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RWE: A Random Walk Based Graph Entropy for the
Structural Complexity of Directed Networks
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Abstract—This paper studies a graph entropy measure to char-
acterize the structural complexity of directed networks. Since the
von Neumann entropy (VNE) has found applications in many tasks
by networked data, but suffers from a high computational com-
plexity in computing the Laplacian spectrum, we aim to propose
a simple yet effective alternative method. Considering that local
nodal interactions collectively induce the information flow of the
entire graph, we are motivated to use the probability flow of random
walks as the proxy of information flow in real-world digraphs, and
correspondingly propose a random walk based entropy (RWE) to
measure the average information that the random walker reaches
each node. Inspired by the close relation between Laplacian spec-
trum and the Perron vector, we prove that RWE serves as a good
approximation for the VNE in digraphs with a guaranteed entropy
gap. This approximation is further applied to a digraph similar-
ity measure based on the Jensen-Shannon divergence. Therefore,
RWE exhibits interpretability, scalability and capability of well
capturing the structural complexity of digraphs as empirically ver-
ified. We further extend RWE to two dimensions by incorporating
community structures, which characterizes information flow both
between and within communities. By proving that the difference
between the one-dimensional and two-dimensional RWE reflects
the extent to which the community structure is preserved, we
convert the community detection problem into the minimization
of two-dimensional RWE, and design a greedy algorithm. Various
experiments confirm the superiority of our approach over the
baselines.

Index Terms—Directed graph, graph entropy, random walk,
structural complexity, von Neumann entropy.
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I. INTRODUCTION

RAPH is the most ubiquitous structure to illustrate re-

lationships in massive real-world data. Social networks,
communication networks, flight networks and citation networks
are just a few examples that can be represented by graphs. One
salient issue in graph analysis is to measure the complexity of
graphs [1], [2], referring to the way in which nodes and links are
arranged or the level of organization of the structural features
such as degree distribution, graph spectrum, etc. In order to
characterize the inherent structural complexity of graphs, many
entropy based measures have been proposed [2], [3], [4], [5],
[6], each of which is a specific form of Shannon entropy for
different types of distribution extracted from graph structures.

A. Motivations

However, the existing measures are primarily designed for
simple undirected graphs, which cannot be applied to the mea-
surement of more complex structures with directionality as
well as communities. Recall the aforementioned scenarios like
social networks, flight networks and etc., there is not a solitary
exception. As an alternative, the von Neumann entropy (VNE),
which is built on the Laplacian spectrum, is a natural way to
capture the graph complexity since the Laplacian spectra is well-
known to incorporate rich information about the multi-scale
structure of graphs, thus spawning tremendous great interests
to researchers [7], [8], [9], [10], [11], [12], [13]. In 2005, Chung
extended the Laplacian matrix to directed graphs [14], render-
ing the possibility of VNE in digraphs. Despite the popularity
received, VNE suffers from a high computational complexity of
graph spectrum, which is cubic in network size, and is hard to
interpret by intuitive structural patterns. Although there emerge
a bunch of approximation approaches [10], [11], [12], [13] later
on, most of them are mainly for undirected graphs, which cannot
cope with directed case for the asymmetric directionality. There-
fore, there is a strong desire to design an efficient, effective and
interpretable measure for the structural complexity of digraphs.

To this end, this paper aims to circumvent the computational
demanding graph spectra and seek for an alternative method
that can capture rich information of graph structures. Note
that in many realistic networks individuals frequently interact
with their neighbors in various forms (e.g., hyperlinks between
WWW, likes or comments on tweets in social networks). As
a result, the underlying structural patterns of the graphs can
be reflected through those interactions that collectively induce
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the information flow of the entire graphs. This implies that if
we can continuously sample these local interactions, the entire
structural features can be gradually obtained. A very typical
existing method based on this idea belongs to the structural
information (SI) [2], where the approach of random calls are
launched to collect the average information that each node is
the receiver of calls. Based on this principle, SI is defined as the
Shannon entropy for degree distribution in undirected graphs
and in-degree distribution for directed counterpart. Although
such geometric features works well in terms of higher efficiency
than graph spectrum, it still does not suffice to well capture the
structural features of digraphs by merely the in-degree distri-
bution. Imagine that if each node specifies a fixed number of
in-links, the value of SI will keep fixed no matter how these
links are connected regularly or randomly.

B. Contributions

The efficiency of SI nevertheless drives us to remedy the
mechanism to better suit directed cases. In doing so, we note
that the random calls involved in SI only consider the receivers
of information, ignoring the process of how the information
transfers from the senders all the way to the receivers. As a
remedy, we use arandom walker instead to record all the directed
paths along which the information flows from senders to the
receivers. Thus the random walk serves as a proxy of information
flow, and accordingly we propose a random walk based digraph
complexity measure, called RW entropy (RWE) to represent the
average information that the random walker reaches each node.
Motivated by the close relation between Perron vector [14] and
the graph spectrum, we prove that our RWE turns out to be
a fairly good approximation for the VNE in digraphs with a
difference range only between 0 and logT” -tr(M?), where ¢
is the minimum positive component of the Perron vector, and
tr(M?) regards to out-degrees, Perron vector and the direction
of links. As we will also provably demonstrate in later sec-
tions (Sections IV and VI), RWE is interpretable, scalable and
sufficient simultaneously. Based on this approximation, RWE is
further applied to an effective and efficient digraph similarity
measure.

Next, we further enrich RWE in terms of its description
of information flow by incorporating community structures in
digraphs. Compared to the one-dimensional counterpart, the
definition of two-dimensional RWE embodies both the intra-
community and inter-community probability flow of random
walks. As we will show in Section V, our designed two-
dimensional RWE is able to retain unique codewords for each
community while reusing the codewords of nodes within dif-
ferent communities, thus incurring fewer bits in the description
of information flow than that in one-dimensional case. In this
way, a larger difference between the one and two dimensional
RWESs means a closer partition structure to the true underlying
communities, allowing us to equivalently convert the commu-
nity detection problem into a compressing problem, where the
partition corresponding to the minimum two-dimensional RWE
is exactly the communities we find.

In a nutshell, we make the following contributions.
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® Theory and interpretability: We propose a new random
walk based digraph complexity measure, called the RW en-
tropy. As far as we know, we for the first time approximate
the von Neumann entropy in directed graphs with provable
accuracy, interpretability, scalability and sufficiency for
capturing the structural complexity of digraphs.

o Applications and efficient algorithm: Using RWE as a
proxy of VNE in digraphs, we develop a new digraph
distance measure based on Jensen-Shannon divergence
with both efficiency and effectiveness, and design an in-
cremental algorithm to compute distance between adjacent
graphs in a graph stream.

e [Extension by considering community structure: We further
extend RWE to two-dimensional structural complexity of
digraphs, hence converting the community detection prob-
lem into a compressing problem, and propose an efficient
global greedy merge algorithm to approximate the mini-
mization of the two-dimensional RWE, whose results can
be refined by a local movement policy.

o [Extensive experiments and evaluations: Numerical results
on real-world networks and synthetic networks confirm the
superior performance of RWE in the following aspects:
i) characterizing the structural complexity of digraphs, ii)
approximating von Neumann entropy, and iii) identifying
community structures in digraphs.

Organization: The rest of this paper is organized as follows.
We review two related issues in Section II. In Section III, we
introduce the random walk, von Neumann entropy and structural
information of directed graphs. Based on the random walk, we
propose one-dimensional RW entropy in Section IV. We not only
prove its approximation accuracy with von Neumann entropy,
but also present the application on graph distance. We extend
the RW entropy to characterize two-dimensional structures in
Section V. Section VI provides experimental results, and we
conclude the paper and list the directions for future work in
Section VII.

