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Abstract

Wild Test-Time Adaptation (WTTA) is proposed
to adapt a source model to unseen domains under
extreme data scarcity and multiple shifts. Pre-
vious approaches mainly focused on sample se-
lection strategies, while overlooking the funda-
mental problem on underlying optimization. Ini-
tially, we critically analyze the widely-adopted
entropy minimization framework in WTTA and
uncover its significant limitations in noisy opti-
mization dynamics that substantially hinder adap-
tation efficiency. Through our analysis, we iden-
tify region confidence as a superior alternative to
traditional entropy, however, its direct optimiza-
tion remains computationally prohibitive for real-
time applications. In this paper, we introduce
a novel region-integrated method ReCAP that
bypasses the lengthy process. Specifically, we
propose a probabilistic region modeling scheme
that flexibly captures semantic changes in embed-
ding space. Subsequently, we develop a finite-
to-infinite asymptotic approximation that trans-
forms the intractable region confidence into a
tractable and upper-bounded proxy. These inno-
vations significantly unlock the overlooked po-
tential dynamics in local region in a concise so-
Iution. Our extensive experiments demonstrate
the consistent superiority of ReCAP over exist-
ing methods across various datasets and wild
scenarios. The source code will be available at
https://github.com/hzcar/ReCAP.

1. Introduction

Deep neural networks have exhibited remarkable success
across various visual tasks (Girshick, 2015; He et al., 2016).
However, their performance is often compromised by the
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Figure 1. (a) lustration of Mild (Wang et al., 2020) and Wild
(Niu et al., 2023) TTA settings. (b) Comparison of the adaptation
process between mild and wild scenes on the Zoom domain of
ImageNet-C dataset (Hendrycks & Dietterich, 2019). Different
colors of points represent different predicted classes of samples in
the local region. The results highlight that entropy minimization
in the wild scenario causes significant local prediction instability.

distribution shifts between training and testing data (Ben-
David et al., 2010; Koh et al., 2021; Hu et al., 2024). To
tackle this issue, Test-Time Adaptation (TTA) (Iwasawa &
Matsuo, 2021; Alfarra et al., 2024; Liang et al., 2024) has
emerged as a critical paradigm, enabling source models to
adapt to target distributions through online updates. Its dom-
inant approach involves optimizing the model to minimize
prediction entropy, thereby enhancing the model’s global
confidence in the target domain.

While TTA methods (Zhou & Levine, 2021; Wang et al.,
2022) have achieved promising results under mild condi-
tions, they show significant performance drops in wild sce-
narios involving extreme data scarcity and multiple concur-
rent shifts (Niu et al., 2023), as shown in Fig. 1(a). To
enable effective adaptation under these wild settings, recent
works focus on developing selection criteria to leverage reli-
able samples only for entropy minimization. For example,
SAR (Niu et al., 2023) excluded samples with high entropy
and, DeYO (Lee et al., 2024) filtered out samples with sen-
sitive prediction changes under image transformation.

Orthogonal to sample selection, this paper delves into a
fundamental yet overlooked challenge: the noisy optimiza-
tion dynamics introduced by typical entropy minimization.
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In wild scenes, we observe a notable instability where the
semantically similar samples within the local scope demon-
strate a hard-to-compromise prediction discrepancy in wild
scenes, as shown in Fig. 1(b). Such inconsistency leads
the underlying optimization dynamics for these samples to
become essentially conflicting. When entropy minimization
is solely based on the individual sample, this narrow atten-
tion inevitably amplifies noisy dynamics, undermining both
local consistency and overall adaptation efficiency.

Building on the above observations, it is essential to mini-
mize the bias in the optimization direction, as well as the
variance of unstable local predictions. Therefore, we pro-
pose a novel TTA strategy to enhance region confidence,
which reflects the model’s prediction certainty and consis-
tency across the local region, rather than solely relying on
biased individual predictions. We take two key statistical
measures into consideration of the objective design: the bias
term that quantifies the global entropy and the variance term
that captures the prediction divergence within the region.
These two terms work together to rectify overall optimiza-
tion dynamics and reduce prediction disparity, promoting
consistent adaptation across the entire region.

Despite the advantages of region confidence, the uncertain
region scope and highly complex computations make it
impractical for real-time testing. To overcome this, we in-
troduce a new training framework, “Region Confidence
Adaptive Proxy (ReCAP)”, which incorporates a probabilis-
tic region modeling mechanism and a highly efficient region
optimization proxy. Specifically, ReCAP introduces a prob-
abilistic representation to describe local regions as multi-
variate gaussian distribution, identifying a suitable region in
feature space. Building upon this foundation, we propose a
finite-to-infinite optimization proxy. Initially, we conduct
a quantitative analysis of region confidence statistics under
finite distribution sampling. Subsequently, we develop an
asymptotic approximation to convert the intractable bias
and variance terms into a concise, upper-bounded proxy.
These upper bounds seamlessly integrate the extensive op-
timization dynamics of infinite local samples in a straight-
forward manner. As a result, our method establishes an
efficient proxy for optimizing region confidence, replacing
entropy-based approaches to unlock significantly enhanced
adaptation efficiency.

We evaluate the effectiveness and generalizability of our
method through experiments on both ResNet (He et al.,
2016) and ViT (Dosovitskiy et al., 2020), achieving state-
of-the-art results on ImageNet-C (Hendrycks & Dietterich,
2019) with average gains of +2.0%, +1.1%, +1.9% on 15
corruption shifts in three wild scenarios.

Contributions. 1) We analyze and verify the limitation of
widely adopted entropy minimization in introducing con-
flicting dynamics in WTTA scenarios. To address this, we

propose a superior alternative as region confidence, a novel
training objective that leverages local knowledge to mitigate
noisy conflicts. 2) To ensure real-time processing capabil-
ity, we propose ReCAP, a novel training framework that
incorporates two key components: a probabilistic modeling
mechanism to flexibly capture variations in local region,
and a finite-to-infinite asymptotic analysis to provide an
efficient proxy for optimizing the intractable terms. 3) We
demonstrate that ReCAP significantly outperforms existing
WTTA methods through extensive experiments. Notably,
ReCAP can seamlessly integrate with the orthogonal sample
selection approaches in negligible computational overhead,
showcasing a comprehensive framework for WTTA.

2. Related Work

We revisit the TTA methods for further analysis and put
other related areas into the Appendix E due to space limits.

Test-Time Adaptation aims to enhance the performance on
out-of-distribution samples during inference. Depending on
whether the training process is altered, TTA methods can
be mainly divided into two groups: 1) Test-Time Training
(TTT) (Sun et al., 2020; Bartler et al., 2022; Hakim et al.,
2023; Liu et al., 2024) jointly optimizes the model on train-
ing data with both supervised and self-supervised losses,
and then conducts self-supervised training at test time. 2)
Fully Test-Time Adaptation (Fully TTA) (Boudiaf et al.,
2022; Hong et al., 2023; Zhao et al., 2023; Press et al., 2024;
Hu et al., 2025) refrains from altering the training process
and focuses solely on adapting the model during testing.
In this paper, we focus on Fully TTA, as it is more gener-
ally applicable than TTT, allowing adaptation of arbitrary
pre-trained models without access to training data.

