13753
BTBS-LNS	292.88	0.28	12275	-1373.18	0	462.38	-225319	0.47	4125.1	-1858	0.01	350.45
Gurobi	294.12	0.71	12528	-1373.14	0.01	495.88	-218245	3.60	5723.5	-1839	1.01	2195.6
Methods		SC4			MIS4			CA4			MC4	
Methods	Obj	Gap\%	PI	Obj	Gap\%	PI	Obj	Gap\%	$\mathrm{PI}\left(\times 10^{3}\right)$	Obj	Gap\%	PI
U-LNS	172.6	2.56	14150	-2731.62	0.64	5515.7	-427694	4.02	15712	-3537	4.95	46965
R-LNS	171.9	2.36	14112	-2734.72	0.52	4846.3	-427992	3.95	15275	-3541	4.84	46380
FT-LNS	174.2	3.34	14515	-2734.22	0.54	4915.0	-429190	3.68	14588	-3543	4.78	45795
BTBS-LNS	168.8	0.27	13424	-2748.84	0.01	2051.8	-442616	0.67	10025	-3721	0	11034
Gurobi	170.5	1.22	13795	-2748.02	0.04	2215.7	-389396	12.61	21959	-3521	5.38	51298

compared our BTBS-LNS with a variant BTBS-LNSw/o ubd, where the special handling for unbounded integer variables (see Line 2-6 in Alg. 1) are removed. In other words, unbounded variables were free to optimize at each step. The comparison results on the four instances that still contain unbounded variables after presolve are gathered in Table. 11. As can be seen, our proposed BTBSLNS, outperforms the variant BTBS-LNSw/o ubd on two instances and achieves parity on the other two. These findings underscore the potent effectiveness of our proposed bound tightening technique, substantiating its value in enhancing solution quality and optimization efficiency. We will continue the experimentation on more unbounded MIP problems in the future.

A. 6 Supplementary Experiments with Gurobi

In order to evaluate the performance of different approaches with Gurobi as the baseline solver, we perform extensive experiments on MIP problems, four binary integer programming problems and their scale-transfer instances.

The hyperparameters remain unchanged as those in SCIP counterparts. The results on four binary integer programming problems and their scale-transfer instances are gathered in Table 12 and Table 13. And the comparison results on MIP problems are reported in Table 9. As can be seen, our BTBS-LNS consistently outperforms Gurobi across all the problems with different sizes, indicating the effectiveness and generalization ability to different solvers.

A. 7 Evaluation on our proposed attention approach

As illustrated in Sec. 3.3, we proposed a slightly different attention approach for the Graph Attention Network (Veličković et al., 2018), where we remove the commonly-utilized Softmax-normalized formulation. Specifically, for a node i in the tripartite graph, the weight coefficient $w_{i j}$ across all neighboring nodes $j \in N_{i}$ are simply averaging by $\left|N_{i}\right|$ (see Eq. 4) to fully reserve the absolute importance between nodes, rather than Softmax normalized in the general handling.

Table 14: Performance comparison for different attention approaches on four binary Integer Programming problems: SC, MIS, CA, MC.

Methods	SC			MIS				CA			MC	
	Obj	Gap\%	PI	Obj	Gap $\%$	PI	Obj	Gap $\%$	PI $\left(\times 10^{3}\right)$	Obj	Gap $\%$	PI
LNS-Softmax	548.22	0.56	16493	-685.82	0.05	181.75	-112810	2.27	2233.6	-906.15	1.98	1755.0
BTBS-LNS	$\mathbf{5 4 7 . 8 8}$	$\mathbf{0 . 4 7}$	$\mathbf{1 6 2 3 4}$	$\mathbf{- 6 8 5 . 8 6}$	$\mathbf{0 . 0 5}$	$\mathbf{1 8 1 . 4 7}$	$\mathbf{- 1 1 2 8 6 4}$	$\mathbf{2 . 1 8}$	$\mathbf{2 1 9 6 . 8}$	$\mathbf{- 9 0 9 . 1 7}$	$\mathbf{1 . 9 9}$	$\mathbf{2 5 1 8}$

Table 15: Average Standard Deviations for our proposed BTBS-LNS on different problems.

