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Abstract
The performance of a vision classifier on a given
test set is usually measured by its accuracy. For
reliable machine learning systems, however, it is
important to avoid the existence of areas of the in-
put space where they fail severely. To reflect this,
we argue that a single number does not provide a
complete enough picture even for a fixed test set,
as there might be particular classes or subtasks
where a model that is generally accurate performs
unexpectedly poorly. Without using new data, we
motivate and establish a wide selection of inter-
esting worst-case performance metrics which can
be evaluated besides accuracy on a given test set.
Some of these metrics can be extended when a
grouping of the original classes into superclasses
is available, indicating if the model is exception-
ally bad at handling inputs from one superclass.

1. Introduction and Motivation
The progress of computer vision in the last decade has, to a
large extent, been measured by the accuracy of vision clas-
sifiers on the ImageNet-2012 validation set (Russakovsky
et al., 2015). Generally, more accurate ImageNet models are
known to produce more accurate models on shifted datasets
(Recht et al., 2019; Taori et al., 2020; Miller et al., 2021)
or when the pre-trained weights are transferred to a new
task (Kornblith et al., 2019). However, an ImageNet model
with higher accuracy can have drastically reduced accuracy
on any specific subclass, and as shown in Balestriero et al.
(2022), this can negatively affect potential downstream tasks.
For this reason, in a general setting, it can be useful to mon-
itor the worst-case accuracy across all classes as the model
might generalize poorly to downstream tasks related to the
worst-case class. Furthermore, in certain applications fair-
ness considerations might even make it unethical to sacrifice
performance in a specific class for a performance gain on
average across all classes. To the best of our knowledge,
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prior fairness measures such as the ones proposed in Xue
et al. (2020); Maity et al. (2021); Mukherjee et al. (2020);
Speicher et al. (2018); Bellamy et al. (2018) do not cap-
ture this particular notion of fairness. We propose a variety
of easy-to-evaluate metrics that move beyond the standard
measure of accuracy on the test set.

2. Definitions
Let f : X → ∆(C) be a classifier that, for an input x,
predicts a probability distribution pc on the simplex ∆(C)
for c ∈ C. We evaluate on a test set DT of input-label
pairs (x, y) which for simplicity we assume for each class
c ∈ C contains at least one sample with y = c. Further,
for the sake of notational simplicity, we will write

∑
x,y for∑

(x,y)∈DT
, as we will refer only to the input-label pairs of

the test set.

A standard choice of DT for an ImageNet-2012 trained
classifier is the ImageNet-2012 validation set. Standard
accuracy is defined as follows:

A(f) =

∑
x,y 1argmax

i
f(x)i=y

|DT |
. (1)

We argue that standard accuracy is not the only metric we are
interested in when evaluating a model. As discussed above,
it can be detrimental for specific applications if the classifier
has severe weaknesses in specific parts of the in-distribution.
To get a better overview of the in-distribution weaknesses,
we define several accuracy metrics that consider the worst
class or classes.

Worst-class accuracy:

WCA(f) = min
c

∑
x,y 1y=c,argmax

i
f(x)i=y∑

x,y 1y=c
(2)

is a special case of the “worst-group error” in Liu et al.
(2021), with the groups simply being the classes. The worst-
class accuracy can also be seen as the worst-class recall,
i.e. true positives over the sum of true positives and false
negatives in that class. This has the interpretation of the
class that the classifier is most likely to “miss”.

To illustrate why a system that sacrifices worst-class ac-
curacy for standard accuracy could be quite problematic,
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consider a facial recognition system. Effectively, such a
system can be considered a multi-class classification system
with each registered face being a class. A low WCA(f)
would indicate that some person very rarely gets recognized
correctly whenever they use the system. This can be seen as
quite unfair.

Worst-class precision:

Similarly to the worst-class recall, we can also define the
worst-class precision by changing the denominator:

WCP(f) = min
c

∑
x,y 1y=c,argmax

i
f(x)i=y∑

x,y 1argmax
i

f(x)i=c
. (3)

A low WCP(f) can be interpreted as other classes often
being confused for this worst precision class. If we take the
example of a facial recognition system again, this could have
quite catastrophic consequences. If, for example, security
access is in some way tied to proper recognition and the
least-precise class corresponds to a high level of clearance,
the system could be much less secure than a high standard
accuracy would have the user believe.