Due to the broad applicability of TTA (Shin et al., 2022; Lin
et al., 2023; Gao et al., 2024; Karmanov et al., 2024; Wang
et al., 2024), a variety of methods have been developed.
For instance, some methods adjust the affine coefficients of
Batch Normalization layers to adapt to the target domain
(Schneider et al., 2020; Hu et al., 2021; Lim et al., 2022).
Others refine the prediction to provide a more robust train-
ing process (Zhang et al., 2022; Chen et al., 2022). Since
Tent (Wang et al., 2020) introduces entropy minimization
to enhance model confidence and reduce error rates, numer-
ous works follow this practice of entropy-based training.
Building upon Tent, SAR (Niu et al., 2023) and DeYO
(Lee et al., 2024) propose selection strategies for Wild TTA
scenes, which exclude harmful samples to enhance the accu-
racy of adaptation directions. In contrast to these selection
approaches, this paper introduces a novel strategy that re-
places entropy-based training with a framework designed to
encourage and integrate consistent optimization dynamics,
significantly enhancing adaptation efficiency.
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Figure 2. Local consistency during the entropy minimization process under mild and wild (imbalanced label shift) scenarios. Consistency
is measured by prediction discrepancies between each sample and its 256 neighboring samples. (a) shows the probability of inconsistent
predictions in neighbors. (b) records the entropy and average KL Divergence between prediction probabilities of samples and their
neighbors. (c) investigates adaptation performance when using samples with varying levels of local consistency. All experiments are
conducted on ImageNet-C of Gaussian noise with ResNet50. ‘EM’ denotes entropy minimization and ‘ReCAP’ denotes our method.

3. Local Inconsistency: A Barrier to Efficient
Adaptation

3.1. Preliminaries for Wild Test-Time Adaptation

In Test-Time Adaptation (TTA), we have a model Fy
that has been pre-trained on the source domain Ds =
{Xtrain, Yirain} and need to evaluate it on the target do-
main Dy = {Xjest, Yiest}- Here, 6 denotes the model
parameters, and X, Y denote samples and labels with the
distribution shift P(Xt'rai’ru )/t’r'ain) # P(Xtesty )/test)‘

Unlike mild scenes in (Wang et al., 2020), Wild TTA tackles
more complex environments involving extreme data scarcity
and multiple concurrent shifts, including three practical sce-
narios: 1) Limited data stream, where batch size is restricted
to 1. 2) Mixed testing domain, where target domain consists
of k different sub-domains: D7 (Xtest) = Zle II; - D;,
with II; being mixing coefficient. 3) Imbalanced label shift,
where the test label distribution is imbalanced and shifts
over time according to a function Q;(y).

To address these challenges, most existing methods (Niu
et al., 2022; 2023; Lee et al., 2024) design various selection
indicators to identify reliable samples and update € through

minimizing the entropy loss Lens:

Lent(x) = —po(z) -logpg(z) = — > _ po(x);log ps(z);,
i=1

(1
where C is the number of classes and pg(z) = Fy(z) =
(po()1,. .., pa(x)c) € RE is prediction probability on .

3.2.Exploring Entropy Minimization via Local Consistency

Entropy minimization promotes the prediction probability
to converge toward the dominant class, boosting confidence
on unlabeled data. Its effectiveness heavily relies on the lo-
cal consistency (nearby points share the similar prediction)
to extend sample-wise confidence to a regional scale (Zhou
et al., 2003; Wei et al., 2020). Intuitively, when predictions
within a local space are consistent, optimization dynamics
for individual points align with the overall direction, magni-
fying the local effects. Conversely, inconsistencies create

conflicting dynamics, introducing noise that hinders adap-
tation in the affected region. Such instability often stems
from blurry decision boundaries and is prevalent in real-
world deployments under domain shifts (Arani et al., 2022).
Hence, it is crucial to evaluate the reliability of entropy mini-
mization in preserving local consistency under wild scenes.

To assess local consistency, we record the prediction proba-
bilities of test samples and their neighbors (sampled from
the local region in feature space). From Fig. 2(a), the incon-
sistent probability converts from an unimodal distribution
near zero to a fat-tailed distribution in wild scenes, reflect-
ing a high risk of misaligned prediction within local space.
Fig. 2(b) further reveals that while the entropy value is opti-
mized to a similar level in both scenarios, the wild setting
exhibits notably larger prediction discrepancies. These find-
ings demonstrate that conventional entropy minimization
can undermine local consistency.

Additionally, we evaluate the impact of using samples with
varying levels of local consistency during adaptation, as
shown in Fig. 2(c). Remarkably, entropy minimization us-
ing samples with low entropy and low consistency (Area
2) still carries performance collapse. Conversely, training
with high consistency samples (Area 1) achieves compa-
rable adaptation performance compared to joint training
on Areas 1&2, showcasing superior adaptation efficiency.
These results suggest that entropy minimization, even when
combined with advanced selection, still hinders adaptation
efficiency as it fails to ensure prediction consistency.

3.3. From Sample Confidence to Region Confidence

Building on the above findings, it is essential to address
the bias between the optimization direction and regional
objective, while also reducing the variance of inconsistent
prediction probabilities within the local region. To this
end, we introduce a novel objective called region confidence
to replace vanilla entropy. This objective optimizes both
region-wise confidence and stability simultaneously, thereby
improving global optimization efficiency. The mathematical
definition is as follows:
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Figure 3. Overview of our ReCAP. ReCAP performs probabilistic modeling to determine local regions in the latent space (Sec. 4.1). We
further derives two closed-form upper bounds for the intractable bias and variance terms via a finite-to-infinite asymptotic approximation,
offering an efficient proxy for optimizing Region Confidence without the lengthy sampling process (Sec. 4.2 & 4.3).

Definition 3.1. (Region Confidence) Let us consider a
local region (2 of a sample x. The region confidence of z
on (2 is defined as integrals of entropy loss on (2 (Bias term)
plus the Kullback-Leibler divergence between prediction
probabilities of = and those of samples in §2 (Variance term):

%d@ZA&M@ﬁHADM@WNm@Wi

Bias term Variance term

@
where Dk 1, (pllq) = Zf’;l pilog £t denotes the Kullback-
Leibler divergence and ) denotes a trade-off coefficient.
These two terms have distinct but complementary effects.
The bias term integrates entropy loss over infinite samples
in the local region, enabling an optimization that aligns with
the overall training dynamics. The variance term penalizes
large discrepancies, enhancing local consistency and reduc-
ing the dispersion of dynamics. By combining two terms,
region confidence promotes consistent and confident predic-
tions within the region, harnessing the potential dynamics
embedded in the local space to boost adaptation efficiency.

4. Region Confidence Proxy

Despite the advantages of region confidence, there are still
two considerable challenges to optimize it: 1) Uncertain
region scope. The static regions fix the sample location,
making it difficult to determine an appropriate local scope.
2) Heavy computational burden. Both terms in Eq. 2 are
intractable, relying on extensive sampling and additional
model forwards for measurement. To tackle these issues,
we propose a new TTA method called “Region Confidence
Adaptive Proxy (ReCAP)”, which incorporates a probabilis-
tic region modeling mechanism (Sec. 4.1) and an efficient
proxy for optimizing region confidence (Sec. 4.2).

4.1. Probabilistic Region Modeling

Since different directions in feature space can imply poten-
tials of valuable semantic changes (Bengio et al., 2013; Li

et al., 2023; Yu et al., 2024a), we model local regions in
feature space to flexibly capture rich semantic information.
To avoid class mixing, we further select the latent space
extracted by the backbone, which ensures optimal class
separability in the model. Hence, we explore region con-
fidence within this latent space, and py(z) in Eq. 2 can be
replaced by the probability of its corresponding feature z:

e®i ztbi

po(z); = (softmax (Az + b)), = 3)

C b
Ej:l e b

where the subscript (-); denotes the i-th class. A € RE*4
and b € RC denote the linear and bias coefficients of the

affine layer in the classifier, respectively.

