
Under review as a conference paper at ICLR 2023

VECTORMAPNET: END-TO-END VECTORIZED
HD MAP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous driving systems require a good understanding of surrounding environ-
ments, including moving obstacles and static High-Definition (HD) semantic map
elements. Existing methods approach the semantic map p·roblem by offline manual
annotation, which suffers from serious scalability issues. Recent learning-based
methods produce dense rasterized segmentation predictions to construct maps.
However, these predictions do not include instance information of individual map
elements and require heuristic post-processing to obtain vectorized maps. To tackle
these challenges, we introduce an end-to-end vectorized HD map learning pipeline,
termed VectorMapNet. VectorMapNet takes onboard sensor observations and pre-
dicts a sparse set of polylines in the bird’s-eye view. This pipeline can explicitly
model the spatial relation between map elements and generate vectorized maps that
are friendly to downstream autonomous driving tasks. Extensive experiments show
that VectorMapNet achieve strong map learning performance on both nuScenes and
Argoverse2 dataset, surpassing previous state-of-the-art methods by 14.2 mAP and
14.6mAP. Qualitatively, we also show that VectorMapNet is capable of generating
comprehensive maps and capturing more fine-grained details of road geometry.
To the best of our knowledge, VectorMapNet is the first work designed towards
end-to-end vectorized map learning from onboard observations.

1 INTRODUCTION

Autonomous driving system requires an understanding of map elements on the road, including lanes,
pedestrian crossing, and traffic signs, to navigate the world. Such map elements are typically provided
by pre-annotated High-Definition (HD) semantic maps in existing pipelines (Rong et al., 2020). These
methods suffer from serious scalability issues as human efforts are heavily involved in annotating HD
maps. Recent works (Li et al., 2021; Philion & Fidler, 2020; Roddick & Cipolla, 2020) explore the
problem of online HD semantic map learning, where the goal is to use onboard sensors (e.g. LiDARs
and cameras) to estimate map elements on-the-fly.

Most recent methods (Roddick & Cipolla, 2020; Yang et al., 2018; Philion & Fidler, 2020; Zhou
& Krähenbühl, 2022) consider HD semantic map learning as a semantic segmentation problem in
bird’s-eye view (BEV), which rasterizes map elements into pixels and assigns each pixel with a
class label. This formulation makes it straightforward to leverage fully convolutional networks.
However, rasterized maps are not an ideal map representation for autonomous driving, for three
reasons. First, rasterized maps lack instance information which is necessary to distinguish map
elements with the same class label but different semantics, e.g. left boundary and right boundary.
Second, it is hard to enforce spatial consistency within the predicted rasterized maps, e.g. nearby
pixels might have contradicted semantics or geometries. Third, 2D rasterized maps are incompatible
with most autonomous driving systems which consume instance-level 2D/3D vectorized maps for
motion forecasting and planning.

To alleviate these issues and produce vectorized outputs, HDMapNet (Li et al., 2021) generates
semantic, instance, and directional maps and vectorizes these three maps with a hand-designed
post-processing algorithm. However, HDMapNet still relies on the rasterized map predictions, and
its heuristic post-processing step complicates the pipeline and restricts the model’s scalability and
performance.

1

Under review as a conference paper at ICLR 2023

Boundary
Ped Crossing
Divider

Vectorized Map

Element Keypoints

VectorMapNet

Polylines

GenerateDetect

Drivable Area

Onboard Sensor Data

Project

BEV Features

Figure 1: An overview of VectorMapNet. Sensor data is encoded to BEV features in the same coordinate as
map elements. VectorMapNet detects the locations of map elements from BEV features by leveraging element
queries. The vectorized HD map is built upon a sparse set of polylines that are generated from the detection
results. Since polylines have encoded direction information, we can infer semantic information (e.g. drivable
area) from the polylines. It worth noting that the drivable area is inferred from several disjoint boundaries and is
non-trivial to model as one object.

In this paper, we propose an end-to-end vectorized HD map learning model named VectorMapNet,
which does not involve a dense set of semantic pixels. Instead, it represents map elements as a set
of polylines that are closely related to downstream tasks, e.g. motion forecasting (Gao et al., 2020).
Therefore, the map learning problem boils down to predicting a sparse set of polylines from sensor
observations in our paper. Specifically, we pose it as a detection problem and leverage set detection
and sequence generation methods. First, VectorMapNet aggregates features generated from different
modalities (e.g. camera images and LiDAR) into a common BEV feature space. Then, it detects
map elements’ locations based on learnable element queries and BEV features. Finally, we decode
element queries to polylines for every map elements. An overview of VectorMapNet is shown in
Figure 1.

Our experiments show that VectorMapNet achieves state-of-the-art performance on the public
nuScenes dataset (Caesar et al., 2020) and Argoverse2 (Wilson et al., 2021), outperforming HDMap-
Net and another baseline by at least 14.2 mAP. Qualitatively, we find that VectorMapNet builds a
more comprehensive map compared to previous works and is capable of capturing fine details, e.g.
jagged boundaries. Furthermore, we feed our predicted vectorized HD map into a downstream motion
forecasting module, and show the compatibility and effectiveness of the predicted map.

To summarize, the contributions of the paper are as follows:

• VectorMapNet is an end-to-end HD semantic map learning method. Unlike previous works, we
pose map learning as an set prediction problem and directly predict vectorized outputs from sensor
observations without requiring map rasterization or post-processing.

• Jointly modeling the geometry and topological relations of map elements is challenging. We
leverage polylines as primitives to model complex map shapes and decompose the model into two
parts to mitigate this difficulty: a map element detector and a polyline generator.

• VectorMapNet achieves state-of-the-art HD semantic map learning performance on both nuScenes
and Argoverse2 datasets. Qualitative results and downstream evaluations also validate our design
choices.

2 VECTORMAPNET

Problem formulation. Similar to HDMapNet (Li et al., 2021), our task is to model map elements
in a vectorized form using data from onboard sensors, e.g. RGB cameras and/or LiDARs. These
map elements include but are not limited to : Road boundaries, boundaries of roads that split roads
and sidewalks. Typically, they are curves with irregular shapes and arbitrary lengths; Lane dividers,
boundaries of the lanes in the road. Usually they are straight lines; Pedestrian crossings, regions with
white markings where pedestrians can legally cross the road. Usually they are quadrilaterals. These
elements are critical for autonomous driving, but these elements typically have diverse geometries

2

Under review as a conference paper at ICLR 2023

Map Element
Detector

Polyline
Generator

BEV Features ℱ!"#
Element Query

𝑞$%&%'

EOS

1

1

2

4

(x, y)
(x, y)

1

2

2

1

3
v
4
4

3 3

2 3

4 4

(x,
y)

(x, y)

Transform
er DecoderLayer

Transform
er DecoderLayer

BEV Features

Boundary

IPM

Voxelization

Element
Keypoints 𝐴!