Worst-superclass accuracy: In practice, models that were
pre-trained on ImageNet often get used for downstream
tasks. One example of a potential downstream classifica-
tion task that does not even require fine-tuning would be to
deploy an ImageNet model on a distribution that contains
only a subset of the classes. For example, one could use
a trained model to only separate different dog breeds. We
can test how well an ImageNet model would perform on
these restricted classification tasks by grouping different Im-
ageNet classes into super-classes and analyzing the accuracy
within each superclass. We will define the worst-superclass
accuracy as worst-case performance among all superclasses.

WSupCA(f) = min
s∈Csup

∑
x,y 1y∈s,argmax

i∈s
f(x)i=y∑

x,y 1y∈s
(4)

is the same as WCA (Eq. 2), but here instead of classes,
we take a subset of WordNet superclasses Csup. Several
such choices superclass partitions are possible for ImageNet
and different ones have been used (Geirhos et al., 2019;
Santurkar et al., 2019; Wen et al., 2022; Engstrom et al.,
2019).

Worst-superclass recall: A very closely related measure
to the worst-superclass accuracy is what we call the worst-
superclass recall:

WSupCR(f) = min
s∈Csup

∑
x,y 1y∈s,argmax

i
f(x)i=y∑

x,y 1y∈s
. (5)

The difference to Eq. (4) is that the models predictions are
not restricted to lie inside of the given superclass. Thus, for
a given classifier f , the WSupCR(f) is always less than
or equal to the WSupCA(f). These measures can differ
significantly, only if mistakes across different superclasses
are common.

As a general example, how WSupCR(f) can show other
biases of the classifier, consider again f to be a facial recog-
nition system. Low WSupCR(f) would indicate that, for
example, members of a particular race are consistently not
correctly recognized, which is again biased. Since a model
with a high WSupCA(f) can potentially still suffer from
this problem, we propose to monitor both metrics, even if,
empirically, they often end up quite close to one another.

Worst n-class accuracy: Instead of studying manually cho-
sen groups of classes (like with the superclasses above), we
could instead ask what subset of classes leads to the worst
accuracy if we restrict our classifier to them. We will call
this the worst-n-class accuracy and define it as follows:

WnCA(f) = min
Cn∈(Cn)

∑
x,y 1y∈Cn,argmax

i∈Cn

f(x)i=y∑
x,y 1y∈Cn

, (6)

where
(
C
n

)
denotes the set of all combinations of n elements

of the set of all classes C.

Note that, W1CA = WCA as well as W|C|CA = A. In
practice, computing Eq. (6) for large n is a combinatorial
problem and, thus, computationally infeasible. Instead, we
propose to compute it only for n = 2. The interpretation of
this is which two classes are the hardest to separate from one
another, which might indicate that this is a downstream task
that the model is not suitable for. This is similar to looking
at confusing class pairs of confusion matrix as in (Tsipras
et al., 2020), but W2CA might be interesting if for a given
model there are 2 classes that are consistently misclassified
by both not being among the top-2 predicted classes - which
means that either the classifier or the images in 2 classes are
faulty.

Worst n-class recall: Instead of restricting the classifier’s
predictions to a subset of classes, we can also simply collect
the n classes with the lowest recall:

WnCR(f) = min
Cn∈(Cn)

∑
x,y 1y∈Cn,argmax

i
f(x)i=y∑

x,y 1y∈Cn

. (7)

Despite the similarities between Eq. (6) and Eq. (7), note
that the WnCR is much easier to compute, as it does not
require solving a combinatorial problem in the case of bal-
anced classes (like for ImageNet). Furthermore, for a given
classifier f , the WnCR(f) monotonically increases in n,
while providing a lower bound WnCR(f) ≤ WnCA(f).
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Continuing the same example of a face detector, low
WnCR(f) could show, for instance, that f is underper-
forming on a group of people, that we didn’t think to group
manually as a superclass, e.g. people with certain hair color.

Worst-class top-k accuracy: As discussed below, the Im-
ageNet validation dataset has egregious weaknesses, con-
taining vast class overlaps and many mislabelled samples.
The effect of these weaknesses on standard accuracy can be
attenuated (Beyer et al., 2020; Shankar et al., 2020; Vasude-
van et al., 2022) by regarding the top-k accuracy (we use
the common value k = 5) which is defined as:

A@k(f) =

∑
x,y 1y∈top

i
(f(x)i,k)

|DT |
. (8)

We propose to also study which ground truth class most
often evades the top-k detection via the worst-class top-k
accuracy:

WCA@k(f) = min
c

∑
x,y 1y=c,y∈top

i
(f(x)i,k)∑

x,y 1y=c
, (9)

where the top
i
(f(x)i, k) operator returns a set of the indices

of k maximal elements of f(x). Similarly, we also define
the worst-n-class top-k recall:

WnCR@k(f) = min
Cn∈(Cn)

∑
x,y 1y∈Cn,y∈top

i
(f(x)i,k)∑

x,y 1y∈Cn

.

