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ABSTRACT

A fundamental objective in class-incremental learning is to strike a balance be-
tween stability and plasticity, where models should be both stable enough to retain
knowledge learnt from previously seen classes, and plastic enough to learn con-
cepts from new classes. While previous works demonstrate strong performance
on class-incremental benchmarks, it is not clear whether their success comes from
the models being stable, plastic, or a mixture of both. In this paper we aim to
shed light on how effectively recent class-incremental learning algorithms address
the stability-plasticity trade-off. We establish analytical tools that help measure
the stability and plasticity feature representations, and employ such tools to in-
vestigate models trained with various class-incremental algorithms on large-scale
class-incremental benchmarks. Surprisingly, we find that the majority of class-
incremental algorithms heavily favor stability over plasticity, to the extent that the
feature extractor of a model trained on the initial set of classes is no less effective
than that of the final incremental model. Our observations not only inspire two sim-
ple algorithms that highlight the importance of analyzing feature representations,
but also suggest that class-incremental research, in general, should strive for better
feature representation learning.

1 INTRODUCTION

Despite the unprecedented success of deep learning (Vaswani et al., 2017; Radford et al., 2021;
Redmon et al., 2016; Noh et al., 2015), most of deep neural networks are optimized for static
use cases. However, real-world problems often require adaptivity to incoming data (Kirkpatrick
et al., 2017), changes in training environments, and domain shifts (Ben-David et al., 2010; Ganin &
Lempitsky, 2015). Thus, researchers have been actively working on model adaptation techniques,
and have proposed a variety of continual learning approaches so far.

A naïve approach for continual learning is to simply fine-tune a model. However, such a solution is
rather ineffective due to a phenomenon known as catastrophic forgetting, which arises as a result of
high plasticity of a model; parameters important for the old tasks are updated to better fit the new
data. On the flip side, enforcing model stability introduces its own set of limitations, mainly the
lack of adaptivity to new data. Thus, we encounter the stability-plasticity dilemma: how can we
balance stability and plasticity such that the model is able to learn new concepts while maintaining
old ones? Finding an optimal balance these two opposing forces is a core challenge of continual
learning research, and has been the main focus of many previous works (Rebuffi et al., 2017; Liu
et al., 2021; Douillard et al., 2020; Kang et al., 2022; Yan et al., 2021).

We conduct an in-depth study of recent works in continual learning, specifically concentrating on
class-incremental learning (CIL)—a subfield of continual learning—where new sets of classes arrive
in an online fashion. We are motivated by the lack of systematic analyses in the field of CIL,
which hampers our understanding of how effectively the existing algorithms balance stability and
plasticity. Moreover, works that do perform analyses usually focus on the classifier, e.g., classifier
bias (Ahn et al., 2021; Hou et al., 2019), rather than the intermediate feature representations. However,
investigating the stability and plasticity in the feature level is just as important, if not more, because
the capability to learn robust representations by making full use of the model’s capacity is critical to
maximize the potential of CIL algorithms.
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To measure plasticity, we retrain the classification layer of CIL models at various incremental stages
and investigate how effectively the feature representations learn new concepts. We then investigate
stability by measuring feature similarity through Centered Kernel Alignment (CKA) (Kornblith et al.,
2019; Cortes et al., 2012) and by visualizing the feature distribution shift using t-SNE (van der
Maaten & Hinton, 2008). Suprisingly, and possibly concerningly, our analyses show that the majority
of CIL models accumulate little new knowledge in their feature representations across incremental
stages. In fact, most of the analyzed CIL algorithms effectively alleviate catastrophic forgetting, but
only do so by heavily overlooking model plasticity in favor of high stability. Finally, we introduce
two simple algorithms based on our analyses. The first is an extension of Dynamically Expandable
Representations (DER) (Yan et al., 2021), which demonstrates how our analyses may be used to
improve the efficiency and efficacy CIL algorithms. The second is an exploitative method, which can
be interpreted as an extreme case of DER (Yan et al., 2021) in terms of architectural design, and is
similar to GDumb (Prabhu et al., 2020) in terms of motivation, since it raises significant concerns
regarding the current state of CIL research.

We summarize our contributions below:

• We design and conduct analytical experiments to better understand the balance between
stability and plasticity in the feature representations of continually learned models.

• We discover that the feature representations of most CIL models are subject to only trivial
variations as the model is trained on incremental data. This seems to be a direct result
of overweighing the importance of stability over plasticity, and thus, implies a failure to
balance stability and plasticity.

• We present two simple CIL algorithms inspired by the results of our analyses. One is an
exploit that highlights a major flaw in the current state of CIL research, while the other
improves the efficiency and accuracy of an existing algorithm.

2 PRELIMINARIES

To set the stage for our paper, we first describe the task setting, notations, and related works.

2.1 TASK SETTING AND NOTATIONS

In continual learning, a neural network model is trained on data that arrives incrementally. More
formally, after first training a model with an initial dataset D0, additional datasets {Di}Ni=1 arrive
in N sequential steps to further update the model. We collectively denote all incremental datasets
as {Di}Ni=0 for an N -step setting. In class-incremental learning (CIL), Di corresponds to a set of
classes, Ci, and collectively, {Ci}Ni=0, where all classes are unique such that | ∪N

i=0 Ci| =
∑N

i=0 |Ci|.
For convenience, we refer to the entire dataset as D, and all classes as C. Furthermore, we note that
D may refer to either the training dataset or the validation dataset, depending on the context.

