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Abstract

Face recognition models are trained on large-scale
datasets, which have privacy and ethical concerns.
Lately, the use of synthetic data to complement or
replace genuine data for the training of face recog-
nition models has been proposed. While promis-
ing results have been obtained, it still remains
unclear if generative models can yield diverse
enough data for such tasks. In this work, we intro-
duce a new method, inspired by the physical mo-
tion of soft particles subjected to stochastic Brow-
nian forces, allowing us to sample identities distri-
butions in a latent space under various constraints.
We introduce three complementary algorithms,
called Langevin, Dispersion, and DisCo, aimed at
generating large synthetic face datasets. With this
in hands, we generate several face datasets and
benchmark them by training face recognition mod-
els, showing that data generated with our method
exceeds the performance of previously GAN-
based datasets and achieves competitive perfor-
mance with state-of-the-art diffusion-based syn-
thetic datasets. While diffusion models are shown
to memorize training data, we prevent leakage in
our new synthetic datasets, paving the way for
more responsible synthetic datasets. Project page:
https://www.idiap.ch/paper/synthetics-disco

1. Introduction
Real-world data, in particular biometric ones, can possibly
contain sensitive information which raises privacy concerns
from both legal and ethical specialists (Prabhakar et al.,
2003; Nat, 2022). This is particularly true for a number of
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Figure 1: Example of synthetic faces generated using Style-
GAN2. The three rows are three different classes generated
with the Langevin algorithm while the columns show intra-
class variations generated using the Dispersion algorithm.

large biometric datasets that have been collected in the wild,
for instance by scraping images from the internet. Moreover,
in addition to privacy concerns, biometric data might give
a biased representation of the population depending on the
data collection procedure (Drozdowski et al., 2020). Re-
cently, MS-Celeb (Guo et al., 2016), a very popular dataset
commonly used to train face recognition (FR) models, was
withdrawn after exposure in the media of its privacy, fairness
and demographic biases problems. While data collection
campaigns performed in laboratories can be made repre-
sentative of the general demographics and performed with
subjects consents, they are typically quite limited due to the
large amount of effort they require.

In this work, we propose another step towards the tackling
of some of theses issues by developing physics-inspired
algorithms that allows precise control on the sampling of
synthetic identities and variations thereof. More precisely,
our method treats samples as soft spherical particles, living
in the multi-dimensional latent or embedding spaces, sub-
jected to repulsive inter-particles contact forces, a random
brownian force as well as a global attractive potential. Due
to the similarity of this kind of dynamics to the Langevin
equation, a stochastic differential equation (SDE) that de-
scribes the Brownian motion of small particles in a solvent
and its generalization, we call our first algorithm Langevin.
This algorithm allows us to approach a dense packing of
the spherical identities while keeping latent space spread
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minimal and thus filling up the latent space starting by the
regions that yield the most realistic images. In addition to
Langevin, that generates the inter-class distributions, we
also develop two similar algorithms, called Dispersion and
DisCo, to generate intra-class variations. Figure 1 shows
example of images generated with this method. We perform
an exploration of the parameter space of these algorithms
and generate several synthetic face datasets. We validate
our approach by training FR models with this synthetic
data, showing that our method can achieve a competitive
performance with state of the art.

In summary, the contributions of the paper are as follows:

• We propose physics-inspired algorithms to generate
large-scale face images datasets by sampling synthetic
identities in the latent space of a generative network.
We formalize our problem with Brownian motion of
small particles in a solvent and solve it with a stochastic
differential equation.

• The Langevin algorithm that generates a sampling of
synthetic identities within a GAN’s latent space opti-
mizing inter-class distances, based on a loss function
inspired by granular materials first used in this field.

• The Dispersion and DisCo algorithms that generate
intra-class variations for an ensemble of synthetic
identities, based on the same mechanism as well as
pre-computed latent directions for the second one.

The remainder of the paper is organized as follow. We
first review the existing synthetic face recognition datasets
in section 2. Then, in section 3 we describe our physics-
inspired methods for identity diffusion and generation of
synthetic datasets. In section 4, we present experiments that
validate our approach. Finally, the paper is concluded in
section 5.

2. Related Work
Considering the legal and privacy concerns in FR models
trained with large real face datasets, several works proposed
new synthetic face recognition datasets (composed of dif-
ferent synthetic subjects with several samples per identity)
to use for training face recognition models. DigiFace (Bae
et al., 2023) used a computer graphic pipeline to render
digital faces and introduce different variations based on
face attributes (e.g., variation in facial pose, accessories,
and textures). In contrast to DigiFace, other methods used
generative neural networks based on GANs or diffusion
models. SynFace (Qiu et al., 2021) used a modified Style-
GAN2 (Deng et al., 2020) to generate synthetic images
as different identities and then generated different sam-
ples by mixing identities in latent space. SFace (Boutros

et al., 2022) used CASIA-WebFace (Yi et al., 2014) to train
identity-conditioned StyleGAN and then used it to gener-
ate a synthetic dataset. The similar approach was used in
SFace2 (Boutros et al., 2024), but instead sampling step
was performed in the latent space. In (Liang et al., 2023), a
synthetic dataset consisting of 48,000 synthetic face image
pairs with 555,000 human annotations is presented and used
to measure bias in FR systems.

GANDiffFace (Melzi et al., 2023) used StyleGAN to gen-
erate synthetic identities and then used DreamBooth (Ruiz
et al., 2023) to generate different samples for each iden-
tity. IDnet (Kolf et al., 2023) used a three-player GAN
framework to generate a synthetic dataset using the Style-
GAN model as a generator, and the third player is trained
to generate identity-separable face images. Syn-Multi-PIE
(Colbois et al., 2021) used StyleGAN to generate synthetic
face images and then explored the latent space to generate
different samples per identity. ExFaceGAN (Boutros et al.,
2023b) used GAN-based face generator models (such as
StyleGAN2 (Karras et al., 2020), StyleGAN3 (Karras et al.,
2021), or GAN-Control (Shoshan et al., 2021)) and learned
an identity boundary in the latent space of GAN model.

In contrast to most works based on GAN models, recently
DCFace (Kim et al., 2023) and IDiff-Face (Boutros et al.,
2023a) were proposed which used diffusion models to gen-
erate synthetic datasets. Unlike GAN-based face generator
models like StyleGAN, the latent space of diffusion models
lack style representation, and therefore DCFace (Kim et al.,
2023) and IDiff-Face (Boutros et al., 2023a) trained condi-
tional diffusion models. DCFace (Kim et al., 2023) used
CASIA-WebFace (Yi et al., 2014) to train a dual condition
diffusion model with style and identity conditions. IDiff-
Face (Boutros et al., 2023a) trained an identity-conditioned
diffusion model and used it to generate different samples of
each subject. While diffusion-based methods have achieved
state-of-the-art performance, diffusion models are shown to
memorize individual images from their training data, and
thus being less private than GAN (Carlini et al., 2023). This
has led to considerable data leakage in diffusion-based syn-
thetic face recognition datasets, such as memorization in
DCFace as shown in (Shahreza & Marcel, 2024). Hence,
in this paper, we focus on GAN models which are shown to
be more privacy-friendly (Carlini et al., 2023).

Loss functions inspired by physical particles dynamics have
already been used in the context of GANs and Diffusion
Models. In (Wang et al., 2018), the authors propose a re-
pulsive loss function based on bounded Gaussian kernel
inspired by the hinge loss, showing it significantly improve
training at no additional computational cost. Similarly, in
(Unterthiner et al., 2017) the GAN learning problem is re-
formulated with a potential field inspired by electro-static
forces, which allow the authors to prove that such Coulomb
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GANs possess only one Nash equilibrium which help elim-
inate mode collapse during training. In (Franceschi et al.,
2023), a framework that unifies GANs and Diffusion Mod-
els is proposed which treats GANS as interacting particle
models.

3. Identity Diffusion and Dataset Generation
In this work, we focus on GAN generators as their latent
space has a tractable dimensionality. In addition, GANs
are shown to have less leakage from their training data
compared to other generator models, such as diffusion mod-
els (Carlini et al., 2023). To generate a random face image
on a StyleGAN type network, we can first sample a point
z from a Gaussian distribution in an auxiliary latent space
Z , then map it to a latent space vector w ∈ W using a fully
connected mapping network and finally generate an image
i ∈ I using a generator network g(w). This purely Gaussian
sampling, however, yields a distribution of identities that are
not sufficiently dissimilar to train an FR model. The follow-
ing sections present the Langevin algorithm that iteratively
optimizes an initially random ensemble of synthetic identi-
ties towards a more suitable one where identities are distant
enough. In addition to an ensemble of synthetic identities,
most FR tasks also require intra-class variations. To this
end, we propose the identity Dispersion algorithm which
samples the latent space around the identity reference latent
vector and optimize this intra-class ensemble in a way that
samples are close in embeddings space. Finally, we present
the DisCo algorithm which combines identity Dispersion
with latent directions augmentation.