Polyline
V$
()&*

Label Embedding

Element Keypoint
Embedding

Polyline Embedding

CNNs PointPillars

(a). BEV Feature Extractor (b). Map Element Detector (c). Polyline Generator

Multi-camera
Images LiDAR Points

Element Query

Transform
er

D
ecoder

BEV Features

Prediction
H

ead

Map Element
Detector

Polyline
Generator

BEV Feature
Extractor

Tokenize & Lookup

Element
Keypoints

Keypoint
Embedding

• In Map Element Detector, what do the different colors represent?

• Which color legends correspond to which part of the figure.

• In Polyline Generator, I am assuming the different numbers
represent the autoregressive prediction of the vertices. This
should be explained in the figure or caption.

Keypoint Embedding 𝑞$,,
-(

Element Query 𝑞!"#"$

Keypoint 𝑎$,,

Legend of Detector

Legend of Generator

Boundary

Ped. Crossing

Divider

𝜈!,#
$%&'

Drivable Area

Figure 2: The network architecture of VectorMapNet. The top row is the pipeline of VectorMapNet generating
polylines from raw sensor inputs. The bottom row illustrates detailed structures and inference procedures of three
primary components of VectorMapNet: BEV feature extractor, map element detector, and polyline generator.
Numbers in polyline embeddings indicate predicted vertex indexes.

and semantic meaning. For example, in HD semantic maps, lanes are usually represented as curves,
pedestrian crossings are often represented as polygons.

The heterogeneous nature of map elements calls for a unified vectorized representation. We opt to
use N polylines Vpoly = {V poly

1 , . . . , V poly
N } as primitives to represent these map elements in a map

M. Each polyline V poly
i = {vi,n ∈ R2|n = 1, . . . , Nv} is a collection of Nv ordered vertices vi,n.

In practice, we converts vector HD maps from different public datasets to polylines by applying the
Ramer–Douglas–Peucker algorithm (Ramer, 1972).

Why Polyline? Using polylines to represent map elements has three main advantages: (1) HD
maps are typically composed of a mixture of different geometries, such as points, lines, curves, and
polygons. Polylines are a flexible primitive that can represent these geometric elements effectively.
(2) The order of polyline vertices is a natural way to encode the direction of map elements, which is
vital to driving. (3) The polyline representation has been widely used by downstream autonomous
driving modules, such as motion forecasting (Gao et al., 2020).

Method overview. We formulate this task as a sparse set detection problem. Specifically, we represent
a map M by a sparse set of polylines, and the task is to learn a model that extracts information from
sensors to predict these primitives for representing the semantic map.

First, we map sensor data from sensor-view to a canonical BEV representation FBEV. Then the
remaining task is to model polylines based on FBEV. However, map elements exhibit complicated
and diverse structural and location patterns, learning both of them jointly can be challenging. Thus,
we decouple the task into two parts: (1) A scene-level element detection task that locates and
classifies all map elements by predicting element keypoints A = {Ai ∈ Rk×2|i = 1, . . . , N} and
their class labels L = {li ∈ Z|i = 1, . . . , N}; (2) An object-level sequence generation task that
produces a sequence of polyline vertices for each detected map element (Ai, li). The definition of
element keypoint representation A is described in § 2.2.

Correspondingly, VectorMapNet employs three modules to model these three tasks, as shown in
Figure 2. (1) A BEV feature extractor that lifts sensor observations to BEV space (§ 2.1); (2) A map
element detector that predicts map element keypoints A and class labels L (§ 2.2); (3) A polyline
generator that completes the shapes of the HD map elements conditioned on keypoints and class
labels (§ 2.3).

3

Under review as a conference paper at ICLR 2023

2.1 BEV FEATURE EXTRACTOR

The BEV feature extractor lifts various modality inputs into a unified feature space and aggregates
these features into a canonical representation termed BEV features FBEV. We consider two common
modalities: surrounding camera images I and LiDAR points P .

Camera branch. We use ResNet to extract features from images, followed by a feature transfor-
mation module from image space to BEV space. VectorMapNet does not rely on certain feature
transformation approaches and we opt to use a simple but popular variant of IPM, which produces
BEV features of FI

BEV ∈ RW×H×C1 . The detailed structure can be found in Appendix C.3.

LiDAR branch. For LiDAR data P , we use a variant of PointPillars (Lang et al., 2019) with
dynamic voxelization (Zhou et al., 2020), which divides the 3D space into multiple pillars and uses
pillar-wise point clouds to learn pillar-wise feature maps. We denote this feature map in BEV as
FP

BEV ∈ RW×H×C2 .

For sensor fusion, we obtain the BEV features FBEV ∈ RW×H×(C1+C2) by concatenating FI
BEV

and FP
BEV, and then process the concatenated result with a two-layer convolutional network. An

overview of the BEV feature extractor is shown at the bottom-left of Figure 2.

2.2 MAP ELEMENT DETECTOR

After obtaining BEV features, the goal of map element detector is to infer element keypoints ai,j
from the BEV features FBEV. We leverage a variant of transformer set prediction detector (Carion
et al., 2020) to achieve this goal. This detector represents map elements’ locations and categories by
predicting their element keypoints A and class labels L.

Keypoint representations. In object detection problems, people use bounding box to abstract the
shape of an object. Here we use k key point locations Ai = {aj ∈ R2|j = 1, ..., k}, to represent the
outline of a map element. However, defining keypoints for map elements is not straightforward since
their are diverse. We conduct an ablation study to investigate the performance of different choices in
§ 3.3.

Element queries. The query inputs of the detector are learnable element queries {qelemi ∈ Rk×d|i =
1, . . . , Nmax}, where d is the hidden embedding size, and the i-th element query qelemi is composed
of k keypoint embeddings qkp: qelemi = {qkpi,j ∈ Rd|j = 1, . . . , k}.

Architecture. The overall architecture of the map element detector includes a transformer de-
coder (Vaswani et al., 2017) and a prediction head, as shown at the bottom-middle of Figure 2.
The decoder transforms the element queries using multi-head self-/cross-attention mechanisms. In
particular, we use the deformable attention module (Zhu et al., 2020) as the decoder’s cross attention
module, where each element query has a 2D location grounding. It improves interpretability and
accelerates training convergence (Li et al., 2022).

The prediction head has two MLPs, which decodes element queries into element keypoints ai,j =
MLPkp(q

kp
i,j) and their class labels li = MLPcls([q

kp
i,1, . . . , q

kp
i,k]), respectively. [·] is a concatenation

operator. Each keypoint embedding qkpi,j in the map element detector consists of two learnable parts.
The first parts is a keypoint position embedding {ekpj ∈ Rd|j = 1, . . . , k}, indicating which position
in an element keypoint the point belongs to. The second embedding {epi ∈ Rd|i = 1, . . . , Nmax}
encodes which map element the keypoint belongs to. The keypoint embedding qkpi,j is the addition of
these two embeddings epi + ekpj .

