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Abstract

Deep graph clustering (DGC), which aims to unsu-
pervisedly separate the nodes in an attribute graph
into different clusters, has seen substantial poten-
tial in various industrial scenarios like commu-
nity detection and recommendation. However, the
real-world attribute graphs, e.g., social networks
interactions, are usually large-scale and attribute-
missing. To solve these two problems, we propose
a novel DGC method termed Complementary
Multi-View Neighborhood Differentiation (CMV-
ND), which preprocesses graph structural infor-
mation into multiple views in a complete but non-
redundant manner. First, to ensure completeness
of the structural information, we propose a re-
cursive neighborhood search that recursively ex-
plores the local structure of the graph by com-
pletely expanding node neighborhoods across dif-
ferent hop distances. Second, to eliminate the
redundancy between neighborhoods at different
hops, we introduce a neighborhood differential
strategy that ensures no overlapping nodes be-
tween the differential hop representations. Then,
we construct K + 1 complementary views from
the K differential hop representations and the
features of the target node. Last, we apply ex-
isting multi-view clustering or DGC methods to
the views. Experimental results on six widely
used graph datasets demonstrate that CMV-ND
significantly improves the performance of various
methods.
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1. Introduction
Deep graph clustering (DGC) aims to partition the nodes of
an attributed graph into distinct groups (Liu et al., 2022a;
Gong et al., 2024; Guan et al., 2025; Liu et al., 2025; Yu
et al., 2024b). Typically, DGC first embed nodes into a
latent space before performing clustering. Existing DGC
approaches commonly rely on contrastive learning (Wan
et al., 2024b; Tu et al., 2024c; Yang et al., 2024; 2023b) or
reconstruction-based models (Li et al., 2023), either max-
imizing intra-cluster similarity or reconstructing node fea-
tures to enhance clustering performance. In recent years,
DGC has achieved remarkable success in various real-world
applications, including community detection, metagenomic
binning, and recommendation systems (Xue et al., 2022).

Despite their demonstrated effectiveness, most DGC meth-
ods are evaluated under conditions that have limited prac-
tical relevance. On one hand, they are typically tested on
small-scale datasets, whereas real-world industrial and com-
mercial applications often involve graphs containing hun-
dreds of thousands or even millions of nodes (Ding et al.,
2019), making it infeasible to apply standard Graph Neural
Networks (GNNs) (Yin et al., 2024; Ju et al., 2024) directly
at such scales (Lim et al., 2021). On the other hand, the
success of existing DGC approaches hinges on the assump-
tion that all graph samples are complete, an assumption
frequently violated in practice (Huo et al., 2023). In many
real-world scenarios, data collection is subject to privacy
policies, copyright restrictions, or equipment failures, re-
sulting in partially or completely missing attributes that
significantly degrade overall clustering performance.

Although recent efforts have addressed DGC methods for
large-scale graphs and missing attributes separately, the
more realistic scenario, where both challenges coexist, re-
mains underexplored. Notably, these problems are not or-
thogonal: missing attributes in large-scale graphs often give
rise to additional complexities. In particular, large-scale
graphs tend to be more sparse. For example, the ogbn-
papers100M dataset contains around 1.11× 108 nodes and
1.6 × 109 edges, edge density of only about 2.6 × 10−4.
In such highly sparse graphs, existing attribute completion
methods become weak at inferring missing attributes, as
they primarily rely on graph structure. Moreover, to scale
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to large graphs, DGC models typically rely on subgraph
sampling for mini-batch training. This strategy inevitably
alters the original topology and further weakens the limited
structural cues, leading to degraded clustering results under
missing attributes.

As described above, the key to addressing attribute-missing
large-scale DGC lies in preserving graph structural infor-
mation as completely as possible. Inspired by the selective
attention theory (Dayan et al., 2000) in cognitive psychol-
ogy, where human memory filters out redundant information
and retains only the most critical incremental data for mem-
ory and cognition, we propose a novel paradigm called
Complementary Multi-View Neighborhood Differentiation
(CMV-ND). The core idea is to preserve graph structural
information in multiple views in a complete and non-
redundant manner. Specifically, CMV-ND consists of the
following steps. First, we perform recursive neighborhood
search (RNS) on each node to capture neighborhood infor-
mation at various hop distances. To eliminate redundancy,
we introduce a neighborhood differential strategy (NDS)
that ensures there are no overlapping nodes between the
differential representations of each hop, thereby achieving
information redundancy reduction. Finally, the resulting
K differential hop representations, along with the original
node features, form K+1 complementary views, which are
then used for the clustering.

With the above designs, CMV-ND achieves the goal of pre-
serving graph structural information in multiple views in
a complete and non-redundant manner. Unlike the tradi-
tional “aggregate-encode-predict” pipeline of GNNs, CMV-
ND does not leverage graph structure through propagation
operations. Instead, it directly stores graph structural in-
formation in the views through differential neighborhoods,
enabling it to process large-scale graph data without sam-
pling. Additionally, the complementary multi-view differen-
tial hop representations generated by CMV-ND offer high
flexibility. On one hand, they can be fused (Wan et al., 2022)
and input into any existing graph clustering method. On
the other hand, they can also be directly applied to various
methods in the multi-view clustering (MVC) (Wan et al.,
2024a;c; Yu et al., 2024a; 2023). The main contributions
are summarized as follows.

• This is the first attempt to perform DGC on large-scale
graphs with missing attributes. Unlike approaches that
focus solely on either attribute-missing graphs or large-
scale graph clustering, our method addresses a more
realistic and challenging scenario.

• We propose a novel graph clustering paradigm, CMV-
ND, which preemptively includes graph structural in-
formation in multiple views in a complete and non-
redundant manner, aiming to address the challenge of
attribute-missingness in large graphs.

• Since CMV-ND constructs multi-view representations
of nodes within the graph, it naturally bridges the gap
between graph clustering and MVC.

• We validate CMV-ND through experiments on six
widely used graph datasets, evaluating its superior-
ity, sensitivity, efficiency, robustness, and effectiveness.
Even a simple concatenation of the views generated by
CMV-ND followed by direct application of K-means
achieves superior performance compared to most exist-
ing DGC methods.

2. Relate Work
In this section we focus on the two most relevant areas to this
work—attribute-missing graph clustering and large-scale
deep graph clustering. Other related areas including deep
graph clustering, large-scale graph learning, and attribute-
missing graph completion are discussed in Appendix C for
brevity.

2.1. Large-Scale Deep Graph Clustering

Scalable GNNs specifically tailored for clustering tasks are
still limited. This is primarily because clustering tasks re-
quire the model to estimate the entire sample distribution at
once. When the node count reaches the order of hundreds of
millions, this often leads to memory shortages or excessive
runtime. Recently, only two papers have attempted to scale
DGC to large-scale graphs. Scalable self-supervised graph
clustering (S3GC) (Devvrit et al., 2022) uses lightweight
encoders and simple random walk-based samplers to en-
sure that the embedding of a node is close to its “nearby”
nodes while being far from all other nodes. Although its
effectiveness has been validated, this method separates rep-
resentation learning from clustering optimization, leading
to suboptimal overall performance. Dilation shrink net-
work (Dink-Net) (Liu et al., 2023b) proposes a new scalable
method that unifies embedding learning and clustering into
an end-to-end framework, which not only scales to large
graph data but also learns clustering-friendly representa-
tions. However, all of the above methods rely on sampling,
and as mentioned earlier, structural information is critical
for large-scale graph clustering under attribute-missing con-
ditions. Therefore, due to the disruptive effects of sampling
on graph structure, these methods cannot be directly applied
to large graphs in such scenarios.

2.2. Attribute-Missing Graph Clustering

In the domain of attribute-missing graph clustering, one rep-
resentative approach is the attribute-missing graph cluster-
ing network (AMGC) (Tu et al., 2024a). AMGC addresses
the dual challenge of clustering and attribute imputation
by adopting an iterative framework that alternates between
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the two. Specifically, it leverages the current clustering
assignments to identify clustering-enhanced nearest neigh-
bors, which are then used to refine the imputed attributes.
This feedback mechanism allows the model to progressively
enhance the feature quality of attribute-missing nodes and
align the latent representations with the underlying cluster
structure.

By integrating clustering signals into the imputation pro-
cess, AMGC achieves competitive performance. However,
the framework relies heavily on a GNN encoder, which
performs full-graph message propagation across iterations.
This reliance introduces significant memory and computa-
tional overhead, as the entire graph must be loaded into
memory and processed in a holistic fashion. As a con-
sequence, AMGC exhibits poor scalability and cannot be
directly applied to large-scale graphs with millions of nodes
and edges, where full-batch training becomes infeasible.