3.1. Physics Inspiration

We take here inspiration from granular mechanics and Brow-
nian dynamics (Einstein, 1905) for our algorithms. We treat
synthetic identities as soft particles which are allowed to
partially overlap and where their contact interactions are
modeled as a spring-like force whose magnitude is propor-
tional to the overlap (Figure 2). This is similar to Particle
Based Methods (PBMs), such as Discrete Element Method
(DEM) (Cundall & Strack, 1979) which aims to simulate
physical granular materials.

Each particle is modeled as a perfect sphere of diameter
d0 = 2 r0, labeled with indices a, b, c, · · · = 1 . . . N , where
x⃗a =

(
xi
a

)
is the position of the center of the a-th particle

in an euclidean D-dimensional space i, j, · · · = 1 . . . D.
The dynamics of the system are described by the Newton
equation

m¨⃗xa =
∑

F⃗a, (1)

where m is the mass of the particle, ¨⃗xa = d2x⃗a

dt2 its accelera-
tion and

∑
F⃗a the sum of the forces acting on it.

F⃗2 = F⃗21

F⃗3 = F⃗31

F⃗1 = F⃗12 + F⃗13

hab = d0 − |x⃗a − x⃗b|

n⃗ab = x⃗a−x⃗b

|x⃗a−x⃗b|

F⃗a =
∑

b ̸=a F⃗ab

d0

k

F⃗ab =

{
k hab n⃗ab : hab > 0

0 : hab < 0

x⃗1

x⃗2

x⃗3

h12 = d0 − |x⃗1 − x⃗2|

Figure 2: Simplified model of contact forces between soft
spherical bodies. The bodies are characterized by their
position x⃗a and diameter d0, from which one derives the
overlap hab and a unit vector n⃗ab parallel to x⃗a − x⃗b. The
force exerted on the body a by the body b is denoted F⃗ab

and the total force on body a by F⃗a.

A particle a is allowed to have a small overlap hab =
d0 − |x⃗a − x⃗b| with a neighboring particle b. The con-
tact forces between particles can be then derived from a
quadratic spring-like potential

V =V (x⃗1, . . . , x⃗N ) =

N∑
a=1

N∑
b=a+1

V cont(x⃗a, x⃗b),

V cont(x⃗a, x⃗b) =

{
k
2 (d0 − |x⃗a − x⃗b|)2 : |x⃗a − x⃗b| < d0

0 : |x⃗a − x⃗b| > d0
,

(2)
where k is the spring constant and x = {x⃗1 . . . x⃗N} denote
the positions of the particles. The sum of the contact forces
acting on the particle a can be then recovered by taking
minus the gradient w.r.t. the particle position x⃗a

F⃗ cont
a = −∇⃗x⃗a

V. (3)

In this work, we use GAN models (e.g. StyleGAN) to gen-
erate synthetic identities. These generative models typically
yield better quality images around a center point in latent
space. To keep samples close to such a point, we introduce
another spring-like force that pulls back samples toward this
point

F⃗ pull−back
a = −kpull−back (x⃗a − x⃗avg) , (4)

where x⃗avg denotes the coordinates the center point of the
latent space and kpull−back is a spring constant. In addi-
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tion to these conservative forces, we also add a dissipative
viscous force to damp the system

F⃗ visc
a = −µ ˙⃗xa, (5)

where µ is the viscous force constant and ˙⃗xa = dx⃗a

dt the
velocity of the particle.

Generally, GANs map a probability distribution in the latent
space Z to a distribution in the target space I

p(z) −→ p(i), z ∈ Z, i ∈ I, (6)

where the latent distribution p(z) is often chosen as the
normal distribution N (0, I). We are interested here in a
modified distribution p′(z) that optimizes two simultaneous
constraints: 1) The mapping of this distribution to an auxil-
iary identity embedding space E spans as much as possible
of this space, 2) the variance and mean of p′(z) are min-
imized assuring the GAN generates realistic images. We
assume that there exists a dynamical process that evolves
the initial distribution p(z) = p(z, t)|t=0 toward an equi-
librium solution which is the solution which optimize the
constraints

p′(z) = p(z, t)|t=∞. (7)

One possible way to describe such a dynamical process
for the distribution p(z, t) is to use generalizations of the
diffusion equation, such as the Fokker-Plank equation

ṗ = −∂i
(
µi p

)
+

1

2
∂i∂j

(
σij p

)
+ . . . , (8)

where ∂i = ∂
∂zi and µi = µi(z, t), σij = σij(z, t) are

coefficient functions that control the dynamics of the system.
In practice, solving such an equation can be challenging and
we choose here to re-formulate the dynamics in term of the
particle degrees of freedom via the Langevin equation:

µ ˙⃗xa =
∑

F⃗a + Γ⃗a(t). (9)

This equation is a Stochastic Differential Equation (SDE)
(Carmona et al., 1986; Dalang & Sanz-Solé, 2024), which
can be obtained from the Newton equation (i.e., Eq. 1) by
adding a time-dependent random force Γ⃗a(t). We consider
here the over-damped limit of this equation where viscous
forces are dominant over inertia (µ ≫ m) and neglect the
latter (m→ 0). The random force is assumed not to favor
any particular direction, i.e.,〈

Γ⃗a(t)
〉
= 0 (10)

and has a Gaussian probability distribution. It is Markovian
with the following temperature dependent self-correlation
relation〈

Γ⃗a(t
′)

(
Γ⃗b(t)

)T
〉

= 2µkBT ID×D δab δ(t
′ − t), (11)

where µ is the viscous coefficient, kB the Boltzmann con-
stant and where T is the temperature.

3.2. Identity Embeddings and Metrics

We consider a generative model g(w) that maps a latent
spaceW to an image space I. In the case of the StyleGAN
family of models, this network is complemented by a map-
ping network f(z) that maps an auxiliary space Z where
gaussian sampling is performed. In addition to this genera-
tive model, we select an off-the-shelf face recognition (FR)
model h(i) that extracts a face embedding vector e ∈ E .
To obtain an embedding from a random latent sample, one
evaluates the following chain: za ∼ N (0, I), wa = f(za),
ia = g(wa), ea = h(ia). The default FR models we use in
this work are all based on the ArcFace loss function (Deng
et al., 2019), which has a spherical symmetry. To be consis-
tent with this symmetry, we define an angular metric on the
embedding space E that simply measure the angle between
the vectors

dE (ea, eb) = arccos
ea · eb
|ea| |eb|

. (12)

This in turns allows us to put a identity aware metric on the
latent space

dWid (wa, wb) = dE (e(wa), e(wb)) (13)

where e(w) = h(g(w)).

3.3. Inter-Class Optimization

3.3.1. RANDOM-REJECT SAMPLING ALGORITHM

We first consider a simple identity sampling algorithm
as a baseline. This algorithm works iteratively by ran-
domly sampling a latent vector wn+1 and then computing
its face embedding en+1. It then compute the distances
dE between en+1 and the n previously accepted samples
{ea, a = 1 . . . n} and, if all these values are above an Inter-
Class Threshold (ICT), the sample wn+1 is itself accepted.
If not the procedure is repeated until a sample that satis-
fies this criterion is found. This process is repeated until
the desired number of identities Nid is reached. This al-
gorithm, used for instance in (Colbois et al., 2021), while
perfectly suitable to find sufficiently dissimilar identities,
unfortunately scales exponentially with the number of iden-
tities making it hard to apply to large datasets. We call this
algorithm Reject in following sections.

3.3.2. IDENTITY SAMPLING FROM LANGEVIN
DYNAMICS

To circumvent the scaling problem of the aforementioned
Reject sampling algorithm, we present here an iterative
algorithm, inspired by the physical systems presented earlier
in this section. The main idea is to introduce a repulsive
force between the embeddings ea = e(wa) so that they
naturally arrange themselves in an assembly that maximize
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their inter-class distances. While any kind of repulsive force,
found in the physical world or not, could in principle serve
this purpose, a spring-like force that has a linear dependency
on the position seems the simplest choice. Moreover, such
type of forces are independent of the dimensionality of the
space they act in. On the contrary, other physical forces
such as gravity or electrostatics are described by power laws
with exponents that depends crucially on the dimensionality
of space and seem less adapted for our purpose.