We denote the model trained on D0 as M0, and, by extension, define the set of all models trained
incrementally on {Di}Ni=1 as {Mi}Ni=0. Note that Mi (i > 0) is first initialized with the parameters
of Mi−1, and trained on Di, and optionally with a small exemplar set sampled from {Di}i−1

i=0. In this
paper, the model architecture is based on a convolutional neural network, which at any given stage i,
is composed of a feature extractor, Fi, and classifier, Gi:

Mi = Gi ◦ Fi. (1)

The classifier typically refers to the single linear layer, although in some CIL algorithms, the classifier
is implemented as a cosine classifier1.

Experimental setting To better analyze feature representations in CIL settings, we conduct all
experiments on a large-scale dataset—ImageNet-1K (Russakovsky et al., 2015) (ImageNet, for short)—
with a ResNet-18 (He et al., 2016) architecture, which is the most widely-adopted architecture for
ImageNet experiments. There exist two common settings for ImageNet: 1) B500-5step setting, where
|C0| = 500, N = 5, and |Ci| = 100,∀i > 0, and 2) B500-10step setting, where |C0| = 500, N = 10,

1The details of the cosine classifier are described in the Appendix C.1.
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and |Ci>0| = 50,∀i > 0. For both settings, each previously seen class stores 20 exemplars in the
memory for subsequent stages. Due to space constraints, we present analyses with the B500-5step
setting in our main paper, and B500-10step in the Appendix G.

2.2 OVERVIEW OF COMPARED METHODS

Naive The naive method is based on simple fine-tuning, where Mi+1 is initialized by a fully trained
Mi. Only the cross-entropy loss is used to train the network, and exemplars are sampled randomly
from each previously observed class.

iCARL (Rebuffi et al., 2017) Incremental Classifier and Representation Learning (iCARL) employs
a simple distillation loss alongside the cross-entropy loss. iCARL also proposes herding for exemplar
selection, and discovers that nearest-mean-of-exemplars classification can be beneficial for CIL.

LUCIR (Hou et al., 2019) Learning a Unified Classifier Incrementally via Rebalancing (LUCIR)
proposes to use the cosine classifier for feature rebalancing purposes, and alleviates the adverse
effects of classifier imbalance by using the cosine between features of the student and teacher models.

AANet (Liu et al., 2021) Adaptive Aggregation Networks (AANet) employs a two branch residual
block, where one branch corresponds to a stable (fixed) block, while the other corresponds to a plastic
block. The architecture proposed in AANet is a drop-in replacement for existing algorithms, and in
this paper, we use AANet + LUCIR. For simplicity, we denote AANet + LUCIR simply as AANet.

SSIL (Ahn et al., 2021) Separated Softmax for Incremental Learning (SSIL) identifies that classifi-
cation score bias may be caused by data imbalance, and trains the model with a separated softmax
output layer, alongside task-wise knowledge distillation.

POD (Douillard et al., 2020) Pooled Outputs Distillation (POD) employs various types of pooling
(such as channel, width, height, and GAP pooling) to enforce constraints on feature representations
between old and new models.

AFC (Kang et al., 2022) Adaptive Feature Consolidation (AFC) first estimates the importance of
each channel in the feature map based on the expected loss increase, and then adaptively restricts the
updates to the important channels while leaving non-important channels relatively unconstrained.

DER (Yan et al., 2021) Dynamical Expandable Representations (DER) adds a new feature extractor
at each incremental stage, and leaves feature extractors trained on older data fixed while the new
feature extractor is updated. For any stage i, the outputs of all i+1 feature extractors are concatenated
before passing through the classification layer.

3 RE-EVALUATING CONTINUALLY LEARNED FEATURE REPRESENTATIONS

The lack of model stability and/or plasticity often leads to weak performance, where a suboptimal
feature extractor is unable to extract meaningful features. Likewise, a suboptimal classifier (e.g.,
due to classifier bias) further exacerbates this issue. While previous works have extensively studied
classifier bias (Ahn et al., 2021; Hou et al., 2019; Zhao et al., 2020), the effects of unbalanced
stability/plasticity in the feature extractor has been relatively less explored, and will be the focus of
this section.

3.1 FINETUNING THE CLASSIFIER ON FULL DATA

We begin by examining how the performance of feature extractors transforms over incremental steps.
To eliminate any negative effects of an incrementally trained classifier, we freeze the feature extractors
{F0, ...,FN} and train a new classifier for each of the feature extractors on the full ImageNet training
data, D. In essence, we assume that the classifier is optimal (well-fitted to any given feature extractor),
and evaluate the strength of a feature extractor by using the accuracy on the ImageNet validation set
as a proxy measure. While retraining the classifier on D is a breach of CIL protocol, we emphasize
that the goal of this experiment is purely to analyze CIL models from the perspective of feature
representations.

From here on out, we let M′
j = G′ ◦ Fj denote the combination of the feature extractor from stage

j and the retrained classifier, G′. In other words, Fj is trained incrementally on {Di}ji=0, while G′
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Figure 1: Accuracy on the ImageNet validation set after fine-tuning the classification layer of each
incremental model (B500-5step setting) with the full ImageNet training data. The black line indicates
an Oracle model trained on {500, 600, ..., 1000} classes, and serves as a point of reference for the
performance on non-incremental settings.

replaces the original classifier Gj and is retrained on the entire dataset D with a frozen Fj . Note that,
while Gj outputs logits for

∑j
i=0 |Ci| classes, G′ outputs |C|-dimensional logits. We then define an

accuracy metric, Acc(M′
j ,Di), as the accuracy of model M′

j on the validation dataset, Di.

