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Abstract

Math word problem (MWP) solving requires001
generating a reasoning path based on a given002
problem description that often contains irrel-003
evant conditions. Existing chain-of-thought004
(CoT) prompting methods elicited multi-step005
reasoning abilities of large language models006
(LLMs) to solve MWPs. However, they were007
seriously confused by the irrelevant conditions,008
resulting in low accuracy. In this paper, we pro-009
pose a novel approach named I3C that instructs010
LLMs to identify and ignore irrelevant condi-011
tions. It identifies a set of irrelevant condition012
candidates that have a weak semantic relevance013
with the question. Then it prompts LLMs to ver-014
ify the irrelevant conditions. Lastly it instructs015
the LLMs with the verification on relevant and016
irrelevant conditions to avoid confusion and im-017
prove reasoning paths. Moreover, we propose018
to select (problem, reasoning paths)-pairs as019
demonstrations to enhance I3C with few-shot020
reasoning. We develop I3C-Select that selects021
the most confusing problems based on the se-022
mantic relevance measurement. We conduct023
extensive experiments on eight MWP datasets.024
I3C can be combined with any CoT prompting025
methods to improve the performance of solving026
MWPs. Notably, with GPT-3.5-Turbo and I3C-027
Select, we achieve an accuracy of 96.0 and 94.1028
on GSM-IC2-1K and GSM-ICM-1K, respec-029
tively, significantly outperforming the state-of-030
the-art few-shot prompting method Complex-031
CoT by +11.7 and +11.1.032

1 Introduction033

Math word problem (MWP) solving is a task of034

developing algorithms to generate a reasoning path035

towards an unknown quantity based on a problem036

description. This task is challenging as it requires037

mathematical understanding and multi-step reason-038

ing abilities. Chain-of-thought (CoT) prompting039

methods were able to guide large language models040

(LLMs) to perform complex multi-step reasoning041

(Kojima et al., 2022; Wang et al., 2023a). Adding042

demonstrations created manually (Wei et al., 2022) 043

or retrieved from a large training set (Fu et al., 044

2023) in CoT prompts enabled few-shot in-context 045

learning and improved accuracy. However, Shi 046

et al. found that existing CoT prompting methods 047

could be seriously confused by irrelevant condi- 048

tions which are specifications or data presented in 049

a problem that are unrelated to the solution (Kel- 050

logg, 2016). For example, as shown in Figure 1a, 051

the third condition “The height of Mary is 5 feet.” 052

was irrelevant to the final question and misled the 053

reasoning and prediction. Shi et al. added a plain 054

instruction “Feel free to ignore irrelevant condi- 055

tions in the problem description.” in the prompts, 056

but the LLMs could not effectively ignore them in 057

the problem solving process because they were not 058

identified or specified in the instruction. 059

Improving the reasoning on MWPs that have ir- 060

relevant conditions is non-trivial. Self-consistency 061

(Wang et al., 2023b) was proposed to repeatedly 062

solve a problem multiple times (e.g., 10 times) and 063

employ a majority vote strategy to determine the 064

most consistent answer as the final answer. How- 065

ever, it was computationally expensive and still 066

confused by the irrelevant conditions. Moreover, 067

the demonstrations would have to be re-designed to 068

obtain the few-shot learning ability of identifying 069

and ignoring the irrelevance, compared to those in 070

(Wei et al., 2022; Zhang et al., 2023). 071

In this paper, we propose a novel approach, I3C, 072

to instruct LLMs to explicitly Identify and Ignore 073

Irrelevant Conditions in the mathematical reason- 074

ing process. It creates effective instructions that 075

can be added to any CoT prompts to improve their 076

generated reasoning paths. Unlike self-consistency, 077

I3C does not prompt LLMs multiple times. Its ad- 078

vanced variant, I3C-Select, uses the most confusing 079

problems and their generated reasoning paths as 080

demonstrations for few-shot learning. 081

First, we quantify the semantic relevance of each 082

condition ci in a MWP Q = [{ci}, q]. Specifically, 083
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𝑐! Steve is 5'6".
𝑐" He grows 6 inches.
𝑐# The height of Mary is 5 feet.
𝑞 How tall is Steve in inches?

Problem 𝑄:

5'6" 66 inches
(66 inches) + 6 inches 72 inches

5 feet 60 inches
(60 inches) + 6 inches 66 inches

66 inches?

(because condition 𝑐!
was irrelevant to 𝑞!)

(a) Existing CoT prompting methods were confused by irrelevant conditions in math word problems and gave wrong answers.

�
�3

�2

�1

Irrelevant condition
candidates:
• �1

 irr = �2
• �2

 irr = �3

�. Is condition ��
 irr  relevant to the process 

of solving problem �?

Condition relevance verification prompts:

LLM

Therefore, 
the answer is

The condition “He grows 6 inches.” is 
relevant to the process … 

Verification output �1
 irr :

The condition “The height of Mary is 5 
feet” is not relevant to the process … 

Full prompt: I3C instruction + any CoT prompt:

The instructions are as follows: �1
 irr  �2

 irr 

Let’s consider these instructions and ignore the 
irrelevant conditions to solve the problem.
{Demonstrations for few-shot prompting}
Problem: � Reasoning: ? Let’s think step by step.

�2
 irr :

LLM
Reasoning path �:

Steve is 5'6", which 
is equal to 66 inches. 
He then grows 6 
inches, making his 
new height 72 inches.

LLM
72. {Problem � demo ,

Reasoning path � demo }-pairs
from other data points

(b) I3C performs three steps: (1) Identify irrelevant condition candidates by encoding and condition-question similarity scoring;
(2) Use LLMs to verify if the candidates are relevant; (3) Leverage the verifications (and demonstrations) to generate accurate
reasoning paths and find correct answers.

Figure 1: The proposed I3C approach instructs LLMs to Identify and Ignore Irrelevant Conditions.