Ideally, we do not want that identities that are far away
interact together, only identities pairs whose distance is
below a certain ICT value should lead to a repulsive force.
With this criterions in mind, we observe that the potential
for non-dissipative granular contact interactions in Eq. 2
achieves precisely this, as the interaction vanishes when the
distance is bigger than a constant d0. Based on these ideas,
we define the identity granular repulsion loss

LE =
kE

2

Nid∑
a=1

Nid∑
b=a+1

{(
d0 − dEab

)2
: dEab < d0

0 : dEab > d0

dEab = dE (e (wa) , e (wb)) = dWid (wa, wb) .

(14)

We note that this loss function is a close relative of non-
linear Hinge Losses commonly used in SVM algorithms
(Luo et al., 2021). Sampling a set identities that satisfy a
minimal distance threshold is similar to a sphere packing
problem. While solutions to this problem are known for two
and three dimensions, higher dimensional optimal sphere
packing lattices are usually unknown, except in some spe-
cial cases (Cohn et al., 2017). Ideally, we would like our
algorithm to generate the densest packing possible to get
the most identities from a given generative network. In
practice, as no algebraic solution can be found in such high
dimensionality we assume that our dynamical optimization
method yields a good enough solution. While the stochastic
noise introduced in Eq. 10 is not strictly necessary to this
optimization problem, we choose to keep it as it introduces
an additional temperature hyper-parameter via Eq. 11 as
well as a source of randomness which can be switched off
if needed. An hypothetical benefit of randomness in this
context is to prevent the formation of jammed states, which
can happen in granular materials in two or three dimensions
where particles are inter-locked in a way that can block
further rearrangement of the granular elements (Brilliantov
et al., 2004). We do not expect such jamming to appear
in this high dimensionality context and indeed have not
observed such a phenomenon in our limited experiments.
However, we observed a minor improvement in the conver-
gence speed. It is worth noting that jamming transitions
have already been studied in the context of loss landscapes
of deep neural networks (Geiger et al., 2019).

Generative models, and GANs in particular, generate good
quality images when the input latent vector is in a sub-space

of the full latent space. For instance, the StyleGAN family
of models (Karras et al., 2019; 2020; 2021) implements the
so-called truncation trick which consists by rescaling the
latent vector by a constant factor w.r.t. an origin placed
at the average latent wavg calculated by sampling a large
number of vectors via the mapping network. In other words,
the best quality images are those with latents located near
wavg . Introducing purely repulsive interactions alone would
be problematic as the latent vectors would be pushed away
from the domain where the network generates the best qual-
ity data. To circumvent this we introduce a latent pull-back
loss function, quadratic as well, that keeps the identities
from wandering too far from the wavg latent

LW =
kW

2

Nid∑
a=1

|wa − wavg|2 (15)

We call the resulting identity sampling algorithm Langevin
due to its similarities with the equations describing motion
a small soft particles in a thermal bath.

3.3.3. NUMERICAL IMPLEMENTATION

As said earlier we focus on the case where viscosity is
dominant w.r.t inertia. For physical particles we thus need
to solve the first order stochastic differential equation in Eq.
9, which we approximate by

x⃗a(t+ δt) ≈ x⃗i(t) +
δt

µ
F⃗a +

η0
µ

⃗dW (t, δt)

= x⃗i(t)−
δt

2

k

µ
∇⃗x⃗a

∑
a,b>a

h2
ab +

η0
µ

⃗dW (t, δt)

(16)
where we see that the viscosity constant µ scales the other
constants k and η0. For the following discussion we set
the viscosity to be µ = 1 and use the other constants to
parametrize the problem. Our latent update algorithm, in-
spired by the above simple numerical scheme, reads:

w(t+1)
a = w(t)

a − δt∇waL(t) + η0
√
δt ζ(t)a , (17)

where ζ
(t)
a is a vector of independent normal variables of

variance σ = 1 and where

L(t) =
(
LE + LW) (

w
(t)
1 , . . . , w

(t)
N

)
. (18)

From a numerical perspective, the gradient of LW can be
easily calculated so the only challenging task is the com-
putation of the gradient of the embedding distance metric
∇a d

E
bc. This computation can be challenging because the

embedding computation passes through two networks, the
generator and the embedding extractor, and through a very
high dimensional image space. One can simplify the prob-
lem by computing the jacobian ∂e

∂w , but it is still quite com-
putationally expensive. We find that a more efficient way
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Algorithm 1 Langevin algorithm

1: for a = 1 . . . Nid do
2: za ← N
3: wa ← f(za)
4: end for
5: for Niter do
6: for a = 1 . . . Nid do
7: ia ← g(wa)
8: ecsta ← h(ia)
9: end for

10: for a = 1 . . . Nid do
11: ia ← g(wa)
12: ea ← h(ia)
13: dEab ← dE(ea, e

cst
b ), b ̸= a

14: fa ← −∇a

(
LE + LW)

15: end for
16: f+ ← argmax fa
17: δw− ← argmin |wa − wb|
18: δt← τ δw−/f+

19: for a = 1 . . . Nid do
20: ζa ← N
21: wa ← wa + δtfa +

√
δtζa

22: end for
23: end for

of performing this computation is to first compute all the
embeddings with a forward only pass, and then compute
the gradients in a second pass. This procedure allows us
to make the problem tractable on standard computing hard-
ware, even for a large number of identities. We still need
to determine a appropriate time-step for our calculations.
We will show in the next section that the time-step has little
impact, a wide range of values yielding acceptable perfor-
mance. Values too coarse can however lead to numerical
problems that can have a negative impact over the quality
of the resulting dataset. Looking at Eq. 17, and neglecting
the random force, we see that the maximal distance a latent
can move in a single time-step, argmax

∣∣∣w(t+1)
a − w

(t)
a

∣∣∣
is proportional to the time-step times argmax

∣∣∇L(t)
∣∣. If

we impose that this distance should remain smaller than a
proportion τ < 1 of the minimal latent-to-latent distance,
we find the following expression for the time-step

δt = τ
argmin |wa − wb|
argmax

∣∣∇L(t)
∣∣ , (19)

which prevent latent vectors to be updated too aggressively
while still giving good numerical performance when the
distribution is close to an equilibrium. The final Langevin
algorithm is depicted in Algorithm 1. An illustration of the
Langevin algorithm is depicted in Appendix B.

3.4. Intra-Class Variations

3.4.1. IDENTITY DISPERSION

As we are interested in generating synthetic datasets that
can be used to train FR models, we need variations of the
synthetic identities, so called within-class variations. We
devise here a second algorithm, called Dispersion, that
generates an arbitrary number of variations from a refer-
ence latent-embedding pair (wref

a , erefa ) while preserving
as much as possible the identity. This algorithms is similar
to the Langevin algorithm but is intended to be used to after
a suitable set of identities have been generated by the latter.
Given a number Nid of references identities, this algorithm
creates Nvar variations wα

a , with α = 1 . . . Nvar. To keep
these new latent vectors separated enough, to create vari-
ability, we introduce another granular loss function, but this
time in the latent space

LW
disp =

kWdisp
2

Nid∑
a=1

Nvar∑
α=1

Nvar∑
β=α+1{(

dW0 − |wα
a − wβ

a |
)2

: |wα
a − wβ

a | < dw0
0 : |wα

a − wβ
a | > dw0

(20)

For the present work, we do not compute contact forces be-
tween different identities for identity variations, even if this
could potentially improve performance. This is done mainly
for simplicity reasons as such extension would require par-
allelization with custom inter-GPU communications. To
keep the embeddings of the identities variations close to
the reference embedding, we introduce a further spring-like
quadratic loss function

LE
disp =

kEdisp
2

Nid∑
a=1

Nvar∑
α=1

dE
(
e (wα

a ) , erefa

)2
, (21)

which is computed similarly to the granular loss of the
Langevin algorithm. Finally, we also add the latent pull-
back loss in Eq. 15, the total Dispersion loss reads

Ldisp = LW
disp + LE

disp + LW . (22)

The numerical implementation of this algorithm is very sim-
ilar to the Langevin one, the latent update equation simply
reads

wα (t+1)
a = wα (t)

a − δt∇wα
a
L(t)
disp + η0

√
δt ζα (t)

a . (23)

In this article we keep a fixed time-step for Dispersion,
for simplicity reasons, and parallelize over identities. We
initialize the new latents wα

a with the value of the reference
one wref

a and add some random gaussian noise to break the
symmetry of the ensemble

wα (0)
a = wref

a + ξ0 ξ
α
a , (24)
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where ξαa is a vector of independent normal variables of
variance σ = 1 and ξ0 is a fixed scaling parameter. An
illustration of the Dispersion algorithm is depicted in Ap-
pendix B.