Methods	SC		SC2		SC4	
	Obj	Gap\%	Obj	Gap\%	Obj	Gap\%
BTBS-LNS	$547.88 \pm 0.59 \%$	$0.47 \pm 0.88 \%$	$293.56 \pm 0.77 \%$	$0.51 \pm 0.68 \%$	$169.80 \pm 0.68 \%$	$0.84 \pm 1.01 \%$
Methods	MIS		MIS2		MIS4	
	Obj	Gap\%	Obj	Gap\%	Obj	Gap\%
BTBS-LNS	$-685.86 \pm 0.74 \%$	$0.05 \pm 0.78 \%$	$-1372.66 \pm 0.51 \%$	$0.04 \pm 0.21 \%$	$-2747.04 \pm 0.32 \%$	$0.07 \pm 0.19 \%$
Methods	CA		CA2		CA4	
	Obj	Gap\%	Obj	Gap\%	Obj	Gap\%
BTBS-LNS	$-112864 \pm 0.32 \%$	$2.18 \pm 0.29 \%$	$-222590 \pm 0.39 \%$	$1.67 \pm 0.41 \%$	-439431 $\pm 0.33 \%$	$1.39 \pm 0.49 \%$
Methods	MC		MC2		MC4	
	Obj	Gap\%	Obj	Gap\%	Obj	Gap\%
BTBS-LNS	-909.17 $\pm 0.48 \%$	$1.99 \pm 0.52 \%$	$-1831.00 \pm 0.66 \%$	$1.45 \pm 0.58 \%$	$-3664 \pm 0.73 \%$	$1.52 \pm 0.84 \%$
Methods	Item		AMIPLIB		MIPLIB	
	Obj	Gap\%	Obj	Gap\%	Obj	Gap\%
BTBS-LNS	$13.82 \pm 1.09 \%$	$16.82 \pm 0.96 \%$	1	$4.19 \pm 1.51 \%$	1	$1.75 \pm 1.62 \%$

To further evaluate the performance of different attention approaches, we compare our proposed BTBS-LNS with LNS-Softmax, where we instead utilized the common Softmax normalized approach and all the others remain the same. We performed the comparison on four binary programming problems, and the results are gathered in Table 14. As can be seen, with our updated attention mechanism, BTBS-LNS can obtain consistently superior performance over LNS-Softmax, revealing the effectiveness of our novel attention approach.

A. 8 Stability Analysis of OUR APPROACH

As illustrated in Sec. 4, all the experiments were performed with three different seeds to make fair comparison for different approaches. The average standard deviations for our proposed BTBS-LNS on different problems are gathered in Table. 15. As can be seen, the BTBS-LNS is fairly robust to different seeds, with average standard deviations lower than 2% even on some heterogeneous instances, like MIPLIB.

A. 9 EXPERIMENTS wITH CPU vs GPU

As illustrated in Sec. 4, all the experiments were performed on the $\operatorname{Intel}(\mathrm{R}) \operatorname{Xeon}(\mathrm{R}) \mathrm{E} 5-$ 2678 v3 2.50 GHz CPU with 4 physical cores, and it achieved competitive performance compared even with the leading commercial solver. In this section, we will further test the GPU version (NVIDIA GeForce RTX 2080) of our proposed BTBS-LNS on the balanced item placement problem, and the results are given in Table 16.

Fig. 9 further depicts the anytime primal gap comparison between CPU and GPU version in detail. As can be seen from the results, compared with CPU implementation, GPU version BTBS-LNS delivers slightly better performance, in which the overall primal gap and pri-

Table 16: Performance Analysis (GPU vs CPU).

Methods	Item		
	Obj	Gap\%	PI
BTBS-LNS + CPU	13.82	16.82	2030.3
BTBS-LNS + GPU	13.78	16.68	2010.2

Figure 9: Anytime Performance comparison (GPU vs CPU). mal integral improve by 0.83% and 0.99%, respectively. In other words, our proposed BTBS-LNS may achieve even better performance when implemented in GPU environment.