3. Method
3.1. Notations and Problem Definition

Basic Notations. Let G = {V, E ,H} denote an undirected
graph, where V = {vn}Nn=1 is the set of vertex with N
nodes, E is the set of edges, H ∈ RN×d is the node attribute
matrix where d denotes the feature dimension of the node.
A ∈ RN×N is the adjacency matrix that represents the
relationships between nodes. Specifically, aij = 1 if there
is an edge between nodes vi and vj , and aij = 0 otherwise.

Definition 1 (k-hop neighborhood). For a node v, its k-hop
neighborhood, denoted by N k(v), is defined as the set of
nodes whose shortest path distance to v is less than or equal
to k. Formally,N k(v) = {u ∈ V | dis(v, u) ≤ k}, where
dis(v, u) denotes the length of the shortest path between
nodes v and u. Note that N k(v) includes node v itself,
since dis(v, v) = 0.

Definition 2 (k-differential hop neighborhood). The k-
differential hop neighborhood of node v, denoted by Dk(v),
refers to the set of nodes that are exactly k hops away from
v, excluding nodes that are closer. Formally,Dk(v) = {u ∈
V | dis(v, u) = k}. This definition captures the “differ-
ence” between the k-hop neighborhood and the (k−1)-hop
neighborhood: Dk(v) = N k(v) \ N k−1(v). For exam-
ple, consider a graph with edges (v, a), (v, b), (a, c). Then:
N 1(v) = {v, a, b}, N 2(v) = {v, a, b, c}. The corre-
sponding differential hop neighborhoods are: D1(v) =
{a, b},D2(v) = {c}.

Definition 3 (attribute-missing graph). An attribute-
missing graph is a graph where certain nodes lack feature
representations. The node set V is divided into two disjoint
subsets: Vc and Vm, i.e., Vc denotes the set of attribute-

complete nodes and Vm denotes the set of attribute-missing
nodes, where V = Vc ∪ Vm and Vc ∩ Vm = ∅. Let
N c = |Vc| and Nm = |Vm|, then the total number of
nodes is N = N c +Nm.

3.2. Challenge Analyses

This section analyzes the challenges faced by DGC in the
context of large-scale graphs with missing attributes. Since
clustering is an unsupervised task, a graph can be fully de-
scribed using two sources of information, i.e., the feature
view and the structural view. Specifically, let G̃ = (Vm, E)
represent the graph, where Vm denotes the feature view and
E represents the structural view. In the case of attribute-
missing graphs, the feature view is inherently incomplete.
As a result, effectively leveraging the structural view be-
comes critical for improving clustering performance.

However, existing large-scale graph clustering paradigms
often end up further compromising the structural view.
On one hand, sampling commonly used to handle large
graphs, disrupt the graph structure. On the other hand, the
message-passing mechanism inherently introduces redun-
dancy in node representations, as information from neigh-
boring nodes is repeatedly aggregated during the process.

3.3. Proposed Solution

Based on the analysis in the previous section, the key to
addressing attribute-missing large-scale DGC lies in pre-
serving graph structural information as completely as pos-
sible. To tackle this challenge, we propose a novel graph
clustering paradigm called CMV-ND. Intuitively, CMV-ND
stores graph structural information in multiple views in a
complete and non-redundant manner through preprocessing.
CMV-ND consists primarily of two components, i.e., RNS
and NDS. We provide a detailed explanation of these com-
ponents in the following sections, including an overview of
the overall architecture shown in Figure 1.

3.3.1. RECURSIVE NEIGHBORHOOD SEARCH

The RNS aims to explore the neighborhood structure of the
graph by recursively expanding the set of nodes at increasing
hop distances. This process can be viewed as a breadth-first
traversal, where in each step the neighborhood is extended
by adding nodes that are exactly one hop away from the
current set.

The recursive expansion of the neighborhood is defined by
setting N 0(v) = v, i.e., the node itself, and recursively
applying the following relation to determine N k(v):

N k+1(v) = N k(v) +
⋃

u∈Nk(v)

N (u), (1)

whereN (u) denotes the set of neighbors of node u. At each
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Figure 1. Overall workflow of the CMV-ND algorithm. The algorithm recursively searches the neighborhood of each node, treating each
neighborhood as a distinct view. Each view contains complete nodes that do not overlap with other views.

step, new nodes are added to the neighborhood by exploring
all neighbors of the previously discovered nodes, ensuring
that nodes are processed layer by layer. The search halts
once the k-hop neighborhood is fully determined, and no
further neighbors are added.

3.3.2. NEIGHBORHOOD DIFFERENTIAL STRATEGY

Through the RNS, we obtain the k-hop neighborhoods of
nodes in a non-propagative manner. However, we observe
that the resulting neighborhoods are highly redundant, as the
(k + 1)-hop neighborhood contains all nodes in the k-hop
neighborhood. To address this redundancy, we propose a
simple but effective NDS to separate distinct neighborhood
information between different hops.

Formally, let the k-hop neighborhood of a node v be denoted
as N k(v), which includes all nodes whose shortest path
distance to v is less than or equal to k. We define the k-
differential hop neighborhood, Dk(v), as:

Dk(v) = N k(v) \ N k−1(v), (2)

which contains only the nodes whose shortest path distance
to v is exactly k. This formulation isolates the structural
information at each hop and avoids redundancy across dif-
ferent neighborhood levels.

The resulting differential hop neighborhoods,Dk(v), satisfy
the definition provided in Definition 2, where each differ-
ential hop neighborhood contains only nodes that are at an
exact distance of k from the node v, with no overlap with
nodes from the previous hop. As shown in Algorithm 1, the
full procedure of CMV-ND is presented.

3.3.3. CONSTRUCT MULTI-VIEW REPRESENTATION

To enable graph clustering, we propose to construct multi-
view node representations based on the structural granular-
ity of neighborhoods. The Recursive Neighborhood Search

(RNS) is employed to efficiently locate multi-hop neighbors,
while the Neighborhood Differential Strategy (NDS) iso-
lates the structural information at each k-differential hop.
The representation of the k -differential hop neighborhood
is computed by aggregating the features of all nodes in:

hk
v =

1

nvk

∑
u∈Dk(v)

hu, (3)

where nvk is the number of k-hop neighbors of v, hu ∈ Rd

is the feature vector of the neighboring node u, and hk
v ∈ Rd

is the aggregated representation of the k-hop neighborhood
of node v.

Next, for each node v, we define its multi-view represen-
tation as Hv ∈ R(k+1)×d, which contains the following
components:

Hv =
[
h0
v;h

1
v; . . . ;h

k
v

]
, (4)

where h0
v denotes the original feature of node v, and hk

v

is the aggregated representation of the k-differential hop
neighborhood. Therefore, the multi-view representation Hv

captures both local and progressively expanded structural
information, forming a (k+1)× d matrix.

To construct the graph-level multi-view representation, we
stack the (k + 1)-view representations of all nodes along
the view dimension. This results in a 3D tensor H ∈
R(k+1)×N×d, where N is the number of nodes and d is
the feature dimension. Formally, it is written as:

H = [H1;H2; . . . ;HN ] . (5)

We describe how the above multi-view representations are
utilized in Appendix B.

3.3.4. WHY CMV-ND REDUCES REDUNDANCY?

Let Di(v) denote the set of nodes at exactly i hops from v,
and let ∆ be the average node degree. Then we approximate
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Algorithm 1 CMV-ND
1: Input: Graph G, target node v and hop distance k
2: Output: Set of k-differential hop neighborhood Dk(v)
3: Initialize visited set: Vvisited ← ∅
4: Initialize priority queue: PQ← []
5: Push (0, v) into PQ
6: Initialize differential hop set: Dk(v)← ∅
7: while priority queue PQ is not empty do
8: Pop (hops, u) from PQ
9: if hops > k then

10: break
11: end if
12: if hops = k and u ̸= v then
13: Add node u to Dk(v)
14: end if
15: if hops < k then
16: for each neighbor w of u do
17: if w not in Vvisited then
18: Add w to Vvisited
19: Push (hops+ 1, w) into PQ
20: end if
21: end for
22: end if
23: end while
24: Return the set of differential hop neighbors Dk(v)

|Di(v)| ≈ ∆i. In a k-layer GNN, each Di(v) contributes
to all layers up to k, leading to repeated accesses. The total
number of feature accesses is:

k∑
i=1

(k − i+ 1)|Di(v)| ≈
k∑

i=1

(k − i+ 1)∆i, (6)

where ∆i denotes the number of i-hop neighbors accessed
per node. In contrast, CMV-ND accesses each differential
hop neighborhood exactly once, resulting in:

k∑
i=1

|Di(v)| ≈
k∑

i=1

∆i. (7)

We define the redundancy ratio Rred as the ratio between the
total number of feature accesses in a traditional GNN and
the number of neighbor nodes actually used in CMV-ND:

Rred =

∑k
i=1(k − i+ 1)∆i∑k

i=1 ∆
i

, (8)

The ratio is always greater than 1 for k ≥ 2 and ∆ > 1,
indicating that traditional GNNs repeatedly access neighbor
features across layers, while CMV-ND avoids such redun-
dancy. Moreover, the redundancy ratio increases with larger
k and ∆, illustrating that the inefficiency of traditional mes-
sage passing becomes more pronounced in deeper networks
or denser graphs.