2.3 POLYLINE GENERATOR

Given the label and keypoints of map elements, the goal of polyline generator is to generate de-
tailed geometrical shape of map elements. Specifically, polyline generator models a distribution
p(V poly

i |ai, li,Ff
BEV) over the vertices of each polyline, conditioned on the initial layout (i.e., ele-

ment keypoints and class labels) and BEV features. To estimate this distribution, we decompose the
joint distribution over V poly

i as a product of a series of conditional vertex coordinate distributions.

4

Under review as a conference paper at ICLR 2023

Specifically, we transform each polyline V poly
i = {vi,n ∈ R2|n = 1, . . . , Nv} into a flattened se-

quence {vfi,n ∈ R|n = 1, . . . , 2Nv} by concatenating coordinates values of polyline vertices and add
an additional End of Sequence token (EOS) at the end of each sequence, and the target distribution
turns into:

p(V poly
i |ai, li,FBEV; θ) =

2Nv∏
n=1

p(vfi,n|v
f
i,<n, ai, li,FBEV). (1)

We model this distribution using an autoregressive network that outputs the parameters of a predictive
distribution at each step for the next vertex coordinate. This predictive distribution is defined over all
possible discrete vertex coordinate values and EOS.

Vertices as discrete variables. Using discrete distributions to model polyline vertices has the
advantage of representing arbitrary shapes, i.e., categorical distributions can easily represent various
polylines, such as multi-modal, skewed, peaked, or long-tailed, that are commonly seen in our task.
Thus, we quantize the coordinate values into discrete tokens and model each token with a categorical
distribution. We also conduct an ablation study in Appendix D.2 to investigate other modeling
choices.

Architecture. The autoregressive network we choose is a vanilla transformer (Vaswani et al.,
2017) (see the bottom-right of Figure 2). Each polyline’s keypoint coordinates and class label are
tokenized and fed in as the query inputs of the transformer decoder. Then a sequence of vertex tokens
are fed into the transformer iteratively, integrating BEV features with cross-attention, and decoded as
polyline vertices. Note that the generator can generate all polylines in parallel.

Following PolyGen (Nash et al., 2020), we use an addition of three learned embeddings as the
embedding of each vertex token: Coordinate Embedding, indicating whether the token represents x or
y coordinate; Position Embedding, representing which vertex the token belongs to; Value Embedding,
expressing the token’s quantized coordinate value.

2.4 LEARNING

We train our model by minimizing the sum of map element detector loss and polyline generator loss:
L = Ldet + Lgen (2)

Map element detector loss. Following (Wang et al., 2022; Zhu et al., 2020), the detector is trained
with bipartite matching loss, thus avoiding post-processing steps like non-maximum suppression
(NMS). We describe the detail of the loss function in Appendix C.4.

Polyline generator loss. Polyline generator is trained to maximize the log-probability of the polyline
vertices. We use negative log-likelihood as its loss function:

Lgen = − 1

2Nv

2Nv∑
n=1

log p̂(vfi,n|v
f
i,<n, ai, li,F

f
BEV), (3)

where p̂(vfi,n| . . .) is the conditional probability of discrete coordinate value vfi,n, and vfi,<n are
ground truth discrete coordinate values with index less than n. The default training strategy is teacher
forcing, meaning that we use ground truth keypoints as generator input. To avoid the exposure
bias (Bengio et al., 2015), we further experiment with first training with teacher forcing, and then
fine-tuning with predicted keypoints.

3 EXPERIMENTS

Experiment protocol. We conduct experiments on the nuScenes (Caesar et al., 2020) and Argo-
verse2 (Wilson et al., 2021). Following HDMapNet (Li et al., 2021), we assess the quality of a
predicted HD map by comparing its components (i.e., polylines) with ground truth, while the only
difference is the selection of distance measure for in TP/FP matching. Both HDMapNet [1] and
our paper use Chamfer distance for matching (Chamfer AP). Additionally, we also propose another
distance metric termed Frechet distance (Fréchet AP), which better measures the distance between
polylines by considering the order of vertices. The definitions of Chamfer AP and Fréchet AP are
in § A.2. The details of dataset settings (§ A.1), implementations (§ C), and metrics (§ A.2) are
presented in the Appendix as well.

5

Under review as a conference paper at ICLR 2023

Table 1: Results on nuScenes dataset. Fusion denotes the model using both images and LiDAR points as inputs.
Methods with fine-tune means the model is applied two stage training strategy introduced in § 2.4

Methods APped APdivider APboundary mAP

STSU (Can et al., 2021) 7.0 11.6 16.5 11.7
HDMapNet (Camera) (Li et al., 2021) 14.4 21.7 33.0 23.0
HDMapNet (LiDAR) (Li et al., 2021) 10.4 24.1 37.9 24.1
HDMapNet (Fusion) (Li et al., 2021) 16.3 29.6 46.7 31.0
VectorMapNet (Camera) 36.1 47.3 39.3 40.9
VectorMapNet (Camera) + fine-tune 42.5 51.4 44.1 46.0
VectorMapNet (LiDAR) 25.7 37.6 38.6 34.0
VectorMapNet (Fusion) 37.6 50.5 47.5 45.2
VectorMapNet (Fusion) + fine-tune 48.2 60.1 53.0 53.7

3.1 COMPARISON WITH BASELINES

Comparison on nuScenes dataset. We choose two closely related models, HDMapNet (Li et al.,
2021) and STSU (Can et al., 2021) as our baselines. For HDMapNet, we directly take its vectorized
results. STSU uses a transformer module to detect the moving objects and centerline segments. It
uses an association head to piece the segments together as the road graph. In order to adapt STSU
to our task, we use a two-layer MLP to predict lane segments and only keep its object branch and
polyline branch. We report the average precision that uses Chamfer distance as the threshold to
determine the positive matches with ground truth. {0.5, 1.0, 1.5} are the predefined thresholds of
Chamfer distance AP.

As shown in Table 1, VectorMapNet outperforms HDMapNet by a large margin under all settings
(+17.9 mAP in Camera, +9.9 mAP in LiDAR, and +14.2 mAP in Fusion). Compared to camera-only
and LiDAR-only, sensor fusion introduces +4.3 mAP improvement and +11.2 mAP improvement,
respectively. As described in § 2.4, our two stage training strategy further boosts the performance
of both camera-only and sensor fusion methods by +6.9 mAP and +8.5 mAP, respectively. STSU
is -29.2 mAP lower than VectorMapNet. Since STSU treats all map elements as a set of fixed-size
segments, we hypothesize that ignoring the fine geometry of map elements hurts the performance
significantly.

Results on Argoverse2. We further compare HDMapNet and VectorMapNet on Argoverse2 dataset,
shown in Table 2. Since Argoverse2 provides z-axis annotations, we give VectorMapNet results both
in 2D and 3D.

In many cases of Argoverse2, the annotated boundaries and divider lines overlap with each other,
making it difficult for models to separate them. It results in a drop in performance of both methods,
especially in APdivider of HDMapNet (21.7 APdivider to 5.7 APdivider) because its rasterized
representation fails to handle these cases. In contrast, VectorMapNet remains competent, showing the
advantage of using vectorized representation to represent overlapping elements.