B Per-Instance performance comparison on MIPLIB

Considering that the results on MIPLIB instances may deliver high variances due to the significantly different problem distributions across instances, showing only the average gap like Table 10 may be not sufficient. In this respect, we report the detail per-instance performance within the given time limit on the competing approaches, and the results are gathered in Table 17.
Note that we only report 218/240 instances from MIPLIB benchmark set. The following instances were removed, as no feasible solution can be found for them within the pre-defined time limit:

1) Instances that are infeasible (6):

- bnatt500
- cryptanalysiskb128n5obj14
- fhnw-binpack4-4
- neos-2075418-temuka
- neos-3988577-wolgan
- neos859080

2) Instances that cannot generate feasible solution by the baseline solver within timelimit (16):

- cryptanalysiskb128n5obj16
- gfd-schedulen180f7d50m30k18
- highschool1-aigio
- irish-electricity
- neos-1354092
- neos-3402454-bohle
- neos-4532248-waihi
- neos-5104907-jarama
- neos-5114902-kasavu
- ns1116954
- ns1952667
- peg-solitaire-a3
- physiciansched3-3
- rail02
- supportcase 19
- supportcase22
Table 17: Per-instance performance comparison on MIPLIB 2017

Instance	SCIP	SCIP(600s)	SCIP(900s)	U-LNS	R-LNS	FT-LNS	BTBS-LNS	BTBS-LNS-F	Gurobi	Best Solution
30n20b8	302	302	302	353	302	302	302	302	302	302
50v-10	3340.37	3316.92	3313.18	3324.38	3340.37	3334.01	3311.18	3315.24	3311.18	3311.18
academictimetablesmall	228	228	228	228	228	228	45	45	6	0
air05	26374	26374	26374	26439	26374	26441	26374	26374	26374	26374
app1-1	-3	-3	-3	-3	-2	-3	-3	-3	-3	-3
app1-2	-23	-41	-41	-24	-23	-29	-41	-41	-41	-41
assign1-5-8	212	212	212	214	212	212	212	212	212	212
atlanta-ip	98.01	93.01	93.01	93.01	95.01	93.01	90.01	90.01	90.01	90.01
b1c1s1	27031.16	27004.55	25571.02	27540.75	27031.16	26379.4	24544.25	24544.25	24544.25	24544.25
bab2	-354064.7	-354064.7	-354064.7	-354064.7	-354064.7	-354091	-354092.9	-354092.9	-357525.96	-357544.312
bab6	-279121.2	-279121.2	-279121.2	-280546.4	-280546.4	-280546.4	-280546.4	-280546.4	-284248.23	-284248.23
beasleyC3	754	754	754	759	759	755	754	754	754	754
binkar10_1	6742.2	6742.2	6742.2	6746.76	6747.78	6743.24	6742.2	6742.2	6742.2	6742.2
blp-ar98	6565.99	6303.11	6243.77	6565.99	6584.43	6565.99	6205.21	6205.21	6205.21	6205.21
blp-ic98	4744.08	4719.1	4641.77	4719.1	4963.66	4963.66	4491.45	4491.45	4491.45	4491.45
bnatt400	1	1	1	1	1	1	1	1	1	1
bppc4-08	53	53	53	56	56	54	53	53	53	53
brazil3	102	102	102	102	102	102	41	41	24	24
buildingenergy	42652.34	34250.38	34250.38	42652.34	42652.34	42652.34	34243.89	34250.38	33283.85	33283.85
cbs-cta	0	0	0	43.16	43.16	0	0	0	0	0
chromaticindex 1024-7	4	4	4	4	4	4	4	4	4	4
chromaticindex512-7	4	4	4	4	4	4	4	4	4	4
cmflsp50-24-8-8	57921400	57921400	57921400	57921400	57921400	57921400	55789390	55789390	55789390	55789390
CMS750_4	261	254	252	261	269	253	252	252	252	252
co-100	11833720	11833720	11833720	11833720	11833720	11833720	2639942.06	2639942.06	2639942.06	2639942.06
cod105	-12	-12	-12	-11	-11	-8	-12	-12	-12	-12
comp07-2idx	823	148	148	148	148	78	6	23	6	6
comp21-2idx	250	179	142	250	250	225	75	88	88	74
cost266-UUE	25222800	25148941	25148941	25222800	25222800	25164070	25148941	25148941	25148941	25148941
csched007	362	351	351	362	356	354	351	351	351	351
csched008	173	173	173	176	178	174	173	173	173	173
cvs16r128-89	-93	-95	-95	-86	-80	-84	-97	-97	-96	-97
dano3_3	576.345	576.345	576.345	577.475	576.52	576.52	576.345	576.345	576.345	576.345
dano3_5	576.925	576.925	576.925	581.725	581.725	577.316	576.925	576.925	576.925	576.925
decomp2	-160	-160	-160	-152	-152	-133	-160	-160	-160	-160
drayage-100-23	103334	103334	103334	103334	103334	103334	103334	103334	103334	103333.874
drayage-25-23	101283	101283	101283	106897	101344	101344	101283	101283	101283	101282.647
dws008-01	56691.23	46179.85	38873.46	56691.23	56691.23	56691.23	37412.6	37412.6	37412.6	37412.6