3.4.2. LATENT EDITING: COVARIATES

While the Dispersion algorithm creates realistic variations
of a given identity, it gives little control over the type of
variation created. Moreover, having an alternative method
to create variations is desirable to give a comparison point.
For this reason we use the latent editing method introduced
in (Colbois et al., 2021). This latent editing technique as-
sumes that the variation of some attribute, such as left-right
pose, is essentially a translation in latent space and that this
translation is the same for every identity.

Given this assumption and following (Colbois et al., 2021),
we project in the latent space the samples of the CMU
Multi-PIE face database. This dataset provides a reasonable
number of genuine identities, each captured with different
poses, illuminations and expressions. When this is done,
we use a linear SVM model to fit the latent directions cor-
responding to the different attributes variations present in
the database. In particular, we extract 7 vectors wcov

I cor-
responding to left-right poses, left-right illuminations and
5 facial expressions: smile, surprise, squint, disgust and
scream. The algorithm introduced in (Colbois et al., 2021)
based on these latent direction is called Covariates in this
work and yields a total of 17 variations: 6 different poses, 6
different illuminations and one for each of the 5 expressions.

3.4.3. COMBINING DISPERSION AND COVARIATES

We also propose to combine the Dispersion and Covariates
methods and name the resulting algorithm DisCo. The
essential difference with the original Dispersion algorithm
is in the initialization procedure. In addition to the initial
symmetry breaking gaussian noise ξαa , the DisCo algorithm
also adds a linear combination of the 7 Covariates vectors
wcov

I to the reference latents wref
a

wα (0)
a = wref

a + ξ0 ξ
α
a +

7∑
I=1

λα
aI w

cov
I , (25)

where weights λα
aI ∈ [−λ0, λ0] are randomly and uniformly

sampled in a seven-dimensional hypercube. This additional
step forces more intra-class variability at the initial step of
the Dispersion algorithm and yields, according to our ex-
periments, better performing datasets. This positive effect
might be explained by the number of identities variations
compared to the dimensionality of the intra-class latent sub-
space. In the case where the former is small compared to the
latter, this extra initialization step helps the latent granular
contact loss to spread the latent vectors across the intra-class
subspace, yielding a more diverse final dataset.

4. Experiments
4.1. Experimental Setup

Training and Benchmarking We use the synthetic
dataset and train a face recognition model with the IRes-
Net50 backbone using AdaFace loss function (Kim et al.,
2022). We train each model for 30 epochs using the Stochas-
tic Gradient Descent (SGD) optimizer with the initial learn-
ing rate 0.1 and weight decay 5 × 10−4. Then, we eval-
uate the performance of the trained models on different
benchmarking datasets, including Labeled Faces in the Wild
(LFW) (Huang et al., 2008), Cross-age LFW (CA-LFW)
(Zheng et al., 2017), CrossPose LFW (CP-LFW) (Zheng &
Deng, 2018), Celebrities in Frontal-Profile in the Wild (CFP-
FP) (Sengupta et al., 2016), and AgeDB-30 (Moschoglou
et al., 2017) datasets. To maintain consistency with prior
works, the results reported for LFW, CA-LFW, CP-LFW,
CFP-FP, and AgeDB datasets are accurately calculated using
10-fold cross-validation, where the comparison threshold
is set at the Equal Error Rate (ERR) on one fold and the
accuracy is measured on the remaining folds.

Different Hyperparameters Our new method introduces
a number of hyperparameters that influence the quality and
usefulness of the final synthetic datasets. Table 5 in Ap-
pendix C shows the list of hyperparameters of the Langevin,
Dispersion and DisCo algorithms as well as their default
values. We also provide ablation study with different values
and evaluate the resulting datasets.

Reference FR Backbone To compute embedding dis-
tances and optimize the identity distribution with respect to
the latter, we choose an off-the-shelf reference FR model.
This model is built on an IResNet50 backbone, with an Arc-
Face loss (Deng et al., 2019) and trained on MS-Celeb-1M
dataset (Guo et al., 2016).

4.2. Comparison with Previous Synthetic Datasets

To compare the performance of our generated synthetic
datasets with previous synthetic face recognition datasets
in the literature, we train a face recognition model with
same backbone and using same learning loss as explained in
section 4.1. Table 1 reports the performance of face recog-
nition model trained with different datasets. The results of
benchmarking in Table 1 show that our method achieves
superior performance compared to GAN-based methods.
Compared to diffusion-based datasets, our method outper-
forms IDiff-Face on all benchmarking datasets and achieves
a competitive performance with DCFace. However, we
should note that diffusion models are shown to be prone
to leaking information from their training samples (Carlini
et al., 2023; Vyas et al., 2023; Somepalli et al., 2023a;b; Li
et al., 2024; Shahreza & Marcel, 2024), which limits their
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Table 1: Comparison of the existing synthetic face datasets present in the literature with the best performing datasets created
in this work. In addition to the number of identities and number of images, we present the recognition accuracy obtained by
training an FR model on each dataset and evaluating on standard face recognition benchmarking datasets. The best value
in each category is in bold text and the best results achieved by training from synthetic datasets amongst all categories of
synthetic datasets are underlined.

Dataset Type Dataset name Generator Nid Nsamples LFW CPLFW CALFW CFP AgeDB

Real images
MS-Celeb-1M (Guo et al., 2016) N/A 85’000 5’800’000 99.82 92.83 96.07 96.10 97.82
WebFace-4M (Zhu et al., 2021) N/A 206’000 4’000’000 99.78 94.17 95.98 97.14 97.78
CASIA-WebFace (Yi et al., 2014) N/A 10’572 490’623 99.42 90.02 93.43 94.97 94.32

Computer Graphics DigiFace-1M (Bae et al., 2023) Rendered mesh 109’999 1’219’995 90.68 72.55 73.75 79.43 68.43

Diffusion-based

DCFace-0.5M (Kim et al., 2023) custom trained 10’000 500’000 98.35 83.12 91.70 88.43 89.50
DCFace-1.2M (Kim et al., 2023) custom trained 60’000 1’200’000 98.90 84.97 92.80 89.04 91.52
IDiff-Face (Uniform) (Boutros et al., 2023a) custom trained 10’049 502’450 98.18 80.87 90.82 82.96 85.50
IDiff-Face (Two-Stage) (Boutros et al., 2023a) custom trained 10’050 502’500 98.00 77.77 88.55 82.57 82.35

GAN-based

Synface (Qiu et al., 2021) StyleGAN2 ♭ 10’000 999’994 86.57 65.10 70.08 66.79 59.13
SFace (Boutros et al., 2022) StyleGAN2 ♯ 10’572 1’885’877 93.65 74.90 80.97 75.36 70.32
SFace2 (Boutros et al., 2024) StyleGAN2 ♯ 10’572 1’048’255 94.03 73.2 80.33 74.87 72.98
Syn-Multi-PIE † (Colbois et al., 2021) StyleGAN2 10’000 180’000 78.72 60.22 61.83 60.84 54.05
GANDiffFace (Melzi et al., 2023) StyleGAN3 10’080 543’893 94.35 76.15 79.90 78.99 69.82
IDnet (Kolf et al., 2023) StyleGAN2 ♯ 10’577 1’057’200 84.48 68.12 71.42 68.93 62.63
ExFaceGAN (Boutros et al., 2023b) GAN-Control 10’000 599’944 85.98 66.97 70.00 66.96 57.37
Langevin-Dispersion [ours] StyleGAN2 10’000 650’000 94.38 65.75 86.03 65.51 77.30
Langevin-DisCo [ours] StyleGAN2 10’000 650’000 97.07 76.73 89.05 79.56 83.38
Langevin-DisCo [ours] StyleGAN2 30’000 1’950’000 98.97 81.52 93.95 83.77 93.32

† Dataset was re-generated from the original source code ♯ Identity conditioned ♭ Disentangled representation (Deng et al., 2020)

Table 2: Influence of the number of Langevin iterations
Niter on FR accuracy. For all datasets, variations are created
via the Dispersion algorithm with default parameters. The
first row consider pure random sampling for benchmarking.
The next rows show different combination of Niter and dE0 .

Niter dE0 LFW CPLFW CALFW CFP AgeDB Average
0 - 90.78 62.55 78.5 64.96 70.12 73.38
1 1.54 90.73 64.15 78.5 65.24 70.67 73.86

10 1.54 92.23 65.05 81.42 65.5 72.73 75.39
20 1.54 92.73 66.37 82.42 65.09 74.22 76.17
50 1.54 93.93 66.83 84.52 68.67 75.52 77.89
50 1.4 94.45 65.58 86.03 66.53 77.17 77.95

100 1.4 94.72 64.58 86.17 65.36 79.25 78.02

application in tasks with sensitive data. In fact, the main
motivation for generating synthetic datasets is to resolve the
privacy concerns in large-scale real face recognition datasets.
However, if the generated synthetic dataset has a leakage of
information from a real dataset, it will have similar privacy
issues. This issue, as well as possible mitigation within our
framework, is further discussed in Appendix H. The results
in Table 1 also show that there is still a gap between training
with synthetic and real face recognition datasets.