Table 2: Results on Argoverse2 dataset.

Fréchet Distance Chamfer Distance

Keypoint Representaion #dim APped APdivider APboundary mAP APped APdivider APboundary mAP
HDMapNet (Camera) Li et al. (2021) 2 - - - - 13.1 5.7 37.6 18.8
VectorMapNet (Camera) 2 43.2 45.5 52.0 46.9 38.3 36.1 39.2 37.9
VectorMapNet (Camera) 3 41.7 42.3 49.9 44.6 36.5 35.0 36.2 35.8

3.2 QUALITATIVE ANALYSIS

Benefits of using polylines as primitives. From visualizations, we find that using polylines as
primitives has brought us two benefits compared with baselines: First, polylines effectively encode
the detailed geometries of map elements, e.g. the corners of boundaries (see the red ellipses in
Figure 3). Second, polyline representations prevent VectorMapNet from generating ambiguous
results, as it consistently encodes direction information. In contrast, Rasterized methods are prone

6

Under review as a conference paper at ICLR 2023

to falsely generating loopy curves (see the blue ellipses in Figure 3). These ambiguities hinder safe
autonomous driving. Therefore, the polyline is a desired primitive for map learning, as it can reflect
real-world road layouts and explicitly encode directions.

Benefits of posing map learning as a detection problem. VectorMapNet works in a top-down
detection manner: it models the topology of the map and the map element locations first, and then
generates map element details. Visualizations show that VectorMapNet capture the map elements
comprehensively, including the small elements close to edges. The high mAP of VectorMapNet over
other baselines further confirms this observation. Surprisingly, Figure 4 shows that VectorMapNet
can find the map elements that are not annotated in the HD map provided by the dataset.

Boundary Pedestrian Crossing Divider

Camera Image Ground Truth HDMapNet STSU VectorMapNet

Drivable Area

Figure 3: Qualitative results generated by VectorMapNet and baselines. We use camera images as inputs for
comparisons. The areas enclosed by red and blue ellipses show that VectorMapNet can preserve sharp corners,
and polyline representations prevent VectorMapNet from generating ambiguous self-looping results. Since the
lack of directional information, HDMapNet and STSU cannot infer drivable areas from their predictions. It
worth noting that the drivable area is inferred from several disjoint boundaries and is non-trivial to model as one
object.

3.3 ABLATION STUDIES

We list ablation studies for keypoint representation here. For more ablation studies, please refer to
Appendix D in the Appendix.

Table 3: Ablation study of keypoint representaions. k is the keypoint number of each keypoint representation.

Fréchet Distance Chamfer Distance

Keypoint Representaion k APped APdivider APboundary mAP APped APdivider APboundary mAP
Bbox 2 47.4 46.9 62.8 52.4 36.1 47.3 39.3 40.9
SME 3 47.0 47.4 56.9 50.4 27.6 34.4 35.4 32.5

Extreme 4 41.7 47.3 59.0 49.4 30.4 33.1 37.3 33.6

Keypoint representations. Since there is no straightforward keypoint design to represent map
elements with few fixed number of points, we propose three simple representations as shown in
Figure 5: Bounding Box (Bbox), which is the smallest box enclosing a polyline, and its keypoints are
defined as the top-right and bottom-left points of the box; Start-Middle-End (SME), which samples
the start, middle, and end point from a polyline; Extreme Points, which are the left-most, right-most,
top-most, and bottom-most points of a polyline.

7

Under review as a conference paper at ICLR 2023

Ground Truth HDMapNet VectorMapNet

Front Left Front Front Right

Back LeftBack Right Back

Ground Truth HDMapNet STSU VectorMapNet

Figure 4: An example of VectorMapNet detecting unlabeled map elements. The red ellipses indicate two
pedestrian crossings that are missing in ground truth annotations, while VectorMapNet detects it correctly. All
the predictions are generated from camera images.

Bounding Box SME Extreme PointsPolyline

Bounding Box SME Extreme PointsPolyline

StartMiddle

End

Top-most

Left-most
Bottom-most

Right-most

Top-right

Bottom-left

Figure 5: Three different keypoint representations are proposed here: Bounding Box (k=2), SME (k=3), and
Extreme Points (k=4), where k has the same definition in § 2. The arrow line indicates the direction of the
example polyline, and the arrow dash lines indicate the vertices order of keypoint representations.

We experiment with these representations and list the results in Table 3. Our results show that the
bounding box representation leads to the best mean average performance in both metrics, outperform-
ing others by 2.0 Fréchet mAP and 7.3 Chamfer mAP.

3.4 VECTORIZED HD MAPS FOR MOTION FORECASTING

Since predicting future motions in the complex environment heavily relies on the map information,
we investigate the effectiveness of our predicted HD map in this downstream motion forecasting task.

Task Settings. In our setting, the motion forecasting model aims to predict a target agent’s 6
plausible future trajectories (3 seconds) from past trajectories (1 second) of agents and an HD
semantic map which covers an area of 60m× 30m. We generate data by sampling from nuScenes
tracking dataset. We first retrieve agents observed in the tracking dataset and then select agents
with complete 3-second future observations as the target agents. As a result, the dataset consists of
25,645 training samples and 5,460 test samples. We use three different input settings to investigate
the performance of our predicted HD map: past trajectories, past trajectories with the ground truth
HD map, and past trajectories with the map predicted by VectorMapNet. The motion forecaster we
used is mmTransformer (Liu et al., 2021) which can optionally take vectorized maps and trajectories
as inputs.

Table 4: Predicted map for motion forecasting. There are three input settings: past trajectories (denoted as Traj.),
past trajectories with the human-annotated HD map from the nuScenes (denoted as Traj. + G.T. Map), and past
trajectories with the predicted map from VectorMapNet (denoted as Traj. + Pred. Map). The predicted map
greatly improves the prediction performance compared with the model that only use past trajectories.

Prediction Model Inputs minADE ↓ minFDE↓ MR@2m↓
Traj. 0.909 1.577 19.6
Traj. + G.T. Map 0.779 1.390 18.0
Traj. + Pred. Map 0.826 1.477 18.2

8

Under review as a conference paper at ICLR 2023

Results. To evaluate the performance of motion forecasting under different input settings, we report
results on three commonly used metrics (Chang et al., 2019): minimum average displacement error
(minADE), minimum final displacement error (minFDE) and miss rate (MR). To get the results, these
metrics only account for the best trajectory out of 6 predicted trajectories. Results in Table 4 show
that the map predicted by VectorMapNet has encoded environment information that greatly helps
the motion forecaster, compared with the model that only takes past trajectories as inputs. The gap
between the ground-truth map and the predicted map is not big either, especially in terms of MR
(-0.2%). We think future research could further close the performance gap.