Instance	SCIP	SCIP(600s)	SCIP(900s)	U-LNS	R-LNS	FT-LNS	BTBS-LNS	BTBS-LNS-F	Gurobi	Best Solution
eil33-2	934.008	934.008	934.008	987.674	987.674	934.008	934.008	934.008	934.008	934.008
eilA101-2	1313.47	995.77	995.77	1443.53	1443.53	1443.53	880.92	880.92	923.01	880.92
enlight_hard	37	37	37	37	37	37	37	37	37	37
ex10	100	100	100	100	100	100	100	100	100	100
ex9	81	81	81	81	81	81	81	81	81	81
exp-1-500-5-5	65887	65887	65887	65887	65887	65887	65887	65887	65887	65887
fast0507	174	174	174	176	175	174	174	174	174	174
fastxgemm-n2r6s0t2	230	230	230	230	236	230	230	230	230	230
fhnw-binpack4-48	0	0	0	0	0	0	0	0	0	0
fiball	140	138	138	138	140	138	138	138	138	138
gen-ip002	-4783.73	-4783.73	-4783.73	-4772.6	-4772.6	-4768.25	-4783.73	-4772.33	-4783.73	-4783.73
gen-ip054	6858.88	6840.97	6840.97	6858.88	6852.73	6858.88	6852.73	6858.58	6840.97	6840.97
germanrr	48440630	48096190	48096190	48440630	48440630	48440630	48440630	48440630	47135500	47095869.6
glass-sc	23	23	23	25	25	24	23	23	23	23
glass4	1200012600	1200012600	1200012600	1200012600	1200012600	1200012600	1200012600	1200012600	1200012600	1200012600
gmu-35-40	-2406458	-2406458	-2406458	-2406458	-2406458	-2406458	-2406458	-2406458	-2406733	-2406733.37
gmu-35-50	-2606871	-2606930	-2606930	-2605465	-2605387	-2606930	-2607958.3	-2607958.3	-2607922.7	-2607958.33
graph20-20-1rand	-9	-9	-9	-8	-8	-9	-9	-9	-9	-9
graphdraw-domain	19686	19686	19686	19848	19848	19772	19686	19688	19686	19686
h80x6320d	6382.1	6382.1	6382.1	6416.61	6382.1	6382.1	6382.1	6382.1	6382.1	6382.1
hypothyroid-k1	-2851	-2851	-2851	-2851	-2851	-2851	-2851	-2851	-2851	-2851
ic97_potential	3945	3945	3945	3952	3945	3952	3942	3952	3942	3942
icir97_tension	6392	6382	6375	6375	6382	6376	6375	6375	6375	6375
irp	12159.49	12159.49	12159.49	12160.2	12161.5	12161.5	12159.49	12159.49	12159.49	12159.49
istanbul-no-cutoff	204.08	204.08	204.08	214.797	212.961	214.797	204.08	204.08	204.08	204.08
k1mushroom	-204	-293	-3288	-204	-204	-204	-3144	-3144	-3288	-3288
lectsched-5-obj	48	41	39	46	48	44	24	27	24	24
leol	419655200	412600400	410709200	488216000	443395100	429182100	404989400	404989400	404227536	404227536
leo2	436700200	426090600	424958900	438115100	436700200	436444000	405531200	405531200	404077441	404077441
lotsize	1557868	1484323	1483960	1626587	1557868	1495682	1480195	1480195	1494101	1480195
mad	0.067	0.038	0.0352	0.067	0.0772	0.0392	0.0268	0.0268	0.028	0.0268
map10	-480	-495	-495	-468	-410	-472	-495	-495	-495	-495
map16715-04	-78	-109	-111	-82	-78	-83	-111	-111	-111	-111
markshare_4_0	1	1	1	3	1	1	1	1	1	1
markshare2	31	28	28	31	36	31	11	11	11	1
mas74	11801.19	11801.19	11801.19	11801.19	11801.19	11801.19	11801.19	11801.19	11801.19	11801.1857
mas76	40005.05	40005.05	40005.05	40005.05	40005.05	40005.05	40005.05	40005.05	40005.05	40005.05
mc11	11689	11689	11689	11720	11731	11896	11689	11689	11689	11689
mcsched	211913	211913	211913	212874	212874	212911	211913	211913	211913	211913
mik-250-20-75-4	-52301	-52301	-52301	-52301	-52301	-52301	-52301	-52301	-52301	-52301
milo-v12-6-r2-40-1	326481.1	326481.1	326481.1	326820.6	326820.6	326481.1	326481.1	326481.1	326481.1	326481.1
momentum1	372399.4	282447.1	134897	365944	365944	372399.4	109143.5	109143.5	109143.5	109143.5
mushroom-best	0.0553	0.0553	0.0553	0.0869	0.0869	0.0553	0.0553	0.0553	0.0553	0.0553
mzzv11	-21718	-21718	-21718	-21678	-21668	-21678	-21718	-21718	-21718	-21718
mzzv42z	-20540	-20540	-20540	-20540	-20540	-20400	-20540	-20540	-20540	-20540