4.3. Performance of the Langevin Algorithms

We are interested in the influence of the number of Langevin
iterations on the quality of the resulting datasets and, impor-
tantly, if the latter improve FR accuracy when compared to

Table 3: Influence of Langevin time-step parameters on final
FR accuracy. The parameter δt is the fixed time-step value
while τ is the automatic time-step parameter.

δt τ Niter LFW CPLFW CALFW CFP AgeDB Average
0.1 - 200 84.3 56.63 72.33 57.49 65.63 67.28
0.3 - 66 84.12 57.27 71.15 58.63 64.98 67.23
0.6 - 33 83.05 57.65 69.75 57.91 63.7 66.41
1.0 - 20 82.9 57.7 69.9 57.4 61.23 65.83

- 0.3 50 84.12 59.03 72.18 57.8 63.83 67.39
- 1.0 50 82.83 57.73 70.67 58.41 63.57 66.64

random sampling. Table 2 shows the accuracy of FR models
trained on synthetic datasets generated with such a varying
number of iterations and for two values of dE0 . The datasets
in this table are composed of N = 10k synthetic identities,
the first one being the random sampling benchmark. For all
datasets, the 64 variations are created with the Dispersion al-
gorithm with the default parameters reported in Appendix E.
It is clear that the Langevin algorithm yields a significant
performance improvement, even after a small number of
iterations, over pure random sampling. It is interesting that
more iterations tend to yield better performance and that
this improvement effect continues even while the average
embedding distance has reached a plateau.

While the Langevin algorithm seems to yields a significant
accuracy advantage for synthetic data trained FR models,
it is quite computationally expensive. A straightforward
parameter to optimize is the time-step value, which control
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Table 4: Influence of the stochastic force on FR accuracy.

η0 Niter LFW CPLFW CALFW CFP AgeDB Average
0.003 100 94.90 65.4 86.63 65.9 79.35 78.44
0.01 100 94.72 64.58 86.17 65.36 79.25 78.02
0.03 100 94.53 65.67 85.72 64.99 79.22 78.03

the precision of the numerical integration. Table 3 shows the
effect of the time-step on the final FR accuracy and shows
a comparison of fixed time-step against the automatically
calculated values. A small advantage is observed for smaller
fixed values, at least until δt = 0.3, and calculated values
with τ = 0.3 reach similar performance with slightly less
iterations. For this reason, a varying time-step with τ = 0.3
is used in the rest of the article.

Finally, we briefly study the impact of the amplitude of the
random stochastic force on the resulting FR performance.
The addition of this term was motivated in section 3 by
the idea that it could mitigate potential jamming and help
sampling the latent space efficiently. Table 4 shows a very
limited survey for this purpose, with three different values
of η0. This data shows that this parameter, at least in this
very limited range, has a limited impact on the results. We
report further experiments in Appendices D-K, including
complexity evaluation, dynamical evolution of Langevin
ensembles, strict Inter-Class Threshold constraints, repul-
sion distances threshold, identity leakage from training set,
synthetic dataset scaling, bias evaluation, and closing the
gap with real data.

5. Conclusion
We proposed algorithms to generate synthetic face images
datasets by sampling synthetic identities in the latent space
of a generative network. We introduced three complemen-
tary algorithms, Langevin, Dispersion and DisCo, aimed at
generating large synthetic datasets to mitigate ethical issues
arising from the usage of real datasets. These algorithms
take inspiration from physical processes such as Brownian
motion and granular mechanics to generate ensembles of
samples in the latent space of generative models. To our
knowledge, our use of loss functions inspired by granu-
lar mechanics is novel in this context and open promising
avenues, possibly beyond face recognition applications. Im-
portantly, these algorithms introduce a set of free parameters
that control the distribution of samples in the latent space
and which can be optimized to yield high quality synthetic
datasets tailored for specific usages. To validate the sound-
ness of our approach and evaluate its effectiveness at gener-
ating useful synthetic face data, we trained FR models on
the synthetic datasets we generated and evaluated the result-
ing models on seven standard face biometric benchmarks.
We also outline some future directions in Appendix L.

Source Code and Data Availability
To adhere to the standards of reproducible research, the code
used for our experiments is publicly available. In addition,
we also provide access to our synthetic datasets. Project
page: https://www.idiap.ch/paper/synthetics-disco
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A. Sample Images
In this appendix, we show sample images generated with our algorithms. Figure 3 shows synthetic identities obtained with
the Langevin algorithm. Figure 4, Figure 5 and Figure 6 show intra-class variations of synthetic identities generated with
the Dispersion, Covariates and DisCo algorithms, respectively.

Figure 3: Sample images illustrating the inter-class variation produced by the Langevin algorithm.

(a) Reference (b) Variation 1 (c) Variation 2 (d) Variation 3 (e) Variation 4 (f) Variation 5 (g) Variation 6 (h) Variation 7

Figure 4: Sample images illustrating the intra-class variation produced by the Dispersion algorithm.
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(a) Reference (b) Illumination (c) Illumination (d) Pose (e) Pose (f) Smile (g) Squint (h) Surprise

Figure 5: Sample images illustrating the intra-class variation produced by the Covariates algorithm.

(a) Reference (b) Variation 1 (c) Variation 2 (d) Variation 3 (e) Variation 4 (f) Variation 5 (g) Variation 6 (h) Variation 7

Figure 6: Sample images illustrating the intra-class variation produced by the DisCo algorithm.

B. Illustrations of Langevin and Dispersion Algorithms
To generate identities with suitable inter-class distance between samples, we use the Langevin algorithm illustrated in Figure
7. This algorithm iteratively optimizes an ensemble of latent vectors, one per identity, living in the latent space of a GAN
generator, using a repulsive loss function. The distance between samples is computed with an off-the-shelf FR model by
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Figure 7: Mappings between the different spaces and details of the Langevin algorithm. Firstly, a random vector za is
sampled from a normal distribution in Z , for each identity class a = 1 . . . Nid . It is then mapped to the initial latent
w

(0)
a ∈ W via the mapping network f . A face image is generated from this latent using the generator synthesis network

ia = g(wa) and, after face alignment, the face embedding is computed with the reference feature extractor ea = h(ia). Two
quadratic loss functions are introduced, one on the embedding space E , depending on the embedding distance dE , and one
on the latent spaceW distances dW . Their derivatives are evaluated using back-propagation and the latents are updated
based on these gradients w(t)

a → w
(t+1)
a . The procedure is repeated for a desired number of iterations Niter.

computing the angle between the embedding vectors. Similarly, Figure 8 depicts the Dispersion algorithm we use to generate
intra-class variations of a given synthetic identity. This algorithm also iteratively optimizes the samples distribution, with
the main difference that the repulsive loss function is defined in the latent space. An attractive loss function in embedding
space is added to keep the identities variations as close as possible to the reference synthetic identity. The combination
of these two loss functions generates intra-class variations that are as close as possible of the reference embedding while
pushing them as far as possible in the latent space. For both Langevin and Dispersion algorithms, we add an attractive loss
function in latent space that keeps the latent vectors close to the average latent, where images have the best quality.