4 RELATED WORKS

Semantic map learning. Annotating semantic maps attracts plenty of interests thanks to autonomous
driving. Recently, semantic map learning is formulated as a semantic segmentation problem (Mattyus
et al., 2015) and is solved by using aerial images (Máttyus et al., 2016), LiDAR points (Yang et al.,
2018), and HD panorama (Wang et al., 2016). The crowdsourcing tags (Wang et al., 2015) are used
to improve the performance of fine-grained segmentation. Instead of using offline data, recent works
focus on understanding BEV semantics from onboard camera images (Lu et al., 2019; Yang et al.,
2021), and videos (Can et al., 2020). Only using onboard sensors as model input is particularly
challenging as the inputs and target map lie in different coordinate systems. Recently, several cross-
view learning approaches (Philion & Fidler, 2020; Pan et al., 2020; Li et al., 2021; Zhou & Krähenbühl,
2022; Wang et al., 2022; Chen et al., 2022) leverage the geometric structure of scenes to mitigate the
mismatch between sensor inputs and BEV representations. Some methods (Casas et al., 2021; Sadat
et al., 2020) use pixel-level semantic maps to solve downstream tasks, but the entire downstream
pipeline needs to be redesigned to accommodate these rasterized map inputs. Beyond pixel-level
semantic maps, our work extracts a consistent vectorized map around vehicles from surrounding
cameras or LiDARs, which suits for existing downstream tasks like motion forecasting (Gao et al.,
2020; Zhao et al., 2020; Liu et al., 2021) without modifications.

Lane detection. Lane detection aims to separate lane segments from road scenes precisely. Most lane
detection algorithms (Pan et al., 2018; Neven et al., 2018) use a pixel-level segmentation technique
combined with sophisticated post-processing. Another line of work leverages the predefined proposal
to achieve high accuracy and fast inference speed. These methods typically involve handcrafted
elements such as vanishing points (Lee et al., 2017), polynomial curves (Van Gansbeke et al., 2019),
line segments (Li et al., 2019), and Bézier curves (Feng et al., 2022) to model proposals. In addition
to using perspective view cameras as inputs, (Homayounfar et al., 2018) and (Liang et al., 2019)
extract lane segments from overhead highway cameras and LiDAR imagery with a recurrent neural
network. Instead of discovering the road’s topology via boundaries detection, STSU (Can et al.,
2021) and LaneGraphNet (Zürn et al., 2021) construct lane graphs from centerline segments that are
encoded by Bézier curves and line segments, respectively. To model complex geometries in the urban
environment, we leverage polylines to represent all the map elements in perceptual scopes.

Geometric data modeling. Another line of work closely related to VectorMapNet is geometric data
generation. These methods typically treat geometric elements as a sequence, such as primitive parts
of furniture (Li et al., 2017; Mo et al., 2019), states of sketch strokes (Ha & Eck, 2017), vertices of
n-gon mesh (Nash et al., 2020) , and parameters of SVG primitives (Carlier et al., 2020). These
methods generate these sequences by leveraging autoregressive models (e.g. Transformer). Since the
directly modeling sequence is challenging for long-range centerline maps, HDMapGen (Mi et al.,
2021) views the map as a two-level hierarchy. It produces a global and local graph separately with a
hierarchical graph RNN. Instead of treating geometric elements as a sequence generation problem,
LETR (Xu et al., 2021) models line segment as a detection problem and tackle it with a query-based
detector. Unlike the above approaches that focus on single-level geometric modelings, such as scene
level (e.g. line segments in an image) or object-level (e.g. furniture), VectorMapNet is designed
to address both the scene level and object level geometric modeling. Specifically, VectorMapNet
constructs a map by modeling the global relationship between map elements in the scene and the
local geometric details inside each element.

Learning vector representations from images VectorMapNet bears some similarities with predicting
vector graphics from raster images. In this field, several recent works (Carlier et al., 2020) and (Reddy
et al., 2021) use different vector object representations to define generative models of vector images.

9

Under review as a conference paper at ICLR 2023

(Ganin et al., 2021) converts images to CAD, CanvasVAE (Yamaguchi, 2021) learns vectorized
canvas layouts from images, and (Liu et al., 2022) generates vectorized stroke primitives from raster
line drawing. The instance segmentation community has also been concerned with a similar task of
detecting object contours in a vector form from an image. These methods (Zhang et al., 2022; Acuna
et al., 2018; Liang et al., 2020) initialize a contour for every object instance and then refine the vertex
positions of the contour. These methods use highly domain-dependent architectures; therefore, it
would be a non-trivial task to adapt them for our task that requires detecting and generating different
map elements with different semantic information and different geometry from the real-world 3D
space.

5 CONCLUSIONS

We present VectorMapNet, an end-to-end model to tackle the HD semantic map learning problem.
Unlike existing works, VectorMapNet uses polylines as the primitives to represent vectorized HD
map elements. To learn these polylines, we decompose the learning problem into a detection and a
generation problem. Our experiments show that VectorMapNet can generate coherent and complex
geometries for urban map elements, benefiting from the polyline primitives. We believe that this
novel way to learn HD maps provides a new perspective on the HD semantic map learning problem.

Reproducibility Statement. We detail the implementation steps and experiment settings in Ap-
pendix C.

REFERENCES

David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Efficient interactive annotation of segmenta-
tion datasets with polygon-rnn++. 2018.

Pankaj K Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the discrete
fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429–449, 2014.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems, 28,
2015.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Yigit Baran Can, Alexander Liniger, Ozan Unal, Danda Paudel, and Luc Van Gool. Understand-
ing bird’s-eye view semantic hd-maps using an onboard monocular camera. arXiv preprint
arXiv:2012.03040, 2020.

Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Structured bird’s-
eye-view traffic scene understanding from onboard images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15661–15670, 2021.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213–229. Springer, 2020.

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg: A hierarchical
generative network for vector graphics animation. Advances in Neural Information Processing
Systems, 33:16351–16361, 2020.

Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A unified model to map, perceive, predict and
plan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 14403–14412, 2021.

10

Under review as a conference paper at ICLR 2023

Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, Andrew Hartnett,
De Wang, Peter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse: 3d tracking and forecasting
with rich maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8748–8757, 2019.

Xuanyao Chen, Tianyuan Zhang, Yue Wang, Yilun Wang, and Hang Zhao. Futr3d: A unified sensor
fusion framework for 3d detection. arXiv preprint arXiv:2203.10642, 2022.

Thomas Eiter and Heikki Mannila. Computing discrete fréchet distance. 1994.

Zhengyang Feng, Shaohua Guo, Xin Tan, Ke Xu, Min Wang, and Lizhuang Ma. Rethinking efficient
lane detection via curve modeling. arXiv preprint arXiv:2203.02431, 2022.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided
design as language. Advances in Neural Information Processing Systems, 34:5885–5897, 2021.

Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong Li, and Cordelia Schmid.
Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11525–11533,
2020.

David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Namdar Homayounfar, Wei-Chiu Ma, Shrinidhi Kowshika Lakshmikanth, and Raquel Urtasun.
Hierarchical recurrent attention networks for structured online maps. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3417–3426, 2018.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12697–12705, 2019.