Rather than treating the local region as a static range, we
model it as a probabilistic representation following a multi-
variate Gaussian distribution. Specifically, the center of this
distribution corresponds to each feature, while the variance,
which defines the scope, is estimated using a small set of
in-distribution data. The region is determined as follows:

Q (Zt) = N (Zta T Z) ) Y= Dlag (VaI'DS (Z)) ) (4)

where € (z;) is the local region of the t-th test batch z; and
3 is the diagonal matrix of variance on a small set of source
data, e.g., 500 samples are enough for ImageNet-C dataset.
T is a hyper-parameter to control the scope.

4.2. Efficient Metric of Region Confidence

Based on the local region defined above, the computation
of two terms depends on an infinite number of potential
samples from the distribution and requires extensive sam-
pling to capture the statistical information. However, the
computational overhead and memory usage increase almost
linearly with the number of sampling, making it impractical
for real-time requirements in TTA testing. To address this
issue, we develop finite-to-infinite approximation for the
two terms, leading to a highly efficient implementation.

Taking the bias term as an example, we first consider the
case of finite sampling:
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Lemma 4.1. (Bias Term under Finite Sampling) Given N
features z1, . .., zN drawn from the local region and their
corresponding probabilities: pg(21), . ..,pe(2n). The bias
term on these features satisﬁes the following inequality:

ZN Z Sreapo(z >y
‘Cent(pe Z@ < k= 1p9 k ( 10gp6 ZJ )7
=1

)
where pg(z;) is defined in Eq. 3.

In the following, we consider the case where N grows to

N .
infinity and find that 2:=1224)i iy Bq. 10 gradually con-
verges to the expectation of the predlctlon in the local region.
For the remaining summation term 3% i=1108pa(z;):, it ac-
tually corresponds to the negative log-likelihood and can be
scaled using the following lemma:

Lemma 4.2. (Upper Bound of Negative Log-Likelihood)
Given a feature z and its local region ) which follows a
Gaussian distribution N'(u, X). The expected value of the
logarithm of the predicted probability for the i-th class sat-
isfies the following inequality:

—E.n(u5) logpe(2)i
< (©6)
<log Z (@5 —ai) pt(b; =bi)+ 3 (aj—ai)S(aj—ai) ,
j=1

where the superscript (-) T denotes the transpose operation.

Through the above two lemmas, we can further derive a
closed-form upper bound for the bias term via asymptotic
approximation. Refer to the Appendix A for missing proofs
and detailed explanations.

Proposition 4.3. (Efficient Metric of Bias Term) Given a
feature z and its local region Q2 which follows a Gaussian
distribution N (11, 3). The expectation of entropy loss over
the entire distribution has a closed-form upper bound:
c
=—-E:nex) Zpe(é)
i=1
C i z+b; + a; a;
< J J Z J log Z o b 717
= Zk;— etk z4bet+sar > a)

=1

EQ [‘Cent] % 1ng9 (2)1

.e(ai—aj)'2+§(a7‘,—%‘)E(ai—a])T L LrE.

(7
where the upper bound Lrg is called Regional Entropy.

Notably, Proposition 4.3 offers an easy-to-compute metric
without any additional sampling or model forward passes.
Instead of minimizing the exact bias term in Eq. 2, we
can optimize its upper bound to implicitly enhance overall
sample confidence within the region with minimal cost.

Meanwhile, we apply a similar mathematical framework to
derive a closed-form upper bound for the variance term.

Proposition 4.4. (Efficient Metric of Variance Term) Given
a feature z and its local region ) which follows a Gaussian

distribution N (u, 22). The expectation of Kullback-Leibler
divergence between the output probability over this distri-
bution and the probability at its center has a upper bound:

Ezn(z) KL (po(z )Ilpa(~))

¢ a;-z+b;
log Z

e al -z+b;
£ Lri,

®)

eak~z+bk eak z+bk

<
— C
o1 Zk=1

,e%(ai—aj)Z(ai—aj)

where the upper bound Ly is called Regional Instability.

This proposition also provides a theoretical result that cap-
tures local information without the need for sampling. By
combining two upper bounds, we ultimately present an effi-
cient proxy of region confidence in Eq.2.

4.3. Overall Procedure of ReCAP

Following common practices (Niu et al., 2022; Lee et al.,
2024), the loss function requires filtering and weighting
based on reliability. Unlike traditional entropy-based crite-
ria, our analysis in Sec. 3.2 shows that regional confidence
can also serve as a measure of reliability from an orthogonal
perspective. Building on this insight, we leverage Regional
Entropy L g to identify reliable samples and enhance their
optimization dynamics during adaptation. Formally, the
overall procedure is as follows:

II%iHOé(SC) ) H{£RE($)<TRE}(£RE(x) + ALR1(2)),
1 ©))
ezp(ERE(x) — ﬁo) ’

where a(x) and Iy, (2) <7} denotes the weighting and
selection term. Ly, Trg and A are hyper-parameters.

where a(z) £

5. Experiments
5.1. Experimental Setup

For a fair comparison, we follow the identical network ar-
chitectures, optimizer, and batch sizes as the Wild TTA
benchmark proposed in (Niu et al., 2023).

Datasets. We conduct our experiments on three datasets
to evaluate the robustness and generalization capability of
our method under diverse distribution shifts: 1) ImageNet-
C (Hendrycks & Dietterich, 2019), a large-scale dataset
categorized into 15 common corruption types and 5 sever-
ity levels for each type. 2) ImageNet-R (Hendrycks et al.,
2021) and 3) VisDA-2021 (Bashkirova et al., 2022), two
datasets which encompass diverse domain shifts due to vary-
ing styles and textures (e.g., sketch, cartoon), compared to
ImageNet-C to assess the efficacy for more challenging wild
test scenarios in the Appendix B.

Compared Methods. We compare our ReCAP with the
following state-of-the-art methods: DDA (Gao et al., 2022)
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Table 1. Comparisons with state-of-the-art methods on ImageNet-C (severity level 5) under Limited Batch Size = 1 regarding Accuracy
(%). We report mean performance over 3 independent runs. The best results are in bold and the second-best are in underline.

Noise Blur Weather Digital

Model+Method Gauss. Shot Impul. | Defoc. Glass Motion Zoom | Snow Frost Fog Brit. | Contr. Elastii Pixel JPEG Average

ResNet50 180 19.8 179 | 198 114 214 249 | 404 473 336 693| 36.3 186 284 523 30.6
¢ MEMO 185 205 184 | 17.1 12,6 21.8 269 | 404 470 344 69.5| 365 192 32.1 533 31.2
e DDA 424 433 423 166 19.6 219 26.0 | 357 40.1 13.7 61.2| 252 375 46.6 54.1 35.1
e Tent 25 29 25 13.5 3.6 186 17.6 | 153 23.0 14 704 422 6.2 492 538 21.5
o EATA 249 280 258 | 183 17.0 312 29.8 | 425 44.1 413 709| 442 276 46.8 554 36.5
¢ SAR 255 280 249 | 187 163 286 314 | 462 449 334 728| 443 153 47.1 56.1 35.6
e DeYO 412 443 425 | 224 247 418 219 | 548 51.6 219 73.1| 53.2 485 598 59.6 44.1
o ReCAP (Ours) | 42.5 444 429 | 194 250 422 440 |49.7 524 575 729 53.6 295 604 60.0 46.4
o ReCAP+SAR 41.7 445 40.6 | 248 258 44.0 47.0 | 56.2 53.0 52.8 734 54.6 48.8 61.7 60.7 48.6
o ReCAP+DeYO | 42.5 448 428 | 259 272 437 449 |55.8 52.8 519 73.5 548 509 61.5 60.7 48.9