Full ImageNet accuracies Figure 1 illustrates the full validation accuracy on ImageNet,
Acc(M′

j ,D), for all the selected algorithms. Each subplot visualizes the progression of ImageNet
accuracy for the specified CIL algorithm, as well as the Oracle model (black line), M′ Oracle

j , whose
feature extractor is trained on ∪j

i=0Di all at once, before the classifier is retrained on D. In essence, the
feature extractor of M′ Oracle

j represents how an ideal incremental model would perform if important
features from previous tasks are not forgotten and new concepts are well learned.

The plots in Figure 1 generally exhibit three distinct trends. First, we observe the plots for the Naive
and iCARL models, and notice that the accuracy significantly declines after the initial stage, i.e.,
Acc(M′

0,D) > Acc(M′
j ,D), ∀j > 0. These results imply that both the Naive and iCARL models

are subject to severe catastrophic forgetting, and their ability to extract useful features deteriorates
significantly from the first incremental stage. Next, we investigate the subplots for LUCIR, POD,
SSIL, AANet, and AFC. Surprisingly, for these five distinct CIL algorithms, the accuracy remains
relatively unchanged across all incremental stages, despite a few minor variations. Unlike the Oracle
model, which shows an almost linear increase in accuracy at each incremental step, these five CIL
algorithms maintain the same accuracy, i.e., Acc(M′

0,D) ≈ Acc(M′
j ,D), ∀j > 0. Thus, for these 5

algorithms, the feature extractor of M′
5 is not particularly stronger than the feature extractor of M′

j ,
∀j < 5. Lastly, DER exhibits increasing accuracy with each incremental stage, indicating that the
feature extractor does indeed learn new features.

ImageNet subset accuracies Diving deeper, we investigate how the accuracy of each subset in Di

changes at each incremental stage. In Figure 2, each subplot illustrates the change in Acc(M′
j ,Di),

∀j, and a fixed i. For the sake of better visibility, we omit POD and SSIL and present the full plot in
Figure A of the Appendix.

First, we focus on the gray curve, which represents the Naive model. We fully expect the Naive
model to suffer from catastrophic forgetting, and overfit to the most recently seen set of classes.
Indeed, the results corroborate our intuition; in the first plot, D0, we see that Acc(M′

j ,D0), ∀j > 0,
performs significantly worse compared to Acc(M′

0,D0). Furthermore, in the subplots for D1 ∼ D5,

4



Under review as a conference paper at ICLR 2023

50

60

70

500 600 700 800 900 1K

50

60

70

500 600 700 800 900 1K 500 600 700 800 900 1K

Oracle Naive iCARL DER AFC AANet LUCIR
Number of Classes Seen by Feature Extractor

Su
bs

et
 A

cc
ur

ac
y 

(%
)

Figure 2: B500-5step subset accuracies. For the sake of visibility, we leave out SSIL and POD from
these plots. We highlight the region for model M′

j in plot Ci, where i = j.

we notice that Acc(M′
j ,Di) peaks when j = i. Then, Acc(M′

j ,Di) drops off again when j > i.
These observations all lead to the same conclusion that the naive model suffers from catastrophic
forgetting due to the high plasticity of the naive model. A similar pattern is observed for the models
trained by iCARL.

Next, we shift our focus to the black curve, which represents the Oracle model. We notice that for
D0, Acc(M′

j ,D0) does not drop, but rather increases as more classes are added, which suggests that
knowledge from Ci, ∀i > 0, can in fact be beneficial for performance on C0. Moreover, Acc(M′

j ,Di)
significantly increases when j = i. Altogether, the trends exhibited by the Oracle model represent
what an ideal CIL model would demonstrate.

Finally, we look at the cyan, orange, and green curves, which represent AFC, AANet, and LUCIR,
respectively. For AFC, Acc(M′

j ,Di) is mostly unchanged ∀i, j, suggesting that the feature extractor
is mostly static across all incremental stages. While this implies that no forgetting occurs, it appears
to come at the cost of learning little to no new concepts. Meanwhile, both AANet and LUCIR are
mostly stable, but also appear to be slightly more plastic than AFC and POD; they are quick to forget
newly learned concepts since Acc(M′

j ,Di) peaks when j = i but drops back down when j > i.

4 ARE INCREMENTALLY LEARNED REPRESENTATIONS TOO STATIC?

Our analysis in Section 3 suggests that a majority of the compared CIL algorithms appear to have high
feature stability at the cost of low plasticity. This raises a question: do feature representations remain
static across incremental models? In hopes to shed light on this issue, we measure the similarity of
intermediate activations and visualize the feature distribution shifts between incremental models.

4.1 CENTERED KERNEL ALIGNMENT (CKA)

To analyze intermediate representations of a neural network, we employ Centered Kernel Alignment
(CKA) (Kornblith et al., 2019; Cortes et al., 2012), which enables us to quantify the similarity between
pairs of neural network representations. CKA has been used to study the effects of increasing depth
and width in a network (Nguyen et al., 2021), and to understand how the representations of Vision
Transformers (Dosovitskiy et al., 2021) differ from those of convolutional neural networks (Raghu
et al., 2021).