Seokju Lee, Junsik Kim, Jae Shin Yoon, Seunghak Shin, Oleksandr Bailo, Namil Kim, Tae-Hee Lee,
Hyun Seok Hong, Seung-Hoon Han, and In So Kweon. Vpgnet: Vanishing point guided network
for lane and road marking detection and recognition. In Proceedings of the IEEE international
conference on computer vision, pp. 1947–1955, 2017.

Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate detr
training by introducing query denoising. arXiv preprint arXiv:2203.01305, 2022.

Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas. Grass:
Generative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG), 36
(4):1–14, 2017.

Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: A local semantic map learning and
evaluation framework. arXiv preprint arXiv:2107.06307, 2021.

Xiang Li, Jun Li, Xiaolin Hu, and Jian Yang. Line-cnn: End-to-end traffic line detection with line
proposal unit. IEEE Transactions on Intelligent Transportation Systems, 21(1):248–258, 2019.

Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Shenlong Wang, and Raquel Urtasun. Convolu-
tional recurrent network for road boundary extraction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9512–9521, 2019.

Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Yuwen Xiong, Rui Hu, and Raquel Urtasun.
Polytransform: Deep polygon transformer for instance segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9131–9140, 2020.

11

Under review as a conference paper at ICLR 2023

Hanyuan Liu, Chengze Li, Xueting Liu, and Tien-Tsin Wong. End-to-end line drawing vectorization.
2022.

Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multimodal motion
prediction with stacked transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7577–7586, 2021.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2018.

Chenyang Lu, Marinus Jacobus Gerardus van de Molengraft, and Gijs Dubbelman. Monocular
semantic occupancy grid mapping with convolutional variational encoder–decoder networks. IEEE
Robotics and Automation Letters, 4(2):445–452, 2019.

Hanspeter A Mallot, Heinrich H Bülthoff, JJ Little, and Stefan Bohrer. Inverse perspective mapping
simplifies optical flow computation and obstacle detection. Biological cybernetics, 64(3):177–185,
1991.

Gellert Mattyus, Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Enhancing road maps by parsing
aerial images around the world. In Proceedings of the IEEE international conference on computer
vision, pp. 1689–1697, 2015.

Gellért Máttyus, Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Hd maps: Fine-grained road
segmentation by parsing ground and aerial images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3611–3619, 2016.

Lu Mi, Hang Zhao, Charlie Nash, Xiaohan Jin, Jiyang Gao, Chen Sun, Cordelia Schmid, Nir Shavit,
Yuning Chai, and Dragomir Anguelov. Hdmapgen: A hierarchical graph generative model of high
definition maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4227–4236, 2021.

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas J Guibas. Struc-
turenet: Hierarchical graph networks for 3d shape generation. arXiv preprint arXiv:1908.00575,
2019.

Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An autoregressive
generative model of 3d meshes. In International Conference on Machine Learning, pp. 7220–7229.
PMLR, 2020.

Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc Proesmans, and Luc Van Gool.
Towards end-to-end lane detection: an instance segmentation approach. In 2018 IEEE intelligent
vehicles symposium (IV), pp. 286–291. IEEE, 2018.

Bowen Pan, Jiankai Sun, Ho Yin Tiga Leung, Alex Andonian, and Bolei Zhou. Cross-view semantic
segmentation for sensing surroundings. IEEE Robotics and Automation Letters, 5(3):4867–4873,
2020.

Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Spatial as deep: Spatial cnn
for traffic scene understanding. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by
implicitly unprojecting to 3d. In European Conference on Computer Vision, pp. 194–210. Springer,
2020.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Comput. Graph.
Image Process., 1:244–256, 1972.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. Im2vec: Synthesizing vector
graphics without vector supervision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7342–7351, 2021.

12

Under review as a conference paper at ICLR 2023

Thomas Roddick and Roberto Cipolla. Predicting semantic map representations from images using
pyramid occupancy networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11138–11147, 2020.

Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke, Mārtin, š Možeiko, Eric
Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, et al. Lgsvl simulator: A high fidelity simulator
for autonomous driving. arXiv preprint arXiv:2005.03778, 2020.

Abbas Sadat, Sergio Casas, Mengye Ren, Xinyu Wu, Pranaab Dhawan, and Raquel Urtasun. Perceive,
predict, and plan: Safe motion planning through interpretable semantic representations. In
European Conference on Computer Vision, pp. 414–430. Springer, 2020.

Wouter Van Gansbeke, Bert De Brabandere, Davy Neven, Marc Proesmans, and Luc Van Gool. End-
to-end lane detection through differentiable least-squares fitting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, pp. 0–0, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Holistic 3d scene understanding from a single
geo-tagged image. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3964–3972, 2015.

Shenlong Wang, Min Bai, Gellert Mattyus, Hang Chu, Wenjie Luo, Bin Yang, Justin Liang, Joel
Cheverie, Sanja Fidler, and Raquel Urtasun. Torontocity: Seeing the world with a million eyes.
arXiv preprint arXiv:1612.00423, 2016.

Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang, Yilun Wang, Hang Zhao, and Justin
Solomon. Detr3d: 3d object detection from multi-view images via 3d-to-2d queries. In Conference
on Robot Learning, pp. 180–191. PMLR, 2022.

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal,
Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, Deva Ramanan, Peter
Carr, and James Hays. Argoverse 2: Next generation datasets for self-driving perception and
forecasting. In Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks (NeurIPS Datasets and Benchmarks 2021), 2021.

Yifan Xu, Weijian Xu, David Cheung, and Zhuowen Tu. Line segment detection using transformers
without edges. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4257–4266, 2021.

Kota Yamaguchi. Canvasvae: Learning to generate vector graphic documents. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5481–5489, 2021.

Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Exploiting hd maps for 3d object detection. In
Conference on Robot Learning, pp. 146–155. PMLR, 2018.

Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin Ma, Shengfeng He, and Jia Pan. Projecting
your view attentively: Monocular road scene layout estimation via cross-view transformation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15536–15545, 2021.

Tao Zhang, Shiqing Wei, and Shunping Ji. E2ec: An end-to-end contour-based method for high-
quality high-speed instance segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4443–4452, 2022.

Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Benjamin Sapp, Balakrishnan Varadarajan, Yue Shen,
Yi Shen, Yuning Chai, Cordelia Schmid, et al. Tnt: Target-driven trajectory prediction. arXiv
preprint arXiv:2008.08294, 2020.

Brady Zhou and Philipp Krähenbühl. Cross-view transformers for real-time map-view semantic
segmentation. arXiv preprint arXiv:2205.02833, 2022.

13

Under review as a conference paper at ICLR 2023

Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang Gao, Tom Ouyang, James Guo, Jiquan
Ngiam, and Vijay Vasudevan. End-to-end multi-view fusion for 3d object detection in lidar point
clouds. In Conference on Robot Learning, pp. 923–932. PMLR, 2020.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

Jannik Zürn, Johan Vertens, and Wolfram Burgard. Lane graph estimation for scene understanding in
urban driving. IEEE Robotics and Automation Letters, 6(4):8615–8622, 2021.