Vitbase 95 6.7 82 29.0 234 339 27.1 | 159 26.5 472 547 44.1 305 445 478 29.9
¢ MEMO 21.6 173 206 | 37.1 29.6 404 344|249 347 551 64.8| 549 374 554 57.6 39.1
e DDA 41.3 41.1 40.7 | 244 272 306 269 | 183 275 34.6 50.1| 324 423 522 526 36.1
e Tent 422 1.0 433 | 524 482 555 505|165 169 664 749| 647 51.6 670 643 47.7
o EATA 30.1 246 342 | 443 39.6 484 424 |38.1 46.0 60.7 658| 61.2 467 57.8 59.5 46.6
e SAR 427 395 419 | 546 512 583 544|602 547 70.3 759 66.8 584 69.5 66.3 57.6
e DeYO 534 504 550 | 587 595 645 525 ]68.1 663 738 783| 679 689 73.8 70.8 64.1
o ReCAP (Ours) | 53.5 56.7 569 | 592 605 653 640 |69.6 672 74.1 784 646 702 744 71.5 65.7
o ReCAP+SAR 553 562 56.5 | 60.0 612 66.5 652 | 698 68.0 745 78.6 68.4 71.0 749 71.6 66.5
o ReCAP+DeYO | 544 553 555 | 59.8 61.1 652 649 | 693 67.9 739 784 67.1 70.7 744 71.0 65.9

performs diffusion-based adaptation to map the input image
back to the source domain. MEMO (Zhang et al., 2022)
minimizes marginal entropy across augmented variants of
test samples. EATA, SAR, and DeYO are selection-based
methods with distinct designs. EATA (Niu et al., 2022) com-
bines entropy-based selection with a weighting mechanism.
SAR (Niu et al., 2023) minimizes entropy using sharpness-
aware optimization. DeYO (Lee et al., 2024) employs dual
filtering based on disentangled factors.

Table 2. Comparisons with SOTA methods on ImageNet-C (sever-
ity level 5, 4) under Mixed Testing Domain.

Model+Method Level=5 Level=4 Average
ResNet50 30.6 42.7 36.7
e MEMO 31.2 43.0 37.1
e DDA 35.1 43.6 39.4
e Tent 134 20.6 17.0
e EATA 38.1 477 429
e SAR 38.3 48.6 43.5
e DeYO 38.6 50.2 44.4
o ReCAP (Ours) 41.5 51.2 46.4
e ReCAP+SAR 42.1 519 47.0
o ReCAP+DeYO 42.2 524 47.3
VitBase 29.9 429 36.4
¢ MEMO 39.1 51.3 45.2
e DDA 36.1 45.1 40.6
e Tent 16.5 64.3 40.4
e EATA 55.7 63.7 59.7
e SAR 57.1 64.9 61.0
e DeYO 59.4 66.8 63.1
® ReCAP (Ours) 59.4 67.1 63.3
o ReCAP+SAR 60.0 67.2 63.6
e ReCAP+DeYO 59.8 67.0 63.4

Implementation Details. Following the common setting in
Wild TTA (Niu et al., 2023; Lee et al., 2024), we conduct ex-
periments on ResNet50-GN (Wu & He, 2018) and ViTBase-
LN (Dosovitskiy et al., 2020) obtained from t imm (Wight-
man, 2019). For the optimizer, we use SGD, batch size of
64 (except for batch size=1), with a momentum of 0.9, and
a learning rate of 0.00025/0.001 for ResNet/ViT. For our
ReCAP, Lj and Trg in Eq. 9 is set to 0.7/1.0 x InC and
0.8/1.0 x InC (C is the number of classes) for ResNet/ViT.
The hyper-parameter 7 in Eq. 4 is 1.2 and A in Eq. 9 is 0.5
by default. For trainable parameters, according to common
practices (Wang et al., 2020), we adapt the affine parameters
of normalization layers.

5.2. Evaluation Results

Evaluation on Data Scarcity. To evaluate the effectiveness
of our method under severe data scarcity, we compare our
ReCAP with prior approaches in challenging scenarios with
limited data streams, i.e., batch size = 1. As shown in Tab.
1, ReCAP significantly improves adaptation performance,
emerging as the only method to consistently outperform the
source model across all corruption types. Notably, ReCAP
achieves superior results in 25 out of 30 cases, substantially
surpassing the previous SOTA method by +2.3% and +1.6%
on ResNet and ViT evaluations, respectively. These results
underscore the robustness of our method in the face of data
limitations and validate its effectiveness in enhancing adap-
tation efficiency for resource-constrained, low-data training.

Evaluation on Multiple Concurrent Shifts. To evaluate
the ability of our ReCAP to handle complex distribution
shifts, we compare various methods under mixed testing
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Table 3. Comparisons with state-of-the-art methods on ImageNet-C (severity level 5) under Imbalanced Label Shift.

Noise Blur Weather Digital

Model+Method Gauss. Shot Impul. | Defoc. Glass Motion Zoom | Snow Frost Fog Brit. |Contr. Elastic Pixel JPEG Average

ResNet50 179 199 179 | 197 113 213 249 | 404 474 33.6 692| 363 18.7 284 522 30.6
¢ MEMO 184 206 184 | 17.1 127 21.8 269 | 40.7 469 348 69.6| 364 192 322 534 31.3
e DDA 425 434 423 | 16,5 194 219 26.1 | 358 402 13.7 61.3| 252 373 469 543 35.1
o Tent 26 33 27 139 79 19.5 287|165 219 18 705|422 6.6 494 537 22.8
e EATA 272 285 284 | 151 167 246 255|325 322 400 665| 332 24.1 422 38.6 31.7
e SAR 340 367 362 | 21.8 209 332 324|387 456 506 729| 46.8 143 522 56.8 39.5
e DeYO 417 440 425 | 234 239 413 13.0 | 539 522 38.6 73.1| 523 46.8 593 59.1 443
e ReCAP (Ours) | 42.0 44.1 427 | 19.8 243 397 402 | 460 522 573 73.1 524 337 594 59.5 458
e ReCAP+SAR | 422 444 427 | 241 243 41.6 438 | 51.6 524 568 73.1 529 389 602 594 472
o ReCAP+DeYO| 42.5 44.5 433 | 258 26.7 433 39.1 | 542 532 593 734 53.8 492 614 60.3 48.7

Vitbase 94 67 83 29.1 234 340 270 | 158 263 474 547| 439 305 445 476 29.9
¢ MEMO 21.6 174 206 | 37.1 29.6 40.6 344|250 348 552 650|549 374 555 57.7 39.1
¢ DDA 413 413 406 | 246 274 307 269 | 182 27.7 34.8 50.0| 323 422 525 527 36.2
o Tent 327 14 346 | 544 523 582 522 | 77 120 693 76.1| 66.1 567 694 664 | 47.3
e EATA 358 348 36.8 | 45.1 473 493 478 | 56.6 555 62.1 723|216 560 64.6 63.7 50.0
¢ SAR 482 48.7 49.0 | 554 545 592 543|558 545 70.0 76.9| 66.1 622 702 66.5 59.4
e DeYO 53.0 344 488 | 576 585 633 354|674 66.0 73.0 77.7| 66.6 68.1 731 69.8 | 60.8
o ReCAP (Ours) | 53.1 385 49.6 | 573 59.0 638 60.7 | 67.8 663 729 77.7 668 68.2 73.0 70.0 63.0
e ReCAP+SAR | 53.2 427 509 | 58.0 589 638 609  67.6 66.1 73.2 77.6 67.6 683 731 69.8 634
o ReCAP+DeYO| 53.1 539 54.1 | 574 588 63.6 606 | 67.8 664 729 77.7 67.1 683 731 69.8 643

domain and imbalanced label shift. As shown in Tab. 2 & 3,
Tent and MEMO struggle with multiple concurrent shifts,
even performing worse than the no-adapt model. While se-
lection methods like SAR and DeYO perform competitively
in long-term adaptation scenarios, the limitations of entropy-
based approaches still hinder their adaptation efficiency. In
contrast, ReCAP achieves SOTA performance across nearly
all corruption types. For label shifts, ReCAP showcases
significant superiority over other methods, with an average
gain of +1.5% and +2.2% in ResNet and ViT testing, re-
spectively. These results validate the stable improvements
offered by ReCAP under multiple concurrent corruptions.