II. RELATED WORKS
A. Graph Entropy

To capture structural complexity of digraphs, Rashevsky [3]
applied the automorphism based entropy measure to digraphs in
the following form: For a connected graph G with n nodes,

k

I(G) = =Y = - log,

i=1

ng
b)

n

where 7; is the number of topologically equivalent nodes in the
i-th node orbit of GG, and k is the number of different orbits,
hence this definition is only concerned with the symmetries of
graphs. Raychaudhury et al. [4] proposed a local measure of
graph entropy which defines the distance complexity of node 7
as follows,

— d(i, j)
d(i)

d(i, j)
2 d(i)

T63i) = — -log

j=1
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where d(7, j) is the distance between 7 and j in G, and d(z) is
the sum of d(i, j) for all j. Li and Pan [2] defined the structural
information of digraphs as the Shannon entropy of in-degree
distribution, but has limitations in well capturing the structural
features of digraphs as we mentioned. Based on the Laplacian
spectrum, the von Neumann entropy has recently found applica-
tions of complex network, but the main obstacle is the computa-
tional inefficiency, and also the lack of interpretability. Although
Ye et al. [15] extended the von Neumann entropy in digraphs
and tried to approximate it, the quadratic approximation to the
Shannon entropy function and the approximation of Perron vec-
tor they adopt make their relative error of approximation high.
Besides, they still do not address the issue of interpretability.
Despite the effort to overcome the computational inefficiency of
VNE [10], [11], [12], [13], as far as we know, most of them were
designed for undirected graphs except [15]. Among them, Liu
et al. [13] bridged the gap between structural information and
VNE in undirected graphs with a provable accuracy. However,
we will show that such a conclusion does not hold in digraphs,
but their thoughts really inspired our work.

B. Community Detection

Complex networks have been used to model connections of
individuals in various domains, which brought emerging issues
on network science, such as link prediction [16], information
dissemination [17], source detection [18] and so on. Among
them, one salient problem is the recognition of community
structures. In the last decades, the community detection problem
has attracted huge attention [19], [20], [21], [22], [23], [24],
which plays an indispensable role in a wide range of appli-
cations, such social ties analysis [25], functional studies [26]
and healthcare [27]. However, only a limited number of the
existing works are aimed for clustering in digraphs. For instance,
Arenas et al. [28] proposed a topological approach based on
modularity optimization, which is defined as the sum of the
total weight of all links in each module minus the expected
weight. Rosvall and Bergstrom [29] proposed classic Infomap
to identify communities via a map of information flow. A more
detailed introduction to Infomap can be referred to Section 3 in
Supplementary Material. As we will show in Sections V and
VI, although our method is also based on information flow, we
actually capture a different information of random walks, and
the performance is even better than Infomap in some real-world
datasets.

III. PRELIMINARIES

In this paper, we study the simple directed network
G(V,E, A) of order n with positive edge weights, where F
is the set of edges with cardinality |E| = m, and A € R}™"
is the weight matrix with positive entry A;;. The in-degree of
node i € G (resp. out-degree), denoted by di* (resp. d7™°4Y), is
defined to be the sum of weights of edges that point to (resp.
from) 4, that is di* = Z?Zl Aj; (resp. di™out = Z?Zl Aij).
For convenience, we list the key parameters that will be used
late in Table I.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

TABLE I
NOTATION AND DEFINITION

Notation Definition
G(V,E,A) | simple directed network with weight matrix A
n number of nodes
m number of edges
dim (d9*) | in-degree (out-degree) of node i
P transition matrix of random walk
o) Perron vector of P
L combinatorial Laplacian matrix of &
vol(G) volume of G (sum of edge weight)
HL,(G) one-dimensional RWE of G
Hon(G) von Neumann entropy of G
HE(G) structural information of G
AH(G) digraph entropy gap (H1,,(G) — Hun(G))
HE,(G) | the RWE of G by P
H2,(G) Two-dimensional RWE of G

A. Random Walk on Digraphs

The random walk on weighted digraphs is defined by a transi-
tion probability matrix P, where P(u, v) denotes the probability
that a walker moves from a node u to a neighbor v, such that

Au,v

P(u,v) S A (1)
Obviously, for an unweighted graph G, P(u,v) is reduced to
1/drmout if (u, v) is an edge. According to the Perron-Frobenius
Theorem [30], the transition probability matrix P of a strongly
connected and aperiodic directed graph has a unique left eigen-
vector ¢ with ¢p(v) > 0 for all v, which satisfies pP = ¢p. We
can normalize and choose ¢ to satisfy >~ ¢(v) = 1, which is
called the Perron vector [14] of P. Unlike the undirected graph,
where ¢ is consistent with the node degree distribution, there is
no closed form for ¢ for general digraphs. Nevertheless, there
are polynomial-time algorithms to evaluate ¢ efficiently.

If G is strongly connected and aperiodic, the random walk will
converge to the unique stationary distribution ¢, i.e. the Perron
vector. However, when the digraph has one or more absorbing
sets, where each of them is a vertex set that a random walk enters
but can never go out, the stationary distribution is not unique.
In this case, from the view of Markov chain, researchers often
introduce teleportations in the random walk as a modification
to make the Markov chain primitive. For example, in PageRank
algorithm proposed by Page and Brin [31], a positive probability
« of teleporting to any node uniformly in each step is introduced,
which is 0.15 by experience. Initially, the state is a uniform
distribution, then the random walk will converge to the unique
stationary distribution.

B. Von Neumann Entropy and Structural Information

Originally, the von Neumann entropy was defined on the
density matrix p of a quantum mechanical system [32]. Braun-
stein et al. [33] proposed to use the graph Laplacian to map
graphs to quantum states, so they introduced the density ma-
trix of a graph as the combinatorial Laplacian of the graph
normalized to have unit trace. For a digraph GG with transition
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probability matrix P, and the Perron vector ¢, if we let ® =
diag[¢(1), d(2),...,@(n)], then the combinatorial Laplacian
matrix [14] of G is defined as

P+ PTd
L—p_2tt7 2 2)
2
and its density matrix is that p = L/tr(L).

Let {A;}I'_; be the sorted eigenvalues of L, which is the
Laplacian spectrum of G. When G is strongly connected and
aperiodic, the transition matrix P is exactly defined in (1),
and we can easily derive that tr(L) = > | A; = tr(®) = 1.
However, this does not hold for general digraphs due to the in-
troduction of teleportations. For the convenience of delineation,
we define the function f(x) £ xlog, 2 on the support [0, c0)
where f(0) £ lim, .o f(x) = 0. We present formal definitions
of VNE and SI of digraphs as below.

Definition 1 (von Neumann entropy of digraph): The von
Neumann entropy of a digraph G is defined by H,,(G) =
> f(x/tr(L)), where Ay > Xy >---A, =0 are the
eigenvalues of the combinatorial Laplacian matrix L = ¢ —
%QPT‘P of the graph G.

Definition 2 (Structural information of digraph): The
structural information of a digraph G = (V,E, A) is de-
fined as Hgr(G) = — > 1, f(di*/vol(G)), where vol(G) =
> iz 2j—1 Aij denotes the volume of G. Particularly,
vol(G) = m for an unweighted graph G.

IV. ONE-DIMENSIONAL STRUCTURAL COMPLEXITY

In this section, we introduce one-dimensional RWE, and show
that RWE is a good proxy of VNE in digraphs with provable
accuracy.

A. Introduction to One-Dimensional RWE

We commence by giving a brief overview of the intuition of SI.
Imagine that messages can be delivered between nodes through
edges. A call is a flow of message from a sender i to a receiver
j, where (4,j) € E, and an exogenous process is launched to
continuously collect such calls uniformly at random. Hence, at
any moment, the probability that a node v is the message receiver
is " /vol(G). The authors [2] encode the network based on this
probability distribution, and take the average number of bits as a
measure of the structural information of digraphs. However, this
is different from the random walk where the receiver of a call is
the sender of the next call, thus cannot fully capture the structural
complexity of a digraph. To this end, we use random walk as a
proxy of the entire information flow in digraphs and present
the definition of random walk based structural complexity of
digraphs, which we call the RW entropy (RWE) as follows.