3.4. Complexity Analysis

The overall time complexity of CMV-ND isO(n∆k), where
n is the number of nodes. This arises from performing
the RNS for each node, expanding its neighborhood up
to k hops. The NDS has a time complexity of O(k) per
node. Regarding memory, CMV-ND requires O(n) space to
store the visited nodes and the priority queue, leading to an
overall memory complexity of O(n). Given that large-scale
graphs are typically sparse, with ∆ ≪ n, and CMV-ND
only requires one-time preprocessing, it is highly scalable
for large graphs.

3.4.1. TIME COMPLEXITY

Recursive Neighborhood Search. The algorithm starts
from each node v and recursively expands its neighborhood
by incorporating nodes that are exactly k hops away at each
step. At each hop, the number of newly encountered nodes
is determined by the degrees of the nodes reached at the
previous hop. Specifically, the number of nodes added at
each hop is bounded by the average degree ∆i, where ∆ is
the maximum degree of any node in the graph. Thus, the
total number of nodes explored for each node v up to the
k-th hop is

∑k
i=0 ∆

i = 1+∆+∆2+ · · ·+∆k = O(∆k).
Since the search is performed for each of the n nodes in the
graph, the overall time complexity of the RNS for the entire
graph is O(n∆k).

Neighborhood Differential Strategy. The k-differential
hop neighborhood for each node is computed as Dk(v) =
N k(v) \ N k−1(v). Since set differences can be calculated
in constant time for each pair of neighborhoods, the time
complexity for this step is O(nk).

3.4.2. MEMORY COMPLEXITY

The memory complexity of CMV-ND is O(n), which arises
from maintaining two primary data structures: 1) a set of
visited nodes, which tracks the nodes that have already been
explored to avoid redundant computations and consumes
O(n) memory; 2) a priority queue used to manage the fron-
tier nodes during neighborhood expansion. Since each node
is added at most once, the memory usage of the priority
queue is also O(n).

4. Experiment
In this section, we provide a comprehensive evaluation of
our proposed CMV-ND by addressing the following ques-
tions. We do not conduct an ablation study, as CMV-ND is a
plug-and-play paradigm whose components are inherently
indivisible.

• Q1: Superiority. Does the CMV-ND paradigm out-
perform existing state-of-the-art DGC under attribute-
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Table 1. Clustering performance comparison among various DGC methods on attribute-missing graphs. The reported results are the
average clustering outcomes over ten runs on six graph datasets with 0.6 missing rate. “OOM” means out-of-memory on a 24 GB RTX
3090 GPU. ‘”w/o” and w/” denote the method without and with CMV-ND preprocessing, respectively.

Dataset CMV-ND Metric K-means DGI MVGRL ProGCL AGC-DRR CCGC S3GC AMGC DinkNet

Cora

w/o

ACC 31.55±2.23 55.74±2.13 61.26±2.31 46.54±1.20 34.92±1.23 36.35±2.89 64.53±2.54 67.26±1.65 66.54±1.65
NMI 14.98±1.32 41.37±1.34 48.43±2.57 35.10±1.13 15.63±1.67 18.44±0.68 48.30±1.47 50.23±1.32 48.23±1.57
ARI 9.12±1.15 44.25±0.72 45.74±1.94 22.86±1.08 11.51±0.58 15.34±1.63 49.32±1.31 44.32±1.43 41.54±2.21
F1 32.25±1.67 54.20±1.10 59.46±2.09 44.27±1.09 23.48±1.97 34.61±2.13 61.37±1.54 61.99±2.45 60.57±1.98

w/

ACC 45.55±2.05 61.74±1.93 66.36±1.31 51.14±1.24 48.41±1.29 43.48±1.98 70.34±1.53 69.26±1.45 72.54±1.29
NMI 21.94±1.12 48.37±1.65 67.43±2.57 43.10±1.51 31.73±1.74 27.44±1.34 53.14±1.12 54.23±1.32 54.29±0.77
ARI 25.12±1.15 51.25±1.54 56.34±2.97 44.86±1.73 21.51±0.78 29.34±1.51 51.07±2.04 48.32±1.43 51.54±0.57
F1 47.19±2.23 60.57±1.49 67.78±1.94 51.61±1.51 54.48±1.47 44.72±1.83 69.77±1.53 62.32±1.45 70.57±0.64

CiteSeer

w/o

ACC 38.27±1.33 53.60±1.31 57.20±0.58 58.85±0.93 53.40±1.05 44.80±2.13 57.61±1.51 61.23±1.87 58.34±1.27
NMI 17.95±2.28 35.54±1.24 34.12±2.40 34.96±1.21 31.47±2.85 29.81±0.56 34.59±1.40 34.02±1.27 32.87±1.41
ARI 14.32±2.91 36.78±1.67 27.62±0.78 30.11±1.26 34.48±2.26 28.07±0.57 35.14±2.12 35.47±2.48 33.96±1.22
F1 31.25±1.34 49.98±0.97 53.85±2.33 42.97±2.07 57.21±0.65 36.96±0.54 55.91±1.31 57.34±2.34 53.41±1.15

w/

ACC 49.27±1.32 60.60±1.47 57.20±0.58 62.15±0.79 57.41±1.51 53.98±1.93 67.17±1.47 65.71±2.83 68.56±1.71
NMI 29.15±2.28 36.54±0.84 36.12±1.40 39.64±1.54 36.41±2.85 38.81±0.56 39.98±1.14 38.14±1.42 40.87±1.11
ARI 27.32±1.94 43.65±1.41 29.98±1.21 36.77±1.47 37.48±1.26 34.45±0.51 40.54±1.34 39.37±1.68 41.61±1.72
F1 42.31±2.04 57.67±1.47 57.84±1.34 55.97±1.91 61.21±0.61 44.96±0.31 60.94±2.44 59.64±2.34 61.31±1.54

Amazon-Photo

w/o

ACC 28.29±1.94 38.06±1.74 37.85±1.19 35.55±2.19 70.48±2.10 54.23±0.61 69.99±0.43 72.37±0.94 70.75±1.47
NMI 14.24±1.31 28.64±1.44 22.87±1.50 28.43±2.37 59.63±1.40 39.42±1.47 63.34±1.41 66.53±1.81 64.36±1.28
ARI 4.52±1.03 18.46±2.13 10.21±1.26 25.92±1.20 52.42±1.33 36.47±1.57 59.93±1.61 60.15±1.43 58.13±1.34
F1 22.96±2.06 29.78±1.71 27.14±0.93 26.51±0.62 66.87±1.46 51.27±1.28 62.34±1.77 68.03±1.64 63.91±1.24

w/

ACC 36.29±1.25 43.26±2.74 45.45±1.39 40.51±1.19 73.18±1.04 61.23±0.98 76.41±0.53 75.37±1.67 77.75±1.34
NMI 27.13±1.31 43.64±1.34 29.87±1.42 43.43±1.37 64.43±1.07 51.32±1.74 69.43±1.47 70.53±2.81 71.54±1.63
ARI 19.12±1.97 25.46±1.83 34.21±2.26 41.27±1.27 56.42±1.23 44.71±1.45 65.43±1.37 64.37±2.43 66.51±2.71
F1 34.96±1.22 36.54±1.55 43.24±1.93 36.41±0.57 68.47±1.39 57.65±1.47 71.34±1.39 70.03±0.84 72.03±1.43