ReCAP can boost entropy-based methods. To investigate
the complementarity of our approach with prior entropy-
based methods, we test its integration with the latest SOTA
SAR and DeYO across all three wild scenarios. Through
replacing entropy minimization with region confidence op-
timization proxy, the performance combined with our ap-
proach shows obvious gains in many downstream scenes.

Table 4. Efficiency comparison of various methods. We assess TTA
approaches for processing 50,000 images in Gaussian corruption
type, using a single Nvidia RTX 4090 GPU.

Method ‘Forward Backward Other computation‘ Time

No-adapt | 50,000 N/A N/A 84s
DDA - - Diffusion model 13,277s
Tent 50,000 50,000 N/A 110s
EATA 50,000 19,608 regularizer 118s
SAR 66,418 30,488 Model updates 164s
DeYO 82,843 24,714 Data augmentation 144s
ReCAP 50,000 19,512 Eq. 9 116s

Specifically, our method consistently improves SAR with
an average gain of +11.0%, +3.1%, and +5.9% across the
three wild scenes. Similarly, DeYO achieves improvements
of +3.3%, +1.6%, and +4.0% when integrated with our
method. These significant gains validate the effectiveness
of our proposed region confidence optimization strategy,
which can seamlessly integrate with various methods to
boost adaptation performance.

5.3. Running Time Comparison

‘We measure the running time required for the adaptation of
various methods under ImageNet-C. As shown in Tab. 4,
Tent achieves the fastest speed (110s) as it only performs en-
tropy optimization on samples without additional operations.
DDA requires significantly more time since it needs to use
the source data to train additional networks. The sharpness-
aware optimization in SAR and the data augmentation in
DeYO require additional model forward or backward passes,
resulting in more time cost. Our ReCAP achieves signifi-
cantly superior performance with the second-best time cost
(just +5% compared to Tent), highlighting its efficiency.

6. Ablation Study and Visualization

In this section, without loss of generality, we conduct ab-
lation studies and visualizations on ResNet in label shift
scenes for the sake of brevity. Focusing on two pivotal
components of ReCAP, Probabilistic region modeling and
Efficient metric of region confidence, we perform various
experiments to analyze their impacts. Refer to the Appendix
C for more experiments and analysis.
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Figure 4. (a) Performance with varying strengths \ of the variance
term. (b) Performance with different ranges 7 of the local region.
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Figure 5. The t-SNE visualization of feature space in Snow corrup-
tion type after model adaptation.

6.1. Hyper-parameter Robustness

There are two important hyper-parameters in our method:
the coefficient A, which determines the trade-off of bias term
and variance term, and the coefficient 7, which controls the
scope of the local region. We conduct ablation experiments
on these two key coefficients independently:

As shown in Fig. 4(a), the different strengths of variance
term yields stable performance gains. However, when A
exceeds the optimal range, model updates may prioritize
consistency over confidence optimization, leading to worse
performance. To balance the effects of two terms in region
confidence, we set A to 0.5 by default. In Fig. 4(b), perfor-
mance improves as the region scale increases, peaking at
7 = 1.2. However, when 7 exceeds a reasonable range (e.g.,
2.5), the local region may suffer from category mixing, lead-
ing to performance degradation. Therefore, we set 7 to 1.2
by default. Within the range of 7 € [0.5, 1.5], our method
consistently outperforms prior SOTA methods, demonstrat-
ing the robustness of the region scale in our approach.

6.2. Class Separability after Adaptation

To analyze the effects of WTTA methods on feature repre-
sentations, we visualize the feature representation of differ-
ent categories after model adaptation using t-SNE (Van der
Maaten & Hinton, 2008) in Fig. 5. Compared to the latest
SOTA DeYO, our ReCAP exhibits more compact intra-class
features and more distinct inter-class separability (e.g., class
1 in orange and class 7 in grey). Since our method facilitates
a more efficient transfer process, the detrimental effects of
distribution shifts on the clustering properties of the feature
space can be quickly alleviated, yielding representations
with clear classification boundaries in testing data.

KL Divergence

0 400 800 1200 1600

s ~:.{i' ..- . e %

Figure 6. Visualization of prediction results and KL Divergence of
prediction probabilities in local region. Different colors of points
represent different predicted classes of samples within the region.

6.3. Prediction Consistency Comparison

To analyze the effect on local consistency, we sample 128
points within the local distribution of each sample to assess
fluctuations in prediction probabilities during the adapta-
tion process. As shown in Fig. 6, compared to DeYO, our
approach consistently exhibits significantly lower KL Di-
vergence values throughout the entire optimization process.
Furthermore, we visualize the prediction results during the
training process. The visualization reveals that the prior
method fails to ensure consistent predictions, whereas our
method progressively enhances consistency, effectively re-
ducing the dispersion in training dynamics.

7. Conclusion

In this paper, we propose ReCAP, a novel method designed
to capture consistent optimization dynamics that are often
disrupted by entropy minimization, offering an effective
solution for leveraging the region-integrated training. We
construct a novel training objective to replace vanilla en-
tropy and further develop an asymptotic analysis framework
to derive a more practical and flexible proxy for efficient
training in TTA. We demonstrate its consistent effectiveness
across a wide range of shift types, challenging wild scenar-
ios, and diverse model architectures. We hope that our work
will inspire future research move beyond the focus on indi-
vidual data points, exploring more effective ways to leverage
regional knowledge for robust and efficient adaptation.

Limitations. First, our evaluations focus on classification
benchmarks. While the impact of Wild TTA in other tasks
remains underexplored in existing research, it’s crucial for
understanding the capability boundary of methods. In future
work, we plan to establish a more comprehensive benchmark
across various tasks for a broader evaluation. Second, the
local region we design is domain-wise, i.e. the same shape to
all samples within a domain. However, given the differences
in class cluster boundaries or the distance to boundaries, the
region should ideally vary at the class-wise or sample-wise
level. In future work, we will explore more fine-grained
region modeling mechanisms to address this limitation.
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— Appendix————
The structure of Appendix is as follows:
* Appendix A contains all missing proofs in the main manuscript.
* Appendix B presents additional experimental results on supplementary datasets.
» Appendix C provides further ablation studies and visualizations.
» Appendix D details the datasets and the methods used for comparison.

» Appendix E expands on related work in relevant fields.

A. Theoretical Proof

Below, we will provide detailed proofs of the theoretical results presented in the methodology Sec. 4.2.

Notation. First, we recall the notation that we used in the main paper as well as this appendix: C' denotes the number of
classes. Fy denotes the model and @ denotes the model parameters. x denotes a testing sample and z € R denotes its
corresponding feature. E denotes the operation of expectation. A/(u, 3) denotes the Gaussian distribution with a mean of
v and a covariance of ¥. The subscript (-), denotes the i-th dimension, corresponding to the i-th class. A € RE*d and
b € R® denote the linear and bias coefficients of the affine layer in the classifier, with a; and b; being their i-th dimensions,

a;-z+b;

respectively. pp(z); = (softmax (Az + b)), = Zce =;=75; denotes the predicted probability of sample x belonging to
j=1¢

i-th class. Lent(x) = —po(2) - logpe(z) = — 210:1 po(z); log pp(z); denotes the prediction entropy of the sample z and
its corresponding feature z.