14

Under review as a conference paper at ICLR 2023

A EXPERIMENT SETUP

A.1 DATASET

nuScenes We experiment on nuScenes (Caesar et al., 2020) dataset, which contains 1000 sequences
of recordings collected by autonomous driving cars. Each episode is annotated at 2Hz and contains 6
camera images and LiDAR sweeps. Our dataset setup and pre-processing steps are identical to that of
HDMapNet (Li et al., 2021), which includes three categories of map elements – pedestrian crossing,
divider, and road boundary – from the nuScenes dataset.

Argoverse2 We further conduct experiments on Argoverse2 (Wilson et al., 2021) dataset. Like
nuScenes, it contains 1000 logs (700, 150, 150 for training, validation and test set). Each episode
provides 15s of 20Hz camera images, 10Hz LiDAR sweeps and a vectorized map. We use the same
pre-processing settings as on nuScenes dataset.

A.2 METRICS

In contrast to existing methods which generate rasterized results, our method does not require
rasterizing curves on grids. Therefore, we opt not to use Intersection-Over-Union (IoU) as a metric.
We use a distance-based metric to evaluate the similarity between predicted curves and ground-truth
curves. We follow the instance-level evaluation metric proposed by HDMapNet (Li et al., 2021) to
compare the instance-level detection performance of our model to baseline methods. The metric is
average precision (AP), where positive/negative samples are based on geometric similarity, more
concretely, Chamfer distance and Fréchet distance. For clarity, we call the AP based on Chamfer
distance and Fréchet distance as Chamfer AP and Fréchet AP, respectively.

Chamfer distance. Chamfer distance is a distance measure that quantifies the similarity between two
unordered sets. The Chamfer distance is an evaluation metric that quantifies the similarity between
two unordered sets by taking into account the distance of each permutation of the elements of set as
follows:

Dchamfer(S1,S2) =
1

2
(

1

|S1|
∑
p∈S1

min
q∈S2

∥p, q∥2 +
1

|S2|
∑
q∈S2

min
p∈S1

∥q, p∥2). (4)

In our experiments, we use chamfer distance to calculate the distance between a prediction and a
ground truth polyline set, and each polyline set is represented by uniformly sampling a polyline to
Npts vertices, where Npts is set to 100 in our experiments.

Fréchet distance. The order of polyline vertices is not measured by Chamfer distance. Therefore,
we introduce Fréchet distance as an additional measure. Fréchet distance is a measure of similarity of
curves that takes both the positions and the order of the points along the curves into consideration.
Our implementation is based on discrete Fréchet distance (Eiter & Mannila, 1994; Agarwal et al.,
2014).

We use the discrete version of Fréchet distance (Eiter & Mannila, 1994; Agarwal et al., 2014) to
evaluate the geometric similarity between two polyline P and Q. We denote σ(P) as a sequence
of endpoints of the line segments of P . In particular, σ(P) = (p1, . . . , pm) is a sequence with m
vertices that uniformly sampled from the original input polyline P , where each position of P between
pi and pi+1 can be approximated by using an affine transformation that is pi+λ = (1− λ)pi + λpi+1

and the m in our experiment is set as 100.

Let P and Q be polyline and σ(P) = (u1, . . . , up) and σ(Q) = (v1, . . . , vq) the corresponding
sequences. A coupling L is a sequence of distinct pairs between σ(P) and σ(Q):

(ua1
, vb1), . . . , (uam

, vbm). (5)

These indexes {a1, . . . , am} and {b1, . . . , bm} are nondecreasing surjection such that a1 = 1,
am = p, b1 = 1, bm = q and for all i < j ∈ {1, . . . , q}, ai ≤ aj and bi ≤ bj .

We define the norm ∥L∥ of the L is the length of the longest pair in L, that is,

∥L∥ = max
i=1,...,m

d(uai , vbi). (6)

15

Under review as a conference paper at ICLR 2023

The discrete Fréchet distance between polyline P and Q is defined to be

δdF (P,Q) = min{∥L∥, L is a coupling between P and Q}. (7)

This equation indicates that the distance of discrete Fréchet distance is the minimum norm of all
possible couplings. To Find the coupling plausible L that has the minimum norm, we use a Dynamic
programming-based algorithm that is described in Algorithm 1.

Algorithm 1: The Algorithm of Discrete Fréchet Distance
Input: polyline P = (u1, . . . , up) and Q = (v1, . . . , vq).
Output: δdF (P,Q)
ca : an 2d array of real with size of (p× q);
Function c(i, j)

if ca(i, j) > −1 then
return ca(i, j);

else if i = 1 and j = 1 then
ca(i, j) := d(u1, v1);

else if i > 1 and j = 1 then
ca(i, j) := max{c(i− 1, 1), d(ui, v1)};

else if i = 1 and j > 1 then
ca(i, j) := max{c(1, j − 1), d(u1, vj)};

else if i > 1 and j > 1 then
ca(i, j) := max{min(c(i− 1, j), c(i− 1, j − 1), c(i, j − 1)), d(ui, vj)};

else
ca(i, j) := ∞ ;

end
return ca(i, j);

end
begin

for i = 1 to p do
for j = 1 to q do

ca(i, j) := -1.0;
end

end
return c(p, q);

end

B MORE VISUALIZATIONS OF VECTORMAPNET (FUSION)

We visualized three cases of VectorMapNet (Fusion) and VectorMapNet (Camera) to demonstrate
that LiDAR information can complement visual information to generate more robust map predictions.
In the first case, the camera view is constrained by the nearby vehicles, so it can not provide helpful
surrounding information. LiDAR sensor bypasses the nearby vehicle and provides some cue for
VectorMapNet to generate a better result than its camera-only counterpart (see Figure 6). For the
second case (see Figure 7), the model cannot detect the nearby parking gate because it locates
in the blind zone of cameras. In contrast, the LiDAR provides depth information and helps the
VectorMapNet(Fusion) detect the missing lane boundary. LiDAR points can prevent the model from
falsely detecting map elements in bad weather conditions as well. As shown in Figure 8, some
puddles are near the intersection. With the light reflection, these puddles visually look like a lane
boundary. However, the LiDAR data shows that there does not have any bump in there. Unlike the
camera-only model, this depth information from LiDAR helps our fusion model not generate a non
existed lane boundary.

16

Under review as a conference paper at ICLR 2023

Ground Truth VectorMapNet(Camera) VectorMapNet(Fusion)

Camera LiDAR

Figure 6: When the ego car cameras are occluded by the nearby vehicles, VectorMapNet(Camera) can not
precept the surrounding map. With the depth cue from LiDAR, VectorMapNet(Fusion) can generate a more
plausible result than its camera counterpart.