Reddit

w/o

ACC 8.45±2.15 18.88±1.79

OOM

62.23±1.62

OOM OOM

66.78±1.94

OOM

66.54±2.14
NMI 12.30±1.76 26.41±1.04 64.17±1.13 67.39±1.74 68.95±1.70
ARI 2.90±1.98 15.34±0.74 60.24±1.47 62.34±1.22 61.34±1.46
F1 6.80±2.61 17.48±0.57 47.73±1.84 56.43±1.34 57.98±2.22

w/

ACC 28.45±1.15 23.98±1.41

OOM

65.23±1.41

OOM OOM

68.98±0.74

OOM

69.31±1.84
NMI 10.40±1.36 33.45±1.47 67.17±1.31 71.64±1.37 71.95±1.01
ARI 14.91±1.45 24.35±0.84 63.24±1.97 64.37±1.17 65.41±1.62
F1 26.80±2.41 23.55±2.43 53.77±1.40 60.97±1.34 62.87±1.32

ogbn-arXiv

w/o

ACC 18.11±2.31 23.88±1.79

OOM

24.94±1.16

OOM OOM

31.98±1.97

OOM

33.74±1.47
NMI 21.32±2.54 35.41±1.34 30.37±0.98 31.07±1.27 32.74±1.24
ARI 7.67±1.45 11.34±1.94 23.03±2.61 24.71±1.31 25.43±0.97
F1 13.94±1.84 23.48±1.91 14.61±2.98 21.33±1.14 22.99±0.64

w/

ACC 34.11±1.34 27.81±1.79

OOM

29.94±1.27

OOM OOM

35.77±1.07

OOM

36.84±2.04
NMI 27.32±1.94 36.21±1.57 32.77±0.78 40.88±1.39 41.74±1.07
ARI 20.67±2.43 14.54±2.14 27.07±1.41 28.71±1.47 30.43±1.84
F1 19.94±1.84 21.86±1.91 19.81±1.98 24.83±1.31 25.91±1.67

ogbn-products

w/o

ACC 19.23±1.64 29.78±1.89

OOM

26.30±2.43

OOM OOM

30.98±1.74

OOM

31.09±0.94
NMI 22.41±0.86 40.41±2.34 41.37±1.03 41.51±2.24 42.71±0.75
ARI 5.11±1.32 10.34±2.07 12.41±1.36 18.27±1.33 18.05±1.11
F1 6.52±2.43 14.61±1.04 13.43±2.65 17.51±1.34 15.34±1.43

w/

ACC 25.21±1.42 33.54±1.64

OOM

31.30±2.43

OOM OOM

34.57±0.43

OOM

35.91±0.43
NMI 21.91±0.87 42.41±2.74 41.37±2.03 44.31±2.37 45.71±0.79
ARI 15.41±1.59 19.34±1.87 13.41±2.36 19.89±1.46 20.05±0.44
F1 14.52±1.43 22.87±1.17 18.53±1.37 22.93±1.64 23.41±1.51

missing graph?

• Q2: Sensitivity. How sensitive is CMV-ND to the
hyperparameter K, the number of views?

• Q3: Efficiency. What are the time and memory costs
of CMV-ND on large-scale graphs?

• Q4: Robustness. Although CMV-ND is designed un-
der the assumption of attribute missingness, how does
it perform in clustering when the attributes are com-
plete?

• Q5: Effectiveness. How does the performance of
using hop representations derived from propagation
methods as multi-view?

Q1–Q3 are discussed in Section 4.2–4.4. Due to space
limitations, we provide the answers to Q4 and Q5 in
Appendix D.2 and Appendix D.3.

4.1. Experimental Setup

Datasets. To evaluate clustering performance, we use six
attribute-based graph datasets, including three small graphs:
Cora, CiteSeer, and Amazon-Photo, and three large graphs:
Reddit, ogbn-arXiv, and ogbn-products.

Implementation Details. To ensure a fair comparison, we
conduct 10 experimental iterations under identical condi-
tions and report the average results. All experiments are
performed on a system equipped with a 24GB RTX 3090
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Table 2. The performance comparison of six MVC methods on
attribute-missing graphs is presented. The reported results are the
average clustering outcomes over ten runs on six graph datasets.
We use the K + 1 views obtained by CMV-ND as input. The
experiment is conducted on graphs with a 0.6 missing rate, after
leveraging FP imputation. “OOM” means the out-of-memory
failure on 24GB RTX 3090 GPU.

Dataset Metric MFLVC MCMVC DIMVC SDMVC

Cora

ACC 48.37±1.75 54.74±1.13 61.26±2.31 48.23±1.54
NMI 33.23±1.67 39.37±1.33 55.43±2.57 39.06±1.67
ARI 35.41±1.21 41.14±1.54 50.74±1.94 25.78±1.75
F1 45.29±2.19 53.20±2.31 65.46±2.09 48.51±1.89

CiteSeer

ACC 51.37±1.33 51.60±1.74 57.20±0.58 61.45±1.34
NMI 31.25±1.38 33.44±1.77 34.12±2.40 36.56±1.06
ARI 29.55±2.34 34.51±1.84 27.62±0.78 33.54±1.89
F1 47.57±1.67 45.48±1.37 53.85±2.33 44.84±1.87

Amazon
-Photo

ACC 42.49±2.25 38.06±1.74 69.85±2.19 38.65±1.35
NMI 30.23±1.51 24.44±1.31 64.87±1.50 31.51±1.46
ARI 24.12±2.17 19.31±1.64 58.21±1.26 27.41±1.45
F1 32.96±1.61 27.89±1.39 60.14±0.93 28.45±1.45

Reddit

ACC 31.55±2.11 15.54±1.69 64.23±2.13 62.31±1.93
NMI 17.20±1.76 24.31±1.32 66.35±1.71 63.25±1.04
ARI 29.91±2.45 13.41±0.54 59.23±1.46 58.26±1.26
F1 18.80±1.41 19.46±0.67 54.28±1.42 51.33±1.65

ogbn
-arXiv

ACC 47.21±1.78 25.87±1.89 28.44±1.44 27.84±0.56
NMI 29.12±1.64 24.53±1.47 27.78±1.56 25.37±0.98
ARI 19.47±1.33 14.54±1.76 28.67±0.73 24.13±1.31
F1 23.74±1.64 21.78±1.43 23.15±0.89 18.98±2.98

ogbn
-products

ACC 23.21±1.34 26.86±1.54 28.09±0.41 24.30±1.33
NMI 27.41±0.56 37.41±1.44 39.71±0.32 38.37±1.31
ARI 13.51±1.79 19.21±1.84 16.15±1.67 15.31±1.41
F1 18.42±1.75 25.96±1.79 13.58±1.75 14.79±1.46

GPU and 64GB RAM. We evaluate clustering performance
using four widely adopted metrics (Liu et al., 2023b), in-
cluding Accuracy (ACC), Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI), and F1-score (F1). No-
tably, ARI ranges from -1 to 1, while the other metrics
range from 0 to 1. All experiments are implemented using
Python 3.9 and PyTorch 1.12. Unless otherwise specified,
we set the number of propagation hops to K = 7 and the
missing attribute rate to 0.6. For fair comparison, all down-
stream clustering methods follow the default hyperparam-
eter configurations used in their original implementations.
The number of clusters is set to the ground-truth number
of classes for each dataset. Additional dataset statistics and
descriptions are provided in Table 4.

Baselines. To demonstrate the superiority of the CMV-
ND paradigm, we construct a set of clustering methods
based on CMV-ND, which includes a series of DGC and
MVC methods. The implementation details can be found
in Appendix B. Specifically, for classical clustering, we
employ K-Means, which utilizes the concept of anomaly
maximization to separate samples. DGC methods leverage
GNNs to uncover graph structures, followed by grouping
nodes into distinct clusters. These methods include DGI
(Velickovic et al., 2019), MVGRL (Hassani & Khasahmadi,
2020), ProGCL (Xia et al., 2022), AGC-DRR (Gong et al.,
2022), CCGC (Yang et al., 2023a), S3GC (Devvrit et al.,

2022), AMGC (Tu et al., 2024a), and Dink-Net (Liu et al.,
2023b). The MVC methods exploit both consistency and
complementarity in view group nodes, including MFLVC
(Xu et al., 2022c), MCMVC (Geng et al., 2024), DIMVC
(Xu et al., 2022a), and SDMVC (Xu et al., 2022b).

4.2. Clustering Performance Comparation (Q1)

Since our method does not involve feature imputation for
attribute-missing nodes, we preprocess all methods with
FP (Park et al., 2022) for feature completion to evaluate
clustering performance on attribute-missing graphs. The
clustering performance of methods based on the CMV-ND
paradigm and the comparison methods is summarized in
Tables 1 and Table 2. The missing rate design follows the
setting of the method AMGC (Tu et al., 2024a), which uses
a missing rate of 0.6. From the results, we can draw the
following conclusions.

• The previous state-of-the-art method for attribute-
missing graph clustering, AMGC, suffers from out-of-
memory (OOM) failures when applied to large graphs,
limiting its scalability. Specifically, AMGC fails to
complete training on Reddit, ogbn-arXiv, and ogbn-
products, while DinkNet combined with CMV-ND com-
pletes all runs on these datasets with stable memory
usage.