A.1. Two Lemma Inequalities

Subsequently, we provide the proof of two important inequalities that we need to use to derive the conclusion of Proposition
4.3 & 4.4 in the main paper.

Lemma A.1. (Bias Term under Finite Sampling) Given N features z1, ..., zxn drawn from the local region and their
corresponding probabilities: py(z1), . ..,pe(zn). The bias term on these features satisfies the following inequality:

N

z
E Lent(p@(zz \ E Zk 1p0 k § 10gp9 Z_] . (10)
=1

Proof. We begin by examining the difference between the left-hand side (LHS) and the right-hand side (RHS) of the
inequality. By merging identical logarithmic terms, we can reformulate the expression into multiple summations, which we
then simplify using the commutative property of summation:

RHS — LHS = ZZ <p6(zi)j - ;Zpe(zk)J) log po(2i);

i=1 5=

c N
:%ZZZ (po(2z:i); — po(zk);)logpa(2i);.

Since C dimensions of the probability in Eq. 11 are independent of each other, we can treat each dimension separately.
Therefore, it suffices to prove the following inequality for each dimension:

an

Z

% Z ( j —DPo (Zk‘)]‘> log pg (zi)j > 0. (12)

12
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Applying Fubini’s theorem allows us to interchange the order of summation in Eq. 12. We also interchange the indices 7 and
k to obtain the following identity:

>

i=1

N
> (pe (2i); — po (Zk)]) log po (2i) ;

%

Mz

( ); — po (z1). )10gp9 (2i); =

>
Il

1

Il
-

13)

] =

M= 1M

(;00 (2k); — po (Zi)j> log po (21); -

1k

I
-

(3

We notice that the results in the first and third lines in Eq. 13 differ slightly, with the only variation being in the logarithm of
the probability. Therefore, we replace the original expression with the average of these two terms and combine the common
terms into the form of a product of two differences:

ZN: (P0 %) = po (21) )logpe (1),

=
M=

1 l;l k;:l N N
25(22 (pe (2i); — po (Zk)j) log pp (2i) +ZZ ); — po (2i);)log po (2k),) (14)
1Z—Nk_;v i=1 k=1
=5 2o (b0 (), = po (), ) (log po (), — logpa (z),)-
i=1 k=1

Since pg (zz) —po (2 ) and log py (zl) —log pe (zk) have the same sign, the product of these two terms is non-negative:

(po (200, = po (1)) (10 pa (), —logpo (1)) > 0. (s)

Combining Eq. 14 and Eq. 15, we conclude that the inequality in Eq. 12 holds. Summing over all C' dimensions yields the
desired result:
N

Z»Cent(pe Zz < Z Zk 1p9 zk ZlogPQ Z] . (16)

=1 i=1

O

Lemma A.2. (Upper Bound of Negative Log-Likelihood) Given a feature z and its local region Q) which follows a Gaussian
distribution N (1, 3). The expected value of the logarithm of the predicted probability for the i-th class satisfies the following
inequality:

c
~E.n(us logpe(2); < log Z (@5 —ai)-pt (b —bi)+ 3 (a;—a:)S(a; —ai) " , (17)
j=1
where the superscript (-) " denotes the transpose operation.

Proof. First, we transform the left-hand side (LHS) of the inequality to eliminate the fraction, which complicates scaling.
We rewrite it as follows:

c
LHS =E, x5 logze(aj—ai)-zﬁ‘(bj—bi). (18)
j=1
Since the logarithm function is concave (i.e., log(z)” = —-5<0), we can apply Jensen’s inequality and the additivity of

expectations to derive the following result:

C

C
LHS <10gE, x5 Z elai—ai) z+(bj—bi) _ log Z EZNN(H’E)e(aj—CH)'ZJF(bj—bi)_ (19)
j=1 j=1
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Through leveraging the moment property of the Gaussian distribution E x nr(,02) eX = ert1/29” gnd noting that a;-z+b; ~
N (ai -+ by, aiEaiT), we can directly compute the expectation in Eq. 19:

C C
log Z Ezw/\/’(,u,E)e(aj_ai).Z-‘r(bj —b;) — IOg Z e(aj—ai)~u+(bj —bi)-‘r%(aj—ai)E(aj —ai)—r ) (20)
Jj=1 j=1

Combining Eq. 19 and Eq.20, we obtain the inequality that needs to be proved:

eai‘z—i-b,i c ) -
< logz e(tlj—aqz)'u+(bj—bi)-‘rg(aj—ai)il(aj—ai) ] 21)

_EZNN('M’E) log ZC ea;j ztb; °
Jj=1 Jj=1

A.2. Closed-form Upper Bound

Finally, we utilize the two inequalities derived above to obtain the crucial results in this paper, Regional Entropy, which
provides a closed-form upper bound for the expectation of the entropy loss over the local distribution, and Regional
Instability, which offers a closed-form upper bound for the expectation of the KL divergence between the prediction
probability distribution over the distribution and the original prediction at its center.

Proposition A.3. (Efficient Metric of Bias Term) Given a feature z and its local region §2 which follows a Gaussian
distribution N (11, X2). The expectation of entropy loss over the entire distribution has a closed-form upper bound:

EQ[Eent] ZNN(ZZ Zpe 1ng9 )

(22)
c iz tbitga; S a; "

C
logZe(ai*aj)‘ZJr(bz‘*bj)+%(ai*aj)2(az‘*aj)T L LrE.

<
C ap-ztbptiap S al
j=1 Zk:1 e 20k 2 i=1

where the upper bound L rg is called Regional Entropy.

Proof. First, by the definition of expectation, we can estimate the expectation of entropy using an infinite number of
L - j.i.d
sampling 21, 2, ..., 2N, ... '~ N(z,%):
N C

1
E[Lent] =— lim — Z Zpg (2Z)J log pg (21)] ) (23)

N— N
oo N T

Using Lemma A.1, we can bound the values of py (2;)
following inequality:

j ,i = 1,2,..., N in Eq. 23, by their mean. This gives us the

M@m\—lm.N§jxﬁllm 5105y (2),. (24)

N—+o00
=1 j=1

N .
Next, we use the expectation to approximate w as N approaches infinity. To ensure the integrability, we first take
the expectation and then apply the softmax operation. This can be derived from Eq. 20 as follows:

iZ+b iz +bit3a;Sa
o Esnemen Tt _ emEtbitzaida, )
pg(Z)i = = =C 1 T - (25)

C - 4l
EZNN(z ) Z _ e%;Z+b; Zj:l e%i z+bj+5a;3a;

Through the definition of the limit, we have that for any € > 0, there exists a positive integer [Ny such that for any N > N,
the following inequality holds:

N .
e TGRS 26)
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Combining Eq. 24 and Eq. 26, and substituting the specific value of pg( ) from Eq. 25, we have:

N C
E[‘Cent] - NEI—ri-loo Z Z ( + 6) 10gp9 (Zz)

1 N C eaj~z+bj+§aj2a;
=— lim —ZZ + €| lo Zi)s -
N—+4o0o N Zk ak'2+bk+%ak2a;€r gpe( 1)]

Through the discrete form of Fubini’s theorem, we can exchange the order of summation and extract terms that are
independent of the limit calculation:

1 N C eaj-z—&-bj+%(1j2ajT
— lim —E E +e|lo Zi) ;
Nortoo N (= SO ean bt garBa] g (21);

27)