Definition 3 (One-dimensional RWE of a Directed Network):
Given a connected and weighted digraph G = (V, E, A), sup-
pose a random walker with transition matrix P on G, and
P = [p1,pa, ..., pn] is the ergodic node visit frequency vector
within the random walk, the one-dimensional random walk
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RWE=2.0, SI=2.0 RWE=1.98, SI=2.0
Fig. 1. Simple illustration on the sufficiency of RWE.
based graph entropy of G is defined as:
n
1
MW (G) == pilogs p;. ©)
i=1

Although the definition is based on a connected graph, the
RWE of disconnected digraph can be derived based on the
additivity of Shannon entropy function. Note that for strongly
connected and aperiodic digraphs, P is well defined in (1),
which guarantees a unique stationary distribution. While for
general digraphs, due to the existence of dangling nodes or
sinks, we modify P with a teleportation parameter o = 0.15
corresponding to the well known PageRank transition matrix by
Page and Brin [31], in which case, P is also called the PageRank
vector. We then illustrate that RWE exhibits interpretability, scal-
ability and sufficiency for capturing the structural complexity of
digraphs, respectively.

o [nterpretability: RWE measures the average information
that each node is traversed by the random walk. Compared
to VNE, which is hard to interpret by simple structural
patterns, RWE provides a more intuitive interpretation of
the structural complexity by tracking the heterogeneity of
the information flow induced by local nodal interactions.

e Scalability: The computational efficiency of P can benefit
from various efficient algorithms of power iteration such as
Arnoldi method [34] and Poor man’s algorithm [35], whose
complexity are O(nk(k +1)) and O(tn?) respectively,
where the orders of the parameters k, [ and ¢ are much
less than the network size n, making RWE more efficient
than VNE (O(n?)) and suitable for large-scale directed
networks.

o Sufficiency: As aproxy of the information flow, the random
walk can record all the directed paths along which the
information flows from senders to the receivers. As a
result, RWE is sufficient to capture the slight structural
change of even a single edge direction, since the pattern
of information flow will change eventually. As the simple
illustration in Fig. 1, the only difference from the left graph
to the right is the change of edge from C — Dto A — D,
resulting in a regular structural pattern changing to a more
heterogeneous one, which can be captured by RWE but not
SI. More demonstration can be found in Section VI.

B. Approximation for Von Neumann Entropy in Digraphs

To prove that RWE is a good approximation for the VNE in
digraphs, we first define the difference between RWE and VNE
as digraph entropy gap that AH(G) = HL (G) — Hun(G).
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Fig. 2.  Close distribution between Perron vector and Laplacian spectrum in
two real-world directed networks.

To strictly bound AH(G), we are inspired by the fact that
there is a close relation between Perron vector and Laplacian
spectrum. As illustrated in Fig. 2, the kernel density estimation
curve of Perron vector almost coincides with that of Laplacian
spectrum in two representative real-world digraphs, while the
in-degrees separate from them, which indicates that our RWE
may be a good approximation of VNE. Based on that, we provide
the additive approximation errors in Theorem 1.

Theorem 1 (Approximation Accuracy): For any strongly con-
nected and aperiodic directed graph G = (V, E, A) with com-
binatorial Laplacian matrix L defined in (2), we denote M =
(®P + PT®)/2 and E= = {(u,v)|(u,v) € E and (v,u) €
E} as the bidirectional edge set such that E— C E, then the
inequality

logy e

0 < AH(G) <
¥

tr(M?), )

holds, where

oD

(u, 1))EE

é(u) - ¢(v)

rmout , Jrmout
d dr

tr(M?) =

>

(u,v)eE=

rmout2 ?

&)
and ¢ = min{(i) | ¢(i) > 0}.

Before proving Theorem 1, we first introduce an important
conception that will be used.

Lemma 1 (Majorization [36]): Given two vectors x,y € R?,
we denote by z*, y* € R? with the same components, but sorted
in descending order. We sa that w majonzes y, written as
a:>y,1fandonly1le 17 1ylfork—l,...,d,and
Z?zl T; = Z?Zl Yi. Moreover, the following conditions are
equivalent: (i) & > y; (ii) Qx = y for some doubly stochastic
matrix Q.

The intuition of majorization is that if  majorizes y, then
the entries of y are more mixed than those of . Based on
the Schur-Horn theorem [36], the diagonal elements of the
Hermitian matrix are majorized by its eigenvalues. Recall that
for strongly connected and aperiodic graph G, tr(L) = 1, so we
have H,,(G) = —>_I"; f(1;). The combinatorial Laplacian
matrix L defined in (2) is positive semidefinite symmetric whose
diagonal elements form the Perron vector ¢ and eigenvalues
form the spectrum A. Therefore, we obtain A > ¢, indicating
that there exists some doubly stochastic matrix @ = (g;;) €
[0, 1]™*™ such that QA = ¢. Based on that, we now proceed
to prove Theorem 1.

Proof of Theorem 1: To begin with, we define a dis-
crete random variable X, with probability mass function

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

> j=14ijos,(x) for each node i, where d,(z) is the Kro-
necker delta function. Then the expectation of X, is E[X,] =
> i=1@ijh; = (i), and the variance var(X;) = E[X;%] —
E?[X;] = > e qij2j? — ¢*(i). In the following, we first show
that A7 (G) is non-negative, and then prove AH(G) < 10%6 .
tr(M?), as well as deriving the expression tr(M?).

By expressing the digraph entropy gap in terms of Perron
vector sequence and Laplacian spectrum, we have

AH(G) = HE\(G) —

Since f"(z) = (log.)/xz >0, f(x)= zlogy(z) is convex.
Then, based on Jensen’s equality, we have that f(¢(i)) =

FE[X;]) <E[f(X;)]forany: € {1,...,n}.By summingover
i, we have

> Fe(i)

quzjf

i=1 j=1

< ZE Zf( i)
i1 i1

Hence, AH(G) > 0 is proved for any directed graphs, which
means RWE is always no less than VNE.
Before we proceed to prove the upper bound for AH(G), we
present an important technique in the following lemma.
Lemma 2 (Jensen’s gap [37]): Let X be a one-dimensional
random variable with mean p and support (a,b), where
—00 < a < b < oo. Let ¢(z) be a twice differentiable function

n (a,b), and define the function I(x) = % '/;S“)

then E(¢(X)) = ¢(E(X)) < supye(ap {i(z)} - var(X). Ad-
ditionally, if ¢'(z) is convex, then I(z) is monotonically in-
creasing in , and if ¢)’(z) is concave, then /() is monotonically
decreasing in x.

Next, we use Jensen’s gap to prove AH(G) <

tr(M?). Applying the Jensen’s gap to X; and f(x),

logy e |
)

E[f(Xi)] = f(E[Xi]) < sup {li(x)} - var(X;),  (6)

z€[0,1]
where,
i @—EX)])? c-EXJ]|

Due to the concavity of f/(x),
in x, then we have

l;(x) is monotonically decreasing

log, e

E[f(X3)] — f(E[X:]) <1:(0) - var(X;) < ;

ar(X;).
Then, (6) can be simplified as

10g2 e

fgli)) <

qu)‘ 2 —¢°()

@)

Zqijf()‘J) -
=1
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By summing both sides of the (7) over i, we obtain an upper
bound on AH(G) as

AH(G)_IO‘?B-Z qu\? ¢° (i)
i=1 =

B logy e

o (tr(L?) — tx(9?)) .

Since L = ® — (&P + PT®)/2, we then simplify tr(L?) —
tr(®2) by the cyclic property of the trace as follows.

tr(L?) — tr(®?)