Let us consider two arbitrary layers of a neural network with z1 and z2 output features, respectively.
Given the same set of b inputs, we denote the activation matrices as X ∈ Rb×z1 and Y ∈ Rb×z2 . The
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b × b Gram matrices K = XXT and L = YYT are first centered to obtain K′ and L′, which are
then used to compute the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005) as

HSIC(K,L) =
vec(K′) · vec(L′)

(b− 1)2
, (2)

where vec(·) denotes the vectorization operation. Finally, CKA normalizes HSIC as follows:

CKA(X,Y) =
HSIC(XXT,YYT)√

HSIC(XXT,XXT)HSIC(YYT,YYT)
. (3)

As shown above, CKA is a normalized measure of how similar the b× b Gram matrices K and L are.
Given that the Gram matrices themselves reflect the feature relationships among pairs of samples,
CKA can be interpreted as a similarity of relationships among the features in X and Y.

In terms of comparing feature representations, we highlight three properties that make CKA stand
out. First, CKA is invariant to permutations in the columns of X and Y, i.e., CKA(X,Y) =
CKA(XP,Y), where P ∈ {0, 1}z1×z1 is an arbitrary permutation matrix. Second, it is invariant to
isotropic scaling of X and Y. Finally, it can be used to compare activations of layers with different
output feature dimensions, e.g., different layers of the same network, or even layers across different
architectures. Such advantages make CKA suitable for analyzing the feature representations of
class-incremental models, which we outline in the upcoming section.

4.2 MEASURING THE SIMILARITY OF INCREMENTAL FEATURE REPRESENTATIONS WITH CKA

Given a pair of incremental feature extractors F0 and FN trained by a select class-incremental
algorithm (where N = 5 for the B500-5step setting and N = 10 for the B500-10step setting),
we extract a set of features {Xl}Ll=0 from F0, where Xl denotes feature output of layer l. After
extracting a corresponding set of features {Yl}Ll=0 from FN , we compute CKA1 between Xl and
Yl, ∀l ∈ {0, . . . , L}, using the ImageNet D0 validation subset. We extract activations from all
convolution, Batch Normalization (Ioffe & Szegedy, 2015), and Residual Block layers of ResNet-18,
which results in two sets of features, each with a cardinality of 50 (L = 49). A high CKA between
Xl and Yl, i.e., CKA(Xl,Yl) ≈ 1, indicates that the two feature representations are highly similar,
and thus, remained static across incremental stages. By extension, high CKA may also serve as a
strong indicator for low forgetting by virtue of Xl and Yl being highly similar.

In Figure 3 we visualize the same-layer CKA between F0 and F5 trained on various CIL algorithms.
Each subplot visualizes the layer-wise CKA for two algorithms: 1) the Naive method, which
represents a fully-plastic baseline, and 2) the specified CIL algorithm. We first inspect the naive
model, which displays relatively high CKA in early layers, but significantly deteriorates in latter
layers. This observation is consistent with the notion that early layers learn low-level and widespread
features, while higher layers tend to learn more class-specific information (Zeiler & Fergus, 2014).
Then, a cursory examination of all other algorithms suggest that all compared CIL algorithms do
indeed enforce feature representations to be similar across incremental models, albeit with varying
levels of success. For example, both POD and AANet retain high feature similarities across most
layers, although there are some significant drops in a few select layers (more details on CKA of
AANet provided in Appendix D). Furthermore, we observe that AFC maintains high CKA across all
layers, suggesting that the model trained with AFC has very high stability, and thus, undergoes little
to no forgetting in each incremental step.

Finally, we present two plots for DER. In the B500-5step setting, DER consists of 6 separate feature
extractors, the first of which is identical to F0. Thus, we plot CKA separately for the fixed feature
extractor (DER (0)) and all other feature extractors (DER (1∼5)). As expected, we observe maximum
CKA for DER (0), and much lower CKA for DER (1 ∼ 5).

4.3 T-SNE VISUALIZATIONS

We further corroborate our observations from Section 4.2 by visualizing the feature shift t-
SNE (van der Maaten & Hinton, 2008). We randomly sample 5 classes from C5 and 20 images from

1More precisely, we use the mini-batch version of CKA, which has been shown to converge to the same
value of full-batch CKA, described in Eq. (3) (Nguyen et al., 2021). We provide details for mini-batch CKA in
the Appendix.
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Figure 3: Same-layer CKA values between F0 and F5 for incremental models trained with each CIL
algorithm on the ImageNet B500 5-step setting. The x-axis spans the layer index of ResNet-18, while
the y-axis represents CKA. CKA is evaluated using the D0 validation set. Each plot is accompanied
by the CKA for the naive model, which acts as a point of reference.
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Figure 4: t-SNE visualization of 5 classes of C5, with 20 samples from each class. Each color
represents a distinct class, and features of F0 and F5 are depicted with a circle and star, respectively.

each selected class. Then, we compute the feature representations of each image using both F0 and
F5, and visualize all 200 features in a single t-SNE plot.