(28)
c e z+b; +1 aJEa ] 1 N ~
:Z & ak.z—‘,—bk—‘,-§¢1k2a;cr Te NE)IEDO_NEInge (Zi)j ’
Through the definition of the expectation and Lemma. A.2, we have:
1 - -
N Zlogpe (21); = —Ezn(zx) logpe(2);
i=1
. 29)
< logz elai—a;)-z(bi=b;)+ 3 (ai—a;)S(ai—az) "
i=1
Combining Eq. 27, Eq. 28 and Eq. 29, we have:
C llr"Z+b»'+la/ Ea,.—r C
e%i T 2% J
E[Len:] < +¢€)lo elai—ag)z
o ;(Zle s g; (30)
Ceimb)F3(ai—a)Bai=a) " for e > ().
aking € — 0 1n Eq. 30, we obtain the inequality we need to prove 1n Eq. 22.
Taking 0in Eq. 30 btain the inequality d to p in Eq. 22 O

Proposition A.4. (Efficient Metric of Variance Term) Given a feature z and its local region ) which follows a Gaussian
distribution N'(u, 22). The expectation of Kullback-Leibler divergence between the output probability over this distribution
and the probability at its center has a upper bound:

c a;-z+b; ¢ e®i-z+bi

€ 1 T
B KL - 9 - eslaimay) Ylai-ay) & p 1
s (2,2) K L (po(2)]| po(2)) < 2 ST cain og = e rr, (31)

where the upper bound Ly is called Regional Instability.

Proof. We first transform the left-hand side of the inequality into the following form:

c
PolZ)i
LHS =E: n(:x) ZPG(Z)i log (~)
= po(2)i
; ] (32)
B o) 3 po(a)ilog( s o )
= Lz N(z,%) polz)ilog  C agap
1 po(2)i Zj:l e%i'Z+b;
Since py(z); is independent of the expectation operation, by applying Lemma A.2, we have:
c T
1
LHS < Zpg( -log | po(z Z elai—ai) z+(bj=bi)+3(aj—ai)E(aj—ai) | (33)
i=1
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Substituting the definition of py(z), we have:

C
po(2); - Z elaj—ai)z+(bj=bi)+3(a;—a:)S(a;—a;) "

Jj=1
a;-z+b; c
:406 > o(ai—ai) 24+ (b;—bi)+(a;—ai)S(a;—ai) T (34)
-z+b
Zk:l eak-z+bg =
c e(Lj'Z+bj

:Z . e%(aj—ai)z‘(aj—aq;)-r.

g e
=1 2k=

Combining Eq. 23 and Eq. 24, we obtain the inequality we need to prove in Eq. 31. O

B. Further Experiments

In this section, we broaden the scope of our investigation to evaluate the performance of our method across a variety
of complex and diverse scenarios. To this end, we conduct experiments on Wild TTA scenarios using two challenging
datasets: ImageNet-R (Hendrycks et al., 2021) and VisDA-2021 (Bashkirova et al., 2022). Both datasets present an array of
distribution shifts and variations in data styles that extend beyond the typical corruptions found in ImageNet-C (Hendrycks
& Dietterich, 2019), thereby providing a more comprehensive evaluation framework. By applying our method to these
datasets, we examine its robustness under mixed testing domain scenarios, incorporating the cases with label shifts or batch
size restricted to 1.

B.1. Wild Scenes on ImageNet-R and VisDA-2021

We conduct additional experiments on WTTA scenarios using the ImageNet-R (Hendrycks et al., 2021) and VisDA-2021
(Bashkirova et al., 2022) datasets with ResNet and ViT architectures. These datasets are characterized by diverse distribution

Limited Batch Size = 1 Imbalanced Label Shift

Model+Method ResNet  VitBase Avg ResNet  VitBase Avg Average
No-Adapt Model 40.8 43.1 42.0 40.8 43.1 42.0 42.0

e Tent (Wang et al., 2020) 43.2 43.8 43.5 424 46.8 44.6 44.1

e EATA (Niu et al., 2022) 44.1 52.5 48.3 42.1 50.5 46.3 47.3

e SAR (Niu et al., 2023) 46.7 55.5 51.1 44.3 54.4 494 50.2

e DeYO (Lee et al., 2024) 48.1 59.2 53.7 46.7 58.5 52.6 53.1

e ReCAP (Ours) 51-5i0.5 61°1i0.6 56.310‘5 49.610,2 60.4i0,2 55.0;&0.2 55.710,4

Table 5. Comparisons with state-of-the-art methods on ImageNet-R under Limited Batch Size = 1 & Imbalanced Label Shift regarding
Accuracy (%). We report mean&std over 3 independent runs. The best results are in bold.

Limited Batch Size = 1 Imbalanced Label Shift

Model+Method ResNet  VitBase Avg ResNet  VitBase Avg Average
No-Adapt Model 43.5 443 43.9 43.5 443 43.9 43.9

e Tent (Wang et al., 2020) 439 50.6 47.3 437 50.1 46.9 47.1

e EATA (Niu et al., 2022) 44.2 49.5 46.9 43.5 51.6 47.6 47.2

e SAR (Niu et al., 2023) 45.2 52.8 49.0 447 539 49.3 49.2

e DeYO (Lee et al., 2024) 45.8 58.5 52.2 45.2 57.1 51.2 51.7

e ReCAP (Ours) 48.0:|:0,2 59.25:0.9 53-6:t0.6 47-7j:0.2 58.5:|:0.6 53-1j:0.4 53.4:|:0.5

Table 6. Comparisons with state-of-the-art methods on VisDA-2021 under Limited Batch Size = 1 & Imbalanced Label Shift regarding
Accuracy (%). We report mean&std over 3 independent runs. The best results are in bold.
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shifts, including variations in data styles that extend beyond mere corruption. Consequently, for these two datasets, we
consistently consider the mixed testing domain scenarios and incorporate cases with label shifts or batch size = 1. This
rigorous testing environment ensures a comprehensive assessment of model robustness under real-world conditions. All
evaluations are performed using the same implementation details as outlined in the main paper.

Tab. 5 presents the results on ImageNet-R for batch size = 1 and imbalanced label distribution shift scenarios. Consistent
with the findings in the main paper for ImageNet-C, ReCAP demonstrates superior performance across various scenarios and
architectures on the ImageNet-R benchmark. We also compare our ReCAP method with previous state-of-the-art approaches
on the VisDA-2021 dataset. The results in Tab. 6 align with those observed on ImageNet-C and ImageNet-R, where ReCAP
similarly exhibits the best performance across all Wild settings on VisDA-2021.

We further investigate the performance of our method under different distribution shifts. As discussed in the main paper, our
ReCAP approach provides an efficient proxy to optimize region confidence, effectively reducing inconsistent predictions
and enhancing global optimization efficiency. Compared to other sample selection WTTA methods, ReCAP consistently
improves performance across various architectures and scenarios, achieving average performance gains of +2.6% and
+1.7% on ImageNet-R and VisDA-2021, respectively. The experimental results further validate the generalizability of our
method across different types of shifts, providing a more comprehensive understanding of its effectiveness.

C. Additional Ablation Study and Visualization

In Section 6 of the main paper, we provided a comprehensive validation of the hyperparameter robustness of A\ and 7, along
with visualizations that illustrate the effects of ReCAP on class separability and local consistency during the adaptation
process. In this section, we extend our analysis by further investigating the sensitivity of key parameters and the evolution of
the model adaptation, providing additional insights into the effectiveness and robustness of our method.