= —tr(®*P + ®PT®)/2 — tr(®PD + PT®?)/2
+tr(®POP + ®PPT® + PTodP + PToPT®)/4

= —tr(®*P) — tr(®*PT) + tr(PPPT®)/2 + tr(DPDP)/2

= tr(®?PPT) /2 + tr(®PPP)/2

= tr(M?).

To continue the development, denote E= = {(u,v)|(u,v) €

E and (v,u) € E} as the bidirectional edge set. According to

the definition of the transition matrix P and the diagonal matrix
® we obtain

tr(®?PPT) =

PP

ueV veV

Z Tmouf2

(u,v)eEE u

Similarly, tr(@POP) = 3, yep. a2l

Therefore, AH(G) < logTze -tr(M?). O

Analysis of upper bound: The expression of the derived upper
bound regards to the Perron vector, out degrees and edge direc-
tionality (whether the edges are bidirectional or not). Generally,
the stationary distribution or Perron vector of general directed
graphs has no closed form or a specific distribution. However,
on some typical digraph structures such as bidirectional digraph,
Eulerian digraph and regular digraph, the bounds in Theorem 1
indeed yield tightness, as stated in Corollaries 1, 2, and 3.

Corollary 1: For any unweighted bidirectional digraph G,
0 < AH(G) < log, e holds.

Proof: In unweighted bidirectional digraph G, ¢(u) =
du/ > uec du for any u € G, where d,, is either the out-degree
or in-degree of u. Denote by |E| = m, then ¢ > 1/m, and it
can be easily derived from (5) that tr(M?) = 1/m. Therefore,
0 < AH(G) <mlogye-1/m =logye. O

Since any undirected graph can be viewed as a bidirectional
digraph, the conclusion here is consistent with that in [13].
Therefore, our results not only generalize the result in [13], but
also cover more complex and asymmetric cases.

Corollary 2: For any Eulerian digraph (, where the in-
degree of each node is equal to its out-degree, the inequal-
ity 0 < AH(G) <logye- (4 + £=1) holds, where m = |E|,
|E=| denotes the number of bidirectional edges.
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Proof Sketch: For an Eulerian digraph G, its Perron vector
¢ is proportional to the out-degree sequence [14], i.e., ¢p(v) =
d;r;mout/m’ © Z 1/m' 0

Corollary 3: For any unweighted regular digraph G with
degree d, 0 < AH(G) < logTze holds.

Proof Sketch: In any unweighted regular digraph G with
degree d, ¢(v) = 1/n forany v € G, tr(M?) = 1/nd. O

The detailed proofs of Corollaries 2 and 3 can be referred to
Sections 1.1 and 1.2 in Supplementary Material.

Denote by UB the derived upper bound of entropy gap. Due
to the specific form of Perron vector in bidirectional digraphs,
we derive that UB < log, e, which is a tight constant bound re-
gardless of network categories and sizes. Also, a tight bound can
be seen in Eulerian digraph such that log, e/2 < UB < log, e,
where the right equality is obtained since the bidirectional di-
graph is a special Eulerian digraph in which |E=| = m. The
upper bound is further sharpened for regular digraph, such that
UB = log, e/d.

Although our result is established on the strongly connected
and aperiodic digraphs, we will empirically show in Section VI
that if G is not strongly connected or aperiodic, RWE is still a
fairly good approximation of the von Neumann entropy.

C. Application: Digraph Similarity Measure

As ameasure of the structural complexity of graphs, VNE has
been applied in a variety of applications, including measuring
the importance of an edge, the distance between graphs for graph
classification and anomaly detection [7], [10]. We note that in
these applications, VNE is primitively used to address the basic
task of graph similarity measure.

Entropy based graph similarity measure aims to compare two
graphs from a graph sequence using the Jensen-Shannon diver-
gence (JSD). The JSD between the probability distributions P
and Q is defined by JS(P, Q) = H((P + Q)/2) — H(P)/2 —
H(Q)/2, where H(P) = - P(xz)log, P(x) is the entropy
of distribution P.

The square root of JS(P, Q) is known as Jensen-Shannon
distance, which has been proved to be a bounded metric on the
space of distributions. However, to measure the similarity be-
tween high objects such as matrices or graphs, Majtey et al. [38]
extend the definition to a quantum Jensen-Shannon divergence,
so that the connection with VNE is built as follows.

Definition 4 (Quantum Jensen-Shannon Divergence between
Digraphs): The quantum Jensen-Shannon divergence between
two weighted, directed graphs G; = (V, E1, A;) and Gy =
(V, Ea, A2) on the same node set V' is defined as

(G) an(G2)/27

where G denotes their average graph with the same node set V'
such that L/tr(L) = Ly/(2tr(Ly)) + Lo/ (2tr(Ls)).

Based on the quantum Jensen-Shannon divergence, we can
compute /QJS(G;,Girq) for 1 <i <k —1 in a stream of
digraphs {G; = (V, E;, t;)}¥_, where t; is the timestamp of the
graph GG;, thus measuring the adjacent graph distance. However,
due to high complexity of VNE, /QJS(G;, G;+1) is compu-
tationally expensive. We thereby propose a new graph distance
measure based on RWE as bellow.

QJS(G1,G2) = Hun — Hon(G1)/2 -

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 24,2024 at 03:40:26 UTC from |IEEE Xplore. Restrictions apply.
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Algorithm 1: RWE-JS (Inc.).

Input: A graph G, and AGy,

Output: RWE-JS;, cre(Gry Git1)

I:m= E(Gk)

2: d™ + the in-degree sequence of G,

3: Hsr(Gy) = logy m — >0, f(d*)/m

4: AV), = set(edge[1] for edge in £y, U E_ 1)
5: Ad™ < the modified in-degree sequence of AV,
6
7
8

tAm =By k| — [E_ )
: Compute Hs7(Gri1) and Hsr(Gy) via Lemma 3
: RWE'JSincre(Gkv Gk+1) -

\/HSI(GIC) — (Hs1(Gr) + Hs1(Grv1))/2
9: return RWE-JS,,c1e(Gr, Gi+1)

Definition 5 (Random Walk based Entropy Distance between
Two Graphs): The random walk based entropy distance be-
tween two weighted, directed graphs G; = (V, Ey, A1) and
G2 = (V, Es, A2) on the same node set V' is defined as

RIVE-JS(Gr, Ga) =\ b, (G)— (M1, (G)+ HE, (G2) /2,

®)
where (@ denotes the average graph with the same node set V'
such that ®(G) = (D(G1) + B(G2))/2.

In practice, the dynamic graph stream could be efficiently
stored by the sequential graph changes {AG) = (E1 ) =
U, (ui, vi, 1), E- g = U, (i, vi, —1), t5) } 2! with the node set
fixed, where ¢, is the timestamp, F/; ;, and E_ ; denote the
set of edge insertions and the set of edge deletions during
the time ¢y, to ¢4 respectively. In this scenario, to allow simple
incremental update of RWE-JS, we propose to approximate the
Perron vector by in-degree sequence to buy more time but at
the price of cumulative approximation error. In other words,
we regard Hgr(G) as a rough approximation for H! (G).
Based on the original graph G, and AGy,, we can incrementally
and efficiently compute the approximated entropy statistics of
G+1 via the following lemma. (The proof can be referred to
Section 1.3 in the supplementary material).