Instance	SCIP	SCIP(600s)	SCIP(900s)	U-LNS	R-LNS	FT-LNS	BTBS-LNS	BTBS-LNS-F	Gurobi	Best Solution
n2seq36q	52600	52200	52200	52800	52600	52400	52200	52200	52200	52200
n3div36	130800	130800	130800	130800	131400	130800	130800	130800	130800	130800
n5-3	8105	8105	8105	8405	8105	8105	8105	8105	8105	8105
neos-1122047	161	161	161	161	161	161	161	161	161	161
neos-1171448	-309	-309	-309	-307	-305	-309	-309	-309	-309	-309
neos-1171737	-190	-192	-192	-173	-190	-190	-195	-195	-195	-195
neos-1445765	-17783	-17783	-17783	-17783	-17783	-17783	-17783	-17783	-17783	-17783
neos-1456979	186	184	184	207	184	186	176	178	176	176
neos-1582420	91	91	91	91	91	91	91	91	91	91
neos-2657525-crna	7.23	7.23	7.23	7.23	8.06	7.23	1.81075	7.23	1.81075	1.81075
neos-2746589-doon	2099.6	2099.6	2099.6	2099.6	2099.6	2099.6	2099.6	2099.6	2008.2	2008.2
neos-2978193-inde	-2.388	-2.388	-2.388	-2.197	-2.388	-2.388	-2.388	-2.388	-2.388	-2.38806169
neos-2987310-joes	-607702988	-607702988	-607702988	-607702988	-607702988	-607702988	-607702988	-607702988	-607702988	-607702988
neos-3004026-krka	0	0	0	0	0	0	0	0	0	0
neos-3024952-loue	126520	97446	71336	81469	97446	126520	26756	27349	26756	26756
neos-3046615-murg	1610	1610	1607	1670	1651	1651	1610	1611	1600	1600
neos-3083819-nubu	6307996	6307996	6307996	6307996	6307996	6307996	6307996	6307996	6307996	6307996
neos-3216931-puriri	151160	151160	151160	141275	151160	141275	141275	141275	71320	71320
neos-3381206-awhea	453	453	453	453	454	453	453	454	453	453
neos-3402294-bobin	0.06725	0.06725	0.06725	0.08775	0.06725	0.08175	0.06725	0.06725	0.06725	0.06725
neos-3555904-turama	-34.7	-34.7	-34.7	-34.7	-34.7	-34.7	-34.7	-34.7	-34.7	-34.7
neos-3627168-kasai	989301.6	989301.6	989301.6	990006.8	989301.6	989301.6	988585.62	988585.62	988585.62	988585.62
neos-3656078-kumeu	-11067.1	-11067.1	-11067.1	-11067.1	-11067.1	-11067.1	-13127	-13120	-13171	-13172.2
neos-3754480-nidda	13832.17	13639.97	13639.97	13832.17	13832.17	13832.17	12940.5	12940.5	12941.69	12940.5
neos-4300652-rahue	7.4454	2.8193	2.7595	6.1813	7.4454	6.1813	2.1416	2.1416	2.1416	2.1416
neos-4338804-snowy	1477	1474	1473	1482	1479	1479	1471	1473	1471	1471
neos-4387871-tavua	35.14	35.14	35.14	35.14	35.14	35.14	33.38	33.38	33.38	33.38
neos-4413714-turia	45.37	45.37	45.37	51.94	51.94	45.37	45.37	45.37	45.37	45.37
neos-4647030-tutaki	27268.48	27268.48	27268.48	27268.48	27268.48	27268.48	27265.71	27265.71	27265.71	27265.71
neos-4722843-widden	25438.44	25210.88	25210.88	27707.88	26277.44	26277.44	25009.7	25309.66	25009.7	25009.7
neos-4738912-atrato	285010500	283680800	283680100	285662900	285662900	285010500	283676100	283627957	283627957	283627957
neos-4763324-toguru	6760.735	6760.735	6760.735	6760.735	6760.735	6760.735	1613.039	1613.039	1613.039	1613.039
neos-4954672-berkel	2678506	2627560	2624735	2678506	2678506	2678506	2612710	2612710	2614881	2612710
neos-5049753-cuanza	636	636	636	636	636	600	600	600	562	562
neos-5052403-cygnet	293	293	184	293	293	293	182	182	182	182
neos-5093327-huahum	6686	6686	6686	6686	6960	6686	6260	6260	6270	6260
neos-5107597-kakapo	4248	3744	3654	4194	4293	4158	3645	3645	3645	3645
neos-5188808-nattai	0.11257	0.11257	0.11207	0.11257	0.11257	0.11257	0.11029	0.11029	0.11029	0.11029
neos-5195221-niemur	0.00406	0.00384	0.00384	0.00418	0.00418	0.00406	0.00384	0.00384	0.00384	0.00384
neos-631710	214	214	214	214	214	214	203	203	203	203
neos-662469	245034.5	184745.5	184679.5	224993.5	225044	245034.5	184380	184390	184380	184380
neos-787933	30	30	30	30	30	30	30	30	30	30
neos-827175	112.002	112.002	112.002	112.002	112.002	112.002	112.002	112.002	112.002	112.002
neos-848589	12359660	2359.54	2359.54	12359660	12359660	12359660	2358.43	2358.43	3206.12	2351.4031
neos-860300	3201	3201	3201	3201	3267	3201	3201	3201	3201	3201