we use a language model like SimCSE (Gao et al.,084

2021) to encode the conditions {ci} and question085

sentence q. The semantic relevance is lower if the086

condition’s encoding is more distant from the en-087

codings of question and other conditions, as shown088

in Figure 1b. Then we identify a set of irrelevant089

condition candidates, like c2 and c3 in this example,090

and we denote them by {c(irr)
k }.091

Next we use a LLM to verify if the candidates092

are indeed irrelevant. For each candidate c(irr)
k , the093

verification prompt is a natural language question094

consisted of itself, Q, and q. The verification output095

usually has the explicit answers “... is (not) relevant096

to ...”, denoted by v(irr)
k .097

Finally we put all the verification outputs {v(irr)
k }098

to create a novel instruction which helps the LLM099

to identify and ignore irrelevant conditions in the100

problem description, so-called I3C. The I3C instruc-101

tion is a plug-and-play module and can be added to102

any CoT prompting methods to help LLMs avoid103

confusion and improve generated reasoning paths. 104

To enable few-shot in-context learning, we fur- 105

ther develop I3C-Select, which uses pairs of prob- 106

lems and their corresponding generated reasoning 107

paths to automatically construct effective demon- 108

strations. Specifically, it defines the confusion 109

score of each problem in the training set: the score 110

is higher, if the semantic relevance of its condi- 111

tions is lower; and the problems with the highest 112

confusion scores are selected. 113

Experiments on GPT-3.5-Turbo demonstrate that 114

adding the I3C instruction to CoT prompting meth- 115

ods improves their performance. For example, 116

adding I3C instruction to Manual-CoT improves 117

the accuracy by +8.1 on AddSub, +8.1 on SVAMP, 118

+6.0 on GSM8K, +5.1 on SingleEq, +5.1 on 119

GSM-IC2-1K, +2.8 on AQuA, +9.2 on MATH, 120

and +7.8 on GSM-ICM-1K. 121

Moreover, I3C-Select beats existing prompt- 122

ing methods by a striking margin on eight MWP 123

2



datasets. Specifically, I3C-Select boosts the per-124

formance of Complex-CoT method by +11.7 on125

GSM-IC2-1K, +11.1 on GSM-ICM-1K, +12.6 on126

AQuA, +8.2 on MATH, and +10.0 on GSM8K.127

2 Related Work128

2.1 Math Word Problem Solving129

Our work is related to existing efforts on solving130

MWPs. Traditional methods used statistical learn-131

ing to extract entities, quantities, and operators132

from a question and generated an arithmetic equa-133

tion to find the answer (Hosseini et al., 2014; Roy134

et al., 2015; Zhou et al., 2015; Mitra and Baral,135

2016). Later, sequence-to-sequence (Seq2Seq)136

model and recurrent neural networks directly trans-137

formed the question into an arithmetic equation138

(Wang et al., 2017, 2019; Li et al., 2019). Recently,139

fine-tuned pre-trained language models have sig-140

nificantly improved the validity of generated equa-141

tions and accuracy of answers (Shen et al., 2021;142

Liang et al., 2022, 2023). However, these meth-143

ods require a large amount of human annotations,144

lacking the ability to generalize to new kinds of145

MWPs. In this work, we aim to prompt LLMs146

to answer arbitrary MWPs without human anno-147

tations or task-specific fine-tuning. Our approach148

generates reasoning paths so that researchers can149

investigate the behaviors of LLMs.150

2.2 Chain-of-Thought Prompting Methods151

CoT prompting methods have enabled LLMs to152

generate reasoning paths and solve complex MWPs153

(Kojima et al., 2022). The reasoning paths could154

be more expressive if the prompts were added with155

“Let’s think step by step”. To mitigate missing-156

step errors, Plan-and-Solve (PS) prompting meth-157

ods instructed the LLMs to devise a plan to break158

down the entire task into smaller subtasks, and then159

carry out the subtasks according to the plan (Wang160

et al., 2023a). Manual-CoT, as a type of few-shot161

prompting, manually designed demonstrations to162

elicit multi-step reasoning ability of the LLMs (Wei163

et al., 2022). Program of Thought (PoT) generated164

programming language statements and used a pro-165

gram interpreter to execute the generated program166

to get final answers (Chen et al., 2023). Zhang167

et al. designed Auto-CoT, and their source code1168

indicates that they sampled diverse questions from169

the test set to minimize manual effort in finding170

demonstrations. Fu et al. designed Complex-CoT,171

1https://github.com/amazon-science/auto-cot

which selects the most complex problems and their 172

reasoning paths as demonstrations. Aware of irrel- 173

evant conditions in the problem description, Shi 174

et al. added the instruction “Feel free to ignore 175

irrelevant conditions in the problem description” in 176

the prompt. These methods do not explicitly spec- 177

ify the irrelevant conditions in the prompt, which 178

makes it difficult for LLMs to identify and ignore ir- 179

relevant conditions in the problem solving process. 180

Our method identifies irrelevant conditions in the 181

problem description, instructs the LLMs to ignore 182

them, and achieves significantly higher accuracy. 183

2.3 Identify Irrelevant Information 184

Jia and Liang have shown that question answering 185

systems are confused when paragraphs contain ir- 186

relevant information. Several studies have trained 187

models to identify and filter out the irrelevant in- 188

formation. For example, Roy and Roth trained a 189

classifier and scored the likelihood of each quantity 190

in the problem being an irrelevant quantity. Kim 191

et al. employed a new training loss to remove the 192

attribute-irrelevant information from the semantic 193

encoder output. Li et al. proposed a multi-scale 194

knowledge-aware transformer to eliminate identity- 195

irrelevant information. Yang et al. leveraged pre- 196

extracted semantic information to improve the pre- 197

processor’s ability to accurately identify and filter 198

out task-irrelevant information. All these methods 199

require massive human annotations. In contrast, 200

our method does not require time-consuming train- 201

ing or fine-tuning. It employs LLMs to automat- 202

ically identify irrelevant conditions and generate 203

instructions to help the models ignore them. 204

3 Proposed Approach 205

3.1 Overview 206

In this section, we elaborate on how to instruct 207

LLMs to identify and ignore irrelevant conditions 208

in the math word problem description. Given a 209

complex problem, we first identify a set of irrele- 210

vant condition candidates that have a weak seman- 211

tic relevance with the question (§ 3.2). Then we 212

prompt LLMs to verify if the candidates are in- 213

deed irrelevant. Putting all the verification results 214

together, we create a novel I3C instruction to in- 215

struct the LLMs to ignore the irrelevant conditions 216

in the problem description. The I3C instruction can 217

be added to any CoT prompting methods to help 218

LLMs avoid confusion and improve their generated 219

reasoning paths. Furthermore, we develop a few- 220
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shot prompting method I3C-Select that selects the221

most confusing problems and their reasoning paths222

as demonstrations, and adds the I3C instruction be-223

fore the demonstrations in the prompt. Given the224

prompt and a target problem, the LLMs generate225

an accurate reasoning path to improve the solving226

process. We introduce the I3C instruction in § 3.3227

and I3C-Select method in § 3.5.228

3.2 Identify a Set of Irrelevant Condition229

Candidates230

Given a MWP Q, we first split it into n conditions231

{ci}ni=1 and a question sentence q, where each con-232

dition describes at most one quantity. So we have233

Q = [{ci}, q]. For example, in Figure 1a, the con-234

ditions are {“Steve is 5’6".”, “He grows 6 inches.”,235

“The height of Mary is 30 feet.”}, and the question236

sentence is “How tall is Steve in inches?”.237

Next, we use a pre-trained language model, e.g.,238

SimCSE (Gao et al., 2021), to encode the condi-239

tions and question sentence into vector represen-240

tations. So we have {ci}ni=1 and q which are d-241

dimensional vectors. We set d = 1, 024.242

Then for each condition ci, we calculate the av-243

erage similarity between ci and all other conditions244

in Q using cosine similarity, because the SimCSE245

embeddings were trained on cosine similarity:246

s(c)
i =

1

n− 1

n∑
j=1,j ̸=i

cos (ci, cj)

=
1

n− 1

n∑
j=1,j ̸=i

c⊤i cj
∥ci∥ · ∥cj∥

.

(1)247

We also calculate the similarity between ci and q:248

s
(q)
i = cos (ci,q). So we have {s(c)

i , s
(q)
i }ni=1.249

Now we can define a set of irrelevant condition250

candidates I ⊂ {ci}ni=1 for each math word prob-251

lem. A condition ci is potentially irrelevant if its se-252

mantic relevance is lower than expectation. In other253

words, if s(c)
i < θ or s(q)

i < θ, I has ci. We re-index254

the conditions in the set: I = {c(irr)k }|I|k=1. The255

threshold θ is a hyperparameter. We set θ = 0.5.256

See Appendix A.5 for hyperparameter analysis.257

We can further define the confusion score of a258

math word problem Q. We assume that the problem259

is more confusing if its conditions are less relevant260

with the final question. So the confusion score261

is defined as the inverse of the average similarity262

between any condition and the question:263

conf(Q) =

[
1

n

n∑
i=1

cos (ci,q)

]−1

. (2)264

The most confusing problems, i.e., the problems 265

of the highest confusion scores, and their gener- 266

ated reasoning paths, will be automatically used as 267

demonstrations in a few-shot setting. The demos 268

teach LLMs to better solve confusing problems. 269

Later sections give details. 270

3.3 Construct I3C Instruction 271

Given a set of irrelevant condition candidates I , we 272

use a LLM to verify if the candidates are indeed 273

irrelevant. For a math word problem Q, its final 274

question q, and a condition candidate c(irr)k ∈ I , we 275

construct a verification prompt: “Q. Is condition 276

c
(irr)
k relevant to the process of solving problem q?” 277

We feed the prompt to a LLM and receive a piece 278

of text v(irr)k justifying if c(irr)k is relevant or indeed 279

irrelevant. So we have a set of verification outputs 280

(size |I|): {v(irr)k }|I|k=1. 281

Now we can create a novel instruction to help 282

LLMs identify and ignore irrelevant conditions in 283

the problem description. In a zero-shot setting, the 284

instruction starts with all the verification outputs. 285

Specifically, this I3C instruction, simply denoted 286

by I , is “The instructions are as follows: v
(irr)
1 287

· · · v
(irr)
|I| . Let’s consider these instructions and 288

ignore the irrelevant conditions to solve the prob- 289

lem”. In case where I is an empty set, we follow 290

the Instruct-CoT method (Shi et al., 2023) and use 291

the sentence “Feel free to ignore irrelevant condi- 292

tions in the problem description” as the instruction. 293

3.4 Generate Reasoning Paths and Answers 294

with I3C Instruction 295

The I3C instruction can be added to any CoT 296

prompting methods such as Zero-Shot-CoT (Ko- 297

jima et al., 2022), PS (Wang et al., 2023a), Instruct- 298

CoT (Shi et al., 2023), Manual-CoT (Wei et al., 299

2022), Complex-CoT (Fu et al., 2023), and Auto- 300

CoT (Zhang et al., 2023). The goal is to generate 301

a reasoning path and answer a math word problem 302

Q. For example, in Zero-Shot-CoT (Kojima et al., 303

2022), the prompt was “Q: Q. A: Let’s think step 304

by step”. By adding the I3C instruction to the Zero- 305

Shot-CoT method, denoted by Zero-Shot-CoT+I3C 306

in our experiments, the prompt becomes “I . Q: Q. 307

A: Let’s think step by step”. The full prompts in 308

experiments can be found in Appendix A.4. 309

Finally, after the reasoning path is generated, we 310

use the prompt “Therefore, the answer is” to get 311

the quantity prediction as the final answer. 312
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3.5 I3C-Select: Select Confusing Problems as313

Automatic Demonstrations314

Fu et al. indicated that prompts with higher315

reasoning complexity achieve better performance316

on multi-step reasoning tasks. To further en-317

hance the ability of LLMs to address the irrel-318

evance of conditions, we develop a novel few-319

shot prompting method I3C-Select. As presented320

in § 3.2, it first calculates the confusion score321

of problems in the training set, as defined in322

Eq.(2). Subsequently, it selects the K most con-323

fusing problems and generates their reasoning324

paths using the Zero-Shot-CoT prompting method325

(with K = 8 in our experiments). Finally,326

it uses the most confusing problems and their327

reasoning paths as demonstrations, denoted by328

{Q(demo)
1 , R(demo)

1 ; · · · ;Q(demo)
K , R(demo)