C. Default Values of Hyperparameters used in Experiments
Our new method introduces a number of hyperparameters that influence the quality and usefulness of the final synthetic
datasets. While this gives new opportunities to tune a synthetic dataset towards a particular goal, it also adds a new layer of
complexity that requires a good understanding of the influence of each of these numbers on the final results. Table 5 of
this appendix shows the list of hyperparameters of the Langevin, Dispersion and DisCo algorithms as well as their default
values. These default values give a baseline with good numerical performance and are used in the following experiments
unless explicitly specified. To better understand the impact of these hyperparameters, we run a non-exhaustive survey with
different values and evaluate the resulting

D. Complexity and Required Computational Resources
The computation for the algorithms can be separated in three main phases: 1) a forward pass to generate embeddings 2) a
second forward pass with backward pass to compute interactions and 3) an update step where latent vectors are updated.
The run time for the Langevin and DisCo algorithms is reported in Table 6 and Table 7, respectively, for a system equipped
with a single NVIDIA RTX 3090 GPU. The first pass has linear complexity with respect to the number of identities O (Nid)
and can easily be parallelized. We use a batch size of 64 for this phase, which is dictated by memory constraints. The
second phase has quadratic complexity O

(
N2

id

)
as pairwise interactions are computed for each pair of samples. Similarly,
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Figure 8: The Dispersion algorithm is very similar to Langevin, with slightly different loss functions, and is intended to
generate Nvar intra-class variations per identity class. In a first step, for each variation α = 1 . . . Nvar, a latent vector
w

α (0)
a is initialized from its reference value wref

a plus some noise. Three loss function are then computed. The first one acts
on the embedding space and pulls the embeddings of the variations towards the reference embedding erefa . The second
loss function act on the latent space and pulls the latent vectors towards the average latent wavg. The last one is a granular
loss function that exert a repulsive force between latent vectors that are closer than a certain threshold. Latent vectors are
updated according to the gradients of these losses. The procedure is repeated for each class a = 1 . . . Nid and for a desired
number of iterations Ndisp

iter .

the complexity of the second phase of the DisCo algorithm is linear for the number of identities O (Nid), as there are no
interactions between identities, and quadratic for the number of variations O

(
N2

var

)
. In DEM and other particle-based

methods, this can be reduced to linear complexity by computing a near-neighbors list at regular intervals. However, for
simplicity in the implementations, we did not follow this approach. Finally, the last pass that updates the latent vectors has
linear complexity O (Nid) and is very fast compared to the previous phases.

E. Dynamical Evolution of Langevin Ensembles
The Langevin algorithm presented in the previous section is designed to maximize, iteratively and stochastically, the pairwise
embedding distances of an ensemble of synthetic identities defined on the latent space of a given generative model. This is
achieved using the loss function, Eq. 14 of the paper, that yields a repulsive force between two samples whose embeddings
are closer than a threshold value dE0 . At the same time, a second loss function, Eq. 15 of the paper, pulls the samples towards
the average latent vector wavg around which the best quality samples are located.

By design, the Langevin algorithm tries to increase the samples embedding pairwise distances dE (ea, eb), up to a given
threshold dE0 , while simultaneously pulling the samples towards wavg, and therefore minimizing pairwise latent distances
|wa − wb|. Figure 9a and Figure 9b show the evolution of average pairwise embedding and latent distances, respectively, for
Nid = 10k identities, up to Niter = 50 iterations and for five different values of dE0 . Figure 9a shows that all five ensembles
start with the same average pairwise embedding distance

〈
dE

〉
⋍ 1.47, this quantity increase very quickly to reach a plateau

after approximately 10 time-steps. As expected, bigger values of dE0 lead to higher plateau, with the exception of dE0 = 1.6
where some sort of saturation phenomenon seems to occur. While average the embedding distance stays almost constant
after this swift onset, the average pairwise latent distance ⟨|wa − wb|⟩ continue to decrease at a much slower pace, as seen
in Figure 9b, indicating that the ensemble slowly clusters itself around wavg.

These dynamics are driven by the balance between the repulsive embedding contact force, whose evolution is shown in
Figure 9c, and the attractive latent pull-back force, whose evolution is shown in Figure 9d. We see that, when the samples
are randomly distributed, their overlap in embedding space is quite significant leading to very high contact forces in the first
iterations. The samples re-arrange themselves to minimize contact interactions quite rapidly and, after a certain number of
iterations, the contact interaction reaches a plateau. After this plateau is reached, samples continue to be pulled towards
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Table 5: Hyperparameters for the Langevin, Dispersion and DisCo algorithms and their default values.

Default Description

µ 1.0 Langevin and Dispersion bulk viscosity

kE 1.0 Langevin embedding contact force coefficient

dE0 1.4 Langevin embedding distance threshold

kW 0.1 Langevin latent pull-back coefficient

η0 0.01 Langevin random force magnitude

τ 0.3 Langevin variable time-step coefficient

Niter 100 Langevin number of iterations

kWdisp 1.0 Dispersion latent contact force coefficient

dW0 12.0 Dispersion latent distance threshold

kEdisp 1.0 Dispersion identity pull-back coefficient

k̃W 1.0 Dispersion latent pull-back coefficient

η̃0 0.01 Dispersion random force magnitude

δ̃t 0.05 Dispersion fixed time-step

Ñiter 20 Dispersion number of iterations

ξ0 0.2 Dispersion initial symmetry breaking noise

λ0 1.0 DisCo covariates sampling scale

Table 6: Runtime for Langevin identities generation with Niter = 100 on a system with a single NVIDIA RTX 3090 GPU.

Nid Runtime
1k 2.2h
2k 3.5h
4k 5.4h
6k 10.2h
8k 12.8h
10k 18.2h
20k 31.5h
30k 49.2h

Table 7: Runtime for DisCo identities variations generation with Niter = 30 and Nid = 30k on a system with a single
NVIDIA RTX 3090 GPU.

Nvar Runtime
16 50.0h
32 95.8h
64 183.7h
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wavg by the latent pull-back force, which slowly decays as seen Figure 9d. Figure 9e and Figure 9f show this decay for a
varying number of identities, by plotting ⟨|wa − wb|⟩ in function of Nid and Niter, respectively.

F. Strict Inter-Class Threshold Constraints
Another interesting metric on the performance of the algorithm is the proportion of pairwise distances that are above a
certain inter-class threshold dEict. This can be computed by counting each occurrence where this condition is met, for each
possible pair of identities (a, b)

ρict =

∣∣{dE (ea, eb) < dEict, ∀(a, b), a > b
}∣∣

Npairs
, (26)

where we set a > b to avoid double counting and where Npairs =
Nid(Nid−1)

2 is the number of possible pairwise interactions.
If we set this threshold equal to the Langevin repulsion distance threshold, dEict = dE0 , we can evaluate the ratio of the
number of contacts over the number of pairs

ρ0 =

∣∣{dE (ea, eb) < dE0 , ∀(a, b), a > b
}∣∣

Npairs
=

Ncontacts

Npairs
. (27)

Figure 9g shows the dynamical evolution of this quantity after a certain number of iterations Niter, for different values of
dE0 . We see that for very high values of dE0 , this value is close to one so almost every identity is in contact with every other
one. For other values we can compute the average number of contacts per identity

2Ncontacts

Nid
=

2 ρ0 Npairs

Nid
= 2ρ0 (Nid − 1) , (28)

where we have added a factor of two to account for each identity in the pair in contact. We see in Figure 9g that, for dE0 = 1.4
and Nid = 10k, this ratio stabilizes around ρ = 0.03 meaning that each identity is on average in contact with approximately
300 other classes. More generally, the ratio ρict is the FMR of the reference FR backbone evaluated on the synthetic dataset
and the Langevin algorithm tends to iteratively decrease this value until it reaches a plateau.

It would be interesting to know the maximal number of identities Nstrict
id , which satisfy the constraint dE0 > dEict, we can

extract from a given Langevin ensemble. For this purpose, we devise a simple erosion algorithm that iteratively removes
identities from the ensemble until the constraint is satisfied for all pairs of remaining identities. This naive algorithm
removes the identities with the maximal number of contacts first, one by one, until no contact is left. Figure 9h shows
values of Nstrict

id for Langevin ensembles of Nid = 10k and for different values of dEict. In this case, we set the contact
distance threshold slightly bigger than the threshold, dE0 = 1.1 dEict, and plot Nstrict

id against computational wall-time. For
comparison, we also plot the performance of the Reject algorithm and see that Langevin with erosion yields a significant
numerical advantage, at least with our implementations.

G. Repulsion Distances Threshold and DisCo

We are now interested in optimizing the statistics of the synthetic datasets generated by our algorithms. In particular, we
study here the influence of the repulsion distance thresholds dE0 and dW0 , for Langevin and Dispersion, respectively. We
would also like to investigate the impact of the DisCo scale parameters λ0.

As explained in section 3 of the paper, the Langevin and Dispersion granular-like losses functions introduced in Eq. 14
and Eq. 20, respectively, are designed to repulse samples that are too close in the embedding and latent spaces. The
Langevin algorithm therefore controls the inter-class embedding pairwise distances via the parameter dE0 as illustrated by
the histograms in Figure 10a. One clearly sees that increasing the value of dE0 shifts the peak of the distribution toward
bigger pairwise embedding distances. For the largest values showed in this plot, the peaks are near dE ≈ π

2 , similar to the
real-world data shown in Figure 10c.