Lemma 3: Given the original graph G, denote d'™ as the
in-degree sequence of G, AV}, is the set of target nodes covered
by E, ;U E_ j, and the modified in-degree sequence Ad™ with
regard to AV, Hsr(Gr1) can be efficiently updated by

f(m + Am) — f(m) —C1 + mHS](Gk)
m+ Am

Hsr(Gre1) =

9

€))
wherem = E(G),Am = [Ey | — [E_g|,andcr = 3 i ay,

f(d™ 4+ Ad™) — f(d™). Besides, for the average graph G, of
Gy and Gp41, Hs1(Gy) can be efficiently computed by
Hor(Gr) = —(m — c2) f(cs) — cs(f(m)
—mHsi(Gr) — ca) — c5,
where ¢y = Y ay, AP e = %, 4

. din din 4 Adin
(d"),and 5 = 3 icnv, (55 + stmramy)-

= ZieAVk f
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The incremental update procedure is summarized in Algo-
rithm 1. We start by computing the directed SI of the original
graph G, (Lines 1-3), which costs ©(n) time. Next, using the
information of AG},, we compute Hs7(Gji1) and Hgr(Gr)
via Lemma 3 (Lines 4-7), then obtain the incremental version
of RWE-JS between two adjacent graphs (Line 8). The total
time complexity is only ©(n + |AV|). Actually, for a given
graph stream, we can update the adjacent graph distance via
Algorithm 1 iteratively.

V. TwWO-DIMENSIONAL STRUCTURAL COMPLEXITY

We further extend RWE to a two-dimensional description of
information flow by incorporating community structures.

A. Structural Complexity of Digraph by a Partition

Suppose the node set V' is partitioned into disjoint sets P =
{V4,...,V}, where V; is a community or technically called
a module. In this case, we divide the structural complexity of
digraphs into two levels of description: the probability flow of
random walks intra- and inter-communities. By summing these
two parts weighted by the frequency with which it occurs, we
define the RWE by a partition as follows.

Definition 6 (RWE of a Directed Network by a Partition):
Given a connected and weighted digraph G(V, E, A) with n
nodes and a partition P of V, suppose a random walker with
teleportation parameter « on G, and let p; denote the ergodic
node visit frequency at node ¢ within the random walk, the
random walk based graph entropy of G by P is defined as:

L nj L
pi. D
M (G) == "p; > “logy = = gjlogyp;, (10)
= =1 P b 4

where g; is the enter probability of module V; specified as:

qj:a.%-zpﬁu_ayzZpi-pm, (11)

iV igV; keV;

and n; = |Vj| is the number of nodes in module Vj}, p; is the
ergodic visit frequency at module V; such that p; = 317 | p;,
and p;_,j is the normalized probability that the random walk
transfers from node ¢ to its outgoing neighbor k.

As stated in (10), the structural complexity of a module V;
consists of two levels: (a) from a module level, the information
of the entire V; as the arriver of the random walk, and (b) from
a node level, the information of each single node 7 € V; as the
arriver of the random walk. The key is that we retain unique code
for large-scale objects, i.e., the communities or modules to be
identified within the directed network, but can reuse the codes
associated with the individual nodes within each module. In
other words, we can omit the module level code when the random
walker keeps in the same module. For (a), the information of
V; as the arriver is —log, p; with probability ¢;, which is the
probability that the random walker enters the module V;, because
we only need consider the walkers whose starters are not in V.
The enter probability in (11) follows since every node outside the
module V teleports a fraction an,; /n and guides a fraction (1 —
)y kev; Pi-vk with weight p; to nodes inside the module V.
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For (b), the information for all nodes in V; is — Z?;l g—J log, 1%
weighted by p;. As a result, the RWE of a digraph G by the
partition P indeed describes the average number of bits needed
to encode the information of arrivers of random walk, which
fully characterizes the structural complexity of a digraph from
a two-level description.

Next, based on the definitions of %, (G) and H}, (G), we
obtain the following two basic properties of RWE in digraphs.

Theorem 2 (Locality Property): Given a connected digraph
G of order n, suppose a random walker with teleportation
parameter «, let Pypoi. denote the partition containing one
module of the whole node set of G, and Py, 41 be the partition
such that each module consists of a single node of GG, then

Psingle _ @ . 2/ Puwhote

Equation (12) holds based on the fact that for the mod-
ule V; that contains a single node i, the enter probability g;
is reduced to p;(1 — a/n). From Theorem 2, we can derive
that lim,, o Hpa""' (G) = HFwhete (). This result indicates
that if we try to minimize H”,(G) of a digraph G via an
agglomerative process, which starts from the trivial partition
that each module consists of a single node and merges similar
nodes/communities recursively, it is nearly impossible to obtain
the single module of the whole graph.

Theorem 3 (RW Entropy Gain): Given a connected digraph
G with a partition P = {Vi,..., VL }, we call the difference
between H?®, (G) and H”, (G) the RW entropy gain such that

L
MHW(G) = HE,(G) == (pj — ;) logs p;.-

j=1

(13)

where p; is the ergodic visit frequency at module V; and g; is
the enter probability of module V; defined in (11).

The proof of Theorem 3 can be referred to Section 1.4 in
Supplementary Material. Intuitively, the right hand side in (13)
describes the cumulative information that each module is the
arriver of the random walk excluding the transfer part between
modules. On one hand, Theorem 3 builds a bridge between one-
dimensional RWE and the RWE of digraph by a partition. On
the other hand, RWE gain shows the bits saved to describe the
information flow in a two-level manner than we could do with
one-dimensional description.

B. Community Detection in Directed Networks

So far, we have associated the structural complexity of a
given structure (a set of modules or communities) with a coding
quantity. Next, we will introduce a community detection method
in digraphs based on the RWE measure.

Recall that we capitalize on the network structures, and the
intuition is that the random walker statistically tends to spend
a long time within communities. As stated in Theorem 3, (13)
shows the bits saved to describe the information flow in the
two-level manner description. Clearly, if communities are well
separated from each other, transitions of the random walker
between communities will be unfrequent, so there is a large
RWE gain due to the little enter probability of each community.
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Algorithm 2: Global Greedy Merge Method (GGM).

Input: A weighted directed graph G = (V, E, A),
ergodic visit frequency p; for i € V.

Output: A partition P of node set V

Initialize P = {V1,...,V,,} where V] is singleton
fui}

S=1{}

for all two neighboring modules Vy,, V,, in P do

4 Set the union of V;;, V,, as a new module V, such

that V, =V, UV},

5 Record the change of RWE if merging V,, and V;:

AHT (G) = 31 pilogy B- +

Sty pilog, }% — 2oiZ1pilogy 1% + ¢z 10gy po +

qy logy py — q-log, p-

6 if Asz(G) < 0 then

7| | Sly)]=AHE,(G)

=

@ N

s Find the two modules that bring the largest decrease
of RWE after merging;:
(IB, y) = arg Inin(m,y) S[(.’ﬂ, y)]

9 Update P < (P\{V,,V,})) UV,

10 Repeat Lines 2 — 9 until no more two neighboring
modules V;,, V, such that A% (G) < 0 holds

1 _return P

Instead, if the partition is not representative of the actual commu-
nity structure of the graph, transitions between the clusters of the
partition will be very frequent and there will be little RWE gain.
Based on that, to find the community structures of digraphs,
a partition with RWE gain as large as possible is expected.
Moreover, Since H}, (G) is fixed given a digraph G, herein
lies the duality between community detection and the coding
problem: we look for a partition P so as to minimize the RWE
of Gby P,i.e., H., (G), whichis defined as the two-dimensional
RWE of G as follows.

Definition 7 (Two-Dimensional RWE of a Directed Network):
Let G be a connected directed graph, the two-dimensional
random walk based graph entropy of G is defined as

H7w(G) = min{H7,(G)}, (14)

where P runs over all possible partitions of G.