K }.329

I3C-Select puts the demonstrations after the I3C330

instruction to construct the full prompt. Specifi-331

cally, the prompt is “I . Q: Q(demo)
1 A: R(demo)

1 · · ·332

Q: Q(demo)
K A: R(demo)

K Q: Q. A:”. With the prompt333

and the target problem Q, the LLMs generate a rea-334

soning path for Q. Figure 1b illustrates the details.335

4 Experiments336

4.1 Experimental Setup337

Datasets. We use eight math word problem338

(MWP) datasets as our testbed. AddSub (Hos-339

seini et al., 2014), SingleEq (Koncel-Kedziorski340

et al., 2015), SVAMP (Patel et al., 2021), and341

GSM8K (Cobbe et al., 2021) are classical MWP342

datasets in which some of the problem descriptions343

contain irrelevant conditions. GSM-IC2-1K (Shi344

et al., 2023) and GSM-ICM-1K (Shi et al., 2023)345

are challenging datasets that require multi-step rea-346

soning, and each problem description contains ir-347

relevant conditions. AQuA (Ling et al., 2017) and348

MATH (Hendrycks et al., 2021) are more challeng-349

ing datasets that contain problems from high school350

competitions. More detailed dataset information351

can be found in Appendix A.1.352

Baselines. We compare our proposed I3C-Select353

prompting method with two types of prompting354

baselines: (1) Zero-shot baselines. We include355

Zero-Shot-CoT (Kojima et al., 2022), PS (Wang356

et al., 2023a), Instruct-CoT (Shi et al., 2023), and357

Direct (Kojima et al., 2022). The Direct base-358

line uses the prompt “The answer is” to get the359

final answer. (2) Few-shot baselines. We include360

Manual-CoT (Wei et al., 2022), Complex-CoT (Fu361

et al., 2023), PAL (Gao et al., 2023), and Auto- 362

CoT (Zhang et al., 2023). The demonstrations of 363

these baselines are from their original papers. No- 364

tably, according to the source code2, Auto-CoT’s 365

demonstrations are from the test set, whereas I3C- 366

Select’s demonstrations are from the training set. 367

Details of all baselines are shown in Appendix A.2. 368

Implementation. We use GPT-3 (text-davinci- 369

003) and GPT-3.5-Turbo as backend LLMs, which 370

are the most widely-used LLMs with public APIs3. 371

Following (Shi et al., 2023), we set the temperature 372

to 0.7. To evaluate the model performance, we 373

follow (Chen et al., 2023) to adopt accuracy as our 374

evaluation metric. An answer is considered correct 375

if and only if the absolute error between the answer 376

and the gold answer is less than 1 × 10−5. See 377

Appendix A.3 for detail. 378

4.2 Experimental Results 379

Overall performance on MWP datasets. As 380

shown in Table 1, I3C-Select consistently out- 381

performs the baseline methods across all MWP 382

datasets by a significant margin, regardless of 383

which model is used as the backend LLM. Specif- 384

ically, when applied to GPT-3 (text-davinci-003), 385

I3C-Select improves the accuracy over Zero-Shot- 386

CoT by at least +6.0 across all datasets, except for 387

SingleEq, where the improvement is +4.8. This 388

exception can be attributed to the fact that the prob- 389

lems in SingleEq do not contain irrelevant condi- 390

tions. Our proposed I3C-Select method primarily 391

instructs LLMs to identify and ignore irrelevant 392

conditions in the problem description. It is note- 393

worthy that even in the SingleEq dataset, using 394

the most confusing problems and their generated 395

reasoning paths as demonstrations effectively en- 396

hances MWP solving performance. 397

In comparison to the competitive zero-shot base- 398

line, Instruct-CoT, the performance of I3C-Select 399

remains impressive. When applied to GPT-3.5- 400

Turbo, I3C-Select enhances the average accuracy 401

by +8.0 across eight MWP datasets compared to 402

Instruct-CoT. Furthermore, our analysis demon- 403

strates that I3C-Select consistently outperforms 404

few-shot baselines on all datasets. Specifically, 405

when compared to the Complex-CoT prompting 406

method, I3C-Select exhibits superior performance 407

in GSM-ICM-1K, GSM-IC2-1K, AQuA, MATH, 408

and GSM8K, with improvements of +11.1, +11.7, 409

2https://github.com/amazon-science/auto-cot
3Public API available at https://openai.com/api/.
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Table 1: Accuracy (%) comparison on eight MWP datasets. I3C indicates that instructs LLMs to identify and ignore
irrelevant conditions. Adding the I3C instruction to CoT prompting methods effectively improves performance.
Selecting the most confusing problems and their generated reasoning paths as demonstrations for few-shot learning
(i.e., I3C-Select) achieves state-of-the-art performance on all eight MWP datasets.

LLM Method
Dataset

AddSub SVAMP GSM8K SingleEq GSM-IC2-1K GSM-ICM-1K AQuA MATH

G
PT

-3
(t

ex
t-

da
vi

nc
i-

00
3)

Direct 89.3 65.2 15.0 84.6 22.8 9.0 28.7 7.6

Direct + I3C 92.4 (+3.1) 74.5 (+9.3) 49.7 (+34.7) 92.7 (+8.1) 82.6 (+59.8) 66.9 (+57.9) 36.2 (+7.5) 11.3 (+3.7)

Zero-Shot-CoT 84.8 74.3 60.8 89.5 70.7 62.5 40.5 12.4

Zero-Shot-CoT + I3C 91.7 (+6.9) 75.9 (+1.6) 61.3 (+0.5) 93.7 (+4.2) 84.7 (+14.0) 71.4 (+8.9) 45.7 (+5.2) 17.9 (+5.5)

PS 88.1 72.0 58.2 89.2 70.9 63.5 38.1 13.7

PS + I3C 91.4 (+3.3) 75.6 (+3.6) 61.1 (+2.9) 93.1 (+3.9) 84.8 (+13.9) 69.4 (+5.9) 43.6 (+5.5) 18.2 (+4.5)

Instruct-CoT 90.4 76.3 57.8 91.1 82.4 64.3 44.5 16.1

Instruct-CoT + I3C 91.8 (+1.4) 77.0 (+0.7) 61.0 (+3.2) 92.7 (+1.6) 84.7 (+2.3) 71.3 (+7.0) 46.3 (+1.8) 21.3 (+5.2)

Manual-CoT 87.8 76.7 56.9 91.3 73.9 60.6 44.0 15.6

Manual-CoT + I3C 92.9 (+5.1) 80.1 (+3.4) 61.6 (+4.7) 93.9 (+2.6) 82.0 (+8.1) 66.1 (+5.5) 49.1 (+5.1) 19.8 (+4.2)

Auto-CoT 90.6 77.8 58.9 90.9 74.3 65.2 47.2 16.3

Auto-CoT + I3C 93.7 (+3.1) 80.0 (+2.2) 61.9 (+3.0) 93.5 (+2.6) 83.9 (+9.6) 68.2 (+3.0) 51.5 (+4.3) 22.5 (+6.2)

Complex-CoT 88.9 78.0 67.7 92.7 75.3 66.5 48.8 17.4

Complex-CoT + I3C 92.8 (+3.9) 80.0 (+2.0) 70.6 (+2.9) 94.0 (+1.3) 87.1 (+11.8) 83.6 (+17.1) 53.2 (+4.4) 23.1 (+5.7)

I3C-Select (Ours) 93.9 80.3 72.6 94.3 93.7 90.9 57.1 28.5

G
PT

-3
.5

-T
ur

bo

Direct 86.1 78.2 77.8 93.1 88.9 83.4 63.4 39.7

Direct + I3C 94.4 (+8.3) 85.1 (+6.9) 78.5 (+0.7) 96.9 (+3.8) 92.5 (+3.6) 90.1 (+6.7) 64.2 (+0.8) 41.3 (+1.6)

Zero-Shot-CoT 85.2 76.7 78.6 90.3 87.0 82.0 51.3 37.9

Zero-Shot-CoT + I3C 93.4 (+8.2) 84.2 (+7.5) 82.0 (+3.4) 97.8 (+7.5) 92.7 (+5.7) 88.6 (+6.6) 63.1 (+11.8) 42.1 (+4.2)

PS 87.6 77.8 75.9 91.7 81.4 73.6 60.2 43.7

PS + I3C 93.7 (+6.1) 85.6 (+7.8) 82.5 (+6.6) 97.6 (+5.9) 92.7 (+11.3) 90.1 (+16.5) 64.5 (+4.3) 45.2 (+1.5)

Instruct-CoT 86.5 81.3 77.7 94.4 89.2 84.4 62.9 41.1

Instruct-CoT + I3C 92.9 (+6.4) 84.9 (+3.6) 82.0 (+4.3) 97.8 (+3.4) 92.9 (+3.7) 89.1 (+4.7) 65.5 (+2.6) 46.1 (+5.0)

Manual-CoT 85.3 77.1 76.4 92.9 86.8 81.4 54.3 35.1

Manual-CoT + I3C 93.4 (+8.1) 85.2 (+8.1) 82.4 (+6.0) 98.0 (+5.1) 91.9 (+5.1) 89.2 (+7.8) 57.1 (+2.8) 44.3 (+9.2)