Figure 4 shows the t-SNE plots of the Naive and Oracle feature extractors, as well as those of four CIL
algorithms that exhibit high stability. In the Naive and Oracle plots, we observe that the same-class
features have shifted significantly, since the F0 and F5 features are clustered in different regions. This
is expected since both models exhibit high plasticity. In the AFC, AANet, POD, and LUCIR plots,
however, the feature shift is trivial. Interestingly, most of the F0 and F5 features corresponding to the
same inputs are overlapped, even though F5 has been trained on {Di}5i=1, while F0 has not. Once
again, this suggests that these algorithms excel at maintaining important knowledge from previous
tasks, but fail to acquire new knowledge from incremental data.

5 IMPROVING CLASS-INCREMENTAL LEARNING BASED ON OBSERVATIONS

We now outline two methods to that aim to demonstrate how the analyses presented in Sections 3
and 4 may be used to improve CIL models.
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5.1 PARTIAL-DER

Figures 1 and 2 show that DER not only retains knowledge from old classes, but is also adept at
learning concepts from new classes. Such properties of DER are favorable and a step in the right
direction for the future of CIL research. DER achieves this by freezing and maintaining {Fj}i−1

j=0 at
the i-th incremental stage, and adding a new fully plastic feature extractor (with the same number
of parameters as F0) for the current set of classes. This allows the feature extractor to fully learn
concepts of new classes all the while maintaining knowledge of old classes. However, a major issue
of DER is scalability, since for an N -step CIL model, a single forward pass through FN requires
N + 1 times computation compared to F0.

Based on our CKA analysis in Figure 3, we propose a modification of DER, called partial-DER
(pDER), which not only makes DER much more efficient, but also improves the overall performance
as well. In Section 4.2 we observed that even the Naive model maintains high feature similarity in
the lower layers of the network, i.e., the feature representations of lower layers do not change much
across F0 and F5 even when the model is fully plastic. This suggests that lower layers are inherently
stable. Thus, instead of maintaining N full feature extractors for an N -step setting, pDER fixes the
lower subset of layers in F0, and only applies DER on the upper subset of layers. More specifically,
we consider all layers upto ResNet’s Layer 4 as the lower subset, and apply DER only for Layer 4.
We find that this simple modification reduces the GMACs of a forward pass through a DER model by
upto 65%2, while improving Acc(M′

5,D) and Acc(M5,D) by 1.5%p and 0.9%p, respectively.

5.2 EXPLOITING STATIC FEATURE EXTRACTORS

The second method, which we name “Exploit”, is based on the observation that the feature extractors
in most CIL models remain static over the course of incremental stages. In such case, we can
significantly improve the training efficiency, achieve strong performance, and eliminate the need
for previous-class exemplars by simply freezing the base feature extractor, F0. This exploit can be
interpreted as an extreme case of pDER, where branching occurs in the classification layer.

We first train M0 on D0, and fix the feature extractor, F0, for all subsequent incremental steps. The
weight of the Cosine classifier in M0, G0, is denoted as W0 ∈ RF×|C0|, where F is the output feature
dimension of the feature extractor. For each incremental step i, we train a new weight matrix for
the classifier, Wi ∈ RF×|Ci|, where the cross-entropy loss is only computed for Ci, i.e., the softmax
operation only considers the logits for |Ci| classes. Since F0 is fixed for all stages, we do not need to
update Wj ,∀j < i. After training on DN , we concatenate the set of weight matrices {Wi}Ni=0 to
produce a single weight matrix, W ∈ RF×|C|. Finally, we compose G (parametrized by weight W)
with F0 to obtain the final model: MN = G ◦ F0.

Compared to CIL algorithms that usually train M for 90 ∼ 120 epochs on each Di, our exploit
only requires around 10 epochs of training to converge for each incremental stage. Furthermore, we
only need to compute gradients for G, which reduces computational burden of training. These two
factors make training extremely fast compared to traditional algorithms that tune the entire model and
require many epochs of training. Despite requiring only a fraction of the computation, our exploit
achieves final ImageNet accuracy of 60.5%, and an average incremental accuracy of 67.2%, which is
competitive against the methods compared in this paper.

6 DISCUSSIONS

Based on the plots in Figure 1, we define the following metric:

∆M′
i := Acc(M′

i,D)− Acc(M′
0,D) (4)

∆M′
i measures the relative performance of improvement of Fi over F0, i.e., how much the feature

extractor improves as training classes are added. A high positive ∆M′
i indicates that the feature

extractor is able to learn new concepts incrementally. On the other hand, ∆M′
i ≃ 0 indicates that

the feature extractor is stable, but not plastic enough to acquire new knowledge. Finally, a large

2F5 of DER requires 10.9 GMACs for one forward pass of batch size 1, while F5 of pDER requires
3.9GMACs. More details provided in Appendix A
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Table 1: Summary of all compared CIL algorithms. *Methods introduced in Section 5
Method Naive iCARL LUCIR SSIL POD AANet AFC DER Exploit* pDER* Oracle

Acc(M′
0,D) 60.4 61.8 62.1 62.5 62.9 62.5 62.9 60.0 62.9 60.0 60.4

Acc(M′
5,D) 52.2 53.9 62.8 63.5 62.6 62.8 62.9 66.9 62.9 68.4 70.8

∆M′
5 -8.2 -7.9 0.7 1.0 -0.3 0.3 0.0 6.9 0.0 8.4 10.4

Table 2: Average incremental accuracy and Final ImageNet accuracy of all compared CIL algorithms.
†SSIL uses a different class ordering than all other methods; thus, inter-method comparisons with
SSIL may not be appropriate. *Methods introduced in Section 5

Method Naive iCARL LUCIR SSIL† POD AANet AFC DER Exploit* pDER* Oracle

Avg. Inc. Acc. 41.4 31.5 55.6 65.8 66.3 57.1 66.4 69.1 67.2 69.7 72.8
Acc(M5,D) 31.5 17.2 41.0 59.8 58.6 43.3 59.0 63.8 60.5 64.7 70.8

negative ∆M′
i represents severe catastrophic forgetting in the feature extractor. Ultimately, CIL

models should strive to maximize ∆M′
i in order to facilitate better feature representation learning.