Therefore, the community structures in digraph G are equiv-
alent to the modules in the partition corresponding to the two-
dimensional RWE of GG. However, except for small networks, it
is computationally hard to check all possible partitions to find
the one that minimizes H”, (). Instead, we use computational
search. By the power method, we first calculate the ergodic
node visit frequency at each node. Using these visit frequencies,
we explore the space of possible partitions by a global greedy
merge (GGM) method, which is a kind of agglomerative process
summarized in Algorithm 2. Specifically, Line 1 of the algorithm
first assigns each single node to a unique module, and then
the enter probability of each module can be derived in a more
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TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN GGM AND FIVE
CLASSIC ALGORITHMS

Detectors Description Time Complexity
GGM two-dimension RWE optimization O(m+n)
infomap [29] maps of random walk O(m)
louvain [23] two-level modularity optimization O(nlogn)
CNM [20]  greedy modularity maximization O(nlog?n)
LPA [22] label propagation O(n?logn)
Danmf [39] nonnegative matrix factorization ~ O(c(n?r + nr?))

efficient way as follows:

Y pit(

i€Vj

TL—?’LJ

(I=a)- > > pipisks

1€V k¢V;

q; = Q-

where the intuition is that under the stationary state, the enter
probability is equal to the exit probability for each module.
In Lines 2-10, we calculate H”, (G) in (10) and repeatedly
merge the two modules that give the global maximum decrease
of #%,(G) until further merging brings about a larger RWE.
The time complexity of this process is O(m + n). For sparse
networks where the order of edges is the same order as that of
nodes, it is O(n). While for large-scale networks, our algorithm
is of complexity O(m). Table II compares the computational
complexity of the proposed framework GGM with 5 classic al-
gorithms. As we can see, our framework is efficient in large-scale
networks.

The result of GGM method can be further refined by a local
movement (LM) policy. Since in GGM process, nodes assigned
to the same module are forced to move jointly and can never
be separated, this may lead to a local minima. Based on the
result of GGM, we allow every single node ¢ to move locally to
the module that induces the maximum decrease of RWE among
all neighboring modules of node ¢ (ties are broken uniformly
at random), otherwise, it stays in its original module of GGM.
Practically, we make multiple independent runs with different
random sequences of nodes, and select the one that has minimum
final RWE value. Part of the efficiency of the algorithm results
from the following proposition.

Proposition 1 (Decrease in RWE by A Partition of Single
Node Merging): The decrease in RWE by a partition obtained
by moving an isolated node v to a module V; is

P
AHY = —p;

— po - logy +q; - loga pj

-log
2 pj JF Do Pj+Do

«
~ av;utey 108(pj +pu) + (1 - g) P - 1083 pu,

where p, and p; are the ergodic frequency at node v and
module V; respectively, qy,u(} is the enter probability of the
new module by merging V; and node v, which can be easily
computed by

—qg:+a- w . _ g . ( S+ )
qv,uf{v} = 4j n Po n Pj T Po
(1-a) Z Pv Pk — Z DPi - Pi—v
kEV; ieV;
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The proof of Proposition 1 is based on the definition in (10),
which can be easily derived. A similar expression is used to
evaluate the change of RWE by a partition when the node v is
moved from its module. In our LM policy, we therefore evaluate
the change of RWE by a partition by removing it from its original
module and then by merging it with a neighboring module.

VI. EXPERIMENTS AND EVALUATIONS

In this section, we conduct extensive experiments to evaluate
the performance of RWE from various perspectives.

Datasets and Settings: The real-world datasets [40], [41],
[42] listed in Table 1 of supplementary material contains static
graphs, temporal graphs and digraphs with ground-truth com-
munities, and presents statistics like average clustering coeffi-
cient (CLC), community numbers and snapshots of temporal
networks. For each static graph, we remove self-loops and
multiple edges. We regard every temporal graph as a stream of
directed weighted edges with timestamps. For convenience, we
partition the edges of temporal networks into several groups to
generate snapshots where each snapshot is within a certain time
interval. The experiments are performed on a server with Intel(R)
Xeon(R) CPU 2.10 GHz, 512 GB RAM and implemented in
Python.

A. One-Dimensional Structural Complexity Characterization

We first show the performance of one-dimensional RWE for
characterizing the structural complexity of digraphs.

1) Approximation Accuracy: To evaluate the accuracy of
RWE as an approximation for the von Neumann entropy in
digraphs, we measure the RWE, exact VNE and directed SI as a
competitor in 6 real-world digraphs (including both the original
graph and the largest strongly connected component of each
graph). The results are shown in Table III.

As we can see, compared to SI, RWE has a lower nor-
malized entropy gap regardless of the network types or sizes,
who even offers 42 x reduction (in original WV) over SI. This
demonstrates that RWE is an accurate approximation for VNE
in digraphs. Therefore, such is not consistent with the case
in undirected graphs, in which, however, SI is a fairly good
approximation for VNE [13]. Besides, we show the result of
approximation accuracy in directed weighted graphs in Table IV.
Besides the 4 real-world weighted digraphs, we also choose two
unweighted graphs (Wiki-Vote, P2P-G05), where the weight
of each edge is set uniformly at random in the range [1,10].
The results also demonstrate a better approximation for VNE in
weighted digraphs than SI.

2) Analysis of Upper Bound: Moreover, to illustrate the
tightness of the derived upper bound, Fig. 3 presents the normal-
ized derived upper bound (UB) and the normalized entropy gap in
two special digraphs with 1,000 nodes. Besides, we also report
the trends of true VNE value as corresponding references. For the
bidirectional Barab ¢ si-Albert (BA) graphs, we set in-degrees
in {10,15,...,300}. While for the regular digraphs, the in-degrees
are set from 10 to 999 (the complete graph). The observations are
as follows. First, for both two models, the normalized entropy
gap are all below 1%, demonstrating the high accuracy for
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Datasets Lake Wiki-Vote P2P-G05 Cora HepTh P2P-G30

Graph size Original LSCC  Original LSCC  Original LSCC  Original LSCC  Original LSCC  Original = LSCC

183 22 7,115 1,300 8,846 3,234 23,166 3,991 27,770 7,464 36,682 8,490
True VNE 4.8450 24745  11.8101 9.5681 129401  10.2687 128029 79766  13.3320  6.3568  15.0969  11.8946
RWE 4.9706 2.8322 11.8372  9.6276  12.9618 10.4082 12.9127 8.2627 13.3703 6.5515 15.1087  12.0501
SI 6.2471 4.2571 10.6667  9.9622  12.4198 10.8397  12.6845 11.1393  13.0295 11.5811 14.6200 12.5245

RWE normalized EP (%) 2.5929 14.4523 0.2298 0.6121 0.1674 1.3584 0.8578 3.5874 0.2872 3.0630 0.0777 1.3074
SI normalized EP (%) 28.9410 72.0375  9.6816  4.1189  4.0211 5.5604 09253  39.6504 22690  82.1848  3.1589 5.2955

The bold values represent the optimal performance data in the corresponding comparative experiments.

TABLE IV
ACCURACY COMPARISON FOR APPROXIMATING THE VON NEUMANN ENTROPY IN 6 REAL-WORLD WEIGHTED DIRECTED NETWORKS (EP IS SHORT
FOR ENTROPY GAP)

Datasets Cattle Highschool Florida-Eco Advogato Wiki-Vote[1,10] P2P-G05[1,10]
Graph size Original LSCC  Original LSCC  Original LSCC  Original LSCC  Original LSCC  Original = LSCC
28 20 70 67 128 103 6,539 3,140 7,115 1,300 8,846 3,234
True VNE 3.6935 2.6093 5.4850 3.2895 5.1186 1.4878 11.4475 9.5341 11.8033  9.5699  12.9308  10.0999
RWE 3.8924 2.9417 5.6080 3.4907 5.1944 2.0005 11.4921 9.5986 11.8328  9.6328 129551  10.2582
SI 4.4497 4.0554 5.7403 5.7354 3.7059 2.7044 10.6228  10.3866  10.6627  9.9550  12.3658  10.7889
RWE normalized EP (%) 5.3856 12.7381 2.2415 6.1182 1.4805 34.4629 0.3900 0.6769 0.2495 0.6571 0.1880 1.5667
SI normalzed EP (%) 20.4749  55.4200 4.6549 743550  -27.5987  81.7757  -7.2040 8.9418 -9.6636  4.0234  -4.3694 6.8212
The bold values represent the optimal performance data in the corresponding comparative experiments.
TABLE V
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Fig. 3. Derived upper bound (normalized by the true VNE) and the real
entropy gap (normalized by the true VNE) of bidirectional BA graphs and regular
digraphs with 1,000 nodes, varying average in-degree.

approximating VNE. Second, the normalized UB are almost
below 3%, and are closer to the normalized entropy gap with
increasing average in-degree, which indeed yields tightness.
Third, compared to the case in bidirectional digraphs, the bound
is much sharper in regular digraphs under the same average
in-degree, which is consistent with the theoretical analysis in
Section IV-B. Fourth, for the regular digraphs, as predicted,
the true VNE increases with the increasing average degree, and
reaches the maximum value when d;‘;g =999, i.e. the com-
plete graph. In this case, the normalized entropy gap decreases
to 1.4486 x 10~* and the normalized UB is 1.4493 x 1074,
According to the theoretical analysis, both two values will tend
to 0 when the complete graph size n — oc.