Auto-CoT 88.0 80.9 78.8 95.9 84.3 81.8 57.8 39.1

Auto-CoT + I3C 93.2 (+5.2) 84.7 (+3.8) 82.8 (+4.0) 97.8 (+1.9) 91.8 (+7.5) 88.4 (+6.6) 62.7 (+4.9) 43.9 (+4.8)

Complex-CoT 87.9 80.4 78.9 94.5 84.3 83.0 59.1 39.5

Complex-CoT + I3C 93.7 (+5.8) 84.4 (+4.0) 82.4 (+3.5) 97.2 (+2.7) 91.7 (+7.4) 88.6 (+5.6) 63.2 (+4.1) 45.3 (+5.8)

PAL 89.1 77.8 79.5 97.6 85.2 84.7 63.4 38.7

I3C-Select (Ours) 94.9 89.9 88.9 98.6 96.0 94.1 71.7 47.7

+12.6, +8.2, and +10.0, respectively. These find-410

ings indicate that incorporating more detailed in-411

structions (e.g., I3C instruction) and using the most412

confusing problems and their reasoning paths in413

the prompt can achieve superior performance.414

Does adding the I3C instruction work? As415

shown in Table 1, adding the I3C instruction to416

the CoT prompting methods significantly enhances417

the MWP solving performance. Specifically, when418

applied to GPT-3.5-Turbo, adding the I3C instruc-419

tion to the Zero-Shot-CoT method (i.e., Zero-Shot-420

CoT+I3C) improves the average accuracy by +6.9421

across eight MWP datasets, compared to the origi-422

nal Zero-Shot-CoT prompting method. For datasets423

like GSM-IC2-1K and GSM-ICM-1K, which con-424

tain irrelevant conditions in each problem descrip-425

tion, Zero-Shot-CoT+I3C improves the accuracy by426

+5.7 and +6.6, respectively. Even for prompting427

methods such as Auto-CoT, which already achieve428

high accuracy on most MWP datasets, the addition 429

of the I3C instruction (i.e., Auto-CoT+I3C) still 430

leads to significant improvements. Auto-CoT+I3C 431

improves accuracy by +7.5 on GSM-IC2-1K, +4.9 432

on AQuA, +4.8 on MATH, and +4.0 on GSM8K. 433

How does LLM selection affect I3C-Select? Ta- 434

ble 1 shows that I3C-Select works better when 435

the LLM is more powerful. Specifically, on the 436

GSM8K dataset, the GPT-3.5-Turbo model ex- 437

hibits a +16.3 increase in accuracy compared to the 438

text-davinci-003 model. Similarly, on the AQuA 439

dataset, using the GPT-3.5-Turbo model results in 440

a +14.6 improvement in accuracy over the text- 441

davinci-003 model. It is noteworthy that GPT-3.5- 442

Turbo is a chat-optimized model built upon text- 443

davinci-003 (Zheng et al., 2023). The enhanced 444

performance with GPT-3.5-Turbo can be attributed 445

to its enhanced power, making it better at under- 446

standing and utilizing the given prompt. 447
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Table 2: Accuracy (%) on GSM-IC-2K dataset, broken down by the number of reasoning steps required in the
standard answer. The GSM-IC-2K dataset is formed by merging the GSM-IC2-1K and GSM-ICM-1K datasets.

Method
(GPT-3.5-Turbo)

Accuracy by Steps (GSM-IC-2K)
2 Steps 3 Steps 4 Steps ≥ 5 Steps All

Zero-Shot-CoT 87.0 82.0 80.2 82.6 84.5

Zero-Shot-CoT + I3C 92.7 (+5.7) 91.4 (+9.4) 81.3 (+1.1) 92.4 (+9.8) 90.7 (+6.2)

Instruct-CoT 89.2 85.8 81.3 84.6 86.8

Instruct-CoT + I3C 92.9 (+3.7) 90.6 (+4.8) 82.3 (+1.0) 93.9 (+9.3) 91.0 (+4.2)

Manual-CoT 86.8 85.0 78.8 79.7 84.1

Manual-CoT + I3C 91.9 (+5.1) 90.6 (+5.6) 80.6 (+1.8) 94.8 (+15.1) 90.6 (+6.5)

Complex-CoT 84.3 81.0 83.4 84.6 83.7

Complex-CoT + I3C 91.7 (+7.4) 89.8 (+8.8) 83.8 (+0.4) 91.6 (+7.0) 90.2 (+6.5)

I3C-Select (Ours) 96.0 95.2 87.3 98.6 95.1
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Figure 2: Performance comparison of Complex-CoT, Complex-CoT with I3C instruction (i.e., Complex-CoT+I3C),
and Complex-CoT with self-consistency (i.e., Complex-CoT-Self-Consistency).

Compared with executor-augmented prompting448

methods. Table 1 shows that I3C-Select consis-449

tently outperforms the executor-augmented prompt-450

ing methods, such as PAL, across all MWP datasets.451

Specifically, in comparison to the PAL prompt-452

ing method, I3C-Select exhibits superior perfor-453

mance in GSM-IC2-1K, AQuA, SVAMP, AddSub,454

and GSM8K, with improvements of +10.8, +8.3,455

+12.1, +5.8, and +9.4, respectively.456

Does I3C instruction work for complex prob-457

lems? We analyze the breakdown accuracies for458

problems with respect to the reasoning steps4 in Ta-459

ble 2. The GSM-IC-2K dataset is formed by merg-460

ing the GSM-IC2-1K and GSM-ICM-1K datasets.461

Each problem in GSM-IC-2K contains irrelevant462

conditions and requires multiple steps to solve.463

Obviously, adding the I3C instruction to the CoT464

prompting method significantly enhances the MWP465

solution performance for both simple and com-466

plex problems. Moreover, compared to Complex-467

4Number of reasoning steps of a problem is given by the
number of sentences in standard answer. (Cobbe et al., 2021)

CoT, I3C-Select significantly improves the perfor- 468

mance on GSM-IC-2K: from 83.7 to 95.1. These 469

results indicate that adding the I3C instruction to 470

the prompt can effectively solve complex problems. 471

Efficiency and effectiveness of I3C instruction. 472

Self-consistency (Wang et al., 2023b) is the process 473

of solving a problem M times and using a major- 474

ity vote strategy to determine the most consistent 475

answer as the final answer. We evaluate the perfor- 476

mance of Complex-CoT with self-consistency (i.e., 477

Complex-CoT-Self-Consistency) on eight MWP 478

datasets. Following (Wang et al., 2023a), we 479

set M to 10. Figure 2 shows that the accuracy 480

of Complex-CoT-Self-Consistency and Complex- 481

CoT+I3C is nearly identical. In terms of time con- 482

sumption5, Complex-CoT+I3C proves to be an effi- 483

cient method, reducing the average time required to 484

solve an MWP by 2-4 times compared to Complex- 485

CoT-Self-Consistency. Regarding token consump- 486

tion, Complex-CoT+I3C consumes fewer tokens 487

5Efficiency analysis for Complex-CoT+I3C considers the
cost of (1) running SimCSE for each problem, (2) using LLM
as a verifier, and (3) prompting LLM to solve the problem.
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Figure 3: Demonstration construction methods compar-
ison. “Low” indicates selecting eight problems with the
lowest confusion scores. “Medium” indicates randomly
selecting eight problems. “High” indicates selecting
eight problems with the highest confusion scores.

Table 3: Accuracy (%) comparison of different methods
that help LLMs ignore irrelevant conditions.

Method
(GPT-3.5-Turbo)

Dataset
GSM-IC2-1K GSM-ICM-1K

Zero-Shot-CoT 87.0 82.0

Zero-Shot-CoT + Refine 89.2 84.8

Zero-Shot-CoT + I3C 92.7 88.6

than Complex-CoT-Self-Consistency, indicating its488

more concise and efficient nature in solving MWPs.489

Overall, the results demonstrate that Complex-490

CoT+I3C consumes much fewer computational re-491

sources than Complex-CoT-Self-Consistency while492

maintaining comparable accuracy.493

4.3 Ablation Studies494

How does demonstration construction affect495

I3C-Select? In I3C-Select, we select the K most496

confusing problems and their reasoning paths as497

demonstrations and named this demonstration con-498

struction method “High”. To verify the effective-499

ness of the demonstration construction method, we500

also consider: (1) “Low”, where we select the K501

problems with the lowest confusion scores and502

their reasoning paths as demonstrations, and (2)503

“Medium”, where we randomly select K problems504

and their reasoning paths as demonstrations. We505

set K to 8 throughout our experiments. As shown506

in Figure 3, selecting more confusing problems507

and their reasoning paths as demonstrations can508

effectively improve the model’s performance.509

Instructing to ignore irrelevant conditions vs.510

refining problems to eliminate irrelevant con-511

ditions. In Zero-Shot-CoT+I3C, we use I3C in-512

struction to instruct LLMs to identify and ignore513

irrelevant conditions in the MWP solving pro-514

cess. In addition, we can refine the given prob-515

lem to eliminate irrelevant conditions based on516

the verification outputs generated in § 3.3, and517

Table 4: Accuracy (%) comparison of different demon-
stration construction methods.