Are we learning continually? Table 1 quantitatively summarizes all the compared CIL algorithms
in terms of Acc(M′

0,D), Acc(M′
5,D), ∆M′

5. Looking at LUCIR, SSIL, POD, AANet, and AFC in
Table 1, we notice that there is almost no difference between Acc(M′

0,D) and Acc(M′
5,D), which

all lie in the range of 62% ∼ 63%. Furthermore, there exists a significant gap between Acc(M′
5,D)

of the aforementioned algorithms and Acc(M′
5,D)= 70.8% of the Oracle model. This implies that,

while these methods do mitigate catastrophic forgetting (to varying degrees), they suffer from a lack
of plasticity, i.e., are unable to learn continually. Moreover, these results also imply that if feature
representations do not accumulate new knowledge through incremental data, the highest achievable
performance is still 7∼8%p shy of the Oracle model (even with an optimal classifier). Thus, the
plasticity of feature representations is an absolutely crucial aspect of incremental learning.
Limitations of traditional metrics In Table 2 we present the widely adopted metrics in CIL: 1)
average incremental accuracy of all compared CIL algorithms on the B500-5step setting, and 2)
the final accuracy on ImageNet, Acc(M5,D). In particular, we note that our Exploit in Table 2
outperforms all but one (DER) CIL algorithms on both metrics, despite leaving the feature extractor
F0 fixed. Furthermore, LUCIR and AANet demonstrate weak performance here, as their average
incremental and final ImageNet accuracies are roughly 10%p and 20%p lower than POD, AFC,
DER, SSIL, and Exploit. However, according to Table 1, all the aforementioned CIL algorithms
demonstrate similar Acc(M′

0,D) and Acc(M′
5,D) scores. This suggests that while the feature

representations of all compared methods (excluding Naive, iCARL, and DER) all have similar
levels of discriminativeness, it is not well expressed in terms of average incremental accuracy nor
Acc(M5,D). Clearly, high average incremental accuracy and final (ImageNet) accuracy are not
really indicative of how much the model has learned continually; yet, these metrics have become the
de-facto standard in CIL research. This should be alarming, for both researchers and practitioners —
ambiguous metrics deliver a false illusion of progress, and may lead researchers to develop algorithms
that seem to outperform other state-of-the-art algorithms, but are completely misaligned with the
motivation behind continual learning (such as our Exploit). Thus, we hope that the analyses in our
work will facilitate better evaluation of CIL algorithms, and inspire researchers to focus more on
stronger feature representation learning of incremental models.

7 CONCLUSION

We took a deep dive into how effectively modern CIL algorithms address the stability-plasticity
dilemma. We introduced evaluation protocols that help us better understand the stability and plasticity
of feature representations. Our evaluations of recent works showed that many CIL methods are too
fixated on the notion of alleviating catastrophic forgetting, to the extent that the feature extractor
rarely learns any new concepts after the initial stage of training (on D0). Based on this observation,
we introduced two simple algorithms that improve upon an existing algorithm, and exploit the
shortcomings of the standard evaluation metrics for CIL research. All in all, we hope that our findings
will propel CIL research to focus more on stronger continual learning of feature representations.
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Ethics statement Fairness in AI systems has attracted a lot of attention in recent years, and has
been fueling progressive research in the field of debiasing. A potential ethical concern of class-
incremental learning is that the model is prone to learning biases for the most recent set of classes. In
fact, classifier bias is a widely known issue in the class-incremental setting (of the compared CIL
algorithms in our paper, SSIL and LUCIR explicity aim to reduce classifier bias). Since our work
focuses on the feature representations, it does not help to address the potentially harmful aspects of
classifier bias in CIL models.

Reproducibility statement The codes for baseline models reported in our paper are all open-
sourced by authors of previous works. Please refer to Appendix C.2 for more implementation details
of each baseline model, as well as links to the open-source codes.
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A MORE DETAILS ON PARTIAL-DER

Table A: Performance of Partial-DER, with varying branch locations.
Method DER pDER (Layer 2) pDER (Layer 3) pDER (Layer 4)

Acc(M′
0,D) 60.0 60.0 60.0 60.0

Acc(M′
5,D) 66.9 67.8 68.0 68.4

∆M′
5 6.9 7.8 8.0 8.4

Avg. Inc. Acc. 69.1 69.2 69.4 69.7
Acc(M5,D) 63.8 64.1 64.4 64.7
GMACs (F5) 10.9 8.0 5.9 3.9

A.1 SCALABILITY ISSUES IN DER

As mentioned Section 5.1, DER offers strong CIL performance but suffers from scalability. For
example, in our ImageNet-B500 5step setting, the last stage model for DER maintains 6 full ResNet-
18 models. To make matters worse, in the ImageNet-B500 10step setting, DER maintains 11 full
ResNet-18 models. This affects inference as well, since an input must pass through all feature
extractors before classification. Although the authors do propose a masking/pruning scheme to reduce
the memory complexity, they do not provide an implementation in their official code despite the fact
that masking/pruning is an integral part of their algorithm. Naturally, we raise certain doubts on the
reproducibility of DER with masking, and question whether the benefits of improved performance so
overwhelmingly outweigh the loss of scalability.