• When our CMV-ND is combined with Dink-Net, it not
only achieves superior performance on large graphs
with missing attributes but also outperforms existing
SOTA methods on smaller graphs. For example, on
Cora, it yields ACC 72.54% and F1 70.57%, surpass-
ing all baselines; on Reddit, it achieves the best ACC
69.31% and F1 62.87% among all methods that do not
encounter OOM.

• Comparing the performance of CMV-ND before and
after leveraging it to DGC shows that our approach
does not result in any negative impact under any cir-
cumstance. Across all datasets and metrics, the in-
corporation of CMV-ND either improves or maintains
performance. Notably, the average ACC improves by
13.8% on Cora and 5.8% on Amazon-Photo.

• While the MVC implementation of CMV-ND is weaker
than its DGC counterpart, all MVC methods can be
applied to large graphs. For instance, DIMVC reaches
69.85% ACC and 60.14% F1 on Amazon-Photo, and
64.23% ACC on Reddit, while maintaining feasibility
on ogbn-arXiv and ogbn-products. In the future, we
plan to design an MVC method specifically tailored for
CMV-ND to further enhance its performance in MVC.

In addition, to intuitively illustrate the clustering quality
improvements brought by CMV-ND, we employ 2D t-SNE
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DGC

CMV-ND+DGC

AMGC Dink-NetS3GCCCGCDGI MVGRL

Figure 2. T-SNE visualization of node representations generated by six methods on the Co.CS dataset.

(Van der Maaten & Hinton, 2008) to visualize the node
representations generated by six baseline algorithms before
and after leveraging our CMV-ND. As shown in Figure 2,
CMV-ND substantially improves the latent space structure:
the orange cluster becomes more compact and coherent,
while the purple cluster exhibits fewer cross-class intrusions.

4.3. Hyper-Parameters Analysis (Q2)

To further evaluate the performance of CMV-ND, we specif-
ically investigate the effect of the hyperparameter K on
model results. The experimental setup follows Section 4.2,
where clustering performance is evaluated using the state-
of-the-art combination of CMV-ND and Dink-Net.

Figure 3. The hyperparameter analysis of CMV-ND, where the
horizontal axis denotes the number of differential hops K. Notably,
K = 0 corresponds to the original Dink-Net without CMV-ND.

As shown in Figure 3, We observe that for all datasets,
the method is insensitive to the value of K. In all cases,
CMV-ND consistently provides a positive gain to Dink-Net.
Moreover, the highest performance is achieved when K
is around (5, 7). Larger values of K do not significantly
degrade performance, indicating that our CMV-ND does not
suffer from the over-smoothing issue commonly observed
in traditional graph propagation paradigms.

4.4. Time and Memory Consumption (Q3)

This section is used to answer the time and memory costs of
CMV-ND. Since CMV-ND is a preprocessing step, we do not
compare it with other methods but instead report its time and
memory usage. As shown in Table 3, the preprocessing time
and memory consumption of CMV-ND vary across datasets.
The costs remain acceptable across all datasets. Since CMV-
ND is a preprocessing step, it only needs to be executed
once, making its computational overhead negligible in the
long run. Moreover, CMV-ND can be performed on CPUs
and memory without relying on GPU resources, ensuring
its scalability to large-scale graphs.

Table 3. Preprocessing time and memory consumption of CMV-ND
on different datasets. The table reports the time cost (in seconds)
and CPU memory consumption (in MB) for the preprocessing step
of CMV-ND.

Dataset Time Cost (s) CPU Memory Cost (MB)
Cora 5.585 84.59

CiteSeer 3.311 183.3
Amazon-Photo 13.445 247.67

Reddit 189.34 446.64
ogbn-arXiv 144.23 270.46

ogbn-products 274.57 672.84

5. Conclusion and Future Work
In this work, we propose a novel paradigm, CMV-ND, to
address the challenges of large-scale graph clustering un-
der attribute-missing conditions. Our analysis reveals that
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the key to tackling this challenge lies in effectively lever-
aging the graph structure. Unlike the typical “aggregate-
encode-predict” pipeline of GNNs, CMV-ND does not rely
on propagation operations to utilize the graph structure. In-
stead, it directly encodes graph structure information into
the views through differential neighborhoods, enabling effi-
cient handling of large-scale graph data without the need for
sampling. Experimental results on six widely-used graph
datasets demonstrate that CMV-ND significantly improves
the clustering performance of various DGC methods on
attribute-missing graphs. Moreover, CMV-ND naturally
bridges the gap between DGC and MVC. While the method
achieves promising results, its current implementation in the
MVC setting shows slightly weaker performance. As part
of future work, we aim to develop MVC methods tailored
for CMV-ND, with the goal of further enhancing its adapt-
ability, model complexity, and performance in real-world
applications.
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Appendix of “Scalable Attribute-Missing Graph Clustering
via Neighborhood Differentiation”

A. Notations & Datasets
The basic notations are outlined in Table 4. These notations provide a formal foundation for our study, ensuring clarity and
consistency in the subsequent discussions.

Table 4. The notations.
Notation Meaning

A Adjacency Matrix
V Set of Vertex
E Set of Edges
d Feature Dimension
G̃ Attribute-missing Graph
∆ Maximum degree of any node in the graph
Dk(v) k-differential hop neighborhood
N k(v) k-hop neighborhood
S
(k)
a State at the k-th hop

H ∈ RN×d Node Attribute Matrix
hk(v) ∈ Rd k-differential hop neighborhood representation

Table 5 summarizes the key statistics of the six datasets used in this study. These datasets span a wide range of sizes and
characteristics. For instance, CiteSeer includes 3,327 nodes and 4,614 edges, while Amazon-Photo consists of 7,650 nodes
and 119,081 edges. Furthermore, the graph densities also differ significantly. As an example, Cora has a density of 0.07%,
whereas Amazon-Photo exhibits a density of 0.25%.

Table 5. Statistics of six datasets.

Dataset Type # Nodes # Edges # Feature Dims # Classes
Cora Citation Graph 2,708 5,278 1,433 7

CiteSeer Citation Graph 3,327 4,614 3,703 6
Amazon-Photo Co-Purchase Graph 7,650 119,081 745 8

ogbn-arxiv Citation Graph 169,343 1,166,243 128 40
Reddit Social Network Graph 232,965 23,213,838 602 41

ogbn-products Co-Purchase Graph 2,449,029 61,859,140 100 47

B. How to Leverage Multi-View Representations for Graph Clustering?
In this section, we demonstrate how multi-view representations can be applied to two graph clustering methods: DGC and
MVC. We focus on proving the consistency and complementarity of multi-view representations in these tasks.

DGC. The multi-view representations can be directly fused to form a unified node representation for clustering. For
example, we concatenate the feature vectors from each view, resulting in a combined representation. Let h(k)

v be the feature
vector for node v in the k-hop neighborhood. The fused representation hfuse

v can be written as:
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hfuse
v = concat(h(0)

v ,h(1)
v , . . . ,h(k)

v ), (9)

where h
(i)
v ∈ Rd represents the feature vector of node v in the i-th neighborhood view. This fused representation can then

be directly used as input for DGC.

MVC. MVC algorithms typically rely on the assumption that different views provide complementary information while
maintaining consistency. Our multi-view representations naturally satisfy these conditions.

• Consistency. The consistency of the multi-view representation is grounded in the homophily assumption, which posits
that nodes with similar attributes tend to be connected in the graph. Given this assumption, nodes that are close in the
graph, i.e., those with similar local structures, will have similar representations across different views. Formally, for
nodes v and u, if Dk(v) = Dk(u) for some k, then the multi-view representations h(i)

v and h
(i)
u across different views

i will be close:
∥h(i)

v − h(i)
u ∥2 ≈ 0 for alli ∈ {0, 1, . . . , k}. (10)

• Complementarity. The complementarity of the multi-view representations arises from two key aspects. On the one hand,
different hops neighborhood, such as the k-hop neighborhood, capture node relationships from different perspectives.
Specifically, the k-differential hop neighborhood captures local structural information, while the (k + 1)-differential
hop neighborhood helps understand the global relationships between nodes. On the other hand, Eq. (2) ensures that
each neighborhood view contributes non-overlapping information to the multi-view representation, thereby providing
complementary insights into the position of the node within the graph.

C. Additional Relate Work
C.1. Deep Graph Clustering

This section discusses recent advances in deep graph clustering (DGC) for attribute-complete graphs, where existing methods
can be broadly categorized into two main paradigms: (1) graph autoencoder-based methods (reconstruction models) and (2)
contrastive Learning-based methods.