Ground Truth VectorMapNet(Camera) VectorMapNet(Fusion)

Camera LiDAR

Figure 7: The blind area of onboard cameras may cause our model to miss the map elements closed ego vehicle.
In contrast, we can easily find that LiDAR data has sensed some obstacles near the ego vehicle in the right-most
column. With these cues, our fusion model detects the missed lane boundary by our camera-only model.

C IMPLEMENTATION DETAILS

C.1 OVERALL ARCHITECTURES.

BEV feature extractor outputs a feature map with a size of (200, 100, 128). It uses ResNet50 (He
et al., 2016) for shared CNN backbone. We use a single layer PointNet (Qi et al., 2017) whose
outputs have 64 dimensions as the LiDAR backbone to aggregate LiDAR points into a pillar. We set
the number of element queries Nmax in map element detector as 100. The transformer decoders we

17

Under review as a conference paper at ICLR 2023

Camera LiDAR

Ground Truth VectorMapNet(Camera) VectorMapNet(Fusion)

Figure 8: The qualitative results of VectorMapNet in bad weather conditions. VectorMapNet(Camera) falsely
detects these puddles near the intersection as a lane boundary. The fusion result shows that the miss detection
issue can be resolved by combining the depth information.

used in map element detector and polyline generator both have 6 decoder layers, and their hidden
embeddings’ size is 256. For the output space of polyline generator, we divide the map space (see
§ 2.3) evenly into 200× 100 rectangular grids, and each grid has a size of 0.3m× 0.3m.

C.2 TRAINING SETTINGS.

We train all our models on 8 GTX3090 GPUs for 110 epochs with a total batch size of 32. We use
AdamW (Loshchilov & Hutter, 2018) optimizer with a gradient clipping norm of 5.0. For the learning
rate schedule, we use a step schedule that multiplies a learning rate by 0.1 at epoch 100 and has a
linear warm-up period at the first 5000 steps. The dropout rate for all modules is 0.2, following the
transformer’s settings (Vaswani et al., 2017). Data augmentation is only deployed during polyline
generator’s training; specifically, two I.I.D. Gaussian noises are added to each input vertex’s x and y
coordinates with a probability of 0.3.

C.3 MODEL DETAILS

Camera Branch of Map Feature Extractor. For image data I, we use a shared CNN backbone
to obtain each camera’s image features in the camera space, then use the Inverse Perspective Map-
ping (IPM) (Mallot et al., 1991) technique to transform these features into BEV space. Since the
depth information is missing in camera images, we follow one common approach that assumes
the ground is mostly planar and transforms the images to BEV via homography. Without know-
ing the exact height of the ground plane, this homography is not an accurate transformation. To
alleviate this issue, we transform the image features into four BEV planes with different heights
(we use (−1m, 0m, 1m, 2m) in practice). The camera BEV features FI

BEV ∈ RW×H×C1 are the
concatenation of these feature maps.

C.4 LOSS

Loss settings. The loss function of map element detector is a linear combination of three parts: a
negative log-likelihood for element keypoint classification, a smooth L1 loss, and an IoU loss for
keypoints regression. The coefficients of these loss components are 2, 0.1, 1. The matching cost of
map element detector is the same as the loss combination. The loss function of polyline generator is
a negative log-likelihood. We train VectorMapNet by simply summing up these losses.

18

Under review as a conference paper at ICLR 2023

map element detector loss. To get the loss, we first establish a correspondence between the ground-
truth (A, L) and the prediction (Â, L̂). Assuming the number of ground-truth map element keypoints
N is smaller than the number of predictions Nmax, and we pad the set of ground-truth (A, L) with
∅s (no object) up to Nmax. The correspondence σ is a permutation of Nmax elements σ ∈ P with
the lowest cost: σ∗ = argmin

σ∈P

∑Nmax

j=1 −1(lj ̸=∅)p̂σ(j)(lj) + −1(lj ̸=∅)Lkeypoint(aj , âσ(j)), where

p̂σ(j)(lj) is the probability of class label lj for the prediction with index σ(j), and the loss of keypoints
parameters Lkeypoint is an addition of a smooth L1 loss and an IoU loss. With these notations we
define the loss of detector as:

Ldet =

Nmax∑
j=1

− log p̂σ∗(j)(lj) + 1(lj ̸=∅)Lkeypoint(aj , âσ∗(j)),

where σ∗ is the optimal assignment computed by Hungarian algorithm (Kuhn, 1955).

D MORE ABLATION STUDIES

D.1 CURVE SAMPLING STRATEGIES

Table 5: Ablation study of curves sampling strategies.

Fréchet Distance Chamfer Distance

Vertex Sampling Method APped APdivider APboundary mAP APped APdivider APboundary mAP
curvature-based 47.0 47.4 56.9 50.4 27.6 34.4 35.4 32.5

fixed interval 26.0 23.6 37.1 28.9 14.6 17.6 18.7 17.0

We use two approaches to sample polylines. The first is based on the original nuScenes setting (Caesar
et al., 2020), which samples vertices at the position where the curvature changes are beyond a certain
threshold. The second is to sample the vertices at fixed intervals (1m). We compare our methods
under these two sampling strategies and the results are shown in Table 5. The curvature-based
sampling outperforms its fixed-sampling counterpart by a large margin and achieves a leading 21.5
Fréchet mAP and 15.5 Chamfer mAP. We hypothesize that the fixed-sampling method involves a
large set of redundant vertices that have negligible contributions to the geometry, thus under-weighs
the essential vertices (e.g. the vertices at the corner of a polyline) in the learning process.

D.2 VERTEX MODELING METHODS.

Table 6: Ablation study of vertex modeling methods.

Fréchet Distance Chamfer Distance

Modeling Method APped APdivider APboundary mAP APped APdivider APboundary mAP
discrete 47.0 47.4 56.9 50.4 27.6 34.4 35.4 32.5

continuous 38.0 41.6 46.1 41.9 26.5 28.1 30.1 26.5

We investigate both discrete and continuous ways to model polyline vertices. The discrete version of
polyline generator is described in § 2.3. With the same model structure, we follow SketchRNN (Ha &
Eck, 2017) and use mixture of Gaussian distributions to model the vertices of polylines as continuous
variables. The comparison is shown in Table 6. We find that using discrete embeddings vertex
coordinates results in a considerable gain in performance, with Chamfer mAP increasing from 18.2
to 32.5 and the Fréchet mAP increasing from 26.8 to 50.4. These improvements suggest that the non-
local characteristic of categorical distribution helps our model to capture complex vertex coordinate
distributions.

19

	Introduction
	VectorMapNet
	BEV Feature Extractor
	Map Element Detector
	Polyline Generator
	Learning

	Experiments
	Comparison with baselines
	Qualitative Analysis
	Ablation Studies
	Vectorized HD Maps for Motion Forecasting

	Related Works
	Conclusions
	Experiment Setup
	Dataset
	Metrics

	More Visualizations of VectorMapNet (Fusion)
	Implementation details
	Overall Architectures.
	Training settings.
	Model Details
	Loss

	More Ablation Studies
	Curve sampling strategies
	Vertex modeling methods.