(10)

3. Experiments
3.1. Implementation

The implementation is available at https://github.
com/valentyn1boreiko/icml-2022. Since all
metrics only take the output logits of a classifier model
as input, all evaluations can be performed quickly when
provided the outputs of a standard forward pass on the test
set. Solely the calculation of W2CA runs in O(|C|2) time,
amounting to approximately 2 minutes on the ImageNet
validation set.

While choosing the worst combination of n classes used for
calculating the worst n-class recall WnCR is efficient for a
class-balanced test set, this is not feasible for unbalanced
classes. Instead, we propose and use a heuristic approx-
imation that chooses the n classes which perform worst
individually (without regard to size) and evaluates recall on
the samples from these classes. Note that approximating
WnCR with this (like any) choice of n classes provides an
upper bound on the true value.

As the superclasses for the computation of the WSupCA
and WSupCR, we use Restricted ImageNet (Santurkar et al.,
2019), which groups the animals in ImageNet into 9 super-
classes, i.e. dog, cat, frog, turtle, bird, monkey, fish, crab,
and insect.

We evaluate the three models provided in the ShiftHappens
API, which are VGG16 (Simonyan & Zisserman, 2014),
ResNet-18 and ResNet-50 (He et al., 2016). Addition-
ally, we show results of a Vision Transformer (Dosovitskiy
et al., 2021) using the vit_base_patch16_224 model
provided by timm (Wightman, 2019).

3.2. Evaluation results

Table 1 shows the evaluation of the proposed metrics with
DT being the full validation set of ImageNet-2012. While
we can see that the evaluated model (ViT) with the best
standard accuracy (A) also performs best in most other in-
troduced metrics, we observe that even this high-end model
shows relative weaknesses when the examiner knows where
to look.

Lowered WSupCA attests that cats are hard to distinguish
from each other, and significantly lower WSupCR indi-
cates that they are often also confused with non-cat classes.
The performance of all models in terms of WCA, WCP,
W10CR, W100CR, and W2CA is concerningly poor, at
least at first glance. However, examining the most severe
failure cases in detail, we find that many of them can be at-
tributed to problems with the ImageNet-2012 dataset rather
than the models. This comes down to clear problems of
the ImageNet-2012 validation dataset with label errors in
addition to semantically overlapping or completely identical
classes, as has for example been discussed by Beyer et al.
(2020) and Northcutt et al. (2021). For example, the valida-
tion set for “tiger cat” includes several tigers, despite “tiger”
being a separate class. Another peculiarity is that there are
two classes “maillot” (classes #638 and #639) in the dataset,
which unsurprisingly leads to the bad performance of one
of the classifiers on this pair (VGG16 using W2CA).

Because of this, we also use the cleaned labels from (North-
cutt et al., 2021) and report the same evaluation in Tab. 2.
They flagged potentially mislabeled images with suggested
new labels for human review. All 3956 out of 50000 sam-
ples that humans did not unanimously and uniquely put into
either their original or the suggested class are removed in
our evaluation. Note that this means that the test set is not
completely balanced anymore.

Even after cleaning the labels, the results remain largely the
same which might indicate that either the problem of label
noise is already in the train set, and thus classifiers have
overfitted on the label errors as noted in (Northcutt et al.,
2021), or that the given cleaning method is not sufficient.

https://github.com/valentyn1boreiko/icml-2022
https://github.com/valentyn1boreiko/icml-2022
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Table 1. Evaluation on the full ImageNet-2012 validation set: using 50000 samples for models indicated in columns. Where applicable,
the worst performing classes or superclasses are denoted.