Method
(GPT-3.5-Turbo)

Dataset
GSM-IC2-1K GSM-ICM-1K

Complex-CoT 84.3 83.0

I3C-Select - I3C 92.7 89.5

solve the refined problem using the Zero-Shot- 518

CoT method (i.e., Zero-Shot-CoT+Refine). As 519

shown in Table 3, Zero-Shot-CoT+Refine (89.2 520

and 84.8) substantially outperforms Zero-Shot- 521

CoT (87.0 and 82.0) on GSM-IC2-1K and GSM- 522

ICM-1K, respectively. This highlights that the gen- 523

erated verification outputs can explicitly identify 524

irrelevant conditions in the problem description. 525

Furthermore, Zero-Shot-CoT+I3C consistently out- 526

performs Zero-Shot-CoT+Refine. This is mainly 527

because the identified irrelevant conditions may 528

contain some useful conditions. When we refine 529

the given problem, we may eliminate some useful 530

conditions, resulting in an incorrect answer. In- 531

structing the LLM to ignore irrelevant conditions 532

can effectively alleviate the problem of losing use- 533

ful conditions during problem refinement. Case 534

studies are provided in Appendix A.5. 535

Comparison of different demonstration con- 536

struction methods. To evaluate the effectiveness 537

of the demonstration construction methods, we also 538

consider I3C-Select - I3C, which selects the 8 most 539

confusing problems and their reasoning paths as 540

demonstrations, without including the I3C instruc- 541

tion in the prompt. Table 4 shows that I3C-Select 542

- I3C (92.7 and 89.5) significantly outperforms 543

Complex-CoT (84.3 and 83.0) on GSM-IC2-1K 544

and GSM-ICM-1K, respectively. These results sug- 545

gest that selecting the most confusing problems and 546

their reasoning paths as demonstrations is a more 547

effective demonstration construction method. 548

5 Conclusion 549

In this study, we introduce a plug-and-play mod- 550

ule, I3C, which can be added to any CoT prompt- 551

ing methods to enhance LLMs’ ability to explic- 552

itly identify and ignore irrelevant conditions in the 553

mathematical problem-solving process. Moreover, 554

we propose a novel few-shot prompting method, 555

I3C-Select, which selects the most confusing prob- 556

lems and their corresponding reasoning paths as 557

demonstrations. Extensive experiments on eight 558

math word problem datasets demonstrate the effec- 559

tiveness and efficiency of our proposed method. 560
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A Appendix751

A.1 Datasets752

We use eight math word problem datasets for as-753

sessing prompting method quality. The statistics754

of the datasets are shown in Table 5. All of these755

datasets are accessible under the MIT License. We756

give a brief description of the datasets used below:757

− SingleEq (Koncel-Kedziorski et al., 2015)758

contains a set of grade-school algebra word759

problems. Each problem may involve multi-760

ple math operations including multiplication,761

division, subtraction, and addition.762

− AddSub (Hosseini et al., 2014) consists of763

math word problems on addition and subtrac-764

tion for third, fourth, and fifth graders.765

− SVAMP (Patel et al., 2021) consists of one-766

unknown math word problems which can be767

solved by expressions requiring no more than768

two operators.769

− GSM8K (Cobbe et al., 2021) consists of high770

quality grade school math word problems cre-771

ated by human problem writers. These prob-772

lems take between 2 and 8 steps to solve, and773

solutions primarily involve performing a se-774

quence of elementary calculations using basic775

arithmetic operations to reach the final answer.776

− AQuA (Ling et al., 2017) consist of multiple777

option math questions covering a broad range778

of topics and difficulty levels.779

− MATH (Hendrycks et al., 2021) is a challeng-780

ing datasets consisting of 12k problems within781

7 categories testing the models’ advanced782

math and science reasoning. The problems in783

this dataset are very hard as they come from784

mathematics competitions written in LATEX.785

− GSM-IC (Shi et al., 2023) is an arithmetic786

reasoning dataset with irrelevant conditions in787

the problem description. It is divided into788

two splits: GSM-IC2, consisting of prob-789

lems requiring two steps to solve, and GSM-790

ICM, consisting of problems requiring more791

than two steps to solve. Being mindful of792

the experiment costs, we uniformly sample793

1, 000 examples from the GSM-IC2 dataset794

(denoted by GSM-IC2-1K) and 1, 000 exam-795

ples from the GSM-ICM dataset (denoted by796

Table 5: Dataset description. The last column indicates
the percentage of problems with irrelevant conditions in
the problem description.

Dataset # Problems Avg.# Words Irrelevant Condition
SingleEq 508 27.4 0.0%

AddSub 395 31.5 30.9%

SVAMP 1, 000 31.8 36.7%

GSM8K 1, 319 46.9 6.2%

AQuA 254 51.9 14.2%

MATH 500 68.6 3.8%

GSM-IC2-1K 1, 000 41.8 100.0%

GSM-ICM-1K 1, 000 61.4 100.0%

GSM-ICM-1K) for evaluation and analysis 797

purposes throughout this paper. 798

A.2 Baselines 799

As we study how to prompt large language models 800

to solve math word problems, we employ seven 801

prompting baselines. We give a brief description 802

of the baselines used below: 803

− Direct (Kojima et al., 2022) is a baseline that 804

utilizes the symbolic reasoning ability of large 805

language models. By simply adding the sen- 806

tence “The answer is” after the problem of 807

interest, which instructs the large language 808

model to generate the answer to the problem. 809

− Zero-Shot-CoT (Kojima et al., 2022) is a 810

Chain-of-Thought prompting method. By 811

adding “Let’s think step by step” to the prob- 812

lem to elicit the large language model to gener- 813

ate reasoning path leading to the final answer. 814

− Plan-and-Solve (PS) (Wang et al., 2023a) re- 815

places the sentence “Let’s think step by step” 816

with “Let’s first understand the problem and 817

devise a plan to solve the problem. Then let’s 818

carry out the plan and solve the problem step 819

by step” to address the missing step issue in 820

Zero-Shot-CoT. 821

− Instruct-CoT (Shi et al., 2023) adds the sen- 822

tence “Feel free to ignore irrelevant conditions 823

in the problem description.” before the prob- 824

lem of interest, which instructs the large lan- 825

guage model to ignore irrelevant information 826

in the problem description. 827

− Manual-CoT (Wei et al., 2022) is a few-shot 828

prompting method. By representing manual 829

designed demonstrations that solve the corre- 830

sponding problems with intermediate reason- 831
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ing steps in the prompts, Manual-CoT elicits832

multi-step reasoning ability of LLMs.833

− Auto-CoT (Zhang et al., 2023) automatically834

constructs demonstrations with questions and835

reasoning paths from the test set to eliminate836

manual designs in Manual-CoT.837

− Complex-CoT (Fu et al., 2023) is a few-shot838

prompting method that selects the most com-839

plex problems and their generated reasoning840

paths as demonstrations.841

− PAL (Gao et al., 2023) is a few-shot prompt-842

ing method that generates programming lan-843

guage statements and uses a program inter-844

preter to execute the generated program to get845

final answers.846

A.3 Metrics847
We use accuracy to evaluate the performance of848
different prompting methods. Since large language849
models cannot perform the computation precisely850
(especially with high-precision floats), we consider851
an answer to be correct if and only if the absolute852
error between the answer and the gold answer is853
less than 1× 10−5. Let P be a set of problems, the854
accuracy of the prompting method is855

Accuracy =
1

|P|
∑
Q∈P

1
(
a
(final )

, a
(gold )

)
856

1
(
a
(final )

, a
(gold )

)
=

1, if Abs
(
a(final ) − a(gold )

)
< 1 × 10−5

0, if Abs
(
a(final ) − a(gold )

)
≥ 1 × 10−5

857

where a(gold ) is the gold answer to question Q,858

a(final ) is the model-generated answer to question859

Q, and Abs(·) is the absolute value function.860

A.4 Full prompts in experiments861

We list the prompts for all experiments in Table 6.862

A.5 Additional Experimental Results863

Does I3C instruction work with weaker LMs?864

In all our experiments in § 4, we use GPT-3 (text-865

davinci-003) and GPT-3.5-Turbo as backend LLMs,866

but can I3C instruction work with weaker LMs? We867

compare CoT prompting methods with adding the868

I3C instruction to CoT prompting methods when869

use the UL2-20B (Tay et al., 2023) as backend LM.870

Note that UL2-20B is a weaker LMs with 20 billion871

parameters, but GPT3 has 175 billion parameters.872

As shown in Table 7, even though the absolute ac-873

curacies of UL2-20B are lower, adding the I3C in-874

struction to CoT prompting methods effectively im-875

proves MWP solving performance, and I3C-Select876

Table 6: All prompts used in experiments. Q represents
the problem to be solved. I represents the I3C instruc-
tion that instructs LLMs to identify and ignore irrelevant
conditions in the problem description. The demonstra-
tions of Manual-CoT is from its original paper (Wei
et al., 2022).

Method Prompt

Direct
Q: Q
A: The answer is.

Direct + I3C
I
Q: Q
A: The answer is.

Zero-Shot-CoT
Q: Q
A: Let’s think step by step.

Zero-Shot-CoT + I3C
I
Q: Q
A: Let’s think step by step.

PS

Q: Q
A: Let’s first understand the problem
and devise a plan to solve the problem.
Then, let’s carry out the plan and solve
the problem step by step.