A.2 PARTIAL-DER ABLATIONS

The pDER method that we introduced in Section 5.1 aims to improve scalability of DER by only
maintaining a subset of layers from all stages. This specific instance of pDER is the pDER Layer 4
variant, where only the parameters of ResNet Layer 4 are replicated and trained at each incremental
stage. We also test with other variants:

• pDER Layer 3: replicate and train ResNet Layers 3 and 4; fix all parameters upto Layer 3
• pDER Layer 2: replicate and train ResNet Layers 2, 3, and 4; fix all parameters upto Layer 2

The results of our ablations are presented in Table A. Surprisingly, we find that as we apply DER
on deeper layers, the performance actually increases across all metrics: Acc(M′

5,D) increases by
0.6%p, the average incremental accuracy improves by 0.5%p, and Acc(M5,D) improves by 0.6%p
from pDER Layer 2 to Layer 4. This is achieved all while reducing the GMACs for a single-input
forward pass.

B MINI-BATCH CKA

Eq. (3) of our main paper describes CKA, which takes as input X ∈ Rb×z1 and Y ∈ Rb×z2 . In our
case, b is equivalent to the number of samples in D0, i.e., |D0| = 25K for the ImageNet validation
set. Storing matrices X ∈ R25000×z1 and Y ∈ R25000×z2 , where z1 and z2 are the dimensions of the
flattened output features, requires excessive memory especially when CKA is computed on the GPU.
Furthermore, we require X and Y for all layers of ResNet-18, which makes storing such matrices
even less feasible.

To alleviate the memory burden, we utilize the mini-batch variant of CKA proposed by Nguyen et al.
(2021). The main difference is that the mini-batch CKA uses an unbiased estimator of HSIC:

HSIC1(K,L) =
1

n(n− 3)

(
tr(K̃L̃) +

1TK̃11TL̃1

(n− 1)(n− 2)
− 2

n− 2
1TK̃L̃1

)
, (a)

where K̃ and L̃ are equivalent to K and L with their diagonals set to zero, and n denotes the size of
the mini-batch. Thus, given activation matrices Xi ∈ Rn×z1 and Yi ∈ Rn×z2 , the mini-batch CKA
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formulates to:

CKAmini-batch =

∑k
i=1 HSIC1(XiX

T
i ,YiY

T
i )√∑k

i=1 HSIC1(XiXT
i ,XiXT

i )
√∑k

i=1 HSIC1(YiYT
i ,YiYT

i )
, (b)

where k denotes the number of iterations. Following Nguyen et al. (2021), we use a batch size of
n = 256 and iterate over D0 10 times to compute mini-batch CKA.

C MORE IMPLEMENTATION DETAILS

C.1 CLASSIFIER TYPES

Linear classifier The linear classifier is a simple matrix multiplication with an added bias term,
and is formulated as below:

y = Wx+ b, (c)
where y ∈ Rc×1 denotes the output logit vector (with c classes), x ∈ Rz×1 denotes the z-dimensional
output of the feature extractor, b ∈ Rc×1 denotes the bias term, and W ∈ Rc×z denotes the weight
matrix. Note that some implementations do not use the bias term.

Cosine classifier The output of the cosine classifier is formulated as:

yi = s · Wix

∥Wi∥∥x∥
, (d)

where yi denotes the logit for the i-th class, and Wi ∈ R1×z denotes the i-th row vector of the
weight matrix, W. Finally, s denotes the scale factor, which may be either fixed or set as a learnable
parameter. Note that the scale factor is used solely for training purposes, but does not affect the
prediction output during evaluation.

C.2 CIL ALGORITHM IMPLEMENTATION DETAILS

Common details All compared CIL models use a ResNet-18 backbone with varying classifier
types. When the cosine classifier is used, the output of the feature extractor is not subject to ReLU
activation, following POD (Douillard et al., 2020). Furthermore, all implementations (except SSIL)
employ the same class orderings for ImageNet.

Naive and Oracle For the Naive and Oracle models, we employ the cosine classifier with a fixed
scale factor of s = 24. We use a batch size of 512, an initial learning rate of lr = 0.1 and a polynomial
learning rate decay scheme with a power of 0.9 over the course of 120 epochs. For data augmentation,
we use the standard sequence: {random resized crop, random horizontal flip}.
For the naive model, instead of the herding selection scheme, we randomly select 20 exemplars from
each class to fill up the exemplar set.