While for general digraphs, due to the uncertain distribution of
directed edges (including both location and directionality), the
order of the minimum positive entry ¢ of the Perron vector varies
greatly, leading to tight or loose bounds for different digraphs.

DERIVED UPPER BOUND, REAL ENTROPY GAP AND NORMALIZED ENTROPY
GAP OF 10 GENERAL DIGRAPHS

Network | Entropy gap | UB Normalized | In-degree power

entropy gap | law exponent
Macaques 0.15 0.77 0.0411 12.79
Taro 0.25 0.48 0.0601 28.4
Bison 0.08 6.22 0.0189 543
Physicians 0.14 441 0.0263 3.8
Stelzl 0.12 2.59 0.0132 2.61
Wiki-Vote 0.06 201 0.0061 3.86
Cattle 0.36 241 0.1449 3.39
Florida-Eco 0.06 16.44 0.0113 5.86
Flight 0.02 2.65 0.0023 448
Email 0.02 10.66 0.0027 6.02

We select 10 directed networks of different categories with
varying in-degree power law exponent ~y, and Table V presents
the entropy gap, upper bound and the normalized entropy gap
(normalized by the true VNE). As we predicted, the upper bound
varies a lot. However, we observe that networks with tighter
bound, such as 0.77, 0.48 and 2.65 in Macaques, Taro and Flight
respectively, tend to have a larger +y (basically larger than 4). The
reason may be that a larger in-degree power law exponent means
there are generally less nodes with large in-degree, so that the
network will have a more balanced Perron vector, leading to a
larger order of . While for networks with more large-degree
nodes, due to the existence of more hubs, ¢ will be as small
as possible, then a looser upper bound is derived. The Stelzl
network is an exception (v < 4, but still have a small upper
bound 2.59), we find the CLC is only 0.0058, which means
a very less degree to which nodes in Stelzl tend to cluster
together, avoiding that the random walk is often trapped in a
few nodes. Despite the observation of upper bound, this does
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Fig. 5. RWEs of 10 real-world digraphs with various sizes.

not conflict with the fact that that our proposed RWE indeed
yields small normalized entropy gap in approximating VNE
practically. Table V shows that the normalized entopy gap has a
minimum value of 0.23% and only a maximum value of 14.49%,
and the average value is 3.26%. These results indeed demonstrate
that our method is a good approximation of VNE.

3) Entropy Gap Sensitivity: To evaluate the sensitivity of
entropy gap to digraph properties such as average in-degree and
graph size, we further measure the digraph entropy gap of two
synthetic digraph models: directed preferential attachment (PA)
model [43] and Erdds Rényi (ER) model, in which we vary the
graph size from 1000 to 5000, and the average in-degree is in
{2,4,6,8,10,20}.

The observations from Fig. 4 are two fold. First, the digraph
entropy gap decreases as the average in-degree increases for both
two models. Second, the entropy gap is nearly insensitive to
the change of graph size.

4) Case Study: We further analyze RWE of directed net-
works by selecting 10 real-world digraphs with varying sizes and
showing their RWEs in Fig. 5. The observations are as follows.
First, in general, a larger network size usually brings about a
higher RWE value. The reason is that generally as the size of
the network increases, the quantities and ways of connections
between nodes usually become more, then from an average view
of any single node, the uncertainty of information flow or random
walker transfers to the next node will be large, hence the average
information that each node is traversed by the random walk will
be larger. However, second, this trend is not necessarily hold: the
RWE of a larger network may sometimes be lower than that
of a small network. For instance, the CK network, almost twice
the size of HP, but has a lower RWE than that of HP. To analyze
the reasons behind, we take a deeper look at their inherent
structures, and find that the clustering coefficient (CLC) of CKis
0.5332, which is much larger than 0.1457 of HP. Besides, the two
diameters are 13 versus 14. Both evidence indicate that the nodes
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Fig. 6.  Graph distance between adjacent graphs in graph streams. The GED

distance is normalized to lie in [0, 1].

TABLE VI
COMPUTATION TIME (SECONDS) FOR DYNAMICS OF GRAPH STREAM

Datasets | RWE-]JS R:IVE-:)[S IncreSim VEO GED DeltaCon VS
nc.
FB 0.3317 0.0338  0.1432 0.0503 0.0913 403.28 1.6016
Wiki-PL| 30.151 0.5075 2.8879 3.1631 13.030 30341.7 250.35

RWE-JS (Inc.) attains the best time efficiency.
The bold values represent the optimal performance data in the corresponding comparative
experiments.

inside CK tend to cluster together more than those in HP, which
ensures that the uncertainty of the information flow or random
walk in the network is lower, leading to a lower RWE. Third,
the RWE of networks of similar size may vary greatly. Take
SD and EP as an example. They have almost the same number
of nodes, but the RWE of SD is explicitly larger than that of EP,
implying more uncertainties of information flow contained in
the structure of SD. A similar reason can be found that the CLC
of SD is much lower than that of EP, i.e., 0.0555 versus 0.1378.

5) Performance of RWE-JS: We evaluate the performance of
RWE-IJS in terms of both efficiency an effectiveness, and com-
pare with five prominent graph similarity baselines: VEO [44],
GED [45], IncreSim [13], DeltaCon [46] and VS [44].

Efficiency. Dynamics of Graph Stream: We first measure the
distance between two adjacent graphs in 2 real-world dynamic
digraphs. The distance metrics are shown in Fig. 6, and the
computation time is reported in Table VI .

The observations are two folds. First, all the six methods
except GED could capture the dynamics of graph streams. For
both two temporal graphs, the distance measure changes dramat-
ically in the beginning. For the Wiki graph, it gradually tends
to be flat, which implies that the structure of Wiki-PL gradually
tends to be stable. However, as for the FB graph, the distance
measure has an upward trend in the end, indicating that FB is
still changing constantly. Second, RWE-JS (Inc.) has the least
computation time, which is roughly 5 times faster than IncreSim,
25 times faster than GED, 60 times faster than RWE-JS and 500
times faster than VS in the large-scale Wiki graph. Despite that,
compared to DeltaCon and VS, the complexity of RWE-JS is
even more acceptable in practice.

Effectiveness. Anomaly Detection in Graph Stream: To fur-
ther validate the effectiveness of RWE-JS in detecting anomaly
graph in a graph stream, we mimic the DDoS attacks in Caida
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TABLE VII

ACCURACY FOR ANOMALY DETECTION IN THE DYNAMIC AS-CAIDA
DDoS attack | pyyp 1 RWETS [ Gim VEO GED DeltaCon VS

(X%) (Inc.)

1% 43% 34% 34% 7% 13% 11% 16%

2% 76% 37% 36% 23% 9% 13% 35%

3% 78% 58% 37% 36% 12% 35% 38%

5% 91% 91% 54% 34% 19% 90% 58%

RWE-JS attains the best detection rate and robustness.