PS + I3C

I
Q: Q
A: Let’s first understand the problem
and devise a plan to solve the problem.
Then, let’s carry out the plan and solve
the problem step by step.

Instruct-CoT

Feel free to ignore irrelevant conditions
in the problem description.
Q: Q
A: Let’s think step by step.

Instruct-CoT + I3C

I
Feel free to ignore irrelevant conditions
in the problem description.
Q: Q
A: Let’s think step by step.

Manual-CoT
{hand-crafted demonstrations}
Q: Q
A:

Manual-CoT + I3C

I
{hand-crafted demonstrations}
Q: Q
A:

Auto-CoT
{demonstrations}
Q: Q
A:

Auto-CoT + I3C

I
{demonstrations}
Q: Q
A:

Complex-CoT
{demonstrations}
Q: Q
A:

Complex-CoT + I3C

I
{demonstrations}
Q: Q
A:

PAL
{demonstrations}
Q: Q
A:

I3C-Select (Ours)

I
{demonstrations}
Q: Q
A:
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Table 7: Accuracy (%) comparison on six MWP datasets. I3C indicates that instructs LLMs to identify and ignore
irrelevant conditions. Adding the I3C instruction to CoT prompting methods effectively improves performance.
Selecting the most confusing problems and their generated reasoning paths as demonstrations for few-shot learning
(i.e., I3C-Select) achieves state-of-the-art performance on all six MWP datasets.

Method
(UL2-20B)

Dataset
AddSub SVAMP GSM8K SingleEq GSM-IC2-1K GSM-ICM-1K

Direct 28.6 16.9 5.0 21.7 12.9 9.5

Direct + I3C 33.9(+5.3) 27.8(+10.9) 9.8(+4.8) 32.7(+11.0) 21.3(+8.4) 13.2(+3.7)

Zero-Shot-CoT 32.9 29.5 22.7 38.8 29.6 25.5

Zero-Shot-CoT + I3C 36.7(+3.8) 30.5(+1.0) 22.7(+0.0) 40.0(+1.2) 40.6(+11.0) 27.6(+2.1)

PS 30.0 26.7 21.2 36.6 27.4 24.9

PS + I3C 31.9(+1.9) 28.4(+1.7) 21.3(+0.1) 40.0(+3.4) 32.4(+5.0) 26.0(+1.1)

Instruct-CoT 34.7 31.2 23.5 40.0 33.8 26.4

Instruct-CoT + I3C 35.4(+0.7) 31.5(+0.3) 21.2(−2.3) 41.1(+1.1) 40.0(+6.2) 28.6(+2.2)

Manual-CoT 34.9 31.7 25.2 43.3 35.4 28.0

Manual-CoT + I3C 39.0(+4.1) 28.1(−3.6) 22.2(−3.0) 42.9(−0.4) 43.0(+7.6) 28.5(+0.5)

Auto-CoT 36.7 31.9 24.5 41.9 35.0 29.4

Auto-CoT + I3C 39.5(+2.8) 28.7(−3.2) 24.7(+0.2) 43.6(+1.7) 41.1(+6.1) 30.1(+0.7)

I3C-Select (Ours) 39.7 34.6 27.5 44.1 46.0 35.9
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Figure 4: Hyperparameter analysis. (a) As the threshold increases, the recall scores of identified irrelevant condition
candidates first increase and then remain unchanged for all datasets except SingleEq. (b) As the threshold increases,
the percentage of conditions to be verified first increases and then remains unchanged for all datasets.

achieves consistent performance improvements on877

MWP datasets. This shows that I3C instruction can878

work with weaker LMs.879

Hyperparameter setup for I3C instruction. To880

compare the identification accuracy of irrelevant881

conditions at different thresholds θ, we employ the882

recall metric. Recall is computed by dividing the883

number of correctly identified irrelevant conditions884

by the total number of irrelevant conditions. As885

shown in Figure 4a, as the threshold increases, the886

recall score for the irrelevant condition identifica-887

tion first increases and then remains unchanged888

in all datasets except SingleEq. The exception889

is due to the problems in SingleEq not contain-890

ing irrelevant conditions, the recall score remains891

0 regardless of the threshold. Notably, when the892

threshold is 0.5, we can accurately identify 98.6%893

of irrelevant conditions. Furthermore, as shown in 894

Figure 4b, the percentage of conditions to be ver- 895

ified initially increases and then stabilizes across 896

all datasets as the threshold increases. The per- 897

centage of conditions to be verified is calculated 898

by dividing the number of conditions in the set of 899

irrelevant condition candidates by the total number 900

of conditions. When the threshold is 0.5, the LLM 901

is required to verify 66.6% of conditions on aver- 902

age, and the average number of verification calls 903

per MWP made to the LLM is approximately 2.18. 904

Overall, we set the threshold θ to 0.5 to achieve a 905

trade-off between efficiency and effectiveness. 906

I3C instruction enhances robustness against ir- 907

relevant conditions. Table 8 shows that apart 908

from I3C-Select, the other methods fail to provide 909

accurate answers to the given problem. Instruct- 910
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Table 8: Case study of answers generated by different methods. Irrelevant conditions in the problem description is
highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem Granger went to the grocery store. He saw that the Spam is $3 per can, the peanut
butter is $5 per jar, and the bread is $2 per loaf. Jack owns 5 bottles of water with
each worth $2. If Granger bought 12 cans of spam, 3 jars of peanut butter, and 4
loaves of bread, how much is the total amount he paid?

Gold Answer 3× 12 + 5× 3 + 2× 4 = 59

Auto-CoT Granger bought 12 cans of spam. 12 * $3 = $36. Granger bought 3 jars of peanut
butter. 3 * $5 = $15. Granger bought 4 loaves of bread. 4 * $2 = $8. Jack owns 5
bottles of water. 5 * $2 = $10. The total amount he paid is $36 + $15 + $8 + $10 =
$69. The answer is 69. %

Instruct-CoT Granger bought 12 cans of Spam, so that’s 12 x $3 = $36. He bought 3 jars of
peanut butter, so that’s 3 x $5 = $15. He bought 4 loaves of bread, so that’s 4 x $2 =
$8. Jack owned 5 bottles of water, so that’s 5 x $2 = $10. Adding them all up, the
total amount Granger paid is $36 + $15 + $8 + $10 = $69. %

Complex-CoT The cost of 12 cans of spam is 12 x $3 = $36. The cost of 3 jars of peanut butter is
3 x $5 = $15. The cost of 4 loaves of bread is 4 x $2 = $8. The cost of 5 bottles of
water is 5 x $2 = $10. Therefore, the total amount Granger paid is $36 + $15 + $8 +
$10 = $69. The answer is $69. %

I3C-Select First, calculate the cost for each item that Granger bought: 12 cans of Spam = 12 x
$3 = $36; 3 jars of peanut butter = 3 x $5 = $15; 4 loaves of bread = 4 x $2 = $8.
Then, calculate the total cost of all the items: $36 + $15 + $8 = $59. !

CoT, Complex-CoT, and Auto-CoT produce incor-911

rect answers due to the incorporation of irrelevant912

conditions in the MWP solving process. In con-913

trast, I3C-Select explicitly identifies and ignores914

irrelevant conditions in the MWP solving process.915

Instructing to ignore irrelevant conditions vs.916

refining problems to eliminate irrelevant con-917

ditions. In Zero-Shot-CoT+I3C, we use I3C in-918

struction to instruct LLMs to identify and ignore919

irrelevant conditions in the MWP solving process.920

In addition, we can refine the given problem to921

eliminate irrelevant conditions based on the veri-922

fication outputs generated in § 3.3, and solve the923

refined problem using the Zero-Shot-CoT method924

(i.e., Zero-Shot-CoT+Refine). For example, as925

shown in Table 9, the condition “On Friday, he926

only works from 8am to 11am.” and the condition927

“Last week, Tom repaired 10 more umbrellas than928

the cobbler.” are identified as the irrelevant con-929

ditions. By eliminating these identified irrelevant930

conditions, we get the refined problem “A cobbler931

can mend 3 pairs of shoes in an hour. From Mon-932

day to Thursday, the cobbler works for 8 hours933

each day. How many pairs of shoes can the cob-934

bler mend in a week?”. Obviously, in this case,935

we incorrectly identified the condition “On Friday,936

he only works from 8am to 11am.” as an irrele- 937

vant condition. Eliminating this condition would 938

result in losing useful conditions in the problem 939

refinement process, resulting in an incorrect an- 940

swer. In contrast, instructing the LLM to ignore 941

irrelevant conditions can effectively alleviate the 942

problem of losing useful conditions during problem 943

refinement, and can effectively enhance the MWP 944

solving performance. 945

A.6 Limitations 946

The scope of this study was limited to solve math 947

word problems in English; tasks in non-English 948

languages are not part of our training or test data. 949

As a result, the method might not perform satisfac- 950

torily for non-English tasks. Further investigation 951

into solving multilingual math word problems is 952

left for future work. 953

A.7 Sample Predictions on MWP Datasets 954

We present case studies in Tables 10 to 15. It is 955

evident that I3C instructs LLMs to explicitly iden- 956

tify and ignore irrelevant conditions in the prob- 957

lem statement. Adding I3C instruction to the CoT 958

prompting methods effectively helps LLMs avoid 959

confusion and improve reasoning paths. 960
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Table 9: Example outputs by Zero-Shot-CoT + Refine and Zero-Shot-CoT + I3C for GSM-ICM-1K. Irrelevant
conditions in the problem description is highlighted with red color.