Instance	SCIP	SCIP(600s)	SCIP(900s)	U-LNS	R-LNS	FT-LNS	BTBS-LNS	BTBS-LNS-F	Gurobi	Best Solution
neos-873061	122.92	122.72	122.72	125.93	122.92	123.66	113.656	113.656	113.656	113.656
neos-911970	54.76	54.76	54.76	54.83	54.83	54.76	54.76	54.76	54.76	54.76
neos-933966	2388	320	320	2389	2388	2388	318	318	318	318
neos-950242	4	4	4	4	5	4	4	4	4	4
neos-957323	-237.76	-237.76	-237.76	-234.76	-235.76	-235.76	-237.76	-237.76	-237.76	-237.76
neos-960392	0	-238	-238	0	0	-234	-238	-238	-238	-238
neos17	0.15	0.15	0.15	0.171	0.167	0.151	0.15	0.15	0.15	0.15
neos5	15	15	15	15	15	15	15	15	15	15
neos8	-3719	-3719	-3719	-3719	-3719	-3719	-3719	-3719	-3719	-3719
net12	214	214	214	214	255	214	214	214	214	214
netdiversion	4900438	4900438	263	4900438	4900438	263	244	244	242	242
nexp-150-20-8-5	300	234	231	771	771	237	231	231	239	231
ns1208400	2	2	2	2	2	2	2	2	2	2
ns1644855	-1419.67	-1524.33	-1524.33	-1486.67	-1486.67	-1419.67	-1524.33	-1524.33	-1524.33	-1524.33
ns1760995	-429.36	-429.36	-429.36	-429.36	-429.36	-429.36	-548.02	-548.02	-516.07	-549.214385
ns1830653	20622	20622	20622	23622	23622	21622	20622	20622	20622	20622
nu25-pr12	53905	53905	53905	53905	53905	53905	53905	53905	53905	53905
nursesched-medium-hint03	8080	8080	7906	8080	8080	8080	117	997	152	115
nursesched-sprint02	58	58	58	58	67	58	58	58	58	58
nw04	16862	16862	16862	16876	16876	16876	16862	16862	16862	16862
opm2-z10-s4	-29112	-33062	-33062	-26538	-26538	-26538	-33269	-33269	-33139	-33269
p200x1188c	15078	15078	15078	15078	15078	15078	15078	15078	15078	15078
pg	-8674.34	-8674.34	-8674.34	-8662.84	-8662.84	-8674.34	-8674.34	-8674.34	-8674.34	-8674.34
pg5_34	-14324.46	-14324.81	-14325.83	-14310.96	-14324.46	-14324.81	-14339.4	-14339.4	-14339.4	-14339.4
physiciansched6-2	49324	49324	49324	49324	49324	49324	49324	49324	49324	49324
piperout-08	125055	125055	125055	133707	125055	125055	125055	125055	125055	125055
piperout-27	8124	8124	8124	8124	8124	8124	8124	8124	8124	8124
pk1	11	11	11	12	12	11	11	11	11	11
proteindesign121hz512p9	2609	2609	2609	2609	2609	2609	2609	2609	1477	1473
proteindesign122trx11p8	2916	2916	2916	2916	2916	2916	1767	1762	1748	1747
qap10	340	340	340	340	340	340	340	340	340	340
radiationm18-12-05	19527	18874	18874	19853	19527	19202	17566	17569	17567	17566
radiationm40-10-02	235396	155354	155354	235396	235396	209796	155330	156939	155331	155328
rail01	-69.09	-69.09	-69.09	-69.89	-69.89	-69.09	-69.89	-69.89	-70.57	-70.57
rail507	174	174	174	178	180	175	174	174	174	174
ran14x18-disj-8	3715	3714	3712	3798	3798	3715	3712	3712	3736	3712
rd-rplusc-21	179751.8	179751.8	179751.8	179836.5	179751.8	179751.8	165395.3	165395.3	165395.3	165395.3
reblock115	-36721080	-36799530	-36800600	-36777270	-36799530	-36799530	-36800603	-36800603	-36800603	-36800603
rmatr100-p10	423	423	423	442	424	457	423	423	423	423
rmatr200-p5	5489	5489	4521	5489	5489	5489	4521	4521	4521	4521
rocl-4-11	-6020203	-6020203	-6020203	-5040303	-5040303	-6020203	-6020203	-6020203	-6020203	-6020203
rocII-5-11	-4.65	-5.66	-5.67	-4.65	-5.66	-4.65	-6.68	-6.68	-5.68	-6.68
rococoB10-011000	19988	19879	19534	19701	19879	19988	19449	19449	19497	19449
rococoC10-001000	11530	11460	11460	11576	11472	11460	11460	11460	11460	11460
roi2alpha3n4	-61.37	-63.17	-63.17	-62.41	-62.41	-63.17	-63.21	-63.21	-63.21	-63.21