C.1. Sensitivity of 7z in ReCAP

The hyperparameter 7z g plays a crucial role in determining the sample selection criterion within the ReCAP framework. To
understand its impact on performance, we evaluate ReCAP under varying g values. As shown in Fig. 7, increasing Trg
leads to the inclusion of more samples in the training process, which results in improved performance. The performance
peaks at 0.8/1.0 x In(C) for ResNet/ViT, respectively, indicating an optimal balance between sample inclusion and
computational efficiency. However, when 7r g exceeds this optimal range, the sample selection mechanism becomes too
permissive, allowing for the inclusion of noisy or detrimental samples, which ultimately degrades performance. Despite this,
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Figure 7. Performance under different selection boundary 7r g for ResNet and ViT on ImageNet-C under label shifts.

Table 7. Effects of components in ReCAP. For a fair comparison, ‘+Vanilla Entropy’ uses entropy-based selection and weighting.

Component Corruption Category Average
Vanilla Entropy LprpinEq.7 LgrinEq.8 | Noise Blur Weather Digital
4 249 19.6 41.5 37.8 314
v 419 299 56.4 44.5 433
(4 (4 413 26.8 55.0 47.3 42.7
(4 (4 429 31.0 57.1 51.2 45.8
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Figure 8. The evolution of feature space under DeYO and ReCAP methods. The visualizations are conducted on ImageNet-C under labl
shift scenario with ResNet50.

ReCAP maintains a consistent performance advantage over prior state-of-the-art methods across a wide range of Trr values,
showcasing its robustness to variations in the sample selection boundary.

C.2. Effectiveness of Components in ReCAP

We investigate the impact of individual components within the ReCAP framework by comparing the full ReCAP method
with variations that omit key parts of the approach. Specifically, we compare ReCAP to a vanilla entropy minimization
strategy and systematically add back components to assess their contribution to performance. The results, as shown in Tab.
7, reveal that the region confidence achieves its best effect only when both components are included, with performance
gains of +2.5% and +3.1%, respectively. This demonstrates the complementary nature of these components in enhancing
adaptation performance. Overall, the full ReCAP method consistently delivers the best performance, further validating the
compatible effects of its key components in improving adaptation across various scenarios.

C.3. Evolution Process of Model Adaptation

To further validate the effectiveness of ReCAP in improving adaptation efficiency, we visualize the evolution of the model’s
feature space using t-SNE (Van der Maaten & Hinton, 2008). Fig. 8 illustrates the adaptation process for both ReCAP and
the latest SOTA method, DeYO. Notably, ReCAP demonstrates superior adaptation efficiency by achieving better class
separability throughout the adaptation process. At Iteration 800, ReCAP exhibits distinct, well-separated class clusters,
even outperforming DeYO'’s final state (at Iteration 1563) in terms of class boundaries. This early emergence of clear class
separability highlights the efficiency of our method in accelerating the adaptation process, ensuring that ReCAP achieves a
more structured and organized feature space compared to DeYO. These visualizations not only reinforce the advantages
of ReCAP in enhancing adaptation efficiency but also provide strong evidence of its effectiveness in real-world scenarios
where quick and robust adaptation is critical.

D. More Implementation Details
D.1. Baseline Methods

We compare ReCAP with the following SOTA methods: MEMO (Zhang et al., 2022) enhances prediction consistency
by leveraging multiple augmented copies of input samples, ensuring stable model outputs despite test data variations.
Tent (Wang et al., 2020) reduces the entropy of test samples to guide model updates, driving the model to make more
confident predictions.EATA (Niu et al., 2022) combines sample selection based on entropy with weighted adjustments
to minimize entropy specifically for the selected samples. SAR (Niu et al., 2023) introduces sharpness awareness with
entropy-based selection into the entropy minimization process, ensuring more stable adaptation in challenging wild scenarios.
DeYO (Lee et al., 2024) prioritizes samples with dominant shape information and applies a dual selection criterion to
identify more reliable samples for adaptation.

18



Beyond Entropy: Region Confidence Proxy for Wild Test-Time Adaptation

D.2. More Details on Dataset

In this paper, we primarily evaluate the out-of-distribution (OOD) generalization ability of all methods using a widely adopted
benchmark: ImageNet-C (Hendrycks & Dietterich, 2019). ImageNet-C is derived by applying a series of corruptions to
the original ImageNet (Deng et al., 2009) test set, making it a large-scale benchmark for assessing model robustness under
real-world distribution shifts. The dataset consists of 15 distinct types of corruptions, including Gaussian noise, shot noise,
impulse noise, defocus blur, glass blur, motion blur, zoom blur, snow, frost, fog, brightness, contrast, elastic transformation,
pixelation, and JPEG compression. Each corruption type is further categorized into five severity levels, with higher severity
indicating more extreme perturbations and greater distribution shifts. These corruptions simulate real-world degradations
that can occur in diverse environmental conditions, making ImageNet-C an essential tool for evaluating the resilience of
models in challenging, real-world scenarios. As illustrated in Fig. 9, these corruptions span a broad spectrum, challenging
the model to adapt to varied distortions of input images.

Additionally, we conduct experiments on two other challenging benchmarks, ImageNet-R (Hendrycks et al., 2021) and
VisDA-2021 (Bashkirova et al., 2022), to further validate the robustness and adaptability of our method across different types
of distribution shifts. ImageNet-R consists of 30,000 images representing artistic renditions of 200 classes from ImageNet,
with each image showcasing various creative transformations, such as paintings, drawings, and sculptures, sourced from
platforms like Flickr and curated through Amazon MTurk annotators. These artistic variations introduce unique challenges
in terms of visual style, texture, and color distribution, which are notably different from the original ImageNet images. As
shown in Fig. 10, these renditions demand the model to generalize beyond typical object recognition tasks and adapt to
complex, non-photorealistic representations.

VisDA-2021, on the other hand, is a more diverse dataset that encompasses a broader range of domain shifts. It includes
images from multiple sources such as ImageNet-O/R/C and ObjectNet (Barbu et al., 2019). The domain shifts in VisDA-2021
involve a variety of challenges, such as changes in artistic visual styles, textures, viewpoints, and corruptions. This diversity
in shifts ensures a comprehensive evaluation of model performance under real-world conditions with large variations in
object appearance and environmental factors.

Gaussian Noise  Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur
e aadsi s

Figure 9. Visualizations of different corruption types in ImageNet corruption benchmark, which are taken from the original paper of
ImageNet-C (Hendrycks & Dietterich, 2019).
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Cartoon

Figure 10. Visualizations of different style shift types in ImageNet-R benchmark, which are taken from the original paper of ImageNet-R
(Hendrycks et al., 2021).

E. Related Work

E.1. Consistency Learning

Consistency learning is a key paradigm in semi-supervised learning (Berthelot et al., 2019), domain adaptation (Li et al.,
2020; Araslanov & Roth, 2021), which enforces the model to produce stable and consistent predictions under different
perturbations of the input data. It can be broadly categorized into two main approaches. First, consistency can be used
as an effective criterion for identifying reliable samples (Prabhu et al., 2021; Yu et al., 2024b). This approach is based
on the understanding that consistency under image transformations serves as a dependable indicator of model errors (Wei
et al., 2020). For instance, methods like DeYO (Lee et al., 2024) select samples by evaluating the variation in pseudo-label
probabilities under different augmentations, using this as a selection indicator.

Second, consistency learning can act as a regularization technique by introducing data augmentation (Sajjadi et al., 2016).
By requiring the model to maintain consistent predictions across different augmentation variants of the same data, this
approach enhances the model’s robustness (Zhang et al., 2022; Xie et al., 2020). This technique has been widely used
in semi-supervised learning and unsupervised domain adaptation. Unlike traditional regularization methods that rely on
introducing augmented variants of the original samples, the proposed efficient proxy of Region Confidence in this work
enhances local consistency directly from the features of the original samples. This eliminates the need for a lengthy process
to obtain augmented variants, significantly improving the efficiency of optimizing consistency.
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