Problem A cobbler can mend 3 pairs of shoes in an hour. From Monday to Thursday, the
cobbler works for 8 hours each day, and on Friday, he only works from 8am to 11am.
Last week, Tom repaired 10 more umbrellas than the cobbler. How many pairs of
shoes can the cobbler mend in a week?

Gold Answer (4× 8 + 11− 8)× 3 = 105

Verification
Outputs

■ Yes, the condition A cobbler can mend 3 pairs of shoes in an hour is relevant
to the calculation process of the problem How many pairs of shoes can the cobbler
mend in a week? Without the condition, it would be impossible to calculate the
number of pairs of shoes the cobbler can mend in a week.

■ The condition on Friday, he only works from 8am to 11am is not relevant to the
calculation process.

■ The condition Last week, Tom repaired 10 more umbrellas than the cobbler. is
not relevant to the calculation process of the problem.

Refined Prob-
lem

A cobbler can mend 3 pairs of shoes in an hour. From Monday to Thursday, the
cobbler works for 8 hours each day. How many pairs of shoes can the cobbler mend
in a week?

Reasoning Path Zero-Shot-CoT + Refine Zero-Shot-CoT + I3C

First, we need to calculate how many pairs
of shoes the cobbler can mend in 4 days
(Monday to Thursday). Since he works 8
hours a day, and can mend 3 pairs of shoes
per hour, he can mend 8 x 3 = 24 pairs of
shoes in 4 days. This gives us 24 pairs of
shoes in a week.

Step 1: Calculate the number of hours
the cobbler works in a week. From
Monday to Thursday, the cobbler works
for 8 hours each day. That’s 8 x 4 =
32 hours. On Friday, he only works
from 8am to 11am. That’s 3 hours. So
in a week, the cobbler works 32 + 3 =
35 hours. Step 2: Calculate the num-
ber of pairs of shoes the cobbler can
mend in a week. The cobbler can mend
3 pairs of shoes in an hour. So in 35
hours, the cobbler can mend 35 x 3 =
105 pairs of shoes. Step 3: Determine
if the condition is relevant to the cal-
culation process. The fact that Tom re-
paired 10 more umbrellas than the cob-
bler does not affect the calculation pro-
cess. Therefore, the cobbler can mend
105 pairs of shoes in a week.

Final Answer 24% 105!
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Table 10: Example outputs by Zero-Shot-CoT, Zero-Shot-CoT + I3C and I3C-Select. Irrelevant conditions in the
problem description is highlighted with red color, and the LLM-generated final answer is highlighted with yellow
color.

Problem Megan is an actress. She was the lead actress in 80% of her work. In total, Megan
participated in 100 plays. Tom bought the tickets for 300 plays. How many times
Megan was not the lead actress?

Gold Answer 100× (1− 80%) = 20

Verification
Outputs

■ Megan participated in 100 plays. That means she was the lead actress in 80 of
them. That leaves 20 plays where she was not the lead actress. Tom bought tickets to
300 plays. That means Megan was the lead actress in 240 of them, and she was not
the lead actress in 60 of them. So, the answer is 60 times. The condition She was the
lead actress in 80% of her work is relevant to the calculation process, as it tells us
that 80 out of 100 plays she was the lead actress.

■ Megan was the lead actress in 80% of her plays, so she was the lead actress in 80
plays. Since she participated in a total of 100 plays, that means she was not the lead
actress in the remaining 20 plays. The condition that Tom bought tickets for 300
plays is irrelevant to the calculation process.

Reasoning Path

Zero-Shot-CoT

Megan was the lead actress in 80 plays. 100 - 80 = 20 Tom bought the tickets for
300 plays. Megan was not the lead actress in the remaining 200 plays. %

Zero-Shot-CoT + I3C

Megan was the lead actress in 80% of her work, which means she was the lead
actress in 80 plays. That leaves 20 plays in which she was not the lead actress. Tom
bought tickets for 300 plays, but that information does not affect the calculation of
how many times Megan was not the lead actress. Therefore, the answer is 20 times.
!

I3C-Select

Megan was the lead actress in 80% of her work, so she was the lead actress in 80
plays. That leaves 20 plays in which she was not the lead actress. Tom bought the
tickets for 300 plays, but that information does not affect the calculation of how
many times Megan was not the lead actress. Therefore, the answer is 20 times. !
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Table 11: Example outputs by Direct, Direct + I3C and I3C-Select. Irrelevant conditions in the problem description
is highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem Sally eats 2 sandwiches on Saturday and 1 sandwich on Sunday. Jack bought 2
more pieces of bread than Sally yesterday. If each sandwich uses 2 pieces of bread,
how many pieces of bread does Sally eat across Saturday and Sunday?

Gold Answer (2 + 1)× 2 = 6

Verification
Outputs

■ Sally eats 2 sandwiches on Saturday, so she has eaten 4 pieces of bread. On
Sunday, she eats 1 sandwich, so she has eaten 2 more pieces of bread. Jack bought 2
more pieces of bread than Sally, so Sally has eaten 6 pieces of bread across Saturday
and Sunday. Therefore, the answer is 6 pieces of bread. The condition of 1 sandwich
on Sunday is relevant to the calculation process, since it tells us how many pieces of
bread Sally has eaten on Sunday.

■ Sally ate 2 sandwiches on Saturday, so she used 4 pieces of bread on Saturday. On
Sunday, Sally ate 1 sandwich, so she used 2 pieces of bread on Sunday. Therefore,
Sally ate 6 pieces of bread across Saturday and Sunday. The condition Jack bought 2
more pieces of bread than Sally is not relevant to the calculation process, as it does
not affect the number of pieces of bread Sally ate across Saturday and Sunday.

Reasoning Path

Direct

Sally eats a total of 4 pieces of bread across Saturday and Sunday. %

Direct + I3C

6 pieces of bread. Sally ate 2 sandwiches on Saturday, which used 4 pieces of bread,
and 1 sandwich on Sunday, which used 2 pieces of bread, so she ate 6 pieces of
bread across Saturday and Sunday. The condition that Jack bought 2 more pieces of
bread than Sally is not relevant to the calculation process. !

I3C-Select

Sally ate 2 sandwiches on Saturday, so she used 4 pieces of bread on Saturday. On
Sunday, Sally ate 1 sandwich, so she used 2 pieces of bread on Sunday. Therefore,
Sally ate 6 pieces of bread across Saturday and Sunday. The condition Jack bought
2 more pieces of bread than Sally is not relevant to the calculation process, as it
does not affect the number of pieces of bread Sally ate across Saturday and Sunday.
!
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Table 12: Example outputs by PS, PS + I3C and I3C-Select. Irrelevant conditions in the problem description is
highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem Holden’s current master bedroom is 309 sq ft and his master bath is 150 sq ft.
The basketball field of Tom is 200 sq ft larger than Holden’s bathroom. If Holden
wants to add a home office/personal gym divided space that is twice as large as his
bedroom and bathroom, how much sq ft will this new room have?

Gold Answer (309 + 105)× 2 = 918

Verification
Outputs

■ The master bedroom is 309 sq ft and the master bathroom is 150 sq ft. Therefore,
the combined area of the bedroom and bathroom is 459 sq ft. If this space is to be
doubled for the new home office/personal gym, then the new room will have 918
sq ft. The condition Holden’s current master bedroom is 309 sq ft is relevant to the
problem, as it is used to determine the combined area of the bedroom and bathroom
(459 sq ft). This combined area is then doubled to get the total area of the new room
(918 sq ft).

■ Holden’s bedroom is 309 sq ft. Holden’s bathroom is 150 sq ft. The total sq ft of
Holden’s bedroom and bathroom is 459 sq ft. We need to find a space that is twice
as large as Holden’s bedroom and bathroom combined. Therefore, the new room
will be 2 x 459 sq ft = 918 sq ft. The basketball field of Tom is 200 sq ft larger than
Holden’s bathroom so it is not relevant to the calculation process of this problem.

Reasoning Path

PS

Plan: 1. Find the combined sq ft of the bedroom and bathroom. 2. Add 200 sq ft to
the combined sq ft from step 1. 3. Multiply the combined sq ft from step 2 by 2.
Solution: 1. 309 sq ft (bedroom) + 150 sq ft (bathroom) = 459 sq ft 2. 459 sq ft +
200 sq ft = 659 sq ft 3. 659 sq ft x 2 = 1318 sq ft Therefore, the new room will have
1318 sq ft. %

PS + I3C

First, we need to calculate the combined area of Holden’s bedroom and bathroom,
which is equal to 309 sq ft (bedroom) + 150 sq ft (bathroom) = 459 sq ft. Next, we
need to double this combined area to get the total area of the new room. This can be
done by multiplying 459 sq ft (the total sq ft of Holden’s bedroom and bathroom
combined) by 2, which gives us 918 sq ft. Therefore, the new room will have 918
sq ft. The basketball field of Tom is 200 sq ft larger than Holden’s bathroom so it is
not relevant to the calculation process of this problem. !