Graph Autoencoder-based Methods. To effectively utilize both graph structure and node attributes, many existing
approaches employ autoencoder-based architectures (Tu et al., 2024b; 2025b). These methods typically use GNNs to encode
node representations, aiming to reconstruct the graph structure via the inner product of the learned embeddings. Notable
examples include graph auto-encoder (GAE) and variational graph auto-encoder (VGAE), which learn low-dimensional
representations to capture latent graph structures, thereby improving clustering performance. Building upon the autoencoder
framework, graph adversarial learning approaches (GALA) (Park et al., 2019), adversarially regularized graph autoencoder
(ARGA), and adversarially regularized variational graph autoencoder (ARVGA) (Pan et al., 2019) introduce Laplacian
sharpening and generative adversarial learning to enhance representation learning. Further extending this paradigm, deep
fusion clustering network (DFCN) (Tu et al., 2021) integrates representations learned from both autoencoders and graph
autoencoders for more robust consensus representation learning.

Contrastive Learning-based Methods. Contrastive learning has emerged as a powerful paradigm for graph clustering.
deep graph infomax (DGI) (Velickovic et al., 2019) improves embedding representations by maximizing mutual information
between global and local graph structures. InfoGraph (Sun et al., 2019) extends DGI by learning unsupervised representations
at the graph level. Multi-view graph representation Learning (MVGRL) (Hassani & Khasahmadi, 2020) further enhances
these ideas by leveraging node diffusion and contrasting node representations across augmented graph views. More recent
advancements include graph contrastive learning and enhanced (GRACE) (Zhu et al., 2020), which maximizes node
embedding consistency between corrupted graph views. Bootstrapped graph latents (BGRL) (Thakoor et al., 2022) builds
upon the bootstrap your own latent (BYOL) (Grill et al., 2020) framework, introducing self-supervised learning to the graph
domain while eliminating the need for negative sampling. Moreover, Liu et al. (2022a; 2024a) design the dual correlation
reduction strategy in the DCRN model to alleviate the representation collapse problem. Besides, HSAN (Liu et al., 2023d)
mines the hard sample pairs via the dynamic weighting strategy. And SCGC (Liu et al., 2023c) simplifies the graph
augmentation with parameter-unshared Siamese encoders and embedding disturbance. Despite effectiveness, contrastive
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learning-based methods are computationally expensive due to their reliance on graph augmentations and complex objective
functions, making them difficult to scale to large datasets. A scalable method termed Dink-Net (Liu et al., 2023b) is proposed
to solve this problem. Besides, (Liu et al., 2023a) is presented to solve the problem of the unknown number of clusters
via reinforcement learning. Benefiting from these, deep graph clustering methods are applied to practical applications like
recommendations (Liu et al., 2024b;c). More details can be found in this survey paper (Liu et al., 2022b).

C.2. Large-Scale Graph Learning

In recent years, numerous scalable GNN methods have been developed to address the challenges of large-scale graph
data processing. Graph sample and aggregation (GraphSAGE) (Hamilton et al., 2017) introduces an inductive learning
framework that efficiently processes large graphs by sampling and aggregating node features from local neighborhoods.
Fast graph convolutional network (FastGCN) (Chen et al., 2018) further improves efficiency by performing node sampling
independently at each layer, effectively reducing computational and memory overhead. To enhance scalability, simplified
graph convolution (SGC) (Wu et al., 2019) decouples transformation and propagation in graph convolutional network (GCN),
significantly improving computational efficiency. GraphSaint (Zeng et al., 2019) and clustered graph convolutional network
(Cluster-GCN) (Chiang et al., 2019) maintain graph structure integrity through subgraph sampling, enabling more effective
large-scale graph processing.

C.3. Attribute-Missing Graph Completion

The objective of attribute-missing graph completion is to enable effective learning on graphs where node attributes are
partially or entirely missing. This problem has garnered significant attention, and existing approaches can be broadly
categorized into two paradigms: (1) gcn-based models and (2) feature completion methods.

GCN-based Models. GCN-based models aim to directly encode graphs with missing attributes while simultaneously
restoring the missing information during the learning process. These methods typically leverage GCNs to handle incomplete
attribute data (Tu et al., 2022; 2025a). GCN for Missing Features (GCNMF) (Taguchi et al., 2021) introduces a Gaussian
Mixture Model (GMM) to adjust GCNs for attribute-missing graphs. Similarly, Partial GNN (PaGNN) (Jiang & Zhang,
2020) employs a partial message passing (MP) scheme that integrates known features during propagation. While these
methods perform well in semi-supervised settings, they rely on label supervision to implicitly restore missing attributes. As
a result, they are not applicable to unsupervised tasks such as graph clustering, where label information is unavailable.

Feature Completion Methods. Feature completion methods restore missing node attributes as a preprocessing step,
without relying on GCN encoding or parameterized learning. To eliminate label dependence, methods such as feature
propagation (FP) (Park et al., 2022) and pseudo-confidence feature imputation (PCFI) (Um et al., 2023) leverage the graph
topology to reconstruct missing attributes. FP propagates known features across the graph to impute missing values, while
PCFI introduces channel confidence, assigning reliability scores to inferred features to improve robustness.

C.4. Graph Structure Learning and Search Methods

Graph structure learning (GSL) and structure refinement have emerged as promising directions for enhancing graph learning
tasks by optimizing or inferring the adjacency matrix. Recent works such as SUBLIME (Liu et al., 2022c), NodeFormer
(Wu et al., 2022), and VIB-GSL (Sun et al., 2022) explore this avenue from different perspectives. SUBLIME adopts
an unsupervised self-supervised contrastive learning framework to jointly learn graph structure and node embeddings
for clustering tasks. NodeFormer designs a kernerlized gumbel-softmax operator for edge prediction, enabling structure
refinement through pairwise node correlations. VIB-GSL introduces variational inference and information bottleneck
principles to learn robust and generalizable graph structures.

Despite their effectiveness, these methods generally assume access to complete node attribute information to either guide
similarity estimation or construct informative graph structures. In contrast, our work specifically targets the attribute-missing
setting, where many nodes lack features entirely. Under such conditions, structure learning methods depending on pairwise
feature similarity or global embedding consistency become unreliable or even infeasible.
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D. Additional Experimental Result
D.1. Comparison with SAT, ITR, and SVGA

To further verify the generality and compatibility of CMV-ND, we conduct additional experiments comparing it with three
representative methods tailored for attribute-missing graphs: SAT (Chen et al., 2020), ITR (Tu et al., 2022), and SVGA (Yoo
et al., 2022). We evaluate their original performance as well as their variants enhanced with CMV-ND as a preprocessing
step. As shown in Table 6, CMV-ND consistently improves clustering performance across all three base methods on Cora,
Citeseer, and Amazon-Photo under 60% feature missing rate. In particular, notable gains are observed in both clustering
accuracy and stability.

Table 6. Clustering performance (%) of SAT, ITR, and SVGA on attribute-missing graphs. All experiments use a 0.6 missing rate.
Reported results are averages over 10 runs. OOM denotes out-of-memory failure on large-scale graphs.

Dataset Metric SAT SAT + CMV-ND ITR ITR + CMV-ND SVGA SVGA + CMV-ND

Cora

ACC 54.31±1.07 63.42±1.11 39.87±1.12 52.13±1.04 45.56±1.94 55.41±1.29
NMI 34.05±0.84 46.95±1.06 22.86±0.85 30.47±0.94 29.94±2.32 39.36±1.27
ARI 27.14±0.92 41.68±1.14 8.41±0.63 18.87±1.08 18.72±1.62 29.34±1.41
F1 53.68±0.91 62.08±1.17 35.07±1.03 46.07±1.02 41.84±3.41 51.49±1.52

Citeseer

ACC 38.44±0.82 48.79±1.09 36.54±1.24 45.68±1.28 48.41±1.54 57.29±1.22
NMI 14.01±0.35 25.85±0.98 19.58±1.11 29.01±1.32 26.91±1.38 33.14±1.47
ARI 12.24±1.06 20.81±1.21 7.03±0.85 14.67±1.15 17.03±1.16 24.53±1.28
F1 36.89±0.76 47.41±1.06 34.64±1.29 46.32±1.19 45.41±2.02 56.88±1.35

Amazon-Photo

ACC 42.31±0.92 53.05±1.17 36.27±1.16 47.69±1.14 60.74±1.61 69.02±1.31
NMI 48.13±0.65 56.23±0.93 40.18±1.22 49.58±1.25 64.89±0.82 72.19±1.14
ARI 30.11±0.98 40.66±1.02 22.31±1.03 34.12±1.18 34.96±1.21 49.21±1.36
F1 36.04±0.94 45.32±1.09 31.75±1.02 42.41±1.23 52.91±2.98 63.82±1.29

D.2. Clustering Performance on Attribute-Complete Graphs (Q4)

To evaluate the robustness of our paradigm, we also conduct experiments on attribute-complete graphs. As shown in
Table 7, the results indicate that when node attributes are fully available, DGC methods incorporating CMV-ND exhibit
nearly identical performance to their original counterparts. This suggests that our approach is non-intrusive and does
not negatively impact clustering in attribute-complete settings. An exciting finding is that the classic K-means algorithm
exhibits a remarkable performance improvement, even surpassing many DGC methods. We hypothesize that this is because
conventional K-means does not leverage graph structures, whereas our CMV-ND effectively compensates for this limitation.