Instance	SCIP	SCIP(600s)	SCIP(900s)	U-LNS	R-LNS	FT-LNS	BTBS-LNS	BTBS-LNS-F	Gurobi	Best Solution
roi5alpha10n8	-44.89	-45.15	-45.15	-44.36	-44.89	-44.89	-52.28	-52.28	-50.59	-52.3222744
roll3000	12890	12890	12890	12902	12890	12890	12890	12890	12890	12890
s100	0	0	0	0	0	0	-0.16966	-0.16966	-0.03945	-0.169723527
s250r10	-0.1437	-0.1698	-0.1708	-0.1437	-0.1437	-0.1437	-0.17178	-0.17178	-0.17178	-0.17178
satellites2-40	49	49	49	49	49	49	-19	-19	-19	-19
satellites2-60-fs	28	28	27	27	27	27	-19	-19	-19	-19
savsched1	31846.3	31846.3	31846.3	45875.9	45875.9	31846.3	3265	3265	3218	3218
sct2	-230.91	-230.99	-230.99	-230.78	-230.85	-230.91	-230.99	-230.99	-230.99	-230.99
seymour	427	425	423	427	428	427	423	423	423	423
seymour1	410.76	410.76	410.76	410.76	410.76	410.76	410.76	410.76	410.76	410.76
sing 326	7833336	7765711	7765711	7833336	7833336	7833336	7753675	7753675	7753676	7753675
sing44	8175655	8174767	8174767	8177833	8163698	8175655	8128831	8128831	8130643	8128831
snp-02-004-104	586912700	586816300	586804500	586829700	587089300	586821500	586804500	586803239	586803239	586803239
sorrell3	-11	-15	-15	-11	-15	-15	-16	-16	-16	-16
sp150x300d	69	69	69	69	69	70	69	69	69	69
sp97ar	688832800	682989900	681332100	681332100	673491900	679524100	660834000	660834000	660705646	660705646
sp98ar	537245600	533010800	532905600	533010800	533455300	532891300	529905800	529905800	529740623	529740623
splice1k1	-73	-121	-394	-121	-121	-121	-394	-394	-338	-394
square 41	26	26	26	26	21	21	15	17	16	15
square47	29	29	29	21	21	21	18	20	20	16
supportcase10	19	19	19	9	19	19	8	8	8	7
supportcase12	-7430.15	-7437.1	-7475.67	-7351.97	-7436.17	-7449.13	-7543.26	-7543.26	-7559.2419	-7559.2419
supportcase18	49	49	49	50	51	49	48	48	49	48
supportcase26	1781.003	1747.033	1747.033	1755.845	1768.264	1768.264	1755.525	1755.525	1745.124	1745.124
supportcase33	-345	-345	-345	-340	-345	-345	-345	-345	-345	-345
supportcase40	24478.86	24465.78	24465.78	24465.78	24478.86	24294.09	24256.31	24256.31	24256.31	24256.31