Similarly to Langevin, the Dispersion algorithm controls the intra-class latent pairwise distances via the parameter dW0 .
Since increasingly larger latent pairwise distances tend to produce increasingly dissimilar images, we expect bigger values
of dW0 to widen the intra-class pairwise embedding distances distribution and shift its peak towards larger values. This is
indeed what we observe in the histograms in Figure 10b, where the pairwise embedding distances distributions of Dispersion
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Figure 9: Dynamics of Langevin ensembles: Evolution of the average pairwise embedding distance a and the average
pairwise latent distance b. Evolution of the average embedding contact force c and average latent pull-back force d. Average
pairwise latent distance for different Nid e and pairwise latent distance for Nid identities after Niter iterations f. Proportion
of pairwise embedding distances below the threshold dE0 for N = 10k identities g. Compute time used to generate Nstrict

id

dissimilar identities for Langevin (L) with erosion and for Reject (R) and with different dEict values h.
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Figure 10: intra-class ⊙ and inter-class ⊘ embedding distance histograms of synthetic datasets generated with the
Langevin, Dispersion and DisCo algorithms as well as genuine real-world data. In a, the Langevin repulsion distance dE0 is
shown to affect the inter-class distance statistics. In b and d, the Dispersion repulsion distance dW0 and DisCo scale λ0 are
shown to affect the intra-class distance statistics. In c, genuine datasets histograms are shown for comparison. The vertical
dashed lines, denoted ”FMR”, show the distances for the reference FR backbone evaluated on IJB-C dataset for three
different FMR values.
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Table 8: Influence of Langevin repulsion distance threshold dE0 on FR accuracy.

dE0 Niter LFW CPLFW CALFW CFP AgeDB Average
1.2 50 90.82 59.73 80.97 60.66 72.65 72.97
1.3 50 92.78 63.32 83.33 63.51 74.37 75.46
1.4 50 94.43 65.08 85.13 65.6 76.97 77.44
1.5 50 94.67 65.98 85.1 67.83 75.67 77.85
1.6 50 92.73 65.15 82.28 67.3 73.02 76.10

Table 9: Influence of Dispersion repulsion distance threshold dW0 on FR accuracy.

dW0 Niter LFW CPLFW CALFW CFP AgeDB Average
8.0 20 84 59.57 70.62 59.99 63.57 67.55

12.0 20 94.43 65.08 85.13 65.6 76.97 77.44
14.0 20 96.48 65.62 89.53 67.9 83.93 80.69
16.0 20 96.15 62.47 88.43 67.54 82.83 79.48
18.0 20 95.25 63.3 87.12 66.41 81.2 78.66
20.0 20 54.33 50.07 49.83 55.04 51.68 52.19

ensembles, created with a wide range of value of the parameter dW0 , are shown. We observe that a small value of dW0 = 8.0
lead to a very narrow distribution, while bigger values greatly shift the peak towards larger dE values.

We are interested on the accuracy of the FR models trained on such synthetic ensembles, for different values of these
two parameters. Table 8 and Table 9 show such a survey, for five different values of dE0 and six different values of dW0 .
As we can see from the first table, the values dE0 = 1.4 and dE0 = 1.5 of the Langevin repulsion distance threshold yield
the best FR performance, while further increasing this parameter to dE0 = 1.6 degrades the overall performance. As
we can see by comparing peaks of pairwise inter-class distances histograms of genuine and synthetic data in Figure 10,
these best performing parameters values yield distributions close to genuine data from the FFHQ and MultiPIE datasets.
Keeping the fixed value dE0 = 1.4, we see from the second table that the best performance is achieved with the parameter
value dW0 = 14.0. It is interesting to note that the values dW0 = 12.0, dW0 = 16.0 and dW0 = 18.0 yields almost similar
performance figures, but with widely different pairwise distances distributions.

Table 10: Influence of DisCo parameter λ0 on FR accuracy.

dW0 λ0 LFW CPLFW CALFW CFP AgeDB Average
12.0 0.0 94.43 65.08 85.13 65.6 76.97 77.44
12.0 0.5 95.65 69.6 87.45 68.54 80.32 80.31
12.0 1.5 96.2 73.25 87.7 73.89 80.73 82.35
12.0 1.0 96.6 74.77 87.77 73.89 80.7 82.75
14.0 1.5 97.22 75.85 89.48 78.76 83.32 84.93
16.0 2.0 94.82 65.18 85.00 72.39 77.27 78.93

In section 3 of the paper, we introduced a modification of Dispersion, the DisCo algorithm, that initialize the intra-class
variations with a random linear combination of the covariates vectors introduced in (Colbois et al., 2021). This modification
is introduced to further increase the intra-class variability of the final datasets and the implementation introduces an
additional parameter λ0 that controls the scale of the random weights λα

aI ∈ [−λ0, λ0]. Table 10 shows the performance of
five such ensembles compared to the pure Dispersion baseline λ0 = 0. The first three datasets use a latent repulsion distance
of dW0 = 12.0 while the fourth and last further increase this parameter. As demonstrated by the results in this table, this
algorithm yields significant performance improvement compared to the original one using purely random initialization,
at least up to a value of λ0 = 1.5. This gain is of between two and four percents for the LFW, CALFW and AgeDB
benchmarks, which is already quite significant. Where the DisCo yields the biggest advantage however is on the CPLFW
and CFP benchmarks, where improvements of up to twelve percents are observed. This indicates that the DisCo algorithm
helps generates more diversity, and that it is helpful in mitigating the relatively poor performances of StyleGAN2 ensembles
on pose benchmarks.
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Table 11: Influence of training set repulsion on FR accuracy.

dEtr dE0 LFW CPLFW CALFW CFP AgeDB Average
0.0 1.4 94.43 65.08 85.13 65.6 76.97 77.44
0.6 1.4 94.97 65.15 85.62 65.19 78.42 77.87
0.8 1.4 94.95 66.28 86.5 65.24 78.9 78.37
1.0 1.4 94.77 65.23 86.22 66.61 78.33 78.23
1.2 1.4 94.95 65.08 85.97 65.56 79.07 78.13
1.3 1.4 94.58 65.18 86.37 65.91 79.85 78.38
1.4 1.4 94.08 65.62 85.37 66.93 77.12 77.82
1.5 1.4 91.85 64.58 81.58 66.37 71.72 75.22

H. Identity Leakage from Generator Training Set and Mitigation
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Figure 11: Effect of the dEtr parameter on synthetic to training set distances distribution: On the left, effect on the minimum
value, on the right: effect on the distribution tail.

While we have generated a large quantity of synthetic data, it is important to emphasis that the generator is trained on
genuine data. We want to verify that the synthetic data generated by our algorithms is sufficiently far from the original
training set data and, if it is not the case, find appropriate mitigation techniques to control potential training set leakage. It
has been shown that, despite the care taken by the authors of previous methods such as DCFace (Kim et al., 2023), their
method still generates a significant number of samples that are very close, if not indistinguishable, from images from the
generator training set (Shahreza & Marcel, 2024).

Since GANs-based generators are less prone to leakage than diffusion-based models (Carlini et al., 2023), we developed
our method based on GAN models. Another advantage of our method is that we can further mitigate the problem by
introducing an additional interaction that repulses the synthetic samples away from the training set samples. This is quite
easily implemented in Langevin by adding a loss function similar to Eq. 14 that repulse synthetic samples away from
generator training set samples embeddings

LE
tr =

kEtr
2

Nid∑
a=1

Ntr∑
A=1

{(
dEtr − dEaA

)2
: dEaA < dEtr

0 : dEaA > dEtr

dEaA = dE (e (wa) , EA) ,

(29)

where Ntr is the number of training set samples, where A = 1 . . . Ntr and where EA is the embedding of the A-th sample.
The total loss function for the Langevin algorithm Eq. 18 changes to

L(t) = LE + LW + LE
tr. (30)

We introduced a new parameter dEtr which is similar to the pairwise embedding repulsion distance dE0 but for granular
interactions between synthetic and genuine samples. This parameter has the effect of shifting the tail of the genuine-synthetic
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Figure 12: Top row: Selection of the most similar images among the 64 nearest embedding pairs between the original FFHQ
(top) and images generated with Langevin algorithm with dEtr = 0.6 and Nid = 10k (bottom). Note that (similar to the left
image) there are several images of children among similar images, which are hard to compare and therefore we focused on
adults for this study.

Figure 13: Top row: Selection of the most similar images among the 64 nearest embedding pairs between the original
CASIA-WebFace (top) and synthetic images in the DCFace dataset (bottom).

embedding distance histogram, as shown in Figure 11 thus controlling the most problematic images in term of embedding
distance. Table 11 reports the effect of this new parameter on FR accuracy, for several values of dEtr. We observe that,
surprisingly, increasing the value dEtr slightly increases FR accuracy, and the biggest value considered dEtr = 1.3 performs
slightly better than no training set repulsion at all.