The bold values represent the optimal performance data in the corresponding comparative
experiments.

autonomous system networks, where we extract the first 9 snap-
shots as a digraph stream. We model the anomalous events by
first selecting one graph from the graph stream randomly, and
then connecting X % source nodes to a target node (The weight
is added by 1 in case the edge already exists) to mimic increasing
incoming traffic of the target. The task is to detect the anomalous
graph by comparing the graph distance metric between adjacent
graphs.

Specifically, for any graph G, by calculating the dissimilarity
score as the average graph distance with G;_1 and G, we
rank the graphs by their dissimilarity score in descending man-
ner, and repeat 100 random instances of DDoS attack for each
X ={1,2,3,5}. Table VII shows the results that the anomalous
graph appears in the Top-1 ranking based on 7 different mea-
sures. Firstly, RWE-JS consistently attains the best detection
performance. Secondly, when X is small, it is much harder for
detection as the attack becomes stealthier, but the performance
of RWE-JS is more sensible than the baselines, indicating the
robustness of RWE-JS. Thirdly, since VEO and GED are both

01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08

Hw Hw
(c) SI (d) Modularity

F1 score of four algorithms in directed LFR benchmarks with varying parameters fi¢, (., and community size range.

insensitive to the edge weight change, their detection rate is
much lower than other methods.

B. Community Detection in Directed Networks

We then perform experiments to find community structures in
digraphs by two-dimensional RWE. To evaluate the results with
underlying communities, we adopt two commonly used metrics:
NMI (Normalized Mutual Information) [47] and F1 score. NMI
measures the quality of clustering and is a normalization of the
Mutual Information (MI) score to scale the results between O
(no mutual information) and 1 (perfect correlation). F1 score
combines the precision and recall scores to measure the accuracy
of community detection (The larger the F1 score, the higher
the accuracy.). And we select 3 other algorithms for commu-
nity detection in digraphs: > Infomap: Find the community
structures using maps to describe the dynamics across the links
and nodes [29]. > SI: Find the community structures with the
minimum directed two-dimensional SI [2] via an agglomerative
process. > Modularity: Find the community structures with
maximum directed modularity [28].

1) Results in LFR Benchmarks: First, we conduct exten-
sive experiments on directed LFR (Lancichinetti-Fortunato-
Radicchi) benchmarks [48] with varying community sizes and
mixing parameters (we introduce the LFR benchmark in Sec-
tion 5 of Supplementary Material.), i.e., 1; and (4, referring to
topology and link weight respectively. For all the LFR bench-
mark used here, we set the network size n = 1000, and the
mixing parameter /i, is varying from 0.05 to 0.8. In each plot,
we show four curves, corresponding to two topological mixing
parameter 1, (0.5 and 0.8) and, for a given p, to two different
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TABLE VIII
PERFORMANCE COMPARISONS AMONG 5 DIGRAPH BASED AND 5 UNDIRECTED GRAPH BASED COMMUNITY DETECTION METHODS IN FOUR
REAL-WORLD NETWORKS

Networks Statisticsc  GGM+LM  GGM  Infomap SI Modularity  Louvain CNM LPA Danmf CommunityGAN

. NMI 0.83 0.82 0.81 0.75 0.67 0.56 0.46 0.52 0.65 0.62
Flight network

F1 0.91 0.90 0.89 0.22 0.85 0.84 0.80 0.82 0.85 0.23

E-mail NMI 0.66 0.64 0.55 0.45 0.44 0.56 0.48 0.18 0.50 0.33

F1 0.70 0.64 0.70 0.62 0.62 0.68 0.63 0.53 0.70 0.24

WiKi NMI 0.48 0.48 0.46 047 0.39 0.39 0.32 0.46 0.25 0.18

F1 0.84 0.83 0.85 0.83 0.83 0.82 0.81 0.80 0.80 0.43

o NMI 0.54 0.51 0.47 0.46 0.39 0.40 0.37 0.48 0.15 0.17
GPCN citation

F1 0.46 0.45 0.48 0.50 0.52 0.51 0.51 0.46 0.49 0.29

The bold values represent the optimal performance data in the corresponding comparative experiments.

ranges for the community sizes (50 to 100 nodes and 70 to
100 nodes, respectively). Other parameters are set to default
as mentioned in the original implementation.

Figs. 7 and 8 show the results of our analysis. Each point of
every curve is averaged over 100 realizations of the benchmark
(the corresponding standard deviation results can be referred
to Section 4 in Supplementary Material). First, as one can see,
considering both NMI and F1 score, the GGM method performs
fairly well until p,, = 0.6 for all settings, which has a much
wider range of good performance than all the baseline algo-
rithms. For example, the NMI values of Infomap under i, = 0.8
are already 0, but those of GGM are almost 1. This demonstrates
that although both methods are based on two-dimensional infor-
mation description, where GGM method describes the average
information of random walker, while the Infomap method fo-
cuses on the length of two-dimensional coding, GGM can better
describe the information flow in a digraph. Second, compared to
SI, who worsens if communities are topologically more mixed
(higher p;), GGM is insensitive to the mixing parameter /i,
since RWE is not directly defined on the incoming or outcoming
connections of graphs, but the probability flow of random walk
as a proxy of information flow. Although the Modularity algo-
rithm has a similar results for p; = 0.8 as GGM, we can still
see a slightly higher value when p,, is larger than 0.6, which
demonstrates the advantages of capturing the information flow
of digraphs. Third, similar to Infomap, the performance of GGM
for y1y = 0.8 decays alittle later than that for ;;, = 0.5, the reason
behind is that both two methods focus on the information flow
within networks, a higher 11, means a more obvious flow between
different communities that can be found.

2) Results in Real-World Networks: We next pick 4 real-
world networks with ground-truth communities. Besides
EM [40] and WK [41], we also collect the flight information
all over the world from Jan. to June 2021, and construct the
flight network between airports, with countries as communities
and the flow as edge weights. Moreover, we construct a citation
network (GPCN) of geosciences during 2017 to 2020, where
different venues are considered as communities.

Table VIII not only presents the results of the above four algo-
rithms, but also the refined version of GGM by local single node
movements, i.e., GGM+LM, as well as 3 well-known commu-
nity detection methods (Louvain [23], CNM [20], LPA [22]) and
2 deep learning methods (Danmf [39], CommunityGAN [49])
exactly designed for undirected graphs by ignoring the edge

directions. The observations are two fold. First, the GGM+LM
algorithm performs the best among ten methods in almost all the
cases, especially for FL. and EM networks, which demonstrates
that the RWE based approach has advantages to identify im-
portant aspects of structures in networks where links represent
patterns of movement among nodes. Second, as we can see,
moving nodes locally can indeed enhance the performance of
GGM.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a random walk based graph en-
tropy to capture both one-dimensional and two-dimensional
structural complexity of directed networks. We suggest to use
one-dimensional RWE as a proxy of the von Neumann entropy in
digraphs such that provable accuracy, scalability, and inter-
pretability are achieved simultaneously, and the experimental
results also show the capability of well capturing the struc-
tural complexity of real-world networks. Based on the two-
dimensional RWE, we design an efficient community detection
algorithm for digraphs. Extensive results in LFR benchmarks
and four real-world networks demonstrate the superior perfor-
mance to the baselines.

There are multiple tangible research directions we can pursue.
First, although the derived upper bound of digraph entropy gap
yields tightness in some digraphs, for general ones where the
Perron vector has no closed form, a more sharpened bound is
expected if possible. Second, for some access limited scenarios
such as the World Wide Web, there is need to develop sampling-
based methods to estimate the RWE. Last, since there may
also be substructures within communities, the higher dimension
structural complexity of directed networks is still in its infancy.
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