D.3. Evaluating Multi-View Representations Derived from Propagation-Based Hops (Q5)

The proposed CMV-ND constructs multiple views for graph clustering by leveraging differential hop representations.
Naturally, one might consider whether graph propagation paradigms can also generate multi-view representations in a
similar manner. Specifically, we construct views using the multiplication of the adjacency matrix and the feature matrix:

Formally, given a graph G = (V, E) with adjacency matrix A and node attribute matrix H, we derive a series of views by
leveraging the propagation operation iteratively:

H(k) = AH(k−1), with H(0) = H, (11)

where H(k) represents the propagated node features after k iterations. In this setup, each H(k) can be regarded as a separate
view, akin to the multi-view representations generated by CMV-ND.

Subsequently, we utilize these views as inputs to various DGC methods and evaluate their clustering performance. The
experimental setup follows that of Section 4.2 to ensure consistency. As shown in Table 8, compared to the baseline results
in Table 1, the propagation-based multi-view representations generally outperform the original DGC methods but remain
inferior to CMV-ND. This observation further substantiates the effectiveness of modeling node hop representations as
multi-views.
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Table 7. Clustering performance comparison among various DGC methods on attribute-missing graphs. The reported results are the
average clustering outcomes over ten runs on six graph datasets. “OOM” means out-of-memory on a 24 GB RTX 3090 GPU. ‘”w/o” and
w/” denote the method without and with CMV-ND preprocessing, respectively.

Dataset CMV-ND Metric K-means DGI MVGRL ProGCL AGC-DRR S3GC DinkNet

Cora

w/o

ACC 33.78±1.38 72.61±1.03 75.43±1.44 56.96±1.25 40.67±1.60 74.29±0.83 76.17±1.90
NMI 14.89±0.70 57.16±1.64 60.75±1.49 40.84±0.90 18.63±1.71 58.78±1.60 60.25±1.63
ARI 8.58±1.80 51.15±0.98 56.77±0.71 30.58±1.75 14.76±0.98 54.37±1.46 59.43±1.73
F1 30.29±0.86 69.17±1.80 71.66±1.05 45.74±1.47 31.15±1.95 72.24±1.94 70.50±1.87

w/

ACC 74.00±1.46 71.69±1.24 75.31±1.59 57.07±1.38 41.25±1.89 73.98±0.84 75.86±1.93
NMI 57.10±0.73 57.76±1.59 61.42±1.24 40.64±1.19 18.93±1.97 58.65±1.67 59.96±1.48
ARI 52.31±0.41 51.33±0.85 56.20±0.82 29.98±2.01 14.12±1.27 53.98±1.35 59.68±1.58
F1 72.50±1.33 69.22±2.04 72.48±1.08 44.86±1.49 31.45±1.70 72.21±2.15 70.95±1.94

CiteSeer

w/o

ACC 39.33±0.76 68.74±0.98 62.67±1.22 66.10±1.99 68.38±0.79 68.74±1.78 68.30±1.17
NMI 16.76±1.81 43.46±1.44 40.62±1.40 39.43±0.88 43.14±1.63 44.27±0.95 43.95±1.39
ARI 13.35±1.33 44.41±0.92 34.31±1.00 36.22±1.74 45.40±1.30 44.94±1.41 45.99±1.26
F1 36.25±1.17 64.45±0.96 59.63±1.75 57.75±1.75 64.87±0.75 64.40±1.35 65.12±1.42

w/

ACC 68.11±1.27 68.04±1.08 63.00±1.07 65.90±1.88 68.18±0.73 67.92±1.87 67.82±1.08
NMI 43.45±0.67 43.07±1.30 41.17±1.22 40.12±0.80 42.77±1.53 43.58±1.12 44.12±1.52
ARI 43.47±0.35 44.63±0.94 34.82±1.09 36.29±1.57 45.40±1.17 45.30±1.34 46.35±1.29
F1 59.06±0.66 63.83±0.77 59.39±1.92 58.62±1.81 64.91±0.82 63.90±1.51 64.98±1.56

Amazon-Photo

w/o

ACC 27.25±1.06 43.11±1.97 40.99±1.94 51.58±0.87 76.78±1.23 75.16±1.55 79.72±1.84
NMI 13.43±1.96 33.51±1.62 30.27±0.93 39.66±1.76 66.74±1.25 59.78±1.84 74.56±1.94
ARI 5.60±0.89 21.97±1.77 18.63±1.70 34.29±0.80 60.26±0.94 56.17±1.68 67.43±0.71
F1 23.84±0.84 35.14±1.96 32.83±1.11 31.91±1.01 71.03±1.59 72.95±1.56 71.80±1.41

w/

ACC 67.21±1.74 42.82±1.81 41.42±1.98 51.42±0.79 76.10±1.19 75.51±1.67 79.39±1.97
NMI 41.43±1.43 34.47±1.87 31.15±1.01 39.26±1.70 66.55±1.16 58.91±1.79 74.89±1.88
ARI 37.39±1.21 21.51±1.89 19.05±1.80 34.27±0.78 61.14±1.21 55.55±1.55 67.58±0.83
F1 45.93±1.34 35.37±1.94 31.86±1.17 31.23±1.26 70.43±1.77 73.25±1.56 71.45±1.48

Reddit

w/o

ACC 9.06±1.74 32.20±1.66

OOM

65.39±0.94

OOM

73.70±1.08 72.90±0.84
NMI 11.55±0.91 46.76±1.10 70.30±1.73 80.67±1.13 76.79±1.13
ARI 3.06±1.75 17.26±1.36 63.32±1.75 74.53±1.01 70.39±1.05
F1 6.78±0.72 19.05±1.17 51.39±1.78 56.11±1.10 66.93±1.86

w/

ACC 37.59±0.97 31.71±1.77

OOM

65.83±0.98

OOM

74.66±1.29 72.64±0.92
NMI 21.04±1.09 47.69±0.97 69.42±1.81 80.66±0.87 76.25±1.24
ARI 25.10±1.50 17.51±1.51 63.08±2.02 74.52±1.18 70.12±1.10
F1 36.80±2.13 18.76±1.13 50.67±1.48 55.29±0.84 66.74±1.94

ogbn-arXiv

w/o

ACC 18.15±1.00 22.39±1.88

OOM

29.72±1.17

OOM

35.02±1.94 41.57±1.78
NMI 22.29±1.70 70.51±1.16 37.47±1.99 46.36±1.86 42.67±0.78
ARI 7.48±0.92 63.60±0.84 25.78±1.05 26.80±1.30 34.35±1.39
F1 13.07±1.66 51.39±0.91 21.74±1.57 23.04±1.22 26.10±1.00

w/

ACC 44.59±1.63 23.07±1.72

OOM

29.25±1.37

OOM

34.55±1.85 41.72±1.64
NMI 36.90±1.95 69.91±0.86 37.61±2.02 46.39±2.05 42.39±0.92
ARI 30.41±2.37 63.83±0.92 25.14±1.21 27.13±1.51 34.78±1.51
F1 30.31±1.56 51.10±1.14 21.77±1.50 23.61±1.14 26.49±1.12

ogbn-products

w/o

ACC 18.24±1.76 31.56±1.30

OOM

35.39±1.07

OOM

40.07±1.02 39.01±1.59
NMI 22.24±1.41 41.14±0.92 46.50±0.90 53.65±1.17 48.77±1.16
ARI 7.39±1.34 22.13±1.33 19.91±1.75 22.81±0.71 20.95±1.30
F1 12.77±1.47 22.98±1.65 21.57±1.90 25.01±1.02 24.14±1.03

w/

ACC 36.07±1.30 31.41±1.08

OOM

35.41±1.17

OOM

39.68±0.94 39.30±1.63
NMI 31.45±0.59 41.22±0.77 46.24±0.62 53.78±1.10 48.55±1.19
ARI 24.50±1.61 21.26±1.06 20.13±1.55 22.52±0.98 20.84±1.33
F1 24.81±1.46 23.45±1.70 20.69±2.07 24.25±0.99 24.45±1.08

E. URLs of Used Datasets
This section gives the URLs of the used benchmark datasets in Table5.

• Cora: https://docs.dgl.ai/#CoraGraphDataset

• CiteSeer: https://docs.dgl.ai/#dgl.data.CiteseerGraphDataset

• Amazon-Photo: https://docs.dgl.ai/#dgl.data.AmazonCoBuyPhotoDataset

• ogbn-arxiv: https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

• Reddit: https://docs.dgl.ai/#dgl.data.RedditDataset

• ogbn-products: https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
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Table 8. Clustering performance of various DGC methods using multi-view representations derived from propagation-based hops. The
reported results are averaged over ten runs on six benchmark datasets. All experiments are conducted under a 60% missing rate. “OOM”
indicates an out-of-memory failure on a 24GB RTX 3090 GPU.