To verify the leakage of identity in the generated datasets, similar to (Shahreza & Marcel, 2024), we compare all images in
the synthetic dataset with all images in the training set of generator model. Figure 12 and Figure 13 illustrate the most similar
pairs of genuine and synthetic images with the smallest embedding distance for both our method and DCFace, respectively.
While it is difficult to conclude the leakage in our synthetic dataset, we can see that DCFace has almost memorized several
samples, indicating a serious identity leakage in the DCFace dataset.

I. Synthetic Dataset Scaling and Face Recognition Performance
Having performed a detailed analysis of the Langevin, Dispersion and DisCo algorithms as well as the influence of their
respective parameters, we would like to also see if we can scale our approach to bigger synthetic datasets. Table 12 shows
the result of this survey. In this table, we also show the effect of compounded datasets, datasets that have the same biometric
references, created with Langevin, but different variations. In particular, several datasets are compounded with their reference
Langevin ensemble, thus adding one variation per class, denoted by a check-mark in the Ref. column of the table. As we
can see, this offers a very limited performance increase but we decide to keep this for bigger datasets as the data has to be
computed anyway.

Scaling up to Nid = 30k however offers an impressive performance improvement, in particular with DisCo variations,
with an impressive average score of 88.40, almost reaching the performance of diffusion based methods. For Nid = 30k
we also study the influence of the number of variations, showing that Nvar = 64 yields the best results. Surprisingly, for
Nvar = 128 the performance drops very significantly, by almost twenty points. This might be explained by the lack of
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Table 12: Influence of the number of identities, number of variations and variation-creation method on FR accuracy.

Method Nid Nimg Ref.† Nvar dW0 λ0 LFW CPLFW CALFW CFP AgeDB Average

Langevin + Dispersion

10’000 640’000 - 64 12.0 - 94.43 65.08 85.13 65.6 76.97 77.44
650’000 ✓ 64 + 1 12.0 - 94.38 65.75 86.03 65.51 77.3 77.79

30’000
480’000 - 16 12.0 - 90.65 64.42 80.12 63.07 70.18 73.69
960’000 - 32 12.0 - 94.83 66.25 84.3 65.51 76.1 77.40

1’620’000 - 64 12.0 - 97.98 71.57 91.7 72.76 88.87 84.58

Langevin + DisCo

10’000 640’000 - 64 12.0 - 96.6 74.77 87.77 73.89 80.7 82.75

20’000 1’300’000 ✓ 64 + 1 12.0 1.5 98.22 77.57 91.93 78.93 89.95 87.32
1’300’000 ✓ 64 + 1 14.0 1.5 98.53 81.17 92.93 83.56 92.32 89.70

30’000

1’950’000 ✓ 64 + 1 12.0 1.5 98.37 79.53 92.58 80.71 90.82 88.40
3’870’000 ✓ 128 + 1 12.0 1.5 86.15 61.98 70.35 68.23 59.87 69.32
1’470’000 ✓ 48 + 1 14.0 1.5 98.55 81.32 93.33 83.37 92.05 89.72
1’950’000 ✓ 64 + 1 14.0 1.5 98.97 81.52 93.95 83.77 93.32 90.31

40’000 2’600’000 ✓ 64 + 1 12.0 1.5 98.33 78.25 92.27 79.31 89.43 87.52
50’000 3’250’000 ✓ 64 + 1 12.0 1.5 98.47 79.88 92.57 79.93 90.33 88.24

Langevin + Covariates 10’000 180’000 ✓ 17 + 1 - - 77.68 59.2 64.07 61.07 52.55 62.91
† References created with Langevin are compounded with the variations for FR model training.

Table 13: Bias evaluation of trained face recognition models on the Racial Faces in-the-Wild (RFW) dataset

Dataset Type Caucasian Asian Indian African Avg. Std.

SynFace (Qiu et al., 2021) GAN 65.60 64.48 61.48 57.27 62.21 3.01
SFace (Boutros et al., 2022) GAN 75.68 69.7 70.63 66.23 70.56 2.08
IDNet (Kolf et al., 2023) GAN 70.03 64.22 65.77 59.3 64.83 2.89
GANDiffFace (Melzi et al., 2023) GAN 76.32 72.85 72.45 66.48 72.03 3.00
ExFaceGAN (Boutros et al., 2023b) GAN 65.25 65.40 64.25 57.97 63.22 3.28
DigiFace (Bae et al., 2023) Computer Graphics 71.93 68.30 69.02 64.8 68.51 1.93
IDiff-Face (Uniform) (Boutros et al., 2023a) Diffusion 84.92 80.63 81.67 75.65 80.72 2.72
DCFace-1.2M (Kim et al., 2023) Diffusion 90.08 82.97 87.07 80.97 85.27 2.66
Langevin-DisCo-1.6M [ours] GAN 89.17 82.95 85.43 81.42 84.74 1.81

inter-class latent repulsion, a design choice made for simplicity, as explained previously.

J. Bias Evaluation
To investigate the bias in our synthetic dataset, we evaluate the performance of face recognition models trained with our
dataset and compare with previous datasets on the Racial Faces in-the-Wild (RFW) (Wang et al., 2019) dataset. As the
results in Table 13 show, our method has achieved the best performance compared to GAN-based synthetic datasets and
comparable average performance with diffusion-based methods. In terms of bias, this table demonstrates that our method
achieves the lowest standard deviation for recognition accuracy across different demographic groups, indicating the lowest
bias in the trained face recognition model using our dataset.

K. Closing the Gap with Real-World Data
To better assess the performance of our best datasets, Figure 14 shows the Receiver Operating Characteristic (ROC) curves
for a number of models trained on synthetic and genuine data of the IARPA Janus Benchmark-B (IJB-B) (Whitelam et al.,
2017) and IARPA Janus Benchmark-B (IJB-C) (Maze et al., 2018) datasets. As can be observed in this figure, our method
outperforms all GAN-based synthetic datasets in the literature. In addition, our method achieves comparable performance
with diffusion-based datasets for high values of FMR; however, for low values of FMR, diffusion-based methods achieve
better performance than our method. We should note that, as mentioned in section 2 of the paper, DCFace is generated with
a dual condition model trained on CASIA-WebFace (Yi et al., 2014) with identity labels, and therefore the generator model
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Figure 14: ROC curves for models trained on synthetic datasets, benchmarked on the IJB-B and IJB-C datasets.

leverages1 the identity information in the CASIA-WebFace dataset (Shahreza & Marcel, 2024). In contrast, our method is
based on a pretrained generative model, which is trained on unlabeled face images from the FFHQ dataset. In addition, as
discussed in Appendix H, there is identity leakage in the DCFace dataset. Compared to FR models trained with real data,
the ROC curves show that there is still a gap between training with real and synthetic datasets. Nevertheless, the promising
improvement achieved by our method for GAN-based models reveals potential in generative models and training FR with
synthetic data, which require further research in the future.

L. Future Directions
While we showed that our algorithms can yield very good synthetic face datasets, many improvements are still to be made.
Most importantly, our method crucially relies on a reference off-the-shelf FR model. In some sense, the datasets generated
with our method iteratively learns, by stochastic gradient descent, from the reference FR model, and therefore quite certainly
learn its biases as well. A possible fix that could mitigate, at least partially, this fundamental issue is to use several reference
models in parallel, simply by adding more embedding losses to the algorithms.

Fundamentally, the problem of generating complex synthetic data, that has similar characteristics that some genuine
reference, is a chicken-and-egg problem. It could be perhaps constructive to reformulate this problem in a way that makes
it clear that the synthetic data will always depends to some extent on genuine priors, and rather insist on developing
procedures giving guaranties that the original data is at least hard to recover and that the synthetic dataset gives a good
enough representation of reality. A few steps in this direction were performed in this appendix, possibly also hinting at some
interesting research directions toward a much deeper problem: generalization of deep neural networks.

We would like to stress that, while large part of this work was devoted to optimization of these algorithms, they remain
computationally expensive. For each sample an image must be generated and its embedding computed, twice per iteration
with one backward pass, which is computationally expensive as the data goes through an intermediary image space of very
high dimensionality. On the other hand the only function we are interested in is an identity aware metric dWid on the latent
space of a given generator. It is certainly possible to learn such a function to a relevant degree of accuracy and to use this
instead of the full chain, at least for bootstrapping. Alternatively, while technically challenging, it is certainly possible to
prune connections and weights in theW → E generator-feature-extractor chain, which would vastly improve efficiency.

1Since DCFace is trained on CASIA-WebFace dataset with identity labels, the recent Synthetic Data for Face Recognition (SDFR)
Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
disqualified all submissions based on DCFace (Shahreza et al., 2024). It is also shown in (Shahreza & Marcel, 2024) that DCFace has
critical identity leakage from CASIA-WebFace dataset.
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