POD and AFC For POD and AFC, we train models using their official codes12. One important
detail to note is that both POD and AFC originally used a modified version of ResNet, where the
first convolution layer (conv1) had kernel_size=3, stride=1, padding=1 as opposed
to kernel_size=7, stride=2, padding=3 from the original ResNet. Thus, we fixed this
detail and re-ran their code to obtain the POD and AFC models. While POD and AFC both use the
local similarity classifier (Douillard et al., 2020; Kang et al., 2022), we use the cosine classifier when
retraining the classification layer.

iCARL, LUCIR, and AANet For iCARL, LUCIR, and AANet, we obtained the trained models
from the Energy-based Latent Aligner (ELI) (Joseph et al., 2022) codebase3. Unfortunately, we do
not evaluate ELI itself, since it requires the high-level distinction between previous and new classes
for prediction. iCARL, LUCIR, and AANet all use the cosine classifier, where the scale factor s is
also set as a trainable parameter.

1POD: https://github.com/arthurdouillard/incremental_learning.pytorch
2AFC: https://github.com/kminsoo/AFC
3ELI: https://github.com/JosephKJ/ELI
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SSIL We received the trained SSIL models directly from the authors. SSIL models use an oridinary
linear classifier with a bias term. Note that the trained SSIL models used a different class ordering
compared to all other methods, although this does not affect the conclusions made in our paper.

DER We use the official DER code4 to train DER models. While their code does not provide
configurations for ImageNet-1K experiments, we reproduced results using the details from the paper.
However, the authors do not provide code for the masking operation, and thus, the reported results
are the ones for full DER without masking/pruning. This makes the final DER models (for both the
5-step and 10-step settings) extremely large. DER uses the ordinary linear classifier without the bias
term.

Retraining the classifier on full ImageNet data To retrain the classifiers on full ImageNet data,
we freeze all layers prior to the final classification layer, including Batch Normalization layers (whose
running means and variances are fixed). We select the appropriate classifier layer type depending on
what type of classifier was used to train the original models. We train the classifiers for 60 epochs,
using the same batch size, learning rate, and learning rate decay schemes as detailed in the ”Naive
and oracle” paragraph.

D AANET CKA ANOMALY

The CKA curve for AANet is quite interesting since it exhibits some erratic behavior. We observe 4
major drops, which start at layers 8, 20, 32, and 44. Interestingly, these layers are all 12 layers apart,
and all correspond to a specific 3x3 convolution within the ResNet-18 architecture. We believe that
this is due to the unique design of AANet, where two models (one “stable” and one “plastic”) are
fused together after each ResNet Layer. Our hypothesis is that the representations diverge between
the AANet fusion steps, and converge again when features of both branches are added together in the
fusion step.

E GDUMB

Table B: Retrained classifier performance for GDumb (with CutMix (Yun et al., 2019)).

Acc(M′
0,D) Acc(M′

1,D) Acc(M′
2,D) Acc(M′

3,D) Acc(M′
4,D) Acc(M′

5,D)

61.0 56.4 56.5 57.0 56.8 56.9

Results Much like our Exploit, the motivation behind GDumb is to question the general progress in
continual learning research. Thus, we do not expect the GDumb model to exhibit favorable properties,
and the results in Table B match our expectations; GDumb starts with a base model (Acc(M′

0,D)
= 61.0), but the becomes less performant from the first incremental stage (56.4 ≤ Acc(M′

i,D)
≤ 56.9,∀i > 0).

Implementation Since GDumb does not experiment on ImageNet-1K, we reproduce GDumb in our
own code base. One important detail is that for any setting with pre-trained models (e.g., ImageNet
B500-5step), GDumb will use the model pre-trained on 500 classes as the initialization for each
incremental step. Although their paper states that a model is trained “from scratch”, the official
GDumb code actually re-loads the pre-trained model for each incremental step (for methods that
require pre-training). Also, following the official implementation, we include CutMix (Yun et al.,
2019) for GDumb, which is not used for any of the other compared methods.

F FULL 5 STEP SUBSET ACCURACIES

We present the full ImageNet B500-5step subset accuracies in Figure A

4DER: https://github.com/Rhyssiyan/DER-ClassIL.pytorch
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Figure A: B500-10step subset accuracies for all methods. Note that SSIL uses a different class
ordering. We highlight the region for model M′

j in plot Ci, where i = j.

G 10 STEP RESULTS

In this section, we present figures for analyses on the ImageNet-1K B500-10step setting. Overall, the
evaluated CIL algorithms all show similar trends in both the B500-5step and B500-10step settings.
Thus, the B500-10step results serve to validate our observations made on the B500-5step setting.

For ease of viewing, we also include HTML files for each figure in the main paper and appendix.
These HTML files are interactive, meaning that viewers can inspect individual points, filter plots by
algorithm (by clicking or double-clicking the corresponding label in the legend), and rescale the axis
as needed.
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Figure B: Accuracy on the ImageNet validation set after fine-tuning the classification layer of each
incremental model (B500-10step setting) with the full ImageNet training data. The black line indicates
an oracle model trained on {500, 550, 600, ..., 1000} classes, and serves as a point of reference for
the performance on non-incremental settings.
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Figure C: B500-10step subset accuracies for all methods. Note that SSIL uses a different class
ordering. We highlight the region for model M′

j in plot Ci, where i = j.
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Figure D: Same-layer CKA values between M0 and M10 for incremental models trained with
each CIL algorithm on the ImageNet B500 10-step setting. The x-axis spans the layer index of
ResNet-18, while the y-axis represents CKA. CKA is evaluated using the D0 validation set. Each
plot is accompanied by the CKA for the naive model, which acts as a point of reference.
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