MODEL RESNET-18 RESNET-50 VGG16 VIT
A 69.76 76.13 71.59 84.53
WCA 08.00 (SUNGLASS) 18.00 (MAILLOT) 10.00 (VELVET) 24.00 (TIGER CAT)
WCP 17.14 (LAPTOP) 23.91 (LAPTOP) 24.39 (LAPTOP) 30.30 (NOTEBOOK)
WSUPCA 73.20 (CAT) 75.60 (TURTLE) 72.40 (CAT) 77.60 (CAT)
WSUPCR 60.80 (CAT) 65.60 (CAT) 59.60 (CAT) 68.80 (CAT)
W10CR 15.40 22.60 18.00 31.40
W100CR 34.10 41.92 36.14 54.16
W2CA 42.00 (LAPTOP, NOTEBOOK) 44.00 (LAPTOP, NOTEBOOK) 46.00 (MAILLOT, MAILLOT) 40.00 (LAPTOP, NOTEBOOK)
A@5 89.08 92.86 90.38 97.29
WCA@5 38.00 (VELVET) 52.00 (SPOTLIGHT) 36.00 (VELVET) 68.00 (LETTER OPENER)
W10CR@5 49.40 63.20 52.00 80.60
W100CR@5 68.10 77.44 70.22 89.48

Table 2. Evaluation on the cleaned ImageNet-2012 validation set: using 46044 samples with unambiguous labels from Northcutt et al.
(2021) for models indicated in columns. Where applicable, the worst performing classes or superclasses are denoted.

MODEL RESNET-18 RESNET-50 VGG16 VIT
A 69.79 76.16 71.62 84.62
WCA 06.52 (SUNGLASS) 18.75 (MAILLOT) 09.09 (LETTER OPENER) 21.74 (TIGER CAT)
WCP 15.38 (LADLE) 25.00 (LAPTOP) 26.32 (LAPTOP) 30.00 (NOTEBOOK)
WSUPCA 71.81 (CAT) 75.00 (TURTLE) 70.93 (CAT) 76.65 (CAT)
WSUPCR 59.47 (CAT) 63.44 (CAT) 57.71 (CAT) 66.96 (CAT)
W10CR 13.97 22.32 17.47 31.73
W100CR 34.15 41.85 35.81 54.26
W2CA 44.18 (LAPTOP, NOTEBOOK) 44.13 (LAPTOP, NOTEBOOK) 45.26 (MAILLOT, MAILLOT) 40.75 (LAPTOP, NOTEBOOK)
A@5 89.13 92.90 90.42 97.33
WCA@5 39.58 (VELVET) 53.19 (SPOTLIGHT) 35.42 (VELVET) 65.91 (LETTER OPENER)
W10CR@5 49.12 62.06 50.33 80.09
W100CR@5 68.16 77.23 70.32 89.53

The included metrics which use variations of the top-5 accu-
racy are an orthogonal remedy to the effect of overlapping
classes and some types of mislabeling. We observe that also
in this easier and more data sensible setting, for all mod-
els, top-5 recall drops significantly when restricting ones
view on the worst 10% (W100CR@5), 1% (W10CR@5)
or individual (WCA@5) classes.

4. Conclusions and Limitations
We have motivated and proposed several performance mea-
sures that help discover class-specific biases both in the clas-
sifier and data. As the authors of Balestriero et al. (2022)
demonstrated, degradation of performance in some classes
can be related to the degradation in performance on a down-
stream task’s class as well. Thus, we conjecture that our
measure WSupCA better correlates with the performance
on a downstream task related to the worst superclass than
clean accuracy would. To test this, we propose evaluating
our measures alongside the performance on various down-
stream tasks on many models. Also, our metrics are not
bounded to the specific standard validation set but can be
applied to outputs on test datasets that contain shifts or are

cleaned in different ways.

A clear limitation of scope is that we only focus on the
worst-case classes. For example, Balestriero et al. (2022)
showed how some data augmentations can trade-off individ-
ual class accuracies for better standard accuracy. If a certain
augmentation degrades some class significantly, but not as
much compared to any of the worst-n classes, it might not
be detected.
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the Tübingen AI Center (FKZ: 01IS18039A) and from the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy (EXC
number 2064/1, Project number 390727645), as well as
from the DFG TRR 248 (Project number 389792660). The
authors thank the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting Alexan-
der Meinke.



Classifiers Should Do Well Even on Their Worst Classes

References
Balestriero, R., Bottou, L., and LeCun, Y. The effects of

regularization and data augmentation are class dependent.
arXiv:2204.03632, 2022.

Bellamy, R. K. E., Dey, K., Hind, M., Hoffman, S. C.,
Houde, S., Kannan, K., Lohia, P., Martino, J., Mehta, S.,
Mojsilovic, A., Nagar, S., Ramamurthy, K. N., Richards,
J., Saha, D., Sattigeri, P., Singh, M., Varshney, K. R.,
and Zhang, Y. ”AI Fairness 360: An extensible toolkit
for detecting, understanding, and mitigating unwanted
algorithmic bias”, 2018.
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