I3C-Select

Holden’s bedroom is 309 sq ft and his bathroom is 150 sq ft. The total sq ft of
Holden’s bedroom and bathroom combined is 459 sq ft. We need to find a space
that is twice as large as Holden’s bedroom and bathroom combined. Therefore, the
new room will be 2 x 459 sq ft = 918 sq ft. The condition The basketball field of
Tom is 200 sq ft larger than Holden’s bathroom is not relevant to the calculation
process of this problem, as it does not involve any calculation involving Holden’s
bedroom and bathroom. !
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Table 13: Example outputs by Instruct-CoT, Instruct-CoT + I3C and I3C-Select. Irrelevant conditions in the problem
description is highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem James buys 6 t-shirts for 50% off. They each cost $20. Emma works at the mall
with an hourly salary of $10. How much did James pay?

Gold Answer (20/2)× 6 = 60

Verification
Outputs

■ First, James paid 50% off the normal price for the 6 t-shirts, which would normally
cost $20 each. This means he paid $10 per t-shirt. So, James paid $60 total for the 6
t-shirts. The condition James buys 6 t-shirts for 50% off is relevant to the calculation
process, as it determined the amount that James paid for the 6 t-shirts. Emma’s
hourly salary of $10 is not relevant to the calculation process of this problem.

■ James bought 6 t-shirts, so he paid for 6 times $20. Then, he got 50% off, so
50% of $20 is $10, so he paid for 6 times $10. The condition They each cost $20 is
relevant to the problem, because it tells us how much James paid for each t-shirt. So,
the answer is James paid $60.

■ James bought 6 t-shirts at 50% off, which means the t-shirts were 50% cheaper
than their original price. This means that each t-shirt cost $20. Multiplying 6 t-shirts
by $20, James paid a total of $120 for the 6 t-shirts. The condition that Emma works
at the mall with an hourly salary of $10 is not relevant to the calculation process of
this problem.

Reasoning Path

Instruct-CoT

Since James bought 6 t-shirts for 50% off, the price of each t-shirt is reduced to $20.
Therefore, James paid $120 in total for the 6 t-shirts. Emma’s hourly salary of $10
is irrelevant to the question. %

Instruct-CoT + I3C

James bought 6 t-shirts that were 50% off, so the original price of each t-shirt was
$20. Therefore, James paid $10 for each t-shirt, and he bought 6 t-shirts, so he paid
$60 in total. The condition that Emma works at the mall with an hourly salary of
$10 is not relevant to the calculation process of this problem. !

I3C-Select

First, James paid 50% off the normal price for the 6 t-shirts, which would normally
cost $20 each. This means he paid $10 per t-shirt. So, James paid $60 total for the 6
t-shirts. The condition James buys 6 t-shirts for 50% off is relevant to the calculation
process, as it determined the amount that James paid for the 6 t-shirts. Emma’s
hourly salary of $10 is not relevant to the calculation process of this problem. !
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Table 14: Example outputs by Manual-CoT, Manual-CoT + I3C and I3C-Select. Irrelevant conditions in the problem
description is highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem James collects all the fruits from his 2 trees. Each tree has 20 plants. Each plant has
1 seed and he plants 60% of those. James’ sister is 10 years old. How many trees
did James plant?

Gold Answer 2× 20× 60% = 24

Verification
Outputs

■ James collected all the fruits from his 2 trees. This means he did not plant any new
trees. Each tree has 20 plants. This means James had 40 plants in total. Each plant
has 1 seed. This means James had 40 seeds in total. He planted 60% of those seeds.
This means he planted 24 seeds. Therefore, James planted 24 seeds, but he did not
plant any new trees. The condition James collects all the fruits from his 2 trees is
relevant to the calculation process because it indicates that James did not plant any
new trees, only seeds.

■ First, James collected all the fruits from his two trees. Each tree has 20 plants, so
James collected 40 plants in total. Second, each plant has 1 seed, so James collected
40 seeds in total. Third, he planted 60% of those seeds, so James planted 24 seeds in
total. Finally, we can conclude that James planted two trees, since each tree had 20
plants and he planted 24 seeds in total. So, to answer the question, James planted
two trees. Yes, the condition Each tree has 20 plants is relevant to the calculation
process of the problem How many trees did James plant?, since it helps us determine
how many plants he collected in total and how many seeds he planted in total.

■ James collects all the fruits from his 2 trees. Each tree has 20 plants. Each plant
has 1 seed. This means there are 40 seeds in total. James then plants 60% of those,
which means he plants 24 seeds. The condition James’ sister is 10 years old is not
relevant to the calculation process of this problem. Therefore, James planted 24 trees.

Reasoning Path

Manual-CoT

James collected all the fruits from his 2 trees. Each tree has 20 plants. Each plant
has 1 seed. He planted 60% of those. 60% is 0.6, so he planted 0.6 x 20 = 12 of
those. James’ sister is 10 years old. This has nothing to do with the question, so the
answer is still 12. %

Manual-CoT + I3C

James collected all the fruits from his two trees, so he has 40 plants. Each plant has
1 seed, so he has 40 seeds. He plants 60% of those, so he plants 24 seeds. Therefore,
James planted 24 trees. The condition James’ sister is 10 years old is not relevant to
the calculation process of this problem. !

I3C-Select

First, James collected all the fruits from his two trees, so he has 40 plants. Second,
each plant has 1 seed, so he has 40 seeds. Third, he plants 60% of those, so he plants
24 seeds. Therefore, James planted 24 trees. The condition that James’ sister is 10
years old is not relevant to the calculation process of this problem. The relevant
information to answer this question is that James collected all the fruits from his
two trees, each tree has 20 plants, and he plants 60% of those. To calculate how
many trees James planted, we need to calculate the number of seeds he planted. So
the answer would be: 24 trees. !

20



Table 15: Example outputs by Auto-CoT, Auto-CoT + I3C and I3C-Select. Irrelevant conditions in the problem
description is highlighted with red color, and the LLM-generated final answer is highlighted with yellow color.

Problem Hamza has several empty buckets of different sizes, holding either 3, 5, or 6 liters.
She fills the 5-liter bucket and pours as much as she can into the 3-liter bucket.
Then, she pours the remainder into the 6-liter bucket. Jack drinks 7 liters of milk
every day. How much more water, in liters, can Hamza put into the 6-liter bucket,
without overflowing?

Gold Answer 6− (5− 3) = 4

Verification
Outputs

■ First, Hamza fills the 5-liter bucket and then pours as much as she can into the
3-liter bucket. Since the 3-liter bucket has a capacity of 3 liters, she can pour all 5
liters into it. Then, she pours the remainder (2 liters) into the 6-liter bucket. That
means she has put a total of 7 liters into the 6-liter bucket. Now, Jack drinks 7 liters
of milk every day. That means the 6-liter bucket is emptied every day. Therefore,
Hamza can put up to 6 liters more water, in liters, into the 6-liter bucket, without
overflowing. Yes, the condition Hamza has several empty buckets of different sizes,
holding either 3, 5, or 6 liters. is relevant to the calculation process of the problem.
This condition gives us the capacity of each bucket, which is necessary to calculate
the amount of water Hamza can put into the 6-liter bucket without overflowing.

■ We can calculate that Hamza can put an additional 3 liters of water into the 6-liter
bucket, without overflowing. This is because the 6-liter bucket can hold a maximum
of 6 liters of water, and it currently holds 3 liters of water. The condition Jack drinks
7 liters of milk every day is not relevant to the calculation process of this problem.

Reasoning Path

Auto-CoT

The 5-liter bucket is filled. She pours as much as she can into the 3-liter bucket.
That leaves 2 liters in the 5-liter bucket. She then pours the remainder into the 6-liter
bucket. That leaves 2 liters in the 6-liter bucket. Jack drinks 7 liters of milk every
day, so she has to leave 7 liters of water for him. Therefore, she can put 5 liters of
water in the 6-liter bucket without overflowing. The answer is 5. %

Auto-CoT + I3C

Hamza first fills the 5-liter bucket. She then pours as much as she can into the 3-liter
bucket, filling it to capacity. The remaining 2 liters of water from the 5-liter bucket
are then poured into the 6-liter bucket, leaving 4 liters of space for more water (6
liters - 2 liters = 4 liters). Hamza can add 4 more liters of water into the 6-liter
bucket without overflowing. The answer is 4. !

I3C-Select

Hamza has a 5-liter bucket. This is relevant to the calculation process as it tells us
the size of the bucket Hamza has. She fills the 5-liter bucket and pours as much
as she can into the 3-liter bucket. This is relevant to the calculation process as it
tells us how much water Hamza is transferring from the 5-liter bucket to the 3-liter
bucket. The 3-liter bucket can only hold 3 liters of water, so Hamza would be able
to pour 3 liters of water from the 5-liter bucket into the 3-liter bucket. She then
pours the remainder of the water (2 liters) into the 6-liter bucket. This is relevant to
the calculation process as it tells us how much water Hamza is transferring from the
5-liter bucket to the 6-liter bucket. The 6-liter bucket currently has 2 liters of water
in it, so it can hold 4 more liters of water without overflowing. So the answer would
be 4 liters. !
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