Dataset Metric K-means DGI MVGRL ProGCL AGC-DRR CCGC S3GC AMGC Dink-Net

Cora

ACC 41.58 ± 2.45 59.49 ± 2.39 63.88 ± 2.53 47.92 ± 1.36 44.73 ± 1.57 39.57 ± 3.18 66.38 ± 2.64 68.05 ± 1.87 68.91 ± 1.65
NMI 18.78 ± 1.32 44.90 ± 1.69 64.53 ± 2.85 40.35 ± 1.43 28.45 ± 1.94 24.19 ± 1.36 49.37 ± 1.62 52.57 ± 1.48 51.57 ± 1.57
ARI 21.40 ± 1.27 48.16 ± 1.26 53.79 ± 2.79 41.82 ± 1.71 18.38 ± 1.04 25.48 ± 1.77 50.02 ± 2.31 46.75 ± 1.68 48.56 ± 2.21
F1 44.87 ± 2.05 58.47 ± 1.44 65.78 ± 2.37 48.47 ± 1.53 50.75 ± 2.05 41.22 ± 2.30 66.80 ± 1.77 62.90 ± 2.57 67.27 ± 1.98

CiteSeer

ACC 46.54 ± 1.49 56.93 ± 1.67 57.33 ± 0.68 59.57 ± 0.96 54.05 ± 1.63 51.88 ± 2.21 64.31 ± 1.53 63.41 ± 2.70 65.28 ± 1.55
NMI 25.25 ± 2.50 35.87 ± 1.49 34.55 ± 2.52 35.65 ± 1.55 32.84 ± 3.01 36.69 ± 0.77 37.85 ± 1.40 35.80 ± 1.31 37.69 ± 1.41
ARI 25.10 ± 3.01 40.16 ± 1.73 28.13 ± 1.43 33.61 ± 1.48 34.74 ± 2.51 31.93 ± 0.67 37.23 ± 2.27 37.67 ± 2.57 38.17 ± 1.59
F1 39.46 ± 2.13 55.65 ± 1.44 55.31 ± 2.42 53.67 ± 2.23 57.50 ± 0.74 42.30 ± 0.70 58.57 ± 2.20 58.21 ± 2.59 58.53 ± 1.41

Amazon-Photo

ACC 33.26 ± 1.99 39.53 ± 2.67 38.66 ± 1.45 38.03 ± 2.34 70.83 ± 2.26 55.22 ± 1.14 73.73 ± 0.53 72.85 ± 1.71 75.41 ± 1.47
NMI 23.80 ± 1.54 40.94 ± 1.61 26.90 ± 1.77 40.19 ± 2.62 62.24 ± 1.68 47.77 ± 1.95 67.08 ± 1.50 69.00 ± 2.88 68.63 ± 1.81
ARI 16.30 ± 1.73 22.10 ± 2.26 31.64 ± 2.02 37.86 ± 1.49 54.16 ± 1.51 42.05 ± 1.73 61.78 ± 1.69 63.31 ± 2.65 63.69 ± 2.86
F1 31.63 ± 2.34 34.45 ± 1.83 39.78 ± 1.95 33.69 ± 0.80 67.82 ± 1.69 54.09 ± 1.42 67.55 ± 1.87 69.00 ± 1.86 68.85 ± 1.45

Reddit

ACC 24.76 ± 2.26 21.58 ± 2.03

OOM

62.83 ± 1.78

OOM OOM

67.54 ± 2.18

OOM

66.96 ± 2.14
NMI 10.82 ± 1.95 30.32 ± 1.39 64.46 ± 1.40 68.84 ± 2.00 68.95 ± 1.70
ARI 12.90 ± 2.24 21.87 ± 1.02 61.07 ± 2.17 62.90 ± 1.38 61.78 ± 1.76
F1 23.98 ± 2.83 21.14 ± 2.39 50.96 ± 2.13 56.98 ± 1.43 60.53 ± 2.22

ogbn-arXiv

ACC 30.62 ± 2.51 29.16 ± 2.01

OOM

26.80 ± 1.18

OOM OOM

33.72 ± 2.04

OOM

34.37 ± 2.14
NMI 23.38 ± 2.81 35.66 ± 1.87 30.48 ± 1.19 37.16 ± 1.34 38.78 ± 1.24
ARI 17.96 ± 2.25 12.24 ± 2.23 23.89 ± 2.71 24.90 ± 1.44 26.68 ± 1.86
F1 15.94 ± 2.05 23.58 ± 2.11 16.17 ± 3.12 21.59 ± 1.49 22.99 ± 1.77

ogbn-products

ACC 21.55 ± 1.72 30.21 ± 1.96

OOM

28.42 ± 2.70

OOM OOM

32.33 ± 1.94

OOM

32.17 ± 0.94
NMI 22.72 ± 1.09 40.83 ± 2.55 41.90 ± 1.80 41.80 ± 2.49 42.71 ± 0.75
ARI 12.45 ± 1.47 15.78 ± 2.29 12.56 ± 2.29 18.64 ± 1.49 18.05 ± 1.11
F1 12.03 ± 2.60 17.38 ± 1.07 15.50 ± 2.88 19.14 ± 1.60 19.67 ± 1.69

F. PyTorch-Style Pseudocode
We provide the PyTorch-style pseudocode for our CMV-ND in Algorithm 2.
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Algorithm 2 PyTorch-style pseudocode for CMV-ND

1 # diff_k_hop_priority_queue: Finds differential k-hop neighbors using a
priority queue.

2 # graph: adjacency list representation of the graph.
3 # node: target node.
4 # k: hop distance.
5
6 def diff_k_hop_priority_queue(graph, node, k):
7 visited = set() # Track visited nodes
8 pq = [] # Priority queue storing (hop count, node)
9 heappush(pq, (0, node)) # Push the starting node into the queue

10 diff_hop = set() # Set to store differential k-hop nodes
11
12 while pq:
13 hops, curr_node = heappop(pq) # Process nodes based on hop count

priority
14 if hops > k:
15 break
16 if hops == k and curr_node != node: # Only record differential nodes
17 diff_hop.add(curr_node)
18 if hops < k: # Expand neighborhood
19 for neighbor in graph[curr_node]:
20 if neighbor not in visited:
21 visited.add(neighbor)
22 heappush(pq, (hops + 1, neighbor))
23 return diff_hop
24
25 # compute_augmented_features: Computes differential hop mean features.
26 # graph: adjacency list representation of the graph.
27 # node_features: feature matrix of nodes.
28 # max_hop: maximum hop distance to consider.
29
30 def compute_augmented_features(graph, node_features, max_hop):
31 num_nodes, feature_dim = node_features.shape
32 augmented_features = torch.zeros((max_hop + 1, num_nodes, feature_dim)) #

Initialize augmented feature tensor
33
34 # Step 1: Assign original features as 0-hop representations
35 augmented_features[0] = node_features
36
37 # Step 2: Compute differential hop features from 1-hop to max_hop
38 for node in range(num_nodes): # Iterate over all nodes
39 for k in range(1, max_hop + 1): # Iterate over each hop distance
40 # Get differential k-hop neighborhood
41 diff_hop = diff_k_hop_priority_queue(graph, node, k)
42 if len(diff_hop) > 0:
43 # Compute mean feature of neighboring nodes
44 neighbor_features = node_features[list(diff_hop)]
45 hop_mean = neighbor_features.mean(dim=0)
46 else:
47 # If the differential neighborhood is empty, use a zero vector
48 hop_mean = torch.zeros(feature_dim)
49 # Store hop_mean in the corresponding position
50 augmented_features[k, node] = hop_mean
51
52 return augmented_features
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