supportcase 42	8.0904	8.0019	7.7683	7.7678	7.7685	7.7811	7.7678	7.7713	7.7586	7.7586
supportcase6	51921.76	51921.76	51921.76	51921.76	51921.76	51906.48	51906.48	51906.48	51906.48	51906.48
supportcase7	-1132.223	-1132.223	-1132.223	-1129.28	-1132.223	-1132.223	-1132.223	-1132.223	-1132.223	-1132.223
swath1	379.07	379.07	379.07	379.07	381.51	379.07	379.07	379.07	379.07	379.07
swath3	397.76	397.76	397.76	399.33	397.76	397.76	397.76	397.76	397.76	397.76
tbfp-network	131.88	24.16	24.16	25.12	24.91	24.16	24.16	24.16	24.16	24.16
thor50dday	59310	59310	40432	40432	40432	40432	40417	40417	40417	40417
timtab1	764772	764772	764772	766166	766345	764772	764772	764772	764772	764772
tr12-30	130596	130596	130596	130608	130596	130608	130596	130596	130596	130596
traininstance2	79180	77420	77420	79180	84090	79180	72030	72950	71820	71820
traininstance6	29420	28460	28460	28290	28460	29250	28290	29250	28290	28290
trentol	25255630	18223810	18223810	18223810	7282245	15981790	5191562	5191562	5189487	5189487
triptim1	25.5	25.5	25.5	22.87	25.5	22.87	22.87	22.87	22.87	22.87
uccase12	11507.41	11507.41	11507.41	11507.42	11507.48	11507.41	11507.41	11507.41	11507.41	11507.41
uccase9	463233.3	48328.09	15347.75	48328.09	48328.09	20176.81	11052.31	11052.31	10994.13	10993.1314
uct-subprob	315	314	314	317	315	314	314	314	314	314
unitcal_7	19635620	19635558	19635558	19635558	19635558	19635558	19635558	19635558	19635558	19635558
var-smallemery-m6j6	-149.375	-149.375	-149.375	-147.031	-146.312	-149.375	-149.375	-149.375	-149.375	-149.375
wachplan	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8

[^0]: ${ }^{1}$ In this paper, we extend the meaning of backdoor variables Williams et al. (2003) to those with different solutions compared with global optimum.

[^1]: ${ }^{2}$ https://www.ecole.ai/2021/ml4co-competition/

[^2]: ${ }^{3}$ https://www.scipopt.org/

[^3]: ${ }^{4}$ https://www.ecole.ai/2021/ml4co-competition/

[^4]: ${ }^{5}$ https://miplib